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by Prof. Keith Ruddick 

Introduction 

 As a general rule, a result quoted without any estimate of its uncertainty is useless.  Its validity 
cannot be considered in any absolute way, or compared with other equivalent results.  The purpose of 
these notes is to present an introduction to some of the techniques of error (uncertainty) analysis and of 
data reduction.  The notes will necessarily be brief; many of the concepts should be already familiar.  
The topics, along with specific examples, will be covered at greater length in several lectures. 
Experimental usefulness, rather than mathematical rigor, will be emphasized.  

 There are a great number of books which cover this subject at various levels: older texts which 
contain much useful background and presenting numerical methods for hand computations, and newer 
ones which provide actual computer programs (Library call numbers: Dewey 519, Lib.Cong. QA278).  
The book Data Reduction and Error Analysis for the Physical Sciences by P.R. Bevington and D. 
Robinson is at an appropriate level but presents programs in FORTRAN.  Equivalent C programs can 
be found in Numerical Recipes in C, The Art of Scientific Computing, 2nd Edition by W.H.Press, 
B.P.Flannery, S.A.Teukolsky, W.T.Vetterling, although that book is somewhat mathematical in its 
approach. 

1. Significant Figures 

 All numerical measurements or results must be expressed with appropriate significant figures, 
which express the precision of the number.  For example, writing the values 1, 1.0, and 1.00 imply that 
the values lie between 0.5 and 1.5, 0.95 and 1.05, and 0.995 and 1.005, respectively. 

 A measurement and its experimental error should have the same significance, e.g., 273±6  (or 
equivalently, ((273±0.06)×103 ). 

 When adding or multiplying two numbers with different precisions, for example, the precision of the 
result is determined by the number with the least precision.  For example 

  1.093 + 2.5 = 3.6  not 3.593 

  1.093 x 2.5 = 2.7  not 2.7325 
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Round-off errors will appear if you are not sensible.  For example 

  0.98 x 1.04 = 1.02 not 1.0 

In this case each number is known to a precision of about 1% and the result should express this fact.  
But 

  1.9 x 6.135 = 11.7 not 12 (Never throw precision away!) 

 It is legitimate to quote an experimental result to one more significant figure than the experimental 
precision would dictate, since in a computation one significant figure is sometimes lost, as shown 
above.  As a rule, however, errors are usually given to only 1 significant figure; an error itself has 
uncertainty and so it is meaningless to quote a high precision for it. 

2.  Systematic vs. random errors 

 All measurements have uncertainties.  It is the aim of the experimenter to reduce these to a 
minimum.  Apart from gross errors which lead to obviously wrong results, such as misreading the scale 
of an instrument, there are two classes of errors which must be considered, and their effects estimated.  
One of these is random errors: Whenever you make a series of independent measurements of some 
quantity, these measurements will generally be spread over a range of values, with about half the 
fluctuations lying above the "best" (or average) value, and half below.  The range of the measurements 
is a measure of their precision.  The source of these random errors can often not be identified directly, 
but can arise from errors in judgment when reading a scale to the smallest division, or from small 
fluctuations in temperature, line voltage, etc., which can affect the measuring instruments.  Random 
errors can usually be treated by statistical analysis and form the basis of these notes. 

 Systematic errors can not be treated statistically.  They can arise, for example, from miscalibrated 
instruments or occasionally from observer bias.  A very common error made by students is to assume 
that the zero-point on an instrument scale really is zero.  There is generally no reason to assume this, 
since the zeroing of any instrument is part of its calibration, along with setting any scales on the 
instrument. Corrections for systematic errors can often be made to the data provided their presence is 
known and understood.  This is not always the case, however.  Consider the table below, which shows 
the results of two sets of measurements of the length of a piece of wood, with two different rulers and 
on two separate occasions: 

 

Ruler, Temperature Result (cm) 
Steel, 10° C 80.35 ± .05 

Plastic, 10° C 80.12 ± .08 

Steel 30° C 80.17 ± .05 

Plastic, 30°C 80.06 ± .08 

 

The quoted (random) errors in the data were presumably found by a suitable analysis of the spread of 
the measurements, but these data also contain some obvious systematic errors, relat ed to the material 
of the ruler used, and to the temperature at which the measurements were made. (The measurements 
made with the steel ruler are greater than those with the plastic, and higher temperature results are 
smaller than those made at lower temperatures).  
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 What is the length of the piece of wood?  Notice that measurements made with the same ruler 
have the same "precision", which is an indication of the exactness of the measurements made with that 
instrument, but the ultimate "accuracy" of the measurement will depend on how well the experimenter 
is able to account for the thermal expansion of his rulers, and in the case of the plastic ruler, expansion 
due to the relative humidity of the air at the time of the measurement.  These types of systematic error 
can often be removed from the data, e.g., if the appropriate expansion coefficients are known.  Such 
corrections will not increase the precision of the experiment, but will increase the accuracy in the final 
result for the length of the piece of wood, which must presumably be quoted for a specific temperature.  
The quoted error must be increased to accommodate the additional uncertainties arising from the 
corrections. These are, of course, just estimates of the exact corrections. 

 Very often, there are no specific rules to follow, and you must use your own good judgment in 
handling errors, especially systematic errors.  As a guiding principle, be conservative, be honest with 
yourself and in the presentation of your results.  The uncertainty in a result is usually expressed as a 
single number, but may often include an estimate of the both systematic and random errors, separately. 

3. Measurements of a Single Quantity: Random Errors 

 If a quantity x is measured many times N, the individual measurements xi  form a distribution from 
which the experimenter wishes to extract a "best" value for x.  Usually, but not always, the "best" value 
is the mean x   of the distribution: 
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1
  (A.1.) 

(For an asymmetrical distribution, the "best" value might be the median, which is that point above which 
half of the xi  lie, with half below, or it might be the most probable value, which is the peak of the 
distribution.  Of course, all three quantities are equivalent for a symmetrical distribution.)   The 
spread or width of the distribution is an indication of the precision of the measurement.  As a measure 
of this width we consider the deviations of the individual measurements from the mean, i.e.  

ii xxd −=   (A.2.) 

From our definition of  x , the sum of the deviations must equal zero.  The mean deviation, defined in 
terms of the magnitudes of the deviations: 
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is often useful, but a more useful measure of the dispersion of a measurement is the standard deviation  
σ.  The variance of the distribution σ2  is the average of the squared deviation: 
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The standard deviation is then the square root of the variance, or the root mean square of the 
deviations. 

 To be more mathematically correct, we should recognize that the measured distribution is a 
"sample" distribution, which will be different every time we make a different series of measurements of 
x, rather than the "parent" distribution for which the mean is the exact, or "true" value.  The best 
experimental estimate of the parent or "true" standard deviation is given by: 
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 The quantity N -1 is the number of degrees of freedom in the problem, which equals the number of 
data points minus the number of fit parameters.  If you ever have to worry about the difference between  

N  and 1−N   in your data, then the data are probably not very good! 

 Note that this σ is a measure of the uncertainty in a single measurement; it measures the width of 
the distribution of all measurements and is independent of the number of measurements!  But, clearly, 
the more times we make a measurement, the better we expect to be able to determine the mean.  We 
shall show later that the standard deviation of the mean is given by: 
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i.e. in order to improve the accuracy by a factor 2, you must make 4 times as many measurements. 

 Occasionally, the term probable error is used to describe the precision of a measurement.  This is 
defined such that there is a 50% probability of exceeding this error if another measurement is made.  It 
is a little greater than the standard deviation: The exact relationship between the two depends on the 
form of the distribution.  

 We emphasize that these definitions are general, and apply to any distribution of measurements.  
There are specific theoretical distributions which can be used as models of actual data and which are 
very useful.  We shall discuss them and their applicability shortly. 

4.  Propagation of Errors 

 Suppose we measure several quantities a, b, c,... each with its own standard deviation, σa,σb,σc  ... 
and then use these values to determine a quantity y = f(a,b,c...).   What is the standard deviation of the 
quantity y? 

 We can differentiate the function to find how changes ∆a, ∆b, ∆c... in each of the a, b, c... affect the 
value of y: 
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This is, of course, really the first term in a Taylor expansion, and corresponds  to assuming that the 
partial derivatives do not change over the ranges ∆a, ∆b,...  (For large errors, we must include terms in 

bay ∂∂∂ /2   and the cross terms  , etc.) 

 If the function y=ab , or y=a/b for example, then 
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respectively. 
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 In general, we do not know the absolute errors ∆a, ∆b, ∆c, in the measurements of a,b,c, but rather 
a quantity such as their standard deviations  σa,σb,σc, (or the probable errors). However, from the above 
equations it is intuitively likely that the variances should add in the form: 
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That this is indeed true follows from: 
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and then 
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which leads to equation A.8 if we neglect the cross-terms:  This will be valid if the a's and b's  are 
independent, but if they are related this correlation must be accounted for. 

 Thus, for example, for a function y=abc, or y=ab/c, we obtain:  
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and for y=a+b+c: 

2222
cbay σσσσ ++=   (A.12.) 

 5. Some Important Distributions 

a) Binomial Distribution 

 Consider an experiment, such as tossing a pair of dice to obtain two sixes. The experiment has 
only two possible outcomes, with probability p for success, and probability q=(1-p) for failure.  
(Obviously, in this case p=1/36 and q=35/36).  For a series of N such experiments, the probability of 
throwing sixes for the first k times, say, and then not throwing sixes for the remaining (N-k ) times is 

( ) ( )( )kNkkNk ppqp −− −== 1Prob   (A.13.) 

But if we ask what is the chance of obtaining a pair of sixes for any k  out of N tries, in any sequence, we 
must multiply the above expression by the number of ways this may occur. The result is known as the 
binomial distribution:  

( ) ( ) ( )( )kNk
B pp

kNk
N
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−

= 1
!!

!
,,   (A.14.) 

It is left as an exercise to the student to prove this, and to show that the mean and variance of the 
distribution are given by: 

Npx =   (A.15.) 

( )pNp −= 12σ   (A.16.) 
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b) Poisson Distribution 

 The binomial distribution becomes unwieldy for large N.  But in the very common situation where p 
is very small, (remember that the mean Npx =  ), it can be approximated by the Poisson distribution, 

which has a much simpler analytic form.  This distribution is: 

( ) x
x

p e
x
x

xxP −=
!

,   (A.17.) 

The variance of this distribution is x  , (from  ( ) ( )∑ −= xPxx 2σ , so that the standard deviation of the 

mean x   is  x .  A Poisson distribution is then completely specified by its mean  x  and its standard 

deviation x=σ  . 

 Both the binomial and Poisson distributions are asymmetric, and they are also discrete. The 
Poisson distribution is especially useful in determining the statistics of radioactive decay, where in 
general, N, the number of parent nuclei is enormous, and the probability of decay is small.  It gives the 
statistics of the number of decays observed in a given interval, so that, for example, if 100 counts are 

observed in a given time interval, the standard deviation will be 10100 =  .  Beware, however, the 
thoughtless application of this rule at very low rates:  it is the square root of the mean of the parent 
distribution that gives the standard deviation.  For 100 counts, the rule works well because the mean 
probably lies in the range 90 to 110 and taking a square root then yields close to the same answer for 
σ.  But if you obtain 1 count, say, in a given time interval, the mean is not well-determined from this 
single measurement, and actually has a reasonable chance of being anywhere from about 0.1 to 3.  So 
you cannot say that the σ is 1 in this case.  The Poisson distributions for means of 0.1 and 3.0 are 
shown in Figures A.5a and A.5b. 
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• Figure A.1. a     b       c 

c) Gaussian Distribution 

 When x   becomes large, the Poisson distribution becomes very symmetric and eventually can be 
expressed in a more useful form, the Gaussian distribution, often referred to as the normal distribution: 
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This is a continuous function in x, so that the probability of any measurement falling within an interval dx 
around x is given by: 

( )dxxxPdP GG σ,,=   (A.19.) 
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The probability of a measurement lying 1σ, 2σ from the mean, respectively, is 0.683, and 0.954.  This is 
illustrated in Figure A.5c.  It is also easy to show that 1σ = 1.48 x the probable error. 

 The Gaussian distribution forms the basis of most error analyses, especially because of its simple 
analytical form.  It represents many experimentally observed distributions extremely well; in practice, 
however, there are often longer tails in an experimental distribution than predicted by the formula 
above. 

6.  Estimating the Mean And Its Error:  Method of Least Squares 

 We previously asserted that the "best" value from a symmetric distribution of measurements is the 
mean of the measurements.  It is simple to show that this choice corresponds to minimizing the 
variance of the distribution. i.e.: 
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from which 
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Setting this equal to zero as the condition for a minimum in σ2 , we find:  

022
1

=− ∑
=

N

i
ixxN        i.e.       ∑

=

=
N

i
ix

N
x

1

1
   (A.22.) 

This is an example of the principle of least squares :  the "best" value from a distribution of 
measurements is that which corresponds to minimum variance, (i.e. the least sum of the squares of the 
deviations).  The principle of least squares is itself a consequence of the principle of maximum 
likelihood, which is at the foundation of much of the field of statistics, as we shall now show: 

 Suppose we have a (Gaussian) distribution with mean x  .  The probability of obtaining any given 
measurement  xi within the range dxi  is: 
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and then the probability of obtaining a particular distribution of measurements  x1,x2, . . .xN is: 
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This probability is a maximum when the exponent is a minimum, which corresponds to the least 
squares condition.  

Weighted Mean 

 If each measurement in the expression for the total probability has a different σi , then the exponent 
which must be minimized is: 
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Differentiating this with respect to x  then gives: 
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where the wi , the reciprocals of the variances, are called the weights of the measurements.  This is the 
prescription for determining a weighted mean, when each measurement has a different weight. 

 What is the error of the mean?  In equation (A.8.) we found a general expression for the variance 
2
yσ   of a function y=f(a,b..).  It is equal to the sum of terms  ( )22 aya ∂∂⋅σ   Applying this to our definition 

of the mean:  
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we find: 
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Thus, if the standard deviations of the data points are all equal, i.e., σσ =i   , the estimated error of the 

mean is given by: 
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as stated earlier.  And if the uncertainties are not equal, we evaluate the partial derivatives from our 
expression for the weighted mean: 
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which leads to an expression for the uncertainty in the weighted mean: 
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 7. Graphical Presentation of Data 

 A well-drawn graph can provide an overall view of a set of data which is not possible from a table of 
numbers.  There are good ways to represent individual data points. 

 Suppose you are plotting some measurements  yi as a function of a dependent variable xi , e.g. 
electrical resistance vs. temperature.  If there are many data points with small relative errors, and the 
dependence of y on x is fairly slow, then it may be reasonable to represent each data point by a single 
point as in Figure A.5.a.  If, however, the dependence is fairly rapid and there are limited data points, it 
is usually better to draw a circle around the point, as in Figure A.5.b.  Notice that in this figure, we drew 
a line through the data points to guide the eye; without this line the data would have been much more 
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difficult to comprehend.  However, the line we drew did not go through all data points, we did not simply 
connect all points by straight lines.  Such a smooth line is valid since sudden changes in slope are 
probably unphysical; this was justified since we presumably had some knowledge of the likely errors in 
the measurements. 
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• Figure A.2. a       b       c 

 Generally, if you know the standard deviations of each data point, these should be indicated on the 
graph by vertical lines through each point.  Again, it may be useful to draw a smooth line through your 
data, in order to guide the eye, or actually to determine a slope, or to illustrate a fit to the data.  Figure 
A.5.c shows an example. 

 Graphs serve several functions, in addition to summarizing data:  A graph is usually necessary for 
observing fine features in the data, for evaluation of "backgrounds" to experiments, to show likely bad 
data points, etc.  A good graph is often necessary to show that your data are convincing, and should 
therefore be given careful thought.  It should be accurately labeled, and scales should be chosen for 
optimum effect, e.g. log-log to demonstrate power laws, etc. A very useful rule to use in evaluating data 
shown in graphical form follows from our discussion of standard deviations earlier:  A fitted line 
should pass through roughly two-thirds of the error bars, missing about one-third.  If the line 
misses significantly more than one-third of the data points, the errors have been underestimated, and if 
it passes through more, the errors are too conservative. 

 8. Fitting Data to a Straight Line y = a + bx 

 It is very often required to determine the "best fit" of some data to a known functional form.  We first 
consider fits to a straight line, i.e. given a series of N measurements of a quantity yi  as we vary some xi 
, find the "best" values of a and b, along with their errors, where the data are expected to have the form 
y=a+bx.  We assume that the xi  have errors which are much smaller than yi , which is usually the case.  
We use an extension of the least squares method which we have already used for determining the best 
value for the mean of a distribution of measurements of a single quantity.  This process is sometimes 
called linear regression.  For any arbitrary values of a and b, we can calculate the deviation di between 
each of the measured values yi  and the corresponding calculated values: 

( ) ( ) iiiii bxayxyyd −=−=   (A.32.) 

The probability of obtaining a particular yi  is then given by: 
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where iσ   is the standard deviation of a particular yi .  The probability of obtaining the full set of 

measurements  y1,y2,… is given by the product of probabilities  P(y1)P(y2)…=P .  As before, we need to 
maximize the probability P. 

a) The Case When All σ's Are Equal. 

 In this situation, maximizing P corresponds to minimizing the sum of the squared deviations with 
respect to the parameters a and b. i.e. For:  

( )∑ ∑ −−= 22
iii bxayd   (A.34.) 

the conditions for minimum deviation are: 
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which produces two simultaneous equations for a and b. The solution of these equations gives the 
required fit values for a and b: 
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To determine the standard deviations of a and b, we again use the general expression for the effect of 
the variations iyz ∂∂   on the standard deviation in a parameter z, so that:  
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Since the standard deviations σi  of each measurement yi  have been assumed to be the same, we can 
estimate these directly from the data.  We find:  
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which is the function we have just minimized.  (The factor N-2, the number of degrees of freedom, is the 
number of data points N minus the number of parameters (2) to be determined in the fit). 

We can differentiate the solutions for a and b given above to obtain:  
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Some algebra then gives: 
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where σ is given by the equation quoted above, which can also be written:  
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This form may be more suitable for computation. 

b) Weighted Fits 

 It should now be obvious how you make a weighted least squares fit to a straight line with each of 
the yi  having different errors.  The function to be minimized now is not simply the sum of the squares of 
the deviations, but the sum of squared deviations divided by the corresponding σi .  This function is 
called χ2  or chi-squared (hard 'ch'). i.e. we must minimize:  

( )∑∑ −−
==

2

2

2

2
2

i

ii

i

i bxayd
σσ

χ   (A.43.) 

The results are the same as the equations above if we redefine: 
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i i
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 ; ∑
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i i

ii
xy

yx
S

1
2σ

  (A.44.) 

The standard deviations are: 

D
Sxx

a =2σ                  
D
S

b =2σ   (A.45.) 

In this case, of course, the σi  are estimated separately for each measurement before the fit.  In the 
previous case, it was the spread of measurements about the best fit that allowed us to determine the 
σ's from the fit itself. 

 

While equations B.36. to B.45. are correct they are susceptible to round-off errors. Such errors occur 
when a large number is divided by a very small one.  Numerical Recipes in C provides the following 
improved linear regression formula which should be used in all your computer programs and 
spreadsheets.  It uses the temporary variables ti  and  Stt to circumvent the round-off problem: 







 −=
S
S

xt x
i

i
i σ

1
  and ∑

=

=
N

i
itt tS

1

2   (A.46.) 

Then 

S

bSS
a xy −

=  , ∑
=

=
N

i i

ii

tt

yt
S

b
1

1
σ

   (A.47.) 

and 







+=

tt

x
a SS

S
S

2
2 11σ  ,

tt
b S

12 =σ   ,
tt

x

SS
S

baCov −=),(    (A.48.) 

 

 Occasionally, a situation arises where the errors in x are not small compared to those in y, as we 
have been assuming.  This can be accounted for by increasing the  σy's using: 

222
xyy bσσσ +→   (A.49.) 
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You should realize, of course, that some very important functional forms can be reduced to a 
straight line:  Any power law, or exponential, can be fitted with the prescription given above. 

9.  Fitting to Non-linear Functions 

 The function ( )22 ∑= iid σχ   can be defined for any set of measurements, where the di 

represent the deviations from any arbitrary functional form.  The prescription for minimizing the function 
is the same as above, but now if we introduce m parameters to be fitted, (in a polynomial for example), 
we find m  simultaneous equations to be solved.  This is usually best done by means of matrix methods.  
You may consult Bevington or Numerical Recipes for the appropriate code. 

 When fitting to an arbitrary function, the programs incorporate sophisticated mathematical 
minimization techniques.  In particularly complex fits there may be problems due to finding local minima 
in a multi-dimensional space, and various methods must be used for checking whether a minimum is a 
true minimum or just a local one.  Such techniques are beyond the level of these notes. 

10. Goodness of Fit; more on Chi Square 

 One important question we have not yet asked is "How good is the fit?"     This question can be 
answered by reference to the magnitude of the χ2 function after the minimization has been completed. 

 It is straightforward to obtain an intuitive feeling for χ2:  Suppose we have made a fit to a theoretical 
curve.  Then the final (minimum) value of χ2 is given by the sum of N individual terms 
( ) 22 σltheoreticameasured yy −   as has been described.  On average, we expect each measured data point 

to lie about 1σ from the theoretical curve, if the fit is "good".  On average then, each term in the sum for 
χ2 contributes an amount 1 to the final sum, and the final value of χ2 should be roughly equal to N if the 
fit is good.  Alternatively the reduced χ2 or χ2/DF which is the total χ2 divided by the number of degrees 
of freedom should be on order 1 for a good fit.  (Remember that the number of degrees of freedom is 
the number of data points minus the number of parameters to be determined in a fit, e.g., N-2 for a 
straight line fit, N-5 for a fourth order polynomial, etc.) 

 Obviously a large value for the reduced χ2 implies a poor fit, with at least some data points lying far 
from the theoretical curve, and a very small χ2 implies either that the assumed errors are much too 
small, or, perhaps, that the theoretical function may be simpler than assumed.  For a more quantitative 
measure of the goodness of fit, we must refer to the theoretical χ2 probability distribution, or more 
usually to tables or graphs of this function such as the one shown in figure A.3.  This distribution 
function is derived assuming that the errors themselves are normally distributed.  The accompany ing 
graph shows confidence level as a function of χ2 and number of degrees of freedom.  The confidence 
level is the probability that a random repeat of the experiment would result in a poorer (larger) χ2. 
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• Figure A.3.  Confidence Level vs. Chi Square for different degrees of freedom 

 For example, if you do an experiment which consists of measuring 10 data points which you then 
fit to a straight line, and you find χ2=15, the graph shows a confidence level of 0.05 (there are 8 degrees 
of freedom), while if χ2=10, the confidence level would be 0.43.  The first fit would be marginal:  
Confidence levels between 0.05 and 0.95 are usually taken as "acceptable". 

 An occasionally useful non-analytical means of obtaining an error estimation for a one-parameter fit 
is obtained by determining the behavior of χ2 about its minimum value, ( )x2χ  .  If we allow our 

estimation of the mean to vary by x∆  , then: 

( ) ( )
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  (A.50.) 

  

the second of these terms is zero, and therefore: 

( ) ( ) 122 +=± xx x χσχ  (A.51.) 

i.e. for a one parameter fit, one standard deviation "error" on the parameter is determined from where 
χ2 increases its value by 1. Also, 42

min +χ   determines the two standard deviation point; the χ2 function 
is parabolic about its minimum. 
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• Figure A.4.  

 For a multiple parameter fit, things are not quite so simple, e.g., for two parameters a and b, say, 
from a fit to a straight line, the χ2(a,b) function forms a 3-dimensional surface, which can be represented 
by contours of constant χ2 on the (a,b) plane, as shown in Figure A.5.  Notice that in general this form is 
an ellipse, indicating that a and b are correlated.  (The correlation is obvious, since if we increase the 
slope of a straight line, in general we must decrease the intercept with the y-axis).  The standard 
deviations are given by the rectangles drawn about the 12

min +χ   contour.  Strictly speaking, for such 

multiparameter fits, we must quote the error matrix, or covariance matrix from which the correlated 
errors can be determined.   We shall not discuss this here.  
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• Figure A.5. 

11.  Some Comments On "Correlation Coefficient" 

 Many students have access to "canned" error analysis programs which they occasionally apply to 
fit their data.  Some of these least squares fitting programs are fine, (they do the required summations 
described in Section 6) but essentially none of them will do a weighted fit, which is what is most often 
wanted.  The computer prints out results, usually without errors, making them useless, and also a 
correlation coefficient "r" which the student then quotes without understanding it, but in lieu of a quoted 
error; this is generally a number greater then 0.99 and therefore must be good!(?).  Naturally, no 
students in the present class are guilty of such behavior. 
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 Most of these programs come as a package for use in the social sciences, where one of the aims 
is to determine whether there exists any correlation at all between variables.  In the hard sciences, such 
a situation is very rare: There is generally a known or hypothesized functional relationship for which 
parameters can be determined, or which can be tested by means of χ2 or other tests. 

 We can develop a quantitative measure of the degree of correlation between two variables using 
the formulations already given.  This will be the "linear correlation coefficient" r.  Consider some data 
consisting of pairs of measurements, (xI,yI) , of which either x or y can be considered the dependent 
variable.  We can do a linear least squares fit to the line y=a+bx and determine a best value for the 
slope b, already given: 

( )∑ ∑
∑ ∑ ∑

−

−
= 22

ii

iiii

xxN

yxyxN
b   (A.52.) 

Weighting factors 21 iσ   may be included.  If there is no correlation between x and y the slope b=0.  
Thus the existence of a slope is an indication of a correlation; but the slope itself is not a direct measure 
of the correlation, since it might be very small although finite. 

 The data can also be fit to a straight line of the form x=a'+b'y and the best fit now gives: 

( )∑ ∑
∑ ∑ ∑

−

−
=′

22
ii

iiii

yyN

yxyxN
b  (A.53.) 

Again, no correlation will result in b '=0.  However, if there is a perfect correlation between the x and y, 
then obviously b'= 1/b, or bb '=1.  We define the linear correlation coefficient r as: 

bbr ′=   (A.54.) 
There exists a probability distribution for r, given in most statistics books which can be used to directly 
indicate the degree of correlation corresponding to a given value of r.  The concept of linear correlation 
coefficient can be extended to multiple correlations in a general way, but we repeat that r is of limited 
use in the "hard" sciences.  


