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Abstract

The study of manganites has been undergoing intensive development, especially following the discovery of
colossalmagnetoresistance (CMR).Themost fundamental property of thesematerials is a strongcorrelationbetween
their transport and magnetic properties.A transition to the ferromagnetic (and metallic) state occurs at a finite doping
level and represents a special type of transition which should be described in terms of percolation theory. The same
applies for the transition at the Curie temperature. As a result of the percolation theory approach, the view of these
materials, both above and below the transition point, is that of inhomogeneous media consisting of tiny islands of
interweaving sub-phases. These basic ideas have been now verified experimentally by neutron data, X-ray analysis,
Mössbauer spectroscopy, heat capacity and magnetization measurements, etc. The phase diagram as a function
of doping displays a peculiar electron-hole asymmetry; this asymmetry as well as other features (e.g., the optical
properties) can be explained in the framework of a generalized two-band picture. We trace how the ground state
evolves with doping and give a self-consistent analysis of various thermodynamic, optical and transport properties of
metallic manganites, isotope effect, etc. It is predicted that giant oscillations in the Josephson current of a S–AFM–S
junction will occur as a function of weak external magnetic fields. The contact phenomena are also described.
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1. Introduction. A little history

This reviewarticle is concernedwith the properties of the so-calledmanganites.This family ofmaterials
is named after the manganese ion which is a key ingredient of the compounds.Their chemical composition
is A1−xRxMnO3; usually A≡ La, Pr, Nd and R≡ Sr, Ca, Ba. These materials were first described in
1950 byJonner and van Santen. Unlike in the usual ferromagnetics, the transition of manganites to
ferromagnetic state (atT = TC, TC is a Curie temperature) takes place at finite “doping”,x �= 0, and is
accompanied by a drastic increase in conductivity. This transition from an insulating to a metallic and
magnetic state is one of the most remarkable fundamental features of these materials.

One year later,Zener (1951)explained this unusual correlation between magnetism and transport
properties by introducing a novel concept, so-called “double exchange” mechanism (DE). Zener’s
pioneering work was followed by more detailed theoretical studies byAnderson and Hasegawa (1955)
andde Gennes (1960).

Despite some early progress, a number of fundamental questions had remained unanswered. A revival
of interest in the manganites and their properties came about after the remarkable discovery of the colossal
magnetoresistance effect (CMR) byJin et al. (1994). The very name of the phenomenon originates from
the observation of a thousand fold (!) change in the resistivity of the La–Ca–Mn–O films nearT = 77K
in the presence of applied magnetic field,H ≈ 5T.

It is worth mentioning that the discovery of CMR in the magnetic oxides (manganites) was preceded
by the discovery of the high temperature superconductivity in the cooper oxides (cuprates) byBednorz
and Mueller (1986). Despite of the obvious difference in the two phenomena (superconductivity vs
ferromagnetism), there is some analogy between the two classes of materials. Both classes are doped
oxides. The parent (undoped) compounds (e.g., the cuprate LaCuO4 or the manganite, LaMnO3) are
antiferromagnetic insulators. It is “doping” that leads to the insulator-metal transition for both systems.
Of course, there are profound differences between these compounds, but discovery and the following
intensive study of the highTC cuprates was a factor, very beneficial for the progress in understanding of
manganites. It is also worth noting that the discovery of the CMR-effect was made possible with the use
of high quality thin films. The preparation of such films (von Helmholt et al., 1993; Chahara et al., 1993)
was based on a method developed for high temperature superconducting oxides.

This paper is not a comprehensive review describing all aspects of physics of manganites. Since
the discovery of manganites, in 1950, there has been about 3000 papers published on the subject. The
field is broad and remains very active (see, e.g., review byCoey et al., 1999). We focus here on some
fundamentals related to dynamics of doping and transitions from insulating to metallic phases, or be-
tween various metallic structures. Therefore, in the discussion below we concentrate mainly on the
low temperature properties and on the nature of the ground state. We describe also the properties of
the metallic ferromagnetic phase. Because of the CMR phenomenon, this phase has undergone a most
intensive experimental study.
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To conclude these introductory remarks, in that follows, we keep in mind mostly the composition
La1−xSrxMnO3 where the basic physics is most transparent. The reason for that will be discussed later.
Here we just state the fact that of all compositions this one gives the better approximation to the cubic
symmetry.

As was noted above, the intensive research in the area of magnetic oxides continues, and we formulate
some open questions which will be, hopefully, resolved in the near future.

2. Electronic structure and doping: qualitative picture

2.1. Structure

Let us start from an undoped (parent) compound, LaMnO3. It has a perovskite structure. The ideal
case, cubic perovskite structure (Fig. 1) is a convenient starting point for the analysis (see, e.g.,Coey et
al., 1999). The Mn3+ ions are located at the corner, and the La ion at the center of the unit cell. In reality,
such structure is distorted (a detailed description seePickett and Singh (1996), Coey et al. (1999)). The
system may undergo structural transitions accompanied by lattice distortions. If we focus on the Mn3+
ion, it is important to remember that each such ion is caged by the O2− octahedron (Fig. 2); locally this
forms MnO6 complex with the Mn ion in the symmetric central position surrounded by six light oxygen
ions. The arrows (Fig. 2) describe one of the lattice modes.

As was noted above, the LaMnO3 crystal contains Mn3+ ions. Such valence state of Mn is determined
by the simple neutrality count, since La ion has “+3” valence state, and each oxygen ion is in the O2−
valence state.

Recall that electrons of a free Mn atom form the incomplete d-shell(. . .)3d54s2; (. . .) ≡ 1s22s22p63s2

3p6 (see, e.g., Landau and Lifshitz, 1977). Therefore, the Mn3+ ion, (. . .) 3d4, contains four d-electrons.
The five-fold orbital degeneracy is split by the cubic environment into two terms, t2g and e2g. The

t2g-level contains three electrons that form the so-called “t-core”. The last d-electron (e2g-electron) is
well separated in energy and forms a loosely bound state (seeFig. 3). This e2g electron plays a key role in
conducting and other properties of manganites (see below) as well as in determining its magnetic order.
The analysis of its behavior in the lattice becomes then a major subject of the microscopic theory. The
Hund’s rule demands that the three d-electrons forming the “t-core” have the same spin-orientation; as
a result, the localized “t-core” has the total spinS = 3/2. The e2g electron is also affected by the same
strong Hund’s interaction. Therefore, its spin must be polarized along the same direction as for the t-core.

Fig. 1. Parent compound LaMnO3; unit cell.
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Fig. 2. MnO6 octahedron.

Fig. 3. (a) d-shell of the Mn3+; total spin of thet-core isS = 3/2; e2g degenerate level is splitted for clarity; (b) Mn4+ ion;

o-hole; the La3+ → Sr2+ substitution leads to the Mn3+ → Mn4+ transition.

It is very essential also that the e2g-term is a double degenerate one. As a result, we meet with the
situation in which the well-known Jahn–Teller effect becomes an important factor that may lead to a
lattice instability.

2.2. Doping

We described above the basic structure of the parent compound LaMnO3. So far we have been focused
on the structure of the unit cell. Experimentally LaMnO3 is an insulator and its transition to the conducting
state is provided by doping. The doping is realized through a chemical substitution, e.g. La3+ → Sr2+,
that is, by placing a divalent ion into the local La3+ position. As was mentioned above, in what follows
we consider the Sr-doping (unless it is stated otherwise). Reason for this choice is given below, Section
6.3. The substitution La3+ → Sr2+ leads to the change in manganese-ion valence: Mn3+ → Mn4+. The
four-valent Mn ion loses its e2g electron (Fig. 3). The missing electron can be described as a creation of
a hole. At doping the Sr2+ ion goes into the center of the cubic cell (cf.Fig. 1). As to the hole itself, it is
spread over the unit cell, being shared by eight Mn ions.
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Fig. 4. Phases of manganites (La1−xSrxMnO3): (a) Phase diagram:TN—Neel’s temperature, FM—ferromagnetic metal,
AI—antiferromagnetic insulator (A-phase), FI—ferromagnetic insulator, PI—paramagnetic insulator, PM—disordered para-
magnetic with large resistance; (b) evolution of the dependenceR(T ) with doping (Urishibara et al., 1995).

Asa result, oneobtainsacrystal La1−xSrxMnO3,whereanumberof Lacentersare randomlysubstituted
by the Sr-ions. Even in the presence of some holes, the crystal, at first, continues to behave as an insulator.
In other words, each hole remains being localized on the scale of at least one unit cell. In this concentration
range localization corresponds to formation of local polarons. Such insulating state is preserved with an
increase in doping up to some critical valuex = xc ≈ 0.16–0.17.

At x = xc the material makes a transition into the conducting (metallic) state (see, e.g.,Urushibara et
al., 1995, andFig. 4) which persists with further doping up tox ≈ 0.5–0.6, depending on the chosen
composition.

It is remarkable that the transition atx = xc is also accompanied by appearance of the ferromagnetic
state. The correlation between conductivity and magnetism is the fundamental feature of manganites, and
we address this problem below. Note that the conductivity of the best samples of the Sr-doped films at
low T is of order�= 104–105 �−1 cm−1, that is, we are now dealing with a typical metallic regime.

So far, we have been concentrated on manganites in the low temperature region and evolution of their
properties with doping. Take now the sample in the metallic ferromagnetic state (FM) with a fixed carrier
concentration, e.g.x = 0.3, and then increase the temperature. Such FM state persists up to the Curie
temperatureTC ∼= 170K. Above this temperature the compound makes the transition into paramagnetic
state with much higher resistivity. Once again, one sees that there is a correlation in electronic property
that manifests itself in an almost simultaneous change (atT =TC) in both, conductivity and magnetization.

2.3. Magnetic order

We shall not dwell here upon the crystallographic changes in manganites. Most interesting low temper-
ature phases changes, as a matter of fact, often involve both lattice and magnetism. The type of magnetic
structure, however, is foremost determined by the doping level. The parent compound, LaMnO3, belongs
to the so-called antiferromagnetic insulating phase (AI). Distracting for a moment from peculiarities
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Fig. 5. A-structure.

of the O-octahedra arrangement, the antiferromagnetism in the AI-phase bears the layered character
(Fig. 5). In other words, the ferromagnetic ordering in layers is combined with an antiferromagnetic order
in the direction perpendicular to the layers. The Neel temperature (seeFig. 4a) for this antiferromagnetic
phase isTN ∼= 150K which is relatively low.We will discuss these unusual properties in more details later
(see Section 6).

As was noted above, the doping leads eventually to an appearance of the 3D ferromagnetic (F) state (for
x�0.16; the underlying lattice also changes slightly). This state persists up tox ≈ 0.5 for (LaSr)MnO3
and then the crystal while continuing to be in the metallic state, can change its magnetic structure, which
becomesmetallicA-state. The magnetic order in this state is similar to the one of the parent (underdoped)
compound (Fig. 5), but it has a metallic conductivity. Such compound is a natural spin valve system.
Indeed, as is known, the “giant” magnetoresistance effect (GMR) has been observed by using a special
artificial multilayer structure. Contrary to it, the metallic manganites with magneticA-structure are natural
3D systems which display the GMR phenomenon. In addition, this material can be used for making the
new type of the Josephson junction (SAS). We will discuss all these properties below (Sections 6.1
and 8.2).

2.4. Double exchange mechanism

Here we qualitatively discuss the nature of the observed ferromagnetic spin alignment. As was noted
above, the concept, so-called “double exchange” (DE) mechanism was introduced byZener (1951)almost
immediately after the discovery of manganites.

If one of the Mn3+ ions becomes(Mn3+ → Mn4+) four-valent (as a result of the doping, that is, e.g.,
the La3+ → Sr2+ substitution), a hole appears on this site. It allows for another e2g-electron localized
initially at the neighboring Mn3+ ions to jump on the new vacant place (such a hopping corresponds to the
hole moving in the opposite direction). But, as was noted above, the e2g-electron is spin-polarized (Fig. 3)
because of the Hund’s interaction with its t-core. The total spin of each t-core is equal toS=3/2, but their
mutual orientations on different sites were independent. Relative orientation of spins of the e2g-electron
and the “vacant” t-core is the crucial factor for the hopping because of the strong Hund’s interaction.
Indeed, imagine that the direction of the spin of the core for the Mn4+ ion is opposite to that one for the
e2g electron of the neighboring Mg3+ ion. Then the hopping is forbidden. At the same time such hopping
as any increase in a degree of delocalization is energetically favorable. In other words, it gives a gain in
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the kinetic energy, and the ground state of the ferromagnetically ordered system (all spins are polarized
along one direction) lies below the paramagnetic state. As a result, the t-cores become ferromagnetically
coupled, and this, in its turn, favors hopping of the e2g-electrons.

This simple picture describes qualitatively the origin of the ferromagnetism in the manganites and
demonstrates the direct interdependence between hopping and ferromagnetic ordering.

Namely, this correlation leads to the observed interplay between conductivity and magnetism.A quan-
titative analysis requires a rigorous treatment of hoping along with the Hund’s interaction and will be
described below (see Section 5).

It is important to emphasize that the charge transfer in the conducting ferromagnetic manganites is
provided by spin-polarized electrons. Such a conductor is different from an usual metal where spins of
conductionelectronshavebothdirection.Becauseof suchspinspecifics theconductingstate inmanganites
is called “half-metallic”.

2.5. Colossal magnetoresistance (CMR)

The huge magnetoresistance effect has been observed in the ferromagnetic metallic films
La0.67Ca0.33MnO3 (Jin et al., 1994). The magnetoresistance is defined as

�R/RH = [R(T ,H)− R(T ,0)]/R(T ,H) . (2.1)

The magnetoresistance has a sharp peak nearT ∼= 190K, that is, near the Curie temperature for the
Ca-doped manganites, and the change in resistivity caused by an applied magnetic field (H ≈ 5T) is
very large,�R/RH ≈ −1.3× 103(!).

Such a drastic change in resistivity is caused by the aforementioned correlation between magnetic
ordering and conductivity and, therefore, is directly related to the double-exchange mechanism realized
in manganites. Indeed, below the Curie temperatureTC conductivity has a metallic band mechanism (see
below, Section 5), whereas aboveTC mechanism of its conductivity bears a polaronic hopping character.
The presence of an external magnetic field is a favorable factor allowing to establish ferromagnetic
ordering at temperatures higher thanTC (H = 0). The magnetic order triggers the conductivity increase
(through the double exchange mechanism), and this leads to a large resistivity change�RH =R(T ,H)−
R(T ,0). The shift is negative, i.e., indeed, corresponds to the transition into ferromagnetic metallic state.

The presence of localized states aboveTC was theoretically considered byMillis et al. (1995, 1996a, b),
and byMillis (1998), and observed experimentally by X-rays and photoemission spectroscopies (Booth
et al., 1998; Mannella et al., 2004).

It is interesting that the large peak in the magnetoresistance was first observed long time ago byVolger
(1954) in La0.8Sr0.2MnO3. A drastic enhancement of the effect was achieved by using thin films and
proper composition (Jin et al., 1994).

The “colossal” magnetoresistance effect (CMR) greatly exceeds in its value the so-called “giant”
magnetoresistance effect (GMR), see, e.g., review byParkin (1995). The GMR effect is observed, mainly,
in artificial multilayers systems with alternating magnetic structure and is used in many applications. It
reaches a value�RH/RH

∼= 50%. The scale of the CMR phenomenon is much larger. The nature of
the CMR and GMR phenomena are entirely different. It is interesting, nevertheless, that, as mentioned
above, the metallic manganite with theA-structure (say, in La2−xSrxMnO3 with x >0.5) forms a natural
GMR system and this might lead to the GMR effect in manganites. We will discuss this case below
(see, Section 5).
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We enumerated above qualitatively some fundamentals in manganites. Almost each feature mentioned
in this section, of course, deserves a more detailed theoretical discussion. We will discuss many of them
in next chapters.

3. Percolation phenomena

3.1. Low doping. Transition to the ferromagnetic state at low temperatures

Substitution La3+ → Sr2+ creates a hole located inside of one unit cell. The Coulomb attraction
prevent the hole from larger delocalization, namely, from a spreading through the whole lattice. An
increase in doping leads to an increase in the number of such unit cells containing holes. In addition,
if the Sr-substitution occurs for two or more neighboring units, a larger cluster forms covering two and
more unit cells with holes delocalized along such bigger clusters. From the Zener’s double-exchange
mechanism we expect that spins of the Mn ions have the ferromagnetic alignment inside of each cluster
(see Section 2.4).

Random character of the Sr-substitution leads to statistical (chaotic) distribution of these clusters. As
a result, growth of the clusters can be treated by means of percolation theory (see, e.g.,Shklovskii and
Efros, 1984; Deutcher, 1987; Stuffer and Aharony, 1992).

As just noted above, increase in the doping level of the La1−xRxMnO3 crystal(R ≡ Sr,Ba, . . .) leads
to increase in the clusters’ size and their overlap. Finally, at some critical value ofx = xc (percolation
threshold) the system forms the so-called “infinite” cluster piercing the whole sample. In other words, at
x= xc one first sees the appearance of connected islands of amacroscopicmetallic ferromagnetic phase.
As other phase transitions, the percolative insulator–metal transition in manganites can be characterized
by some critical indexes (see below). This theoretical approach to the transition in manganites was first
introduced and developed by the authors (Gor’kov and Kresin, 1998, 1999, 2000; see alsoGor’kov, 1998;
Dzero et al., 2000). At present, the metal–insulator transition in manganites is commonly analyzed as a
percolation phenomenon (see, e.g.,Jaime et al., 1999; Dagotto et al., 2001).

The approach based on the percolation concept implies that the system is intrinsically inhomoge-
neous. The inhomogeneity may manifest itself through “phase separation”. The phenomenon of “phase
separation” corresponds to the simultaneous existence of the mutually penetrating sub-phases. As was
noted above (Section 1), the progress in theory of manganites was strongly influenced by the preced-
ing discovery and studies of high temperature superconductivity in the cooper oxides. For instance,
the concept of phase separation (coexistence of insulating and metallic sub-phases) was first suggested
by Gor’kov and Sokol (1987)in relation to the highTC superconducting oxides. The idea received
further development and experimental attention in many papers (for review see, e.g.,Sigmund and
Mueller, 1994).

Similar phase separation occurs for the doped manganites with increase in doping. The static electronic
phase separation in manganites was first analyzed byNagaev (1994, 1996), and then byGor’kov and
Kresin (1998)and byMori et al. (1998). A. Moreo, E. Dagotto and their collaborators used numerical
simulations (Monte Carlo technique) in order to study the phase diagram and formation of clusters. The
results are described byDagotto et al. (1998),Yunoki et al. (1998a, b),Yunoki and Moreo (1998), Burgy
et al. (2001)and in the reviews byMoreo et al. (1999)and byDagotto et al. (2001).



158 L.P. Gor’kov, V.Z. Kresin / Physics Reports 400 (2004) 149–208

The percolation can be interpreted as a more subtle case of phase separation where “phases” coexist on
a mesoscopic scale or even as interweaving clusters. Macroscopic properties are determined, mainly, by
one sub-phase, where there are also inclusions of another phase. For example, properties of manganites at
x <xc are dominated by the antiferromagnetic insulating phase (“insulating matrix”) in which “metallic”
clusters start to form atx �= 0. The amount of the metallic phase is growing asx → xc.

At x >xc metallic paths are formed and gradually become more and more dominant, but the insulating
regions are also present.

3.2. Percolation threshold

Experimentally, the metallic behavior of a compound at lowT sets in at the critical valuex=xc ≈ 0.16
(Urushibara et al., 1995). At cooling the temperature, at which conductivity sharply increases, almost
coincides with the onset of the ferromagnetism, especially in good quality samples. For example, for the
La0.67Ca0.33MnO3 sample(TC = 274K) studied byHeffner et al. (1996)these temperatures coincide
to within 1K (see alsoSchiffer et al., 1995and review by Coey, 1999). Such closeness of the onset
temperatures is a strong indicator in favor of the double-exchange mechanism.

Let us discuss the threshold valuexc ≈ 0.16. Recall that material may be prepared by various methods
but always at high temperatures. As a result, positions of atom R, which substitute for a parent atom,
are completely random. Divalent atom R, locally creates a “hole” localized on adjacent Mn sites. The
Coulomb forces in the dielectric phase keep the “hole” close to the negative charge at R−. When the
concentration is small, average distances between R-ions are large, the holes remain isolated forming
trapped states (polarons), see Section 7.5.

Consider the concentration atwhich the nearest neighborsR-atoms start, in accordancewith percolation
picture, to form infinite clusters piercing the whole crystal. More often than not one attacks percolation in
one of two discrete mathematical models on the cubic lattice: the “site” and “bonds” problems. Picture of
a hole localized at single center would correspond to the so-called “site” problem (contrary to the “bond”
problem) of the percolation theory. The critical concentrationxs

c for the “site” problem depends on the
type of lattice and for simple cubic structure is equalxc = 0.31 (see, e.g.,Shklovskii and Efros, 1984).
However, this is not our case. While ionic substitution takes place at the center of the cubic unit, the
formed hole is spread over several Mn sites around the R ion. At the same time, the charge transfer due
to forming the larger cluster occurs only along Mn–O–Mn bonds. Hence, the picture of a critical cluster,
constructed from the R− ions is not correct; such initial (nucleating) cluster is not a point-like formation
and already has a finite size (“thickness”). The size is even bigger at large enough dielectric constant that
would weaken the Coulomb attraction to the R− ion. According to numerical calculations (Scher and
Zallen, 1970), this circumstance (i.e., involvement of a scale of a few lattice constants into the percolation
problem) strongly decreases the value of critical concentration for percolation. It is interesting that now
the critical valuexc depends only on the spatial dimension and appears to be invariant for all lattices. For
the 3D case (see, e.g.,Shklovskii and Efros, 1984)

x3D
c ≈ 0.16 . (3.1)

The “site” problem corrected by the finite hole radius, becomes similar to the “continuum” percolation.
As to the continuous limit, it is only natural that independent numerical studies (Shklovskii and Efros,
1984) lead to close values forxc. Therefore, the invariant of the percolation theoryxc ≈ 0.16 describes
the threshold, above which the formation of an infinite cluster first takes place. In its manifestation, it
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corresponds to appearance of a new macroscopic state, that is, in our case, to the transition into a metallic
ferromagnetic state.

It is remarkable, that the experimentally observed value of the critical concentrationxc ≈ 0.16 corre-
sponds, indeed, with a good accuracy, to the value obtained in framework of the percolation theory (see,
e.g.,Urushibara et al., 1995).

The measurements by Urushibara (1995) were performed for La1−xSrxMnO3. The analysis of the
phase diagram for La1−xCaxMnO3 (Schiffer et al., 1995), see also a review (Coey et al., 1999), shows
that the values of the critical concentration for different manganites are close to value (3.1).

Note, that for the three-dimensional problem there is a concentration interval in which percolation
(coexistence of infinite piercing clusters)may take place simultaneously for each of two phases (insulating
and conducting, for instance) though taking into account effects akin to the surface tension at the boundary
between two spatially coexisting phases may impose limitations on relative thickness of one of the phases.
The mixture of “two” phases, depending on the dopant concentration,x, actually looks as interweaved
tiny “islands” and “layers” of different phases. Well below and well above the threshold concentration
xc, one may imagine each of the corresponding phases as a bulk formation into which the second phase
is sparsely embedded.

Therefore, the percolative description means the situation when one phase manifests itself as tiny
inclusions (“islands”) embedded into another, the dominant macroscopic phase. Here lies difference
between the percolative picture and that of the macroscopic electronic phase separation.

3.3. Large doping

The 3D metallic ferromagnetic phase of La1−xSrxMnO3 persists up tox ∼= 0.5. Further increase in
doping leads to a rather sharp transition (at low enough temperature) to the so-called metallic A-phase.
This phase is also metallic, as far as the low temperature conductivity is concerned (similar to the FM
phase at smallerx) but it has a different magnetic structure (cf. above, Section 3.1). Namely, it consists of
metallic ferromagnetic layers with the magnetization orientation alternating in the direction perpendicular
to the layers.

This metallic A-phase persists up tox ∼= 0.55. For the compound with such a large concentration
it might be more convenient to consider first the opposite end of the phase diagram,x = 1. The limit
x = 1 described the compound RMnO3 (e.g. SrMnO3). This material is an insulator and contains only
Mn4+ ions. Such compound does not contain e2g electrons at all. Starting from this end, one can describe
the phase diagram as the result of substitutions A→ R (e.g., Sr→ La), that is, as the electron doped
compound. The composition of the sample can be written as LaySr1−yMnO3.At y=0.45 (it corresponds
to x = 0.55 in the “hole-doping” picture) there is the transition to the metallic state. Because of the
antiferromagnetic ordering is along thec-direction (c-axis has chosen to be perpendicular to the layers),
we start dealing with almost 2D transport (hopping in thec-direction is spin-forbidden thanks to the Zener
double-exchange).

It is rather temping to interpret the metal–insulator transition aty=0.45 as a percolative transition in 2D
model. Indeed, as was noted in the previous section, the percolation threshold depends on dimensionality
of the system; for the hole doping (3D case)xc ∼= 0.16. According to the percolation theory, for the 2D
case (seeShklovskii and Efros, 1984) yc= 0.45. This value of the invariant is in a remarkable agreement
with the experimentally observed valueyc ∼= 0.45 (x

large
c
∼= 0.55) for the La1−xSrxMnO3 compound.

At x >0.55 the compound is in the antiferromagnetic insulating state with competitive double-exchange
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and superexchange contributions. This region was described byvan der Brink and Khomskii (1999)and
by Dagotto et al. (2001).

3.4. Percolative behavior at high temperatures (the vicinity of CMR effect)

In the previous sections we described the evolution of the phase diagram, including the metal–insulator
transitions as driven by doping at low temperatures. Let us consider the compound with a fixed level of
doping. For example, the manganite withx=0.3 has a well established metallic ferromagnetic state in the
low temperature region.An increase in temperature leads to the transition (atT =TC) to the paramagnetic
and low conducting state. This transition can be also treated by means of percolation theory and one can
apply the ideas similar to those described above. Indeed, the high temperature resistivity,�(T >TC), is
very large and one may approximately take the conductivity here�(T >TC) = �−1(T >TC) ∼= 0. The
fast increase in�(T ) atT <TC is then expected to correspond

�(T <TC) ∝ (TC− T )� , (3.2)

where� is a critical index.
The statement that the transition atTC is also of a percolative nature implies the intrinsic inhomogeneity

of the sample, i.e., the phase separation, quite similar to that was discussed earlier.
An interesting phenomenological model based on this concept was developed byWeiße et al. (2003).

They suggested picture of percolating phases with some added boundary conditions (equal pressure for
carriers in the metallic and insulating regions) has allowed to describe the observed transport properties
more quantitatively including their strong sensitivity to an external magnetic field. With use of modeling
the resistivity in the presence of percolative phase, a negative magnetoresistance nearTC was obtained.

For some manganites (e.g., Nd1−xSrxMnO3) at largex ∼= 0.5 and above, at high temperatures one
can observe a transition to the charge ordered (CO) state, see e.g.,Mahendiran et al. (1999). Interesting
aspect of the CO for the double manganese oxide system was studied byProdi et al. (2004). The transition
between the CO and FM states was also described by the percolation theory, see e.g.,Fukumoto et al.
(1999), Uehara et al. (1999). However, properties of the CO state are beyond the scope of this review, in
which we restrict ourselves by low temperature region, i.e., near the ground state, and the region near the
CMR transition close toTC for the ferromagnetic metallic phase.

The term “phase separation” means that even belowTC, in the ferromagnetic metallic state inclusions
of low conducting paramagnetic phase persist. Presence of such regions can be detected experimentally.
We will discuss these phenomena in the next section devoted to various experimental data supporting the
percolation picture.

3.5. Experimental data. Discussion

The theoretical approach based on the percolation theory has, at present, the strong experimental
support. To start with, we repeat that the experimentally measured critical concentrationxc ∼= 0.16 for
the La1−xSrxMnO3 compound and a close value for other manganites is in an excellent agreement with
the value predicted by the 3D percolation theory (see Eq. (3.1)). This agreement is a direct quantitative
indication in favor of the percolative nature of the metal–insulator transition.

As stated above, the percolation always implies some inhomogeneity of the system. Let us consider
first the low temperature region and trace in more details the doping dependence. The neutron pulsed
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experiments (Louca and Egami, 1997a, b, 1999a, b; Louca et al., 1997) directly indicate the presence of
such local inhomogeneities. These experiments probe the local arrangements of the oxygen octahedra.
With the random disorder, one may expect that the degeneracy of the e2g terms would also be lifted
randomly, providing a random distribution in the local Jahn–Teller deformations of the oxygen octahedra.
Meanwhile, it has been shown byLouca and Egami (1999a, b)that even atx >xc = 0.16 the pair
distribution function (PDF) displays the well pronounced peaks at the values of Mn–O bond which
are characteristic for the elongated octahedra of the parent LaMnO3. The presence of such insulating
inclusions in La1−xSrxMnO3 is seen up tox ≈ 0.35, that is, well abovexc, in the metallic region.

Local Jahn–Teller distortions have also been observed with use of extended X-rays absorption fine
structure spectroscopy (EXAFS), see below. The corresponding analysis of the bond length distribution
for La1−xsSrxMnO3 (Mannella et al., 2004; Shibata et al., 2003) demonstrated the presence of these
distortions, although with smaller amplitudes than was obtained with the PDF method.

Note also that the value of magnetizationM depends on the doping level:M ≡ M(x). The observed
dependence is close to the simple relationM(x) = (4− x)�B, but it is lessthan this value (seeCoey
et al., 1999); this indicates that admixture of “nonmetallic” (non-ferromagnetic) phase still persists at
these concentrations. This fact and the concentration range agree well with the valuex ≈ 0.35 estimated
from neutron experiments (Louca and Egami, 1999). The ferromagnetic phase occupies almost the whole
volume (atx >0.3); M(x) andDstiff (x) (Dstiff is the spin waves stiffness coefficient) slowly decrease
with x (Dzero et al., 2000).

At the same time, there are data which indicate the existence of the metallic ferromagnetic regions
below xc, inside of the insulating phase. The presence of such metallic islands should manifest itself
in the linear (electronic) term in the heat capacity. Indeed, according toOkuda et al. (1998), the finite
value of the Sommerfeld’s constant atx <0.16 was observed in La1−xSrxMnO3. It would be interesting
to perform more systematic measurements of heat capacity atx <xc. Some peculiar a.c.-conductivity
caused by presence of metallic clusters is also expected.

Interesting results on the La1−xZnxMnO3 compound were reported byFelner et al. (2000). The authors
measured the magnetization and magnetic susceptibility, and observed an additional ferromagnetic signal
at T = 38K for x = 0.05 and 0.1. More specifically, the ferromagnetic transition was inferred directly
from the field-cooled curves. Typical of such transition increase of magnetic moments was observed
at T = 38K for these two samples. At the same time the magnetization curves are smooth and flat in
this temperature region for the parent(LaMnO3) and metallic(x = 0.33) samples. The samples with
x = 0.05 and 0.1 are in the insulating state, but these interesting results described above were explained
by assuming that, in accordance with percolation picture, they contain the ferromagnetic metallic (FM)
clusters. The presence of such clusters leads to an additional signal.

Take the metallic manganite at some fixed concentration, e.g.,x ≈ 0.3. As was discussed above, the
transition atT =TC from lowconducting high temperature state to themetallic ferromagnetic state, in turn,
can be treated in the percolation terms. Therefore, one should expect to observe insulating paramagnetic
inclusions belowTC. The phenomenon, indeed, has been directly demonstrated in the STM experiments
at the surface of La1−xCaxMnO3 (x ≈ 0.3) compound (Fath et al., 1999). The authors have observed a
spatial variation of the local electronic properties on a submicrometer scale. The STM images were taken
in magnetic fields between 0 and 9T. The insulating regions were observed at temperatures below bulk
TC(!). The results were independent on the surface topology. With the magnetic field increase insulating
regions shrink and convert into metallic ones (as they should for the double exchange mechanism),
although some insulating regions survive even at fields as high as 9T.
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STM spectroscopy was used also to visualize metallic and insulating regions in the thin(∼ 50nm)

La0.7Sr0.3MnO3 films (Bekker et al., 2002). The authors measured the tunneling conductance of metallic
regions as a function of temperatures. To explain the data, the comparison has been done with a resistor
network, created by a numerical simulation. Experiments demonstrated explicitly development of the
macroscopic current channels nearTC as expected from the percolation theory.

The transport properties (resistivity, thermoelectric coefficient) can be described, with a good accuracy,
by the model (Jaime et al., 1999) that takes into account persistence of insulating phase domains inside
the metallic ferromagnetic phase.

A detailed analysis of the local structure can be performed with use of the X-rays adsorption fine
structure spectroscopy. The new iterative method and good standards are described byBridges et al.
(1995)andLi et al. (1995). The study of La1−xAxMnO3 (A ≡ Ca,Pb) by Booth et al. (1996)as well as
an analysis of La1−xCaxMnO3 (Booth et al., 1998a, b; Subias et al., 1997) and La1−xSrxMnO3 (Mannella
et al., 2004) samples contain a direct evidence of disorder aboveTC for manganites with concentration in
the region of the metal–insulator transition. According toBooth et al. (1998a), the distortion corresponds
to the Jahn–Teller degrees of freedom. The linear relation between ln(ndh) and magnetizationM (ndh is
the concentration of delocalized holes) was obtained (Booth et al., 1998a, b); this relation is consistent
with the resistivity data (Hundley et al., 1995). The analysis which combines X-rays and photoemission
spectroscopies (Mannella et al., 2004) shows that the carrier concentration along with the JT distortions
is consistent with the polaronic picture. The distortions are, in a large degree(≈ 70%), removed below
TC. Nevertheless, one still can observe their presence in the metallic ferromagnetic phase. According to
Booth et al. (1998b), aboveTC one can observe not only localized states,but also free carriers. These
results strongly support the percolation picture. Note also, that hybridization between neighboring Mn
ions (Bridges et al., 2000, 2001) leads to a modification of the polaronic states and possible impact of the
band effects (see below, Section 5).

In theneutronexperimentshigh real-space-resolutiondiffractionmethodused to studyLa1−xCaxMnO3
compound (Billinge et al., 2000) allowed to distinguish three distinct Mn–O bond length. In the ferro-
magnetic phase(x = 0.33) at low temperatures(T ∼= 20K), one can see a single Mn–O bond-length
distribution peak which corresponds to the bulk cubic FM phase. However, the increase in temperature
leads to appearance of another peak corresponding different bonds length (e.g., Mn3+–O bond that are
characteristic of the insulating state) even atT <TC. This observation demonstrates a spatial coexistence
of the extended bulk (metallic) and embedded islands of the insulating phases.

Similar conclusions follow from themuonspin relaxationstudyof thesamecompound,La1−xCaxMnO3
(Heffner et al., 1996, 2000, 2001). Single relaxation components were determined for the parent insulat-
ing compoundsx = 0 and 1. However, for the metallic phase it was necessary to use a “two-exponent”
time analysis which is consistent with two spatially distinguishable regions with very different relaxation
rates. The “fast” component corresponds to metallic phase whereas the “slow” component was ascribed
to coexisting insulating phases.

Another experimental support comes from the Mössbauer spectroscopy measurements (Chechersky et
al., 1999). The strong paramagnetic signal has been observed atT >TC. Decrease in temperature leads
at T <TC to the appearance of the strong signature of the ferromagnetic state, seen as the “six-peaks”
structure in the Mössbauer signal. However, even atT <TC the paramagnetic signal persists down to
T ∼= 20K, which is much belowTC.

Correctness of the percolation theory views may be also verified by independent measurements
of conductivity�(T , x) and magnetization,M(T, x), or Dstiff (T , x)-so-called “spin-stiffness”, which
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determines the spectrum of the long-wave magnons:

�(k)=Dstiff k
2 (3.3)

(see also Section 5.3).
The Kirkpatrick’s relation (Kirkpatrick, 1973a, b) which is well-known for percolation theory, then

connects the parameters together:

� ∝ DM (3.4)

Eq. (3.4) may be verified atx close toxcr or atT nearTC.
SinceD ∝ M, we have� ∝ M2. Experimentally, this relation, indeed, is in agreement with the

available measurements (Ghosh et al., 1998).
The Kirkpatrick relation (3.4) is expected to be approximately correct in a continuous media regime,

nearTC, where onset of ferromagnetism may be interpreted as the simultaneous onset of a new (metallic)
mechanism for conductivity. As it was pointed out, Eq. (3.4) is satisfied rather well. This means that the
onset temperatures, indeed, are very close (see above, Section 3.2). Nevertheless, one should note that
this factor depends on the quality of the sample. For example, in La0.8Sr0.2MnO3 studied byLofland et
al., 1996, the peak temperature,TP, and the Curie temperature,TC, although being close to each other, do
not coincide (TP= 318± 2K andTC = 302± 2K). Phenomena atTP are commonly considered in the
literature (Millis et al., 1996) as a crossover temperature where the regime of conductivity via the thermal
hopping of polarons localized by the thermal lattice disorder cedes sharply to give way to a metallic
mechanism with a short mean free path. This difference betweenTC andTP shows some smearing of the
above picture, and scale of this smearing depends on the sample quality.

From theaboveone could convince himself that the percolative approachhas a very strongexperimental
support and provides an adequate description of the doping process in manganites at the metal–insulator
transitions in these materials.

4. Main interactions. Hamiltonian

Let us enumerate the major factors which form the basis for microscopic understanding of manganites.
Qualitatively, we have already mentioned some of these factors in Section 1. Here we are going to present
a more elaborate analysis. At first, we will write down the Hamiltonian that allows an adequate analysis
of major properties of the materials.

The parent material, LaMnO3 (see Section 1) contains Mn3+ ions; such an ion has four d-electrons.
Recall again that thed-shell in thecubicenvironment is split into the triple (t2g) anddouble (e2g) degenerate
terms (Fig. 3). The t2g-level is fully occupied by three electrons forming together the local total spin
S = 3/2, in accordance with the Hund’s rule. The e2g-level in manganites may become empty (Mn4+) as
a result of doping by a divalent substitution.

The e2g-electron is the key player in physics of manganites. Its hopping provides both the mechanism
of conductivity as well as ferromagnetism (DE mechanism). If there is one electron on the e2g-level, the
direction of its spin is governed by the same intra-atomic Hund’s interaction as for thet2g-electrons:

ĤH =−JH

∑
i

�̂ · Si , (4.1)
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Fig. 6. JT deformation of the octahedron: (a) antiferrodistortion: 3D picture, (b) top view.

(�̂ is the Pauli matrix for the e2g-electron; summation is over all ionic positions). Therefore, locally spins
of e2g and t2g electrons are ferromagnetically aligned.

The Hund’s coupling is rather strong(JHS ≈ 1–1.5 eV) and is taken below as the largest energy scale
in the theory.

As the next step we should write down the kinetic energy part of the Hamiltonian. Here it becomes
essential that the e2g electron finds itself in the double degenerate state. Therefore, the hopping process of
an electron from a sitei to its nearest neighbori+� in the tight-binding approximation has to be modified
to account for the double degeneracy of the e2g-level on each site. Hence, in the hopping Hamiltonian:

Ĥi =
∑
i,�

t̂i,i+� . (4.2)

t̂i,i+� becomes a two-by-two matrix. Its explicit form depends on the choice of the basis for the e2g-
representation (see below).

Finally, it is necessary to take into account the local Jahn–Teller (JT) term responsible for instability
which is the direct consequence of the aforementioned degeneracy of the e2g-term.The JT effect manifests
in the spontaneous lattice distortions; the distortion serves to lift the degeneracy. On the local level we
mean deformations of the oxygen octahedron (seeFig. 6) coupled with the active JT vibrational modes.
The latter were introduced byKanamori (1961)and denotedQ2 andQ3; their choice and the explicit
form for Q2 andQ3 is written down below, see Section 6. The JT interaction is linear inQ2, Q3. A
convenient “pseudospin” formalism was proposed byKugel and Khomskii (1982), so that, the invariant
form of the JT interaction is

HJT =
∑
i

g�̂iQi , (4.3)

�̂ is the “pseudospin” matrix. One should add however, that, because two neighboring octahedra share a
common oxygen ion (along the Mn–O–Mn bond), the deformations are not independent, and speaking
of the JT effect below we always mean a so-calledcooperativeJahn–Teller effect (see, e.g.,Kaplan and
Vekhter, 1995), i.e., the corresponding structural change of a whole lattice.
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Gathering all contributions (4.1)–(4.3) together, one can write down the total Hamiltonian as

Ĥ =
∑
i


∑

i,�

t̂i,i+� − JH� · Si + g�̂iQi + JelQ
2
i


 . (4.4)

The last term accounts for the “elastic” energy part of the local JT mode. The importance of the JT
term was emphasized byMillis et al. (1995). They consider the high temperature region (aboveTC), more
specifically, where the thermally excited JT degrees of freedom move chaotically, thus tending to localize
the charge carriers inside the oxygen cages. The transition to the ferromagnetic metallic state atTC is
accompanied by “turning off” the main part of this localization. Based on this picture and Hamiltonian
(4.4),Millis et al. (1996a, b)calculated the magnetoresistance and their calculation reflects the essential
physics of the CMR phenomenon. A detailed description of this interesting paper is beyond the scope
of this paper because the main part of this review is aimed at the properties of manganites in the low
temperature region, that is, close to the ground state, and their variation with composition where lattice
degrees of freedom themselves may also influence its crystalline structure.

As it was mentioned above, in the described approach the largest energy scale in Hamiltonian (4.4)
corresponds to the Hund’s interaction (∼= 1–1.5 eV). As for the hopping and the Jahn–Teller terms, they
have a competitive strength, i.e., the same order of magnitude, so thatt ∼ g ∼= 0.1eV, with t, g>JH .

The hopping term in (4.4) leads to delocalization of the e2g-electron and, correspondingly, results in
the band picture. The specific band approach described below (Sections 5–7) is made possible exclusively
by such important features of manganites as large value of Hund’s coupling constantJH, and the double
degeneracy of the e2g-orbitals also plays an important role for manganites’ properties. We call it below
as the two-band scenario.

The fact that the band approach can capture the main physics of manganites is far from being obvious.
Another approach often uses explicitly the generalized local Hubbard model to account for strong on-
site electron–electron interactions. Actually, instead of a direct Hubbard on-site interactionU >0 which
hinders the double occupancy of a single Mn site, one may consider the local Jahn–Teller effect as
alternative way to describe the same physics. Indeed, a single electron positioned on the degenerate eg-
orbital on the Mn site will cause a local lattice distortion, reducing the energy of the system. On the other
handtwo electrons on the same sitedo not lead to Jahn–Teller instability and the Jahn–Teller energy
gain does not realize itself. Therefore, locally it is always more favorable energetically to have a single
electron on a given site. We should also stress the large values of the Hund’s coupling (JH ∼= 1–1.5 eV),
that is responsible for the spin alignment of all electrons on a given Mn site.

A tendency to the Jahn–Teller effect causes strong electron-phonon interaction which is thought to be
the reason for occurrence of different structural transitions in manganites. The latter, in turn, may affect
their electronic properties.

Based on Hamiltonian (4.4) one can find the electron energy spectrum and, afterwards, study numerous
electronic properties of the system. From this point of view, the ferromagnetic metallic phase (FM)
represents the simplest case. There are no collective Jahn–Teller effects for this phase that would lead
to static distortions that could strongly deviate lattice from its almost cubic symmetry. The impact of
the JT term on the energy spectrum for the FM phase will be omitted. The Hund’s term can be easily
incorporated in calculations of the energy spectrum for the ferromagnetic case. The treatment is more
complicated for the antiferromagnetic metallic phase (see Section 6) and, especially, for the insulating
state (Section 7). At first, we consider the electron spectrum and properties of the FM state. The analysis
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of this state is important for its own sake, not to mention that it is the ferromagnetic metallic part of the
manganites’ phase diagram where the CMR phenomenon takes place.

5. Ferromagnetic metallic state

5.1. Two-band spectrum

Let us find out the single electron spectrum of the 3D metallic ferromagnetic manganite as it follows
from the Hamiltonian (4.4); the results apply at 0.16�x�0.5 (Dzero et al., 2000). We use below the tight
binding approximation, assuming that the overlap of electronic wave functions for neighboring Mn ions
is rather small. Hopping of electrons between the two adjacent Mn-sites takes place with the participation
of the bridge oxygen, but those details are not essential for this Chapter.

As for the X-rays absorption near-edge structure (XANES) data, they have been analyzed using the
tight-binding model byBridges et al. (2001).

The Bloch electronic wave function in the tight-binding approximation, as usual, may be chosen in a
form

�=
∑
n

ei �p�an	(�r − ān) . (5.1)

The summation is over all lattice centers�an, �p is the quasimomentum, and	 denotes the column formed
by localized (atomic) wave function (see below). This is the only difference that comes from the fact that,
according to Section 2.1, the state of the e2g-electron is the double degenerate one.

In order to calculate the one-electron spectrum, one should choose the local basis set. It is convenient
to use the normalized basic set of the form (Gor’kov and Kresin, 1998)

	1 ∝ z2+ 
x2+ 
2y2 ,

	2 ≡ 	∗1 , (5.2)

where
= exp(2�i/3). This choice allows us to account for the cubic symmetry of the initial lattice.
In principle, one can pick up another basis which is often used in literature, namely, the set of real

functions (see Appendix A)

�1 ∝ dz2 ≡ 3z2− (x2+ y2) ,

�2 ∝ dz2−y2 ≡ x2− y2 . (5.3)

There is a simple connection between these two sets:

	1= (�1+ i�2)/
√

2 ,

	2= 	∗1 . (5.4)

Of course, the expression for the energy spectrum does not depend on the choice of the local basic set.
The equation of motion for an electron determining its energy spectrum is:




{
	1(�ri)
	a(�ri)

}
=
∑
�an

T̂i,i+m
{

	1(�ri + �an)
	a(�ri + �an)

}
, (5.5)
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T̂ij =
{
T 11 T 12

T 21 T 22

}
, (5.5′)

the summation in (5.5) goes over the nearest neighbors. The energy is referred to the energy level of the
isolated ion
0, T̂ is the hopping matrix. As a result, one has

T vv′
i,i+n =

∫
	v(�ri)(V −Wa)	

v′(�ri + �an)d�r (5.6)

whereT̂ is the matrix element calculated in the tight-bonding approximation (see, e.g.,Ziman, 1960,
Chapter 2),V andWa are the periodic lattice and ionic local potentials, correspondingly (any constant
term foran = 0 can be included into the value
0). With use of the basic set (5.2), one can explicitly find
the form of the hopping matrix elements for the cubic lattice. One obtains

T11= T22= (A+ B)[cx + cy + cz] ,
T12= T ∗21= (A− B)[cz + 
cx + 
2cy] . (5.7)

Here for shortness,

ci = cos(kia); i ≡ x, y, z (5.8)

(a is the lattice period).
The constantsA, B, are defined, in accordance with Eqs. (5.3), (5.6) as the overlap integrals (Gor’kov

and Kresin, 1998):

A ∝ �1(z; x, y)�1(z+ a; x, y) , (5.9)

B ∝ �2(z; x, y)�2(z+ a; x, y) . (5.10)

After simple calculation, we arrive at the following energy spectrum (Dzero et al., 2000):


1,2=−(|A| + |B|)(cx + cy + cz)± (|A| − |B|)R , (5.11)

where

R = (c2
x + c2

y + c2
z − cxcy − cycz − czcx)

1/2 . (5.12)

One can see from (5.11) that the spectrum consists of the two branches. The two-band structure of
the spectrum is a very important feature of metallic manganites especially, because the absence of the
electron–hole symmetry in the overall experimental phase diagram for the A1−xRxMnO3 materials.

Generally speaking, the energy spectrum can be expressed in terms of two constants (5.9), (5.10). It is
interesting that in reality the situation is even simpler. The geometrical consideration (Anderson, 1959;
Goodenough, 1963) for the d-shell overlap integrals shows that|B|>|A| (|B| ∼= (1/16)|A|). Therefore,
with a good accuracy, the spectrum can be written in the form:


1,2(�k)=−|A|(cx + cy + cz ± R) , (5.13)

whereR is defined by Eq. (5.12).
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Eq. (5.13) determines the dispersion of each band. Numerically, all the band features (the width of
the band, etc.) depend only on the value of single constant,|A|. The latter can be determined from
the experimentally measured parameters. As it turns out, it is most convenient to use for that purpose the
spin wave spectrum, or, more precisely, the measured value of spin stiffness coefficient (see below,
Section 5.5). From these data we obtain:|A| ∼= 0.16eV.

A few words regarding the Hund’s term, Eq. (4.1).As we assumed above, this term is the largest one, so
that in what follows we use strong inequalityJH?|A|. Therefore, all branches of the electronic spectrum
are shifted up or down by the energy±JHS, depending on the e2g- and t2g-mutual spin orientation.
Itinerant spins for each of the branches would merely split into two by adding the±JH 〈S〉 energy term.

Therefore, the lowest two bands correspond to the parallel orientation of the e2g- and local t2g-spins:


L1,2=−JH 〈S〉 − |A|(cx + cy + cz ± R) (5.14)

with (Dzero et al., 2000)

|A| ∼= 0.16eV , (5.15)

ci andR are defined by Eqs. (5.8) and (5.12).
There are also two upper bands:


v1,2= JH 〈S〉 − |A|(cz + cy + cz ± R) . (5.16)

However, the ground state is always formed by making use of the two lowest bands
L1,2.
With use of (5.13), (5.15) one can estimate the total width of the spectrum�E:

W = 6|A| . (5.17)

In accordance with (5.15),�E is of order of 1 eV. In practice, at all concentrations, the Fermi level lies
at lower energies. In metallic manganites we are dealing with relatively narrow energy bands.

The two-band structure of the electron spectrum is an important feature of metallic manganites. Let us
repeat that it naturally explains the observed asymmetry of the phase diagram (hole vs. electron doping).
Moreover, it is essential for a detailed description of various features of the compounds and, especially,
their optical properties (see Section 5.6).

It is worth noting that such important quantity as the magnetoresistance (MR) was calculated in the
one-band model (Millis et al., 1996b; see discussion above Section 4). It would be interesting to perform
calculations using the two-band picture. One should not expect, however, a profound impact of the two-
band spectrum on MR but some deviations from the one-band picture.

Note also that the value of A, Eq. (5.15), obtained from experimental data, is relatively small and is on
the scale of the ionic energy. This is due to specific polaronic effect (see below, Section 5.5).

5.2. Fermi surface and its evolution with doping

With the help of the spectrum (5.13)–(5.15), one can calculate the concentration dependence of the
Fermi level,EF(x) and reconstruct the Fermi surface. The Fermi surface topology is shown inFig. 7.
Fermi surfaces inFigs. 7a–c are for concentrationsx = 0.2, 0.3, 0.5, respectively. An interesting fact is
thatx = 0.3 is the concentration at which a “neck” develops on the Fermi surface at the zone boundary.
In other words, concentrationx=0.3 is the point of “2.5”—Lifshitz transition at which the change in the
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Fig. 7. Fermi surface at: (a)x = 0.2, (b)x = 0.3, (c)x = 0.5.

Fermi surface topology occurs (Lifshitz, 1960; see alsoBlanter et al., 1994). The doping levelx = 0.3 is
also interesting because it is inside the region with a maximum value ofTC and, correspondingly, with a
maximum value of the temperature for the CMR phenomenon.

Fig. 8 shows the calculated dependence of the distance of the Fermi level from the band bottom on
the carrier concentration. One can see that the value of the Fermi energy is indeed small (e.g.,|EF| ∼=
1.2 |A| ∼= 0.2eV) and is less than typicalEF-values for usual metals (∼= 5–10eV).

The concentration dependence of the density of statesF(x) is shown inFig. 8. It is interesting that this
function has a rather sharp peak nearx ∼= 0.3 with a jump in the derivative. This singularity corresponds
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Fig. 8. The dimensionless Fermi level (in units of|A|), E(x), density of states,̃v(x), the spin stiffness coefficient,D(x)

(Eq. (5.27)), and the Drude conductivity,IDr.(x), (Eq. (5.44)) plotted as a function of concentration,x, for the spectrum, given
by Eq. (5.13). The meaning of different lines is indicated in the onset. The shaded area shows the percolative regime.

to the above mentioned “neck” structure (Fig. 7) and closeness of the concentration to the “2.5” Lifshitz
transition.

5.3. Spin waves

In addition to the one-particle energy spectrum (Section 5.1) the model also describes the collective
excitations, and, first of all, the spectrum of the spin waves for the ferromagnetic metallic phase. Let us
start from the Hamiltonian:

Ĥ =
∑
�p

t ( �p)a+�p�a �p� − JH

∑
i

a+i� �̂��vaivŜi , (5.18)

cf. (4.4), the lattice terms are omitted.
The evaluation of the spin wave spectrum should be taken with some care, since the Hamiltonian (5.18)

differs drastically from that one for usual local spins ferromagnetics. It reflects the different nature of
the ferromagnetic ordering in manganites caused by the interplay of the Hund’s interaction and hopping
(double exchange mechanism). In addition, it is necessary to take into account the double-band structure
(Eq. (5.13)) of the electronic spectrum. Note that the spin wave spectrum was written down byFurukawa
for the single-band model only (1996). The paper is a part of the series of interesting publications
(Furukawa, 1994, 1995a, b, 2003a, b) describing the impact of the double exchange model on various
properties of manganites (e.g., dependence ofTC on doping level).

Below we follow the comprehensive two-band analysis (Dzero et al., 1999, 2000). The Hamiltonian
(5.18) can be written in the form

Ĥ = Ĥo + Ĥint , (5.19)
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where

Ĥo =
∑
�p

t ( �p)a+�p�a �p� − JH 〈Sz〉
∑
�p

a �p�a �p�Ŝz ,

Ĥint =−JH

∑
i

a+i��̂z;�vaiv(Ŝz − 〈Sz〉)− JH

∑
i,�

a+i��̂�;�vaivŜ�; � ≡ (x, y) . (5.20)

To calculate spin waves spectrum, one needs to know the energy of the system up to quadratic terms in
the spin derivations from the equilibrium value.

Introducing in the usual way the Bose-amplitudesbi , b
+
i (see, e.g.,Kittel, 1963):

bi = (2〈S〉)−1/2S+i , b+i = (2〈S〉)−1/2Si, S±i = Ŝix ± Ŝiy ,

we obtain

Ĥint = Ĥ (1) + Ĥ (2) ,

Ĥ (1) =−1

2
JHn

∑
�q

b+�q b�q , (5.21)

Ĥ (2) = 1

2
JH 〈Sz〉


∑
�p,�q

a+�p,��̂x;�va �p−�q;v(b+�q + b�q)+ i
∑
�p,�q

a+�p;��̂y;�va �p−�q;v(b+�q − b�q)


 . (5.22)

With the Hamiltonian (5.22) the next step is to calculate the second order corrections to the energy
of the ground state. For that one needs to use the matrix elements between the Bloch states (5.1). To be
specific, the result contains the amplitudes of the transition between the occupied (lowest) bands, see
Eq. (5.14) and the vacant (upper) bands, Eq. (5.16). These amplitudes also include the off-diagonal terms
of the hopping matrix, Eqs. (5.6), (5.7). The major task is to calculate the second order contribution�E2
which turns out to be equal to

�E2= 2J 2
H

∑
k

〈Sz〉b̂+(�k)b̂(�k)
∑
l, �p


∑

l′

|�l�p�∗l′�p+�k + �l
�p�∗l′�p+�k|2

El↑( �p)− El′↓( �p + �k)


 (5.23)

where

E
l,l′
↑,↓(p)=∓JH 〈Sz〉 + 
l,l′(p) . (5.24)

Both sums in (5.23) run overl, l′ = ±, see (Eq. (5.13)). The summation overl andp is limited by the
occupied states(↑) only. The coefficients(�lp, �l

p) above are calculated for the Bloch’s states by using
basis (5.2)

�l,l
′

p = (T12/2|T12|)1/2, �l,l′
p =±(T21/2|T12|)1/2 (5.25)

(hereT12, T21 are the off-diagonal elements of the hopping matrixt̂ (p) Eq. (5.7), in this basis). Since
JH?|A|, JHSz is of the order of 1.5 eV,|A| ≈ 0.16eV. Expanding (5.21) in(|A|/JH ) would result in
a series of the Heisenberg spin Hamiltonians accounting for interactions with the increasing number of
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neighbors. After a somewhat tedious, but straightforward calculation, the first order term in|A| from
(5.23) becomes(〈Sz〉 = 3/2):

2�(k)= |A|(3− cx − cy − cz)D(x)/3 , (5.26)

whereD(x) is given by the integral

∫
d3 �p
(2�)3

∑
(+,−)

�(E − 
i( �p))

{
1± 2cx − cy − cz

2R( �p)

} . (5.27)

QuantityD(x) depends on the carrier concentration through the Fermi level position and is plotted
onFig. 8.

Eq. (5.26) determines the spin waves spectrum. In the long-wave limit the spectrum has a form

2�(�k)=Dstiff .k
2 , (5.28)

where

Dstiff . = a2

6
|A|D(x) . (5.29)

The spin stiffness coefficientDstiff can be measured experimentally. As was stated above (see the
discussion following Eq. (5.13)), data for the spin stiffnessDstiff can be used in order to determine the
value of the single band parameter,|A|. The use of data forDstiff looks preferential, because the coefficient
being a long-wave characteristic should not be very sensitive to the defects or sample’s quality. Indeed,
while the measured values forDstiff may differ for various compounds, the difference, indeed, is rather
small. Forexample, according toMartinet al. (1996), thevalueofDstiff . for thecompoundLa0.7Sr0.3MnO3
equalsDstiff ∼= 188meVÅ. The value ofDstiff ∼= 176 has been reported for the same Sr-concentration
compound byVasiliu-Doloc et al. (1997). Somewhat smaller value ofDstiff for La0.7Sr0.3MnO3 was
reported(170meVÅ) by Lynn et al. (1996). Using the values of the lattice period a∼= 3.86Å and
choosing an average value,Dstiff =180meVÅ, and making use of the calculatedD(x=0.3) ∼= 0.45, see
Fig. 8, we derive for|A| ∼= 0.16eV, that is, the value that we have had introduced above (Eq. (5.15)).

Let us discuss briefly some other experimental data. The spin wave dispersion has also been measured
along all major symmetry direction for La0.7Pb0.3MnO3 (Perring et al., 1996). Results are in a rather
good agreement with Eq. (5.26).

In principle, there might be deviations from the simple dependence, Eq. (5.26), particularly in the
short-wave limit. Indeed, expression (5.26) was derived for the clean metallic band picture without taking
into account quantum fluctuations, possible proximity to other phases (such as the percolation effects).
Recall also that other terms of ordert2/JH were neglected. Experimentally deviations from the simple
dependence (5.26) have been observed byHwang et al. (1998)at �>0.25(�̄a) for (0,0, �) direction in
Pr0.67Sr0.37MnO3. We think this that fact may be also related to the tendency to the charge ordering or to
the admixture of the metallic A-phase (see below, Section 6). Similar behavior, indeed, is seen in the data
byMoudden et al. (1998)andEndoh and Hirota (1997)for La1−xSrxMnO3 (x <0.2) where it obviously
originated from the percolation effects (shadow region inFig. 8).

Theoretically, far away from the percolation threshold, the calculated stiffness coefficient,D(x), slowly
decreases as a function ofx, seeFig. 8. This decrease is caused by a decrease in a number of e2g-electrons
and, correspondingly, byadecrease in thevalueof thesaturationmoment,M(x).This decrease is relatively
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shallow and its experimental observation would need being more detailed on the spin wave spectrum and
samples of a higher quality.

5.4. Heat capacity

As is known, there are several contributions to the low temperature heat capacity. In ferromagnetic
manganites, in addition to the common electronic (∝ T ) and phonon (∝ T 3) terms, there is also a
contribution from spin waves (magnons, see the previous section). The dispersion law (5.26) leads to the
contribution to the total energy of the form;E ∝ ∫ d�k �(�k)[exp(2�/kT )−1]−1 ∝ T 5/2 (one should make
the transformation d�k→ d�(�k) and take into account Eq. (5.26)). Therefore,Cmag. ∝ T 3/2. Remember,
however, that̃(x) has a kink atx ≈ 0.3. That kink takes its origin from the fact that this concentration is
the point of the 2.5-“Lifshitz” singularity, as it may also be clearly seen from the Fermi surface pattern
in Fig. 7. As was just mentioned, the total magnon contribution into specific heat is proportional toT 3/2.
The proximity to the Lifshitz “2.5” transition results in appearance of a term in the electronic specific heat
term with sameT-dependence. This observation makes the procedure of extracting the “pure” magnon
∝ T 3/2 terms less transparent.

Spectrum (5.14), (5.15) was used in order to calculate the density of states per single spin(x) (see
Section 5.1 andFig. 8) and then the usual linear electronic termC = �T with the Sommerfeld constant
�= �2/3. With use of the valuẽ(x)= (x)/|a| ∼= 0.45 atx = 0.3 (seeFig. 8) and the value|A| ∼= 0.16,
we obtain� ∼= 6mJ/mol K2.

Speaking of the experimental specific heat data, one should note that the unambiguous determination
of the electronic contribution turns out to be a difficult task (Hamilton et al., 1996; Gordon et al., 2001;
see also reviewCoey et al., 1999). In addition, the existence of two terms with the same (∝ T 3/2)
dependence makes finding the electronic component even more complicated. Probably, somewhat more
reliable specific heat data would come from the measurements with the materials where the concentration
x is relatively distant from the singular pointx ∼= 0.3. So far, the measurements for several manganites
has resulted in� that lies in the 3–8mJ/mol K2 range. For example, the value� = 5.8mJ/mol K2 was
obtained byViret et al. (1997); the value� ∼= 3.5mJ/mol K2 was reported byOkuda et al. (1998), and
the value� ∼= 4mJ/mol K2 was measured byGordon et al. (2001). As a whole, one could state, that there
is at least qualitative agreement with the value� ∼= 6mJ/mol K2 calculated forx ≈ 0.3 with the help of
density of states (Fig. 8).

5.5. Isotope substitution

The parameterA which is a single parameter of our theory describes the charge transfer between
neighboring manganese ions. We did not calculate this parameter and its value was determined from the
experimental data (see above, Section 5.3). This approach is consistent and allows us to describe numerous
experimental data discussed in this chapter (see also Section 7). Let us repeat, that the parameterA can
be determined experimentally (see Section 5.1). Up to this section it was not necessary to discuss various
factors affecting its value. However, the observed effect of oxygen substitution onTC (Zhao et al., 1996;
Franck et al., 1998; see also review byBelova, 2000) requires a special analysis. It turns out that the
oxygen isotope substitution (O16 ⇒ O18) leads to a large shift in the Curie temperature,TC ∝ M−�,
where, for instance, for La0.8Ca0.2MnO3 the isotope coefficient� is quite large and equals to� ≈ 0.85.
This raises the question whether one could analyze the tunneling matrix theoretically.
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Fig. 9. Mn–O–Mn unit; two close minima for the O-ion (Sharma et al., 1996).

The oxygen ion is located between the Mn ions, and it turns out that its dynamics is directly involved
in the process of a charge transfer. Seated just between two Mn-ion, the oxygen ion, in addition, is
characterized bytwo minima. Rapid incoherent transitions of the oxygen between minima positions
lead to a peculiar dynamic lattice effect, called the “polaronic band narrowing” (see, e.g.,Bersuker and
Polinger, 1989; Bersuker, 1996). One can show that this phenomenon leads to the aforementioned oxygen
isotope effect (Kresin and Wolf, 1997, 1998).

Such a behavior of the Mn–O–Mn unit is most pronounced in the vibrational motion of the oxygen
ion which is the lightest member of the unit. This effect has a resemblance to the ordinary JT effect
in the sense that since the presence of two close minima means that these minima are in proximity to
the two electronic terms crossing. In this vicinity it is impossible to separate the electronic and ionic
motions. It is interesting that, indeed, such a dynamic picture of the oxygen moving between two minima
has been observed by means of a novel ion channeling technique (Sharma et al., 1996), seeFig. 9. This
experimental result has stressed the fact that the dynamics of the oxygen motion is drastically different
from what would be seen in the harmonic approximation and is, indeed, strongly anharmonic as the result
of to two close minima in the ion energy potential.

In the presence of two minima the total wave function of the electron-ion system becomes a su-
perposition of two configurations which we denote schematically as:(�) A+O�A, (�) AO�A+; here
A ≡ Mn3+, A+ ≡ Mn4+. O� means that the oxygen ion is shifted towards the left minimum, while for
the� configuration, O�, lies closer to the right minimum. The total wave function�(�r, �R) (for the ionic
and electronic coordinates) can be expressed in the form

�(�r, �R)= C���(�r, �R)��( �R)+ C���(�r, �R)��( �R) . (5.30)

Here�i and�i (i ≡ �, �) are the electronic and nuclear wavefunctions, corresponding to the two crossing
left � and right� terms. Such approach is called the diabatic approximation (O’Malley, 1967; Kresin and
Lester, 1984). Here one assumes that the wavefunction�� coincides with the eigenfunction of the total
electronic HamiltonianHe= T̂�r + V (�r, �R) constructed for the region�; analogous behavior supposed to
be true for�� (T̂�r is the electronic kinetic energy operator, andV (�r, �R) is the total potential energy of

electron at the ion position,�R). Hence, because of the electronic terms crossing, the total wavefunction
(see Eq. (5.30)) does not have the form of a product of electronic and nuclear wavefunctions. The presence
of two close minima makes it impossible to separate the electronic and nuclear motions (contrary to the
usual adiabatic picture (Born–Oppenheimer approximation)).
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Symmetry of the problem results in the appearance of symmetric and asymmetric coupled electron–ion
energy terms. One can evaluate the energy splitting�E between these terms. After performing straight-
forward calculations, we obtain

�E =
∫

L( �R)��( �R)��( �R)d �R . (5.31)

Unlike expressions (5.11), (5.12), this value depends on the overlap of both the electronic and ionic
wavefunctions. Here, in (5.31),L( �R) is the electronic factor:

L( �R)=He;ik( �R)=
∫

d�r�∗i (�r, �R)He(�r, �R)�k(�r, �R) . (5.32)

In the diabatic representation the matrix elementsHe;ik (i �= k) differ from zero (for the overlapping
electron potential wells).

As before, the energy splitting corresponds to inverse time for the charge hopping between the two
Mn ions (�E ∝ �−1). Since the ferromagnetic ordering is caused by the electron hopping, the splitting
provides for the estimate the value of the critical temperature for the ferromagnetic ordering; in other
words, it is natural to assume thatTC ∝ �E (Millis et al., 1996a, b).

Compared to Eq. (5.11), (5.12), this splitting in (5.31) actually depends on the fact that the vibrational
wavefunctions�� and�� are peaked near minima in the regions� or�, respectively. Contribution into the
integrand in (5.31) mainly comes fromR of orderr, r is the distance between the minima. Sincer>L,
whereL is the length of the bond, one can putL( �R) ≈ L0 ≡ L( �R0), and we obtain

�E ≈ L0F , (5.33)

whereL0 is the electronic factor (at�R = �R0), determined by Eq. (5.32), and

F =
∫

��( �R)��( �R)d �R (5.34)

is the Franck–Condon (FC) factor.
Once again, the electronic factorL0 determines the hopping parameter, A (and, therefore,TC in terms

of the usual double exchange model) with thefrozenlattice. One can see from Eq. (5.33) that the account
of the O ion dynamics leads to the appearance of the additional FC factor. The obvious inequality,F <1,
leads to a decrease in the energy splitting, and, correspondingly, results in an effective narrowing of the
band. As was indicated above, this effect was not explicitly considered in our treatment, see Sections
5.1–5.3, but was taken into account in a natural way, since the value of the parameter A was determined
from experimental data. The presence of the FC factor leads to the oxygen isotope effect (see below).

After the brief summary of the theoretical scheme, it is worth adding some qualitative remarks. The
charge transfer for the extra-electron can be visualized as a multistep process; first the electron makes a
transition from the Mn4+ site to the oxygen, then the oxygen goes over to another minimum, and from
where the electron jumps into the other Mn ion. Therefore, actually, the charge transfer includes such an
important additional stepas theoxygenmovement between twominima.Namely, this additional step leads
to a drastic increase, described by the FC factor, in the characteristic time for the jump between two Mn
ions. Naturally, this factor also decreases the strength of the ferromagnetic coupling, and, consequently,
TC. In the traditional language, charge transfer is accompanied by the transition to another electronic
term; this process is similar to the Landau–Zener effect (see, e.g.,Landau and Lifshitz, 1976).
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Let us now return to discussion of isotopic effects in manganites. As noted above, the dependence on
the mass of the oxygen isotope is brought into the problem through the appearance of the FC factor.
Indeed, this factor contains overlap of the nuclear wavefunctions and, therefore, depends on the nuclear
massM (in our case the mass of the O ion). To estimate the FC factor, Eq. (5.34), we take the harmonic
oscillatorwavefunctionswith the shift�� for theoscillators equilibriumpositions. For simplicity, consider
a one-dimensional model. We obtain:F =exp(−�2), �= (��/2�), where�= (2/M�)1/2 is the vibration
amplitude. If we take the value� ≈ 1.25–1.5 (this is consistent with the data by Sharma et al., 1996), we
obtainF ≈ 0.18–0.2. The value of the isotope coefficient appears to be in good agreement with the data
(Zhao et al., 1996). Indeed, defining the isotope coefficient� by the relationTC ∝ M−� one re-writes it
as�=−(M/�M)(�TC/TC); with TC ∝ �E, we obtain

�= (M/�M)(�TC/TC)=−(M/�M)(�F/F) (5.35)

where�M =M −M∗; we used the relationTC ∝ �E and Eq. (5.33). Based on the expression for the
FC factor (see Eq. (5.34)), we obtain� = 0.5�2. Using the value� ≈ 1.25–1.5, we obtain the values in
the range of 0.8–1, in good agreement with the value obtained by Zhao et al. (1996).

It is worth noting that the expressionTC ∝ �E does not determine explicitly the value ofTC. This
value is affected also by the loss of the coherence inside of a whole Mn–O network. However, Eq. (5.35)
allows us to analyze the isotope effect.

To conclude this section, the charge transfer in the metallic manganites not merely goes through
tunneling across the oxygen ions. It is accompanied by the motion of the O ion between two minima. The
electron becomes “dressed” by this motion. It is obvious that in any band calculations one must take into
account the existence of such a dynamic polaronic effect.

5.6. Optical properties

Study of optical properties of metallic manganites is of the special interest, because it is necessary to
take into consideration the two-band structure of the spectrum. For manganites, the interband transitions
appear to be the key factor in the IR region (see below).

The a.c. conductivity is described by a well-known Kubo–Grinwood expression:

�ij = − e222

V�

∑
k,k′

f0(�k)[1− f0(�k′)]〈�(�k′)|�̂vi |�(�k′)〉〈�(�k′)|�̂vi�(�k)〉

× [�(
(�k′)− 
(�k)− �)− �(
(�k′)− 
(�k)+ �)] , (5.36)

wheref0(k) is the Fermi distribution function,�k is a quasi-momentum,�vi is a velocity operator, and�(�k)
is the two-column electron wave functions (5.1). For the cubic crystal�ij = �ij .

To start with, we determine the velocity operator,ˆ̂= r̂ ′ (seeLifshitz and Pitaevskii, 1989)

�̂v(�k)= 1

2
�
l(�k)

��k + i

2
[
l(�k)− 
i(�k)]〈l�k| �̂�|l′ �k〉 . (5.37)

The off-diagonal operator̂� is defined by the relation:

〈l�k| �̂�|l′ �k〉 = i
∫

u∗l′�k (�r)
�ul
�k

��k d3�r (5.38)
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andul
k(r), the periodic Bloch functions.

ul
�k(�r)=�l

�k(�r)e−i�k�r , (5.39)

where�l
k(�r) is defined by Eq. (5.1).

Sincel, l′ are the band indexes, the second term in (5.37) explicitly includes the interband transitions.
The light absorption comes about due to these contributions. These are the direct transitions and their
importance of these transitions for the light absorption is simply due to negligibly small value of the
photon’smomentum.Asa result, a conservationsof energyandmomentumcanbesimultaneously satisfied
(in the clean limit) only for the interband transitions.

Based on Eqs. (5.1) and (5.39) one can write

ul
�k(�r)=

1√
N

∑
�n

exp
[
i�k(a�n− �r)

] {
�l�k	1(�r − �na)+ �l

�k	2(�r − �na)
}

. (5.40)

The functions�1 and�2 are the two component basic set (see Eq. (5.2)), and the coefficients�lk and�l
k

are determined by Eqs. (5.7), (5.25).
With the use of Eqs. (5.2), (5.7), (5.25) and (5.40), one can evaluate the matrix elements (5.38) re-

sponsible for the interband transitions. Performing the integration in (5.38) we neglect by the other small
overlapping terms (one-site approximation). After straightforward calculations, it follows:

〈l�k| �̂�|l′ �k〉 = i
a

2

√
3

4

(− sinkx)(cy − cz)

|t12|2 . (5.41)

As a result (see Eqs. (5.36), (5.37), (5.41)), one arrives to the following expression for the “optical”
(interband) contribution (Takahashi and Shiba, 1998; Dzero et al., 2000)

�opt(�, x)= 3�e2

a2
1

�̃3

∫
d3 �p
(2�)3

sin2px(cy − cx)
2

× n(
+( �p))[1− n(
−( �p))]�(�̃− 2R( �p)) . (5.42)

The first term in Eq. (5.37) leads to the intraband (Drude) term

�Drude(�, x)= 2�
e2|A|
3a22

�(�)IDr(x) , (5.43)

IDr(x)= 1

2(2�)3

∑
l

∫
dSl
�p|∇ �p
( �p)| . (5.44)

Eq. (5.43) is written down for the “clean” case.As is known, the presence of impurities leads to possibility
to satisfy both conservation laws for the intraband transitions. Instead (5.43), we obtain for the Drude
“tail” the dependence

Re�Drude(�, x) ≡ �0(x)

�2+ �2 , (5.45)

where� is the relaxation time.
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Integration inIDr(x), Eq. (5.44) goes over the Fermi surfaces. As for the parameter|A|, we estimated
above its value|A| ∼= 0.16eV, see Eq. (5.15). The dependenceIDr(x) is plotted inFig. 8.

Therefore, the general expression for conductivity contains two contributions: the Drude (intraband)
term (Eqs. (5.43)–(5.45) and the interband term (Eq. (5.42)). For the low temperature spectral weight

Neff = 2m

�e2a
3
∫ ∞

0
�(�)d� (5.46)

one obtains both the Drude and the interband contributions, respectively:

NDrude
eff = ma2

322
|A|IDr(x) (5.47)

N
opt
eff =

ma2

22
|A|3

4
Iopt(x) (5.48)

(the expression forIopt(x) can be directly obtained from (5.42)).
Turning now to the discussion of experimental data, one should mention that the temperature depen-

dence of the optical conductivity,�(�), has attracted recently much attention (Okuda et al., 1998; Quijada
et al., 1998; Okimoto and Tokura, 2000) as a way to keep track of changes in the conductivity mechanism
from a metallic conductivity at low temperatures to conductivity of localized polarons at elevated tem-
peratures. We mention here only a few results pertinent to the low temperature band mechanisms. First
note, that the temperature dependence in�(�) atT <100K for the low frequency peak is, indeed, most
pronounced below 1eV (Quijada et al., 1998). This agrees well with our estimates for the bandwidths,
W <1eV. Moreover, if we calculate the spectral weight and assuming that both the Drude and optical
contributions are approximately equal, we obtainNeff ≈ 0.25 which is reasonably close to the value
measured byQuijada et al. (1998). At the same time one should keep in mind that there is a noticeable
difference between the data obtained by different groups. Probably, this difference is due to difficulty
in separating of purely electronic part of conductivity, and/or difference in the samples quality, that is
especially important in the “Drude-tail” frequency range.

5.7. Disorder. d.c. conductivity

The metallic manganites are not ordinary metals. Their carriers and, hence, conductivity are exclusively
due to doping. This process (substitutional doping) leads to the lattice deformation. Mismatch between
the sizes of different ions is expressed by the value of the tolerance factor,t (Goldschmidt, 1958)

t = 1√
2
· RB + RO

RA + RO
, (5.49)

whereRi (i = A,B,O) are the ionic radii of each element in ABO3.
For example, the ionic radii for Mn3+ is equal to 0.0645nm, for La3+ is 0.136nm. For the ideal seized

ions the tolerance factor is equal tot ≈ 1 (see Coey, 1999). The substitution of La by divalent ion leads to
some change in the value oft. For example, for Sr2+ the ionic radii is equal to 0.144nm, and the deviation
of t from unity is relatively small. Doping results in an average change of the lattice parameters, which
may be described by the average〈t〉av. When the value of〈t〉av is close to one, the “cubic” perovskite
structure is realized as a whole. At the same time, one must distinguish〈t〉av from its “local” value: two
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materials may have close〈t〉av, i.e. close lattice parameters, but the local distortions that are responsible
for disorder, may differ strongly from one site to another.

Local disorder manifests itself in the value of residual resistance�0. Experimentally, the residual
resistances obtained for nominally the same compositions, may vary significantly for different samples.
So, it is clear, that to some extent, the best values of�0(x) are still to be determined.As usual, the value of
�0(x) also characterizes the sample’s quality. This suggestion is supported by experiments performed by
Quijada et al. (1998). They reported data for La1−xSrxMnO3 in crystalline films which give the value for
�0(x)as lowas10−5 � cm.This is a typicalmetallic conductivity range.Makingasubstitution inEq. (5.43)
for ��(�)→ �/(1+ (��)2), we obtain in this case for the inverse life time2/� ∼ 3×10−3 eV (∼ 30K).
These findings become more transparent being expressed in terms of the mean free path.With the average
velocity of an electron on the Fermi surface

ū= 〈v2〉1/2= (|A|a/2)(2IDr(x)/ṽ(x))
1/2 , (5.50)

the mean free path,l = ū� is typically∼ 3a for materials with�0 ∼ 10−4 � cm, while in the best LSMO
samples it is around 80a (a ≈ 3.8 Å is the cubic lattice period). Whether the values of�0 mentioned
above may be or may be not improved by a more careful sample preparation process, remains to be seen.
To the best of the authors knowledge, there was no systematic efforts specially aimed at this question. The
band physics described above suggests an unifying view where materials may go from the metallic regime
to the mobility edge and further with increase in disorder. For some current materials the conductivity
regime seems to be close to the mobility edge. It is worth to repeat that if the short mean free path in these
materials is an intrinsic feature, it may be related to the local fluctuations in the tolerance factor (5.49)
caused by the difference in ionic radii at the Sr-doping.

5.8. Discussion

One concludes from the above that at least the low temperature properties of metallic ferromagnetic
manganites can be adequately described by the two-band model. Of course, such two-band approach
implies the validity of the Fermi liquid description of the metallic manganites. Some further evidences
in favor of this suggestion follow from the analysis of the temperature dependent part of the resistivity.
In ordinary metals, the resistivity behaves like�(T )= �0+AT �, where�0, the residual resistivity, is due
to structure defects or impurities, while theT-dependence comes up either from scattering on thermal
phonons or from electron–electron interactions. In the second case, the electronic relaxation rate 1/�ee∼
T 2/EF, while the phonon mechanism with 1/�ph ∼ T 3/�2 prevails(1/�ph>1/�ee) atT > �(�/EF)where
� is the characteristic phonon frequency. The latter in manganites is about 400K, whileEF ≈ 0.1eV.
Hence, the electron mechanism of scattering might remain important up to rather high temperatures. At
elevated temperatures a lot of new effects, related to the colossal magnetoresistance phenomenon, may
start to play the dominating role, but at low temperatures the electron–electron channel should prevail.

The Fermi liquid description corresponds to the case when interactions are supposed not to be remark-
ably strong. The strength of interactions is characterized by the value of theT 2-term in resistivity, in
which electron interactions come from2/�tr

ee= �′(2/�ee) where�ee is the total quasiparticle relaxation
time and�′<1 gives the fraction of the Umklapp processes. One can write

2/�ee∼= ��3(x)T 2 (5.51)
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(see, e.g., inGantmakher and Levinson, 1987). In (5.51)� is a value of the interaction strength in terms
of EF, (x) is the density of states which depends on the doping levelx. Using the data byLofland et al.,
1996, Quijada et al. (1998)and taking(x) from Fig. 8, one obtains for LSMO:��′ ∼= 0.3, typical for
most metals.

Note thatQuijada et al. (1998)have also studied two other materials Nd0.7Sr0.3MnO3 and La0.7Ca0.3-
MnO3. It turns out that theT-dependent part of resistivity scales in the magnitude with the residual
resistivities of the compounds. Such a correlation, most probably, is caused by the very fact that the
doping process itself creates defects (we will come back to it later again).

Indeed, as was noted above, the substitutional doping inevitable leads to a local structural disorder
which can be described by the tolerance factor (5.49). The local disorder (local fluctuations in values
of the tolerance factor) affect strongly the value of the residual resistance�o(x), see above, Section 5.6.
It is remarkable, nevertheless, that in most cases the average value〈t〉av remains reasonably close to
one, so that the “cubic”, perovskite structure is realized for the lattice as a whole and the above band
picture is thus relevant. This is also confirmed by the fact the bandwidthW = 6|A|, see Eq. (5.18)
does not vary significantly for various compositions. Indeed, for different compounds it lies in the range
W ∼= 0.7–1.0 eV as estimated from the experimental data onDstiff ., the spin stiffness coefficient. This is
in favor of the view that while the tolerance factor itself determines variations in the Mn–O–Mn bonds
angle for different materials, the latter is not of much importance for the conduction network.

6. Metallic A-phase

6.1. Magnetic structure

In the previous chapter we discussed properties of the ferromagnetic metallic phase of manganites
A1−xRxMnO3. Such phase occupies the doping region 0.16<x <0.4–0.5. The further increase in the
carriers concentration leads to a noticeable change. As usual, we focus,mainly, on the La1−xSrxMnO3-
materials (unless is specified otherwise). Analysis of the La1−xSrxMnO3 is simpler, because for this
compound there are no complications related to the so-called “charge” ordering (see, e.g.,Tokura, 2003;
Cheong et al., 1994; Tokura et al., 1996; Ramirez et al., 1996; Tokunaga et al., 1998; Casa et al., 1999;
Fukumoto et al., 1999). As usual, we concentrate on the low temperature region.

The study of La1−xSrxMnO3 (Akimoto et al., 1998; Tokura and Tomioka, 1999; Izumi et al., 2000)
has led to a remarkable observation that the larger doping (0.5<x <0.55) gives rise to appearance of
a metallic antiferromagnetic phase, the so-called A-phase. It was already mentioned in Section 2, that
for the A-phase the core (t2g) spins are aligned ferromagnetically in each MnO-plane (for example,
ab-plane) and antiferromagnetically along the axis perpendicular to the planes (c-axis; Fig. 5). In the
ferromagnetic phase all electrons including the e2g-ones are fully polarized (“half-metallic” state). Now
the “half-metallic“ state is realized only inside of the each ab-plane of the A-phase.

Therefore, the magneticA-structure combines the ferromagnetic order in the layers with antiferromag-
netism in thec-direction. Such magnetic order leads to highly anisotropic transport, because the charge
transfer in thec-direction is spin forbidden.

Note in passing that antiferromagnetism in the form of alternating ferromagnetically ordered planes
is not specific for only the metallic phase with 0.5<x <0.55. It turns out that the parent compound,
AMnO3, also has a similar magnetic structure. The parent material is an insulator, though, and we will
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Fig. 10. Canted A-phase.

discuss its properties later, Section 7. It will be seen that the analysis of the insulating phase should be
based on using the full Hamiltonian (4.4) and is comparatively more complicated than the one of the
metallic phases. On that reason we postpone its discussion to the one of the last chapters.

6.2. Energy spectrum of canted A-phase

We start with the electronic energy spectrum for the A-phase. While in the A-phase itself the mag-
netization of neighboring ferromagnetic layers point out in the opposite directions, it turns out that the
electronic energy spectrum can be found (in the double exchange approximation) for a more general and
rather interesting case of the cantedA-phase (Fig. 10). The band Hamiltonian describing the system with
an antiferromagnetic ordering and ferromagnetic canting has a more complicated form than that one for
the metallic ferromagnetic phase (Section 5). Namely

Ĥ =
∑
�p

T ��( �p)â+��( �p)â��( �p)+ JH

∑
�p, �Q

S( �Q)â+��′(�̂z)�′�′′ â��′′( �p − �Q)

+ JH

∑
�p, �Q

S(− �Q)â+��′( �p)(�̂z)�′�′′ â��′′( �p + �Q)

+ JHM
∑
�p

â+��′( �p)(�̂x)�′�′′ â��′′( �p) . (6.1)
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HereT ��(p) is again the two-band electron hopping matrix,JH is the Hund’s coupling constant on the
Mn sites, and S(Q) is the Fourier component of the AF parameter (staggered magnetization) along thec

direction,Sz(i) = 〈Sz〉(−1)i . The magnetic structural vectorQ = (0,0, �/a) doubles the periodicity in
thec-direction and, correspondingly, reduces the Brillouin zone (a is the cubic lattice constant);M is the
canted magnetic moment per site, so that at each sitei:

S(i)= (Mx,±〈Sz〉), S2
z +M2

x ≈ S2 (6.2)

(whenSz(Q) ≡ 0 we restore the ferromagnetic phase). The orientations ofM andSz are fixed by magnetic
anisotropy (easy plane) and/or by an external field. As before, the matrix elementsT ��(p) in (6.1) are
calculated with the basis functions in the form (5.2). The hopping matrix is given by Eq. (5.7) with
|A| ∼= 0.16eV being the hopping amplitude (see Eq. (5.14)).

From (6.1) we obtain the following equation of motion:

(E��� − T ��( �p))â��( �p)

= JHS( �Q)(�̂z)�,�′ â��′( �p − �Q)+ JHMS(�̂x)�,�′ â��′( �p) (6.3)

and a similar equation with�p → �p + �Q. Thus, the secular equation is now an 8× 8 determinant from
which one must calculate not only eigenvalues but also the eigenvectors to be able to evaluate various
physical properties. Recall (Section 3) that the double exchange (DE) mechanism for manganites exploits
the large value of the Hund interaction,JH ≈ 1–1.5 eV, assumingJH/|A|?1.

Using this approximation, one can solve Eq. (6.3) up to the terms of orderA2/JH . Because of the large
JH value, electrons can occupy only four lowest bands:

E1,2( �p;M/S)=−JHS − |A| · [cx + cy + (M/S)cz ± R12( �p;M/S)] ,
E3,4( �p;M/S)=−JHS − |A| · [cx + cy − (M/S)cz ± R34( �p;M/S)] , (6.4)

where

R12( �p;M/S)=
√
c2
x + c2

y + (M/S)2c2
x − (M/S)cz(cx + cy)− cxcy ,

R34( �p;M/S)= R12( �p;−M/S) (6.5)

(we used notations (5.8)).Therefore, the spectrum described by Eqs. (6.4) contains several branches.
We have demonstrated that it is possible to write down the analytical expression (Eqs. (6.4), (6.5)) for

the spectrum of such a complex system as the cantedA-structure of manganites. Based on this expression,
one can calculate conductivity and magneto-transport (see below, Section 6.3).

In the absence of canting(M=0) the general expression (6.4) becomes 2D, i.e. depends on(x, y) only
and simplifies significantly. Indeed, because the number of carriers is less than one per unit, the electrons
can occupy only two lowest bands:

E1,2=−JH − |A|(cx + cy ± R) , (6.6)

R = (c2
x + c2

y − cxcy)
1/2 . (6.7)

In the presence of canting Eqs. (6.4), (6.5) lead to a much more complicated structure of the spectrum.
Let us remind here that in Eqs. (6.4)–(6.7), small terms of order≈ t2/JH are neglected.
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As a next step, one should construct the eigenstate vectors which correspond to the eigenvalues (6.4).
Performing the canonical transformation while making use of eigenvalues of (6.4), it is straightforward to
express theoperators in (6.1) in termsof neweigenfunctions.Quite generally, the canonical transformation
has the form

�̂��( �p)=
∞∑
l=1

K(l)
�� ( �p) · �̂l( �p) , (6.8)

where �̂+l (p), �̂l(p) are the creation and annihilation operators for the true energy branches (6.4) and

� ≡ (↑↓). Below we write down explicitly the expressions forK
(t)
�� for the four lowest bands:

K
(1)
1� ( �p)=K

(2)
1� ( �p)= 1

2

(
1+ M

S

)1/2(∑
12( �p)

2R12( �p)

)1/2

,

K
(1)
2� ( �p)=−K(2)

2� ( �p)= 1

2

(
1+ M

S

)1/2(∑∗
12( �p)

2R12( �p)

)1/2

,

K
(3,4)
1↑ ( �p)=−K(3,4)

1↓ ( �p)= 1

2

(
1− M

S

)1/2(∑
34( �p)

2R34( �p)

)1/2

,

K
(3,4)
2↑ ( �p)=−K(3,4)

2↓ ( �p)=±1

2

(
1− M

S

)1/2(∑∗
34( �p)

2R34( �p)

)1/2

, (6.9)

where the following notations have been used:

∑
12
( �p)= (M/S)cz − 1

2
(cx + cy)+ i

√
3

2
(cy − cx) ,

∑
34
( �p)=−(M/S)cz − 1

2
(cx + cy)+ i

√
3

2
(cy − cx) . (6.10)

6.3. Conductivity and magneto-conductivity of canted A-phase

The compounds under discussion display anisotropic metallic conductivity, and this metallic behavior
has been observed experimentally in the best LaSrMnO samples (see, e.g.,Tokura andTomioka, 1999).At
the same time, and this was already stressed above, the conductivity in manganites manifests that peculiar
featurewhichmakesmanganitessomewhatdifferent fromusualmetals, namelya tight correlationbetween
disorder and the carrier concentration. In manganites, although they may possess a typical metallic
behavior, the carrier concentration is determined by doping. This correlation especially affects these
transport properties, that in the low temperature region are determined, mainly, by scattering on defects.

The conductivity in metals due to scattering on defects is usually calculated with use of the “cross”
technique (Abrikosov et al., 1975). One can extend the technique to include static defects in the two-band
model. As for the nature of the defects, note when an ion R is substituted for an ion A in the unit formula
A1−xRxMnO3, this immediately lifts the cubic symmetry at the Mn-sites. The e2g-doublets get split and
the oxygen octahedron becomes distorted (with the Jahn–Teller type of distortions playing the major role).
Since this effect is of prime importance for the Mn–O–Mn conduction network, disorder in manganites



184 L.P. Gor’kov, V.Z. Kresin / Physics Reports 400 (2004) 149–208

to a large extent comes about through a variation in the doping. In the application of diagrammatic cross-
technique below, however, we consider “scattering” centers as point “impurities” (i.e., of the R ions)
with random positions, neglecting correlation between the scattering processes stemming from forming
oxygens’ clusters. The specifics of defects in manganites is partially accounted for by the form of the
“impurity” potentialU��(r − Ri)

Ĥimp=
∑
i

∫
d3�r �+��(�r)U��(�r − �Ri)���(�r) (6.11)

(where the summation runs over all random realizations of the “impurities”). However, one assumes the
Jahn–Teller form for the defect potential. Using the basis given by (5.2), the expression forU�� is

U��(�r − �Ri)= gQ( �Ri) ·
(

0 ei�i

−ei�i 0

)
��
· �(�r − �Ri) , (6.12)

whereQ(Ri) is an amplitude of the Jahn–Teller distortion at sitei. Hereg is an electron–lattice coupling
constant and the angle�i specifies the shape of the distorted octahedron at a given Mn site. For instance,
the angle�i = 0 corresponds to elongation of the octahedron along thez-axis (see below, Section 7.2). In
the momentum representation, the expression forĤimp is

Ĥimp=
∑
i

∫ ∫
d3 �p
(2�)3

d3 �p′
(2�)3

â+��( �p)U��( �p − �p′)â��( �p′) · ei( �p− �p′)· �Ri , (6.13)

with

U��( �p)=
∫

d3�rU��(�r) · e−i( �p−�r) .

Keeping in mind the energy spectrum obtained in the preceding section it is helpful to re-write expression
(6.13) in terms of the new variables defined by (6.8):

Ĥimp=
∑
i

gQ( �Ri)

∫ ∫
d3 �p
(2�)3

d3 �p′
(2�)3

4∑
l1,l2=1

M(l1,l2)( �p, �p′, i)

× �̂+l1( �p)u( �p − �p′)�̂l2( �p′)ei( �p− �p′)· �Ri

M(l1l2)( �p, �p′; i) ≡
∑

�=(↑↓)

{
K

(l1)
∗

1� ( �p) ·K(l2)
2� ( �p′)ei�i +K

(l1)
∗

2� ( �p) ·K(l2)
1� ( �p′)e−i�i

}
. (6.14)

The so-called “cross-technique” can now be straightforwardly applied to the calculation of the average
of new band Green function given by

Gl( �p, �p′; t)=−i〈T̂ {�̂l( �p;0)�̂+l ( �p′t)}〉. (6.15)

In the absence of the defects, the Green function (6.15) is

G
(0)
l ( �p; 
)= 1


− �l( �p)+ i sign(
)
, (6.16)
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p p − q p,l p,l p,l ,l,l′

Fig. 11. The diagrammatic equation for an averaged over defect Green’s function (6.15). Summation overl′ and integration over
�q are assumed.

where��(p)=E�(p)−EF (again we can leave only four essential bands, sinceJH?|A|). For the Green
function averaged over defect’s positions:

〈G( �p; �p′; 
)〉dis=G( �p; 
) · �( �p − �p′) , (6.17)

we obtain the well-known form of the Dyson equation. The self-energy part
∑̂

l(
)( �p − �q; 
) in Fig. 11
may be again expressed in terms of the corresponding relaxation times as

∑̂
l
(
)=−i sign


〈
2

2�l( �p)

〉
F.S.

(6.18)

where〈. . . 〉F.S. denotes an average over the Fermi surface. Let us emphasize that the attenuation�−1
� in

(6.18) contains contributions from scattering between different bands (6.4). In the representation (6.14),
the expressions for relaxation times2/2�l are

2
2�l
= �

|gQ|2
2vl(EF)

nimp

∫
d3 �p
(2�)3

∫
d3 �p′
(2�)3

4∑
l1=1

M(ll1)( �p, �p′)

× �(EF − El1( �p′))M(l1l)( �p′, �p)�(EF − El( �p)) ,

M(l1l2)( �p, �p′) ≡
∑

�=(↑,↓)

{
K

(l1)∗
1� ( �p)K

(l2)
2� ( �p′)+K

(l1)∗
2� ( �p)K

(l2)∗
1� ( �p′)

}
, (6.19)

wherenimp is the concentration of “impurities”;vl(EF) is the density of states at the Fermi level for the
lth band. In the process of deriving (6.19), we took into account the fact that the main contribution to the
integrals (6.19) comes from the region close to the Fermi surface. We also used the following averages
over disorder:

〈(gQ( �Ri))
2〉dis= |gQ|2, 〈e2i�i 〉dis= 1 ,

where the second expression means averaging over all local orientations of distorted octahedra.
With the use of (6.18) and (6.19), the expression for the averaged Green function (6.17) can be written

in the form

〈Gl( �p; �p′; 
)〉dis= �( �p − �p′) · 1


− �l( �p)+ i(2/2�l) sign

. (6.20)

The DC-conductivity can be calculated from the Kubo formula

���(0)= lim
�→0

R��(�)

i�
, (6.21)
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whereR��(�)(a= x, y, z), can be obtained with the help of the corresponding product of retarded Green
functions, averaged over impurities:

(R��(�))dis= −ie22
(2�)

∫ ∞
−∞

d

∑
l

∫ ∫
d3 �p
(2�)3

d3 �p′
(2�)3

× l〈(v̂(l)
� Ĝl( �p, �p′; 
+ �))(Ĝl( �p′, �p; 
)v̂′(l)� )〉dis , (6.22)

via analytic continuationR��(i�n) → R��(� + i�). In (6.22), v̂(l)
� is the velocity operator defined as

a derivative of energy with respect to the momentum for each band given by (6.4). With the impurity
potential given by (6.12) and (6.13), the average of product in expression (6.22) can be re-written as

〈v̂(l)
� Ĝl( �p, �p′; 
+ �) · Ĝl( �p′, �p; 
)v̂′(l)� 〉dis

= v̂(l)
� 〈Ĝl( �p, �p′; 
+ �)〉dis〈Ĝl( �p′, �p; 
)〉diŝ

′(l)
� . (6.23)

Now, taking into account Eqs. (6.17)–(6.23) and performing the integration in (6.22) with respect to
,
we finally obtain the following expression for the in-plane and out-of-plane DC-conductivities:

�xx = �(+)
xx + �(−)

xx ,

�zz = �(+)
zz + �(−)

zz , (6.24)

where

�(+)
�� = (1+M/S)2 · e

2

2

∫
F.S.

2∑
l=1

�l
2
· dSl

p̄

|∇ �pEl|
(

�El( �p)

� �p�

)
,

�(−)
�� = (1−M/S)2 · e

2

2

∫
F.S.

2∑
l=1

�l
2
· dSl

p̄

|∇ �pEl|
(

�El( �p)

� �p�

)
, (6.25)

and2/�l (l = 1,2,3,4) are defined by (6.19),� = (x, z) and integration runs over each sheet of the
Fermi surface.

Expressions (6.25) for both in-plane and out-of-plane conductivities are rather complicated and the
procedure of evaluating the conductivity by using them deserves a further explanation. Parameters of the
electronic spectrum are chosen to be the same as in the two-band “cubic” phase which, as we believe,
realizes itself in the ferromagnetic state. Let us also recall that the disorder in the calculations presented
above expresses itself through the local octahedra distortions which, in turn, are a result of the substi-
tutional disorder, i.e. non-stoichiometry of A1−xRxMnO3. Therefore, in (6.25) the “concentration” of
“impurities” is the concentration of R atoms, while the amplitude of the disorder potential is given by the
value of|gQ| in (6.19). A change in the composition by increasingx decreases the number of carriers,
1− x, at the same time, while increasing simultaneously the number of defects. The most significant
oversimplification above was that distortions of the oxygen octahedra caging a Mn-ion were treated in-
dependently. This looks as a reasonable good approximation, because two octahedra surrounding two
neighboring Mn atoms share one oxygen atom only. If octahedra were fully independent, the values of
resistivity would depend on the B atom concentration only. In reality a sample’s quality also depends on
how distorted octahedra adjust themselves on neighboring sites. Therefore, the factornimp in (6.19) is,
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Fig. 12. (a) In-plane and (b) out-of-plane conductivities in the canted A-phase as a function ofM/S. Solid line corresponds to
�= 0.45; dashed line corresponds to�= 0.75;�= |gQ|/|A|. Dopant concentrationx = 0.55,a = 3.9Å.

strictly speaking, not the only way for the conductivity to depend onx in (6.25). In addition, a change in
carrier concentration results in a shift of the chemical potential relative to the bottom of the bands which
reflects itself in an immediate change in the occupation number in each of the four active energy bands
(6.4). Such a non-trivial intimate dependence between the number of carriers and the number of defects
presents itself as a new feature for conductivity behavior in manganites. It would be of great interest
to investigate significance of each of those trends experimentally. Currently a shortage of experimental
data for LSMO compounds for large enough Sr concentrations deprives us the possibility to trace the
x-dependence of conductivity in more details. Some estimates have been done for the FM-phase above,
Section 6, forx ≈ 0.3–0.4. Here we focus on the calculations of the conductivity tensor for canted
A-phase atx ≈ 0.55. The results are plotted inFig. 12.

Energy spectrum of the A-phase itself, in the double exchange approximation(JH?|A|), would not
allow current to flow in the perpendicular to-plane direction: the dispersiont (pz)∞ cos(pz) drops out
from the electron spectrum (6.4) atM=0. ThereforeFig. 12describes, as expected, a dramatic magneto-
resistance effect inherent to the canted A-phase for the perpendicular-to-the-plane conductivity (�zz).
Surprisingly, it turned out that even the in-plane (�xx) components of conductivity display considerable
change in its value at the transition from the 3D conductivity regime in the ferromagnetic state (i.e. at
M/S = 1) to the 2D one for the pure A-phase(M = 0). The origin of such a rapid change comes about
from the re-distribution of carriers between the energy bands with variation in the value ofM/S. The
effect of carrier re-distribution between the bands is seen inFig. 13which shows the calculated position
of the Fermi level as a function ofM/S for doping concentrationx ≈ 0.55. With a variation ofM/S the
system undergoes dimensional transition between the 2D and 3D conductivity regimes.

In Figs. 12(a) and (b), it seemed more convenient to present our results for the chosen concentration as
a function ofM/S in accordance with (6.25). We remind thatM is a ferromagnetic component of the core
spins only. In order to find the values of conductivity as a function of the total magnetization induced by
an external magnetic field,Mtot., which also includes the “half-metallic” electronic component, one may
use the following simple relation

Mt = �B(4− x)(M/S) . (6.26)

Eq. (6.26) expresses the value of the full magnetic moment.
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Fig. 13. The dependence ofEF onM/S for a given concentration.x = 0.55 based on band structure described by (6.4).EF is
given in the units of the hopping amplitude|A|. The reference point for the Fermi level is taken at the bottom of the lowest band.

At low temperatureMtot.= �B, in units of Bohr magneton per Mn ion, and� is the magnetic suscepti-
bility in these units. Everywhere above we neglected relatively small terms responsible for the magnetic
anisotropy in manganites.

7. Insulating phase

7.1. Parent compound

The parent compound AMnO3, e.g., LaMnO3 is an insulator and antiferromagnet. In addition, it has
magneticA-structure (seeabove,Section 2andFig. 5)with relatively lowNeel temperature (TN ≈ 140K).
All these properties (insulating behavior, A-structure, small value ofTN) demand for an explanation. It
turns out, as shownbelow, that even theproperties of parentmanganite canbeunderstood in the framework
of the two-band picture (Gor’kov and Kresin, 1998; Dzero et al., 2000). Therefore, the band approach
represents an unified description of the low temperature properties of manganites, applicable to all phases
(metallic and insulating).

Let us, first, make several preliminary remarks. The “right” stoichiometric end(x = 1) of the phase
diagram for the A1−xRxMnO3 compound, that is, e.g., for SrMnO3, is also an insulator, and this is
not surprising. Indeed, in this case all manganese ions are Mn4+, the itinerant e2g electrons are ab-
sent, and the ions contain only the strongly bound t2g groups. The magnetic properties are then de-
termined by an effective Heisenberg Hamiltonian commonly attributed to the superexchange mecha-
nisms along the Mn–O–Mn bonds (the Hamiltonian itself may be constructed following by the so-called
Anderson–Goodenough–Kanamori rules” (see, e.g.,Goodenough, 1963).

The situation with the parent compound, AMnO3 (the “left” side of the phase diagram,x = 0) is
entirely different, because of presence of loosely bound e2g-electrons. These electrons are responsible
for metallic conductivity in the doped manganites; this was discussed briefly in Section 2 and in more
detail in Section 4. Nevertheless, despite of the presence of such electrons, the parent material behaves
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as an insulator. One can show (see below) that the two-band picture introduced above (Section 4) but
extended to incorporate the complete Hamiltonian (4.4), i.e., including the Jahn–Teller effect, allows us
fully understand the insulating ground state.

One remark more. One might think that this limiting case(x=0) should be treated also, likex=1, in the
framework of localized picture; this would mean that the Mn3+ e2g-shells should behave as localized e2g-
orbitals. And, indeed, the pertinent properties of manganites are often interpreted in terms of generalized
microscopic Hubbard model (see, e.g.,Kugel and Khomskii, 1973). The key feature of the Hubbard
model is the assertion that for two electrons to be placed on the same site the energy cost is very high (the
famous Hubbard “U”>0 due to the on-site Coulomb repulsion!). The Hubbard Hamiltonian approach has
been challenged byGor’kov and Kresin (1998), see alsoDzero et al. (2000). First, there are experimental
motivations for such challenge. For instance, it was shown experimentally that in doped manganites,
La1−xSrxMnO3, at rather low concentrations, say,x = 0.2, the system may display excellent metallic
behavior at low temperatures (Urushibara et al., 1995). Meanwhile, the nominal number of e2g-electrons
perMnsite,N=1−x <1,waschangedonlybyonefifth in this study. Inaddition, from the theoretical view,
it is, of course, clear that dealing with the strictly atomic d-orbitals would be a strong oversimplification. If
a Mn ion is placed into the oxygen octahedron environment, the e2g-terms are formed by the whole ligand,
so that the “pure” d-functions become considerably hybridized with the surrounding oxygen states (e.g.,
see the discussion byAnderson, 1959, and byPickett and Singh, 1996). Hence the electronic polarization
would undoubtedly reduce the magnitude of the “Hubbard”-like (on-site) interactions. Recall also, and
this was stated above (Section 4) that the Jahn–Teller instability also makes unfavorable the situation
when two electrons occupy the same site. Finally, for the Jahn–Teller effect (which itself is nothing but
another form of the Coulomb interaction) to come up there is no need to use the Mn3+ localized states
picture as it will be seen from what is done below. The JT effect in manganites may result into the new
collective ground state, though.

Therefore, in what follows, we adopt the band approach to describe the ground state of LaMnO3. This
approach rationalizes the major features of an insulating state in LaMnO3 very well and merges into
metallic state of “doped” manganites (see Section 5).

7.2. Insulating state; qualitative picture

Let us describe initially the band insulator qualitatively. The parent compound, AMnO3, has magneti-
cally the A-structure (Fig. 5), that is, the neighboring layers have an opposite magnetization. As a result,
the transport would have a 2D nature, since the hopping in thec-direction is spin-forbidden. Each 2D unit
cell contains one delocalized electron. In the usual one-band picture such system would stay metallic,
since at the Pauli band filling the electrons will occupy a half of the band. However, the double exchange
mechanism in cooperation with large value ofJH makes all electrons have only one spin direction.
Therefore, a single band in a “half-metallic” picture would be fully occupied. However, in manganites
e2g-electrons occupy not one, but two bands. If we neglect the JT term, the spectrum will be described
by Eq. (5.14) and this should lead again to a metallic, not insulating state. Therefore, the analysis, based
on the Hund’s (DE) and hopping terms only, is not sufficient, since it would produce the metallic state.
Things get different if one takes into account static deformations, caused by the JT interaction. Indeed,
as the result, the “superstructure” imposed by the JT deformations, as shown inFig. 6, makes the 2D
Brillouin zone now be double-folded, i.e., reduced by a factor of two. After superlattice is imposed at
the JT collective transition, the same number of electrons may completely fill up the reduced Brillouin
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Fig. 14. (a), (b) The normal modesQ2 andQ3.

zone, producing an insulatorprovided new sub-bands are separated from each other by proper gaps in
the energy spectrum.

7.3. Parent compound. Band structure

Let us derive the band energy spectrum of the parent manganite. The approach below (Gor’kov and
Kresin, 1998) is based on the full Hamiltonian (4.4) where, in addition to the part that was analyzed for
metallic phases (Sections 5 and 6), the JT term is explicitly included in the treatment to account for the
presence of the static JT distortion (cooperative JT effect).

The JT term (Eq. (4.3)) contains the active JT normal modes for deformation of the surrounding oxygen
octahedron. These modes are denoted in literature (Kanamori, 1961; Kugel and Khomskii, 1982) asQ2
andQ3 (Fig. 14) and can be expressed in terms of the Cartesian displacements of oxygen ions:

Q2= 1√
2
(x1− x4+ y5− y2) ,

Q3= 1√
6
(2z2− 2z6− x1− x4− y2+ y5) . (7.1)

Another way is to use the basic set (5.2) and to write the JT term down in the following convenient form:

−g

2
Q0

(
0 exp(i�)

exp(−i�) 0

)
, (7.2)

where in the standard notations:

Q2=Q0 sin�; Q3=Q0 cos� (7.3)

with Q0 being the magnitude of the JT-distortions. The “angle”,�, specifies the shape of the octahedrons
distortion (Fig. 15). Thus, the angles� = 0; ±2�/3 correspond to elongation of the octahedron along
thez, x andy axes, respectively. The JT-term (4.3) is linear inQ, while the elastic energy is quadratic in
Q. Therefore, if one electron is placed on the JT-level, the site energy always decreases with non-zero
lattice deformations. Note, however, that deformations,Qi , on the two adjacent manganese sites are not
independent because the two sites share one oxygen along the Mn–O–Mn bond. The local distortions on
neighboring sites must, therefore, be properly adjusted. In other words, in a lattice only cooperative JT
distortions are possible.
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Fig. 15. TheQ2Q3 plane.

Fig. 16. In-plane staggered distortion inside the ferromagnetic layer. Solid segments represent the elongation of octahedra. The
new unit cell is shown as the dashed square.

To calculate the electronic spectrum of our model in the presence of such “antiferrodistortive” JT
collective deformations as shown inFig. 16, see alsoFig. 6; note that the 2D structure vector of the
superlattice is�q = (�/a)(1;1). The superstructure modulation shows up through the JT-term (7.2) and
depends on which of the two modes (Q2;Q3) (or even their superposition) is chosen for the JT local
deformations on each of the two sublattices. Experimentally, the arrangement inFig. 16is close to the one
in which octahedra are elongated alternatively along eachx- or y-axis preserving the overall tetragonal
symmetry in the perpendicular plane (Coey et al., 1999; Ramirez, 1997). For that mode the number of
“short legs” Mn–O per each octahedron equals four and the “long” ones equals two (these deforma-
tions were also seen even above percolative threshold in doped materials; see, e.g.,Lousa and Egami,
1999a, b). Alterations in the octahedra orientations of that specific type would be reflected in expression
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(7.3) as changes from� = 2�/3 to−2�/3 between the two sublattices. In such most general terms the
secular equation for the new band structure cannot be solved in the analytic form. However, to describe
the experiment it is enough to consider the energy contribution, which comes from theQ2 mode only;
these deformations are the ones shown inFig. 14. For that pattern the HamiltonianHJT can be written as

ĤJT(q)= − gQ0

2
exp(i �q�r)

(
0 1
1 0

)

= − gQ0

2
exp(i �q�r)�̂x , (7.4)

(�̂x is a “pseudospin” Pauli matrix defined on basis (5.2)).
As was explained above, due to the magnetic A-structure and prevailing role of DE mechanism, the

problem of finding the energy spectrum becomes two-dimensional. Writing explicitly

[
̂− t̂ ( �p)]	 �p =−
gQ0

2
�̂x	 �p+�q ,

[
̂+ t̂ ( �p)]	 �p+�q =−
gQ0

2
�̂x	 �p (7.5)

(the vector�q = �/2(1,1); �p is a vector in the new 2D Brillouin zone; by definitiont ( �p + �q)=−t ( �p)),

= E + JHS. After eliminating	p+q from Eqs. (7.5), one obtains

[
�̂x + ˆ̃t( �p)][
�̂x − ˆ̃t( �p)](�̂x	 �p)=
(
gQ0

2

)2

�̂x	 �p . (7.6)

The spectrum branches are then obtained from the zeroes of the two-by-two determinant:

det|[ê2− (gQ0/2)
2]ê − ˆ̃t(p)2+ 
[ˆ̃t(p), �̂x]| = 0 , (7.6′)

whereê is the unit matrix,̂̃t(p)= t ( �p)�̂x , and

[ˆ̃t(p), �̂x] = t̂ ( �p)− �̂xt ( �p)�̂x .

With t̂ ( �p) expressed in terms of the “pseudospin” Pauli matrices:

t̂ ( �p)=−f+( �p)ê + 1

2
f+( �p)�̂x +

√
3

2
f−( �p)�̂y , (7.7)

where

f+( �p)= |A|(cx + cy); f−( �p)= |A|(cx − cy) ,

after simple calculations, determinant (7.6) transforms to the form∣∣∣∣ 
2− (gQ0/2)
2− (5/4)f 2+ + (3/4)f 2− + i(

√
3/2)f+f−; f 2+ − i


√
3f−

f 2+ + i

√

3f−; 
2− (gQ0/2)
2− (5/4)f 2+ + (3/4)f 2− − i
(

√
3/2)f+f−

∣∣∣∣= 0 .
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The resulting bi-quadratic equation produces the following four branches,
i( �p) i = 1 . . .4):


1;2( �p)= {
(gQ0/2)

2+ (5/4)f 2+ + (3/4)f 2−
±�3f 2−((gQ0/2)

2+ f 2+)+ f 4+]1/2
}1/2

,


3;4( �p)= − 
1;2( �p) . (7.9)

Recall that each of these four branches is determined in the reduced Brillouin zone.
At large enoughgQ0/2 the branches
1;2( �p) are separated in energy from the two other branches,


3;4( �p). Filling them up by the two polarized electrons per the new unit cell doubled in real space,
completes the proof that, indeed, insulating LaMnO3 maybe considered as a band insulator.

For example, two sets of the spectrum branches (7.8),
1;2( �p) and
3;4( �p) may start first to overlap at
px =py = �/2, for 
j=1( �p) and
j=3( �p). The overlap is direct which imposes some limit on the value of
the JT mode needed to ensure LaMnO3 to behave as an insulator:

gQ0 >0.1|A| . (7.10)

The optical gap, hence, corresponds to the excitation of an electron from the
j=1(2)( �p) band into the

j=3(4)( �p).

Let us make one more comment. Namely, while in the case of an isolated ion with one electron on the
local degenerate e2g-level, it inevitably leads to the local distortions, as follows from the JT effect itself,
the ferromagnetic state with the band spectrum (5.14), filled up to some level, would remain stable with
respect to small enough JTdistortions.There is a threshold value for themagnitude of the JTdeformations,
before the new symmetry state may set in. In the cooperative JT effect, this threshold is determined from
competition between the electronic kinetic energy gain and the elastic lattice energy. In case of LaMnO3
the existence of the cooperative JT deformations is confirmed experimentally.

7.4. Antiferromagnetic ordering along the c-direction

Let us discuss factors that may lead to the antiferromagnetic ordering in thec-direction (A-phase). The
related question concerns the low value of the Neel temperature(TN ≈ 140K). This value corresponds to
an energy scale that seems to be smaller than the scales introduced so far (JH ≈ 1eV,t ≈ gJT ≈ 0.1eV).

In all derivations described above, including the energy spectrum (7.9), we assumed a strong inequality
JH?t , gJT. As a result, the corrections of ordert2/JH have been neglected so far. Nevertheless, these
terms may be important for answering the question why the A-structure is favorable one. In other words,
these small corrections still may determine the mutual spin orientation along the c-axis in theA-phase. For
this, one needs estimate the contribution of these small terms into the total energy (Gor’kov and Kresin,
1998; Dzero et al., 2000). To simplify the problem, lets omit the JT terms and consider the one-band case.
The equation of motion can be reduced to the form:

[E2− 2t̂px,pyE + 2JH �̂xMt̂pz + t̂2px,py
]�p = J 2

HS2�p , (7.11)

where, unlike in Eq. (7.13), we have preserved in thet-matrix its dependence on the moment perpendicular
to the direction of the�q-vector(�q ≡ (�/a)(0,0,1)):

t̂ = t̂px ;py
+ t̂pz
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and we also used thattpz+qz =−tpz . Take in Eq. (7.11)E =−JHS + 
. Eq. (7.11) givesE0=+JHS, as
expected. Eq. (7.11) leads to the generalizedAnderson–Hasegawa term (1955);


̂(1)+ = t̂px,py + cos(�/2)t̂pz . (7.12)

At the electron filling the linear in hopping term is averaged out, and for the total energy we obtain

EA
el =−

∫ √
(JHS)2+ t2�p

d3 �p
(2�h)3

∼= −JHS − t2

4JHS
. (7.13)

From (7.13) one may conclude first, that terms of the order oft2/JH in the electronic kinetic energy along
thec-direction make the AF state (the A-phase) energetically more favorable.

Note also that, as it is well known, two-dimensional ferromagnetic state is never stable being destroyed
by spin fluctuations. Stabilization of the A-phase must come up due to small terms in energy, which
are responsible for remnant interactions between layers. Our estimates below forA ≈ 0.16eV and
JHS ≈ 1.5eV would place the termst2/JH on the scale of≈ 100K which agrees well with the low
value of the Neel temperature,TN ≈ 150K.

Note, however, that the so-called “superexchange” interactions,JSiSj , with J, being on the same scale
ast2/JH , may also become important (van der Brink and Khomskii, 1999) at the AF transition.

For the two-band case, generally speaking, terms linear int, may remain after integration in (7.13).
However, the JT splitting is more important as an additional factor in order to decrease the ground state
energy below the energy of the ferromagnetic state. Large enough JT splitting reduced the problem of
calculating terms of order oft2/JH to the one-band scenario.

In short, we suggest, that the lowest energy scale which determines the low value of the Neel temper-
ature,TN, corresponds to the small parametert2/JH , so thatTN ≈ t2/JH . This, indeed, corresponds to
the experimentally observed value ofTN.

7.5. Insulating state. Polarons

In our discussion of the insulating state above, we restricted ourselves by the parent compound, that is
by the undoped manganites. Recall now (Sections 2,3) that the chemical substitution (e.g., La→ Sr) of
La+3 by the divalent ion leads to formation of “hole” in the unit cell. Experimentally, at the low doping
level the material remains an insulator. This fact that at small concentration doped manganites preserve
the insulating state raises an interesting problem.

The insulatingbehavior at light dopingmeans that the introduced “holes” remain localized.Oneobvious
reason for this is certainly the Coulomb attraction to the doping ion (Sr2+) that prevents hole from
immediately joining top of the one of the conduction bands (7.9). However, even if the Coulomb forces
were screened on large distances in the presence of a finite hole concentration, strong electron–phonon
interaction originated from the local JT term may significantly change the band characteristic. Local
distortions may result in forming self-consistent trapping centers for hole/electron, i.e., creating a new
type of a “carrier”, the so-called “polaron”. In the 3D case for a band carrier to become trapped into
the polaronic state (usually with a much heavier effective mass), an energy is needed to overcome the
energy barrier separating band and the trapped polaronic states. With the polaron density increase the
latter should merge gradually into the band spectrum. Situation is more interesting and less trivial in
case of the 2D electronic spectrum. It is worth saying a few words in this regard, since, as we have just
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discussed, for the parent LaMnO3 with it’s A-type magnetic structure, the conducting network of the
MnO-planes bears two-dimensional features.

In the 2D case the energy barrier for polaron formation may be equal to zero. Correspondingly, carriers
may be either itinerant, or localized (having heavy masses) depending on numerical value of some
parameter,C. This parameter characterizes competition for the energy gain between the gain in elastic
energy (see linear and quadratic terms in Eq. (5.4)) due to the JT distortion,∝ g2Jel., and the kinetic
energy gain due to the finite band width which is proportional tot. If the value

C ≈ g2/Jelt (7.14)

exceeds a threshold, usually of order of unity, the doped hole would inevitable go into a trapped state
(Rashba, 1982; Toyozawa and Shinozuka, 1983).

In simple terms, Eq. (7.14) tells us whether, due to lattice deformation, the hole energy goes below
the bottom of the band and, thus, remains “localized”. Recall again that for the A-structure (see above,
Section 7.3) the transport has mainly a 2D nature. Since experimentally, at low doping manganites first
remain in insulating state, we conclude that criterion (7.14) favor absence of the potential barrier for
localization of introduced holes, or, in other words, holes are trapped into “heavy” polarons.

The polaronic picture and criterion (7.14) makes sense in the limit of low enough carrier concentration
only. Increase in doping leads, eventually, to percolation and the phase separation picture described in
Sections 3, 4.

The superlattice of the parent LaMnO3 rapidly becomes irrelevant with disorder and we are entering
into the percolation regime (see above, Section 3). At the percolation threshold,xc ≈ 0.16, an itinerant
conduction network develops leading to the transition into metallic (and ferromagnetic) ground state. As
we have shown before, somewhat above the percolative concentration threshold the formed macroscopic
metallic phase can be again described in terms of the band theory.

8. Interface and tunneling phenomena

8.1. Charges and spins near interface

Possibility to use manganites with their rich phase diagram in some practical applications has been
already discussed in a number of papers (see, e.g.,Tokura, 2003; Gor’kov and Kresin, 2001). In this
connection, we address below some problems which involve artificial contacts of manganites with dif-
ferent magnetic ground states or just two manganites having the same ground states but different doping
concentrations. We will discuss both charge and magnetic structure in the vicinity of the boundary. Below
we consider the plane geometry, so that all quantities depend on one coordinate only. In addition we
simplify our discussion by restricting ourselves by choosing the single band DE model.

We first consider two ferromagnetic manganites with different doping concentrations brought into
contact with each other with the parallel orientations of the local moments. Some pronounced effects
come about due to the Schottky layers formed at the contact. A difference in doping concentrations
produces a difference in the chemical potentials on both sides away from the contact,Eleft

F andEright
F , i.e.

a difference in the “work functions” of two components.
As usual, that leads to a redistribution of carriers near the contact plane. This effect is general and

well-known for contacts between metals or semiconductors. A simplifying feature for contacts of two
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Fig. 17. Contact of two metallic ferromagnetic phases with different Sr concentrations in the one band DE model. The numerical
solution of Kohn–Sham equations is shown for the structure with number of layers being equal to 20. The dashed line shows the
position of the (La,Sr) plane, where the abrupt change in Sr concentrations takes place: (a) Potential�(t) is given in dimensionless
units 4�e2/(at): (b)nel(i) is the concentration of electrons in the layeri in units ofa−2, wherea is a lattice constant.

manganites is the similarity of the underlying band structures on both sides of a contact. At the same time
all major changes still take place on the atomic scale so that one needs to apply the Kohn–Sham scheme
to solve for potential and charge distributions self-consistently.

We proceed as follows. LetNL(R) be the concentration (i.e. the number per cm2) of positive charges
in the (LaSr) plane on the left (right) side far away from the contact. These planes are chosen as basic
elements of our analysis because in the process of preparation of the heterostructure (film deposition;
Izumi et al., 2000), the Sr concentrationNSr changes sharply fromNL toNR at the contact. The system of
Kohn–Sham equations (the discretized equations for Poisson potential distribution and the Schrodinger
equation for the in-plane wave function, correspondingly) is

�(i + 1)− 2�(i)+ �(i − 1)= (4�e/t)[NSr(i)− nel(i)] ,
��(i + 1)+ 2��(i)−��(i − 1)+ �(i)��(i)= E���(i) ; (8.1)

wherei is an index which runs through the Mn-planes,� is an eigenvalue index,E� is the 2D-energy in
units oft , � is a dimensionless potential defined through electrostatic potential�(i) as

�(i)=−|e|�(i)/t (8.2)

nel(i)= ��<�|��(i)| is a concentration of electrons on a planei andNSr(i) is a Sr concentration, which
depends on which side of the contact one considers, andE�f =EF(i) with EF(i) being equal to the local
Fermi level in the units oft. We have obtained a numerical solution of (8.1) with the boundary conditions
providing the equality of the electrochemical potentials across the contact. In the calculations below the
total number of layers was equal to twenty (ten on each side of the contact) with

NSr(i)=
{

0.6, i�10 ,

0.4, i�11 .
(8.3)

The solution for the potential and electron distribution is shown onFig. 17. The consistency of our
numerical results have been verified by comparing them with the analytical ones obtained from the
solution of the same problem in its continuous form (see Appendix B).
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The significance of these calculations is as follows. First of all, one sees that the electron screening
(the “Thomas–Fermi” length) extends over four–five atomic distances implying that the sharpness of
the contact is smoothed out considerably. Secondly, there is a redistribution of charge between phases:
repletion and depletion regions form close to the interface.

We now turn to a qualitative discussion of contacts between two manganites belonging to the fer-
romagnetic and antiferromagnetic A-phase, correspondingly. The results of the previous section have
demonstrated existence of the pronounced magneto-resistance effects in the canted A-phase for both in-
plane and out-of-plane current directions. This justifies an interest and the need for a better understanding
of the F/A contact properties. Stacks of manganite films of different thickness with abrupt change in Sr
concentration in the (LaSr) planes in order to stabilize FM- orA-phase, can be made using the state of the
art deposition techniques (Izumi et al., 2000). However contacts between the FM state and the A-phase
are more complicated than the preceding example of the contact between the two unequally doped fer-
romagnetic metallic manganites. First of all, one should expect that the charge effects discussed above
for a contact between the two FM phases exists at present case as well. Redistribution of the carriers
may shift the boundary position between the magnetic phases. Even less clear is the magnetic structure
of such a transitional layer: whether there is a sharp boundary for change of spins orientations on both
sides of a contact or the direction of spins may rotate at going through the interface from left to right,
needs further study. In particular, since the energy of magnetic anisotropy in manganites is rather weak
(magnetization of ferromagnetic manganites is saturated at external fields of the order of 100 Oe, see
Coey et al., 1999) orientation of moments may even change gradually forming a structure similar to the
one in the Bloch or Neel domain wall. The transitional region between the two phases may include a
canted A-phase, magneto-conductivity of which has been studied above. It is highly desirable to further
address these issues experimentally.

As far as an interface is concerned, the complications that lie on the theory part are as follows. The DE
mechanism that played such an important role in exploring the properties of the half-metallic magnetic
ground state, bears a non-local character. Therefore it is not straightforward to account for physics in an
inhomogeneous problem with a spatial dependence near the interface. Secondly, diminishing the number
of band electrons, the anti-ferromagnetic super-exchange interaction between thet2g spins becomes com-
parable with the DE interaction. The task of combining these two mechanisms to study an inhomogeneous
problem is already a serious problem.

The A-phase ground state has been found in a number of other compounds, such as Pr0.5Sr0.5MnO3
and Nd0.45Sr0.55MnO3 (Kuwahara et al., 1999; Tomioka et al., 1995). The transition into the A-phase
along the temperature axis is of the first order as it is expected from symmetry considerations. It is
accompanied by a change in the c/a ratio (Izumi et al., 2000; Tokura et al., 1994). Such a transition is
often described in the literature in terms of the “orbital ordering” (Kugel and Khomskii, 1973).We suggest
that this transition is nothing but as a cooperative Jahn–Teller effect involving the proper lattice distortion,
namely, compression of the oxygen octahedra along thec-axis. Indeed, so far we have discussed changes
in the electronic band structure caused by spin re-arrangements only. Meanwhile, the lattice effects may
also play an important role in the energetics of the transition into the A-phase. Judging from various
experimental results (for a review, seeTokura and Tomioka, 1999), the importance of the lattice effects
may vary and depend on a specific compound. For example, the lattice deformations strongly prevail
in Nd0.45Sr0.55MnO3 compound. Its ground state shows huge anisotropy in resistivity (�c/�ab ≈ 104)
and much lower in-plane conductivity compared to other members of the A-phase family. As it was
shown byGor’kov and Kresin (1998), Dzero et al. (2000), the strong enough shear deformation of the
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oxygen octahedra(c/a <1) alone may lead to a practically two-dimensional electronic spectrum. We
suppose that Nd0.45Sr0.55MnO3 is such an extreme case (t ≈ 0.95), seeTokura and Tomioka (1999).
After carriers are added to the 2D bands, both spins of the carriers and the core spins adjust themselves
via DE and super-exchange mechanisms. It may happen that in other A-phase compounds the tetragonal
deformations of the latticec/a <1, is less pronounced. In such a case one may neglect it as we have done
above for La0.45Sr0.55MnO3. The phase diagram for the La1−xSrxMnO3 as a function of Sr dopingx has
been theoretically studied byFang et al. (2000). We note, that the Jahn–Teller interaction has not been
considered in that paper and the electronic band structure was obtained for a fixed values ofc/a.

In Izumi et al. much attention was also given to characterization of properties of the heterostructures
consisting of mixed phases [Fn, Am] (n andm are the number of unit cells per period of the structure;
Izumi et al., 2000). Major conclusion drawn by the authors from data on magnetization, structural char-
acterization of the modulated films and their in-plane conductivity have led them to the notion of stable
FM and A-phase single layers, which preserve their integrity and stability even in very thin intervening
structures such asn; m= 2–5. This result is in favor of the view that the stability of the A-phase layers is
mainly due to the coherent octahedra shrinkage,c/a <1, in the planes. Such a notion still leaves enough
room for speculation regarding possible spin arrangements in the heterostructures. It is interesting that the
conductivity measurements for the samples with composition [F10, A10] gave lower values of the in-plane
conductivity as if conductivity were due to the FM layers alone. We ascribe this to the effect of charge
re-distribution shown inFig. 17: ferromagnetic layers having more carriers supply part of them into the
A-phase layers (10 layers of each phase is already a good approximation for the homogeneous picture
of a single interface). For compositions [Fn,Am] with n andm decreased, the role of Coulomb effects
becomes weaker and each layer preserves its nominal composition and hence, the in-plane conductivity.

One more comment we would like to add to the latter point concerns a pronounced increase in magneto-
conductivity toward the [F3,A3] samples. If the number of electrons on each FM- and A-phase planes
does not change, the positive magneto-conductivity effect is an indication of stronger canting of the
moments in these samples. (Recall that large values of in-plane magneto-conductivity onFig. 12 is a
result of changing Fermi level at the transition between the 2D and 3D regimes). Data provided byIzumi
et al. (2000)qualitatively agree with the theoretical results (Dzero et al., 2003) for the values of in-plane
conductivity for the canted A-phase.

8.2. Josephson contact with the A-phase barrier

As isknown, thesuperconductingstate is characterizedbymacroscopicphasecoherence.TheJosephson
effect (Josephson, 1962; seeBarone and Paterno, 1982; Tinkham, 1996) represents the most remarkable
manifestation of this coherence. The Josephson contact is comprised of superconducting electrodes sep-
arated by a tunneling barrier. The d.c. current flows through the contact without any external voltage and
is described by the equation:

J = j0 cos� , (8.4)

where� = �1 − �2 is the phase difference of the superconducting order parameters on each side of
the barriers. The most common case is the S–I–S Josephson junction, where I denotes a thin insulating
barrier. Another well-known case is the S–N–S junction; here N is a normal metal. The amplitude of
the superconducting current for such a junction (see, e.g.,Barone and Paterno, 1982; Kresin, 1986) is
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proportional to

j0 ∝ exp(−LN/�N) , (8.5)

if LN > �N, andj0 ∝ (�N/LN) if LN>�N. Here�N is the normal coherence length defined as (“clean”
case;Clarke, 1969)

�N = 2vF/2�T . (8.6)

One can see from Eq. (8.5) that for effect to be observable the thickness of the barrierLN should not
exceed noticeably the coherence length�N.

Let us consider the barrier formed by a magnetic metal. It is well understood that for two supercon-
ductors with singlet (s- or d-waves) pairing a ferromagnetic barrier (S–F–S junction) would present a
strong obstacle. Indeed, the Josephson current is a transfer of a Cooper pair with its spins of the two
electrons in opposite directions. The exchange field in the ferromagnetic is trying to align the spins in
the same direction, and this leads to the pair breaking effect. The situation is entirely different for the
tunneling through antiferromagnetic metallic (S–AFM–S) system (Gor’kov and Kresin, 2001). Contrary
to the pair-breaking F case, superconducting currents might penetrate through anAFM barrier much eas-
ier. This process reveals rather non-trivial aspects in case of the A-phase taken the barrier which deserve
special treatment.

We consider the junction in such geometry, that the Josephson current would flow along ferromagnetic
layers. The layers are weakly coupled electronically. It is important, because the Josephson current is a
transfer ofcorrelatedelectrons. Below we keep in mind the manganite is in the metallicA-phase (Section
6) for such a barrier. The A-phase manganite is a natural spin–valve system (see, e.g.,Kawano et al.,
1997), unlike an artificial GMR multilayer system (Parkin, 1995).

To demonstrate the effect, we assume that the barrier is thick enough to neglect phenomena taking place
in the immediate proximity to the boundary, i.e.,L?�0; whereL is the width of the barrier,�0=2vf /2�TC
is a coherence length. Then one can use the interface Hamiltonian in the form

H = V�(i)	+(i)	(i) . (8.7)

Here�(i) are superconducting order parameters on each side,i, 	+, 	 are the field operators for the
carriers inside the barrier, andV is a tunneling matrix element at the boundary of the barrier; integration
along the contact surface is assumed.

As a next step it is practical to evaluate not the current itself directly, but find, instead, the “surface”
contribution to the thermodynamic potential,��, caused by the presence of the barrier separating two
bulk superconductors. The current is then determined as a derivative��/��, where� = �1 − �2 is the
phase difference between the two superconductors, so that�(1) = |�(1)|exp(i�1), �(2) = |�(2)|exp(i�2).
The amplitude of the Josephson current,jm, turns out to be proportional to the matrix element of the
Cooper diagram

K(1,2)= |V |2
∑
�n

�(1)
��′G��′′(1,2;�n)G�′�′′′ (1,2;−�n)�

∗(2)
�′′�′′′ . (8.8)

Recall that for a singlet superconductor�̂ is the matrix of the form�(i)

��′ = �(i)(i�y)��′ . A method of
thermodynamic Green’s function is employed (see, e.g.,Abrikosov et al., 1975); a summation over
repeating spin indexes is assumed. To properly evaluate the current through the magnetic barrier, one
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should pay special attention to the spin structure of Eq. (8.8), because the Green’s functions,G��′′ and
G�′�′′′ , inside the barrier are not diagonal in spin indices.After straightforward calculations (Gor’kov and
Kresin, 2001), one can obtain the kernelK(1,2):

K(1,2)= 2�T |V |2
∑
�n

�(1)�(2)
∫

d �p d�q exp(i �q �L)�12(�n; �q) , (8.9)

where

�12(�n; �q)= [G↓↑(�n; �p)G↑↓(−�n; �q − �p)−G↓↓(�n; �p)G↑↑(−�n; �q − �p)] . (8.10)

One can use the following energy spectrum:


=±
[
J 2
HS2± 2JHMt || + t2||

]1/2
. (8.11)

The Green’s functions appearing in Eq. (8.10) could be expressed in terms of new Fermi amplitudes
which correspond to the four energy branches (8.11). The transformation to the new amplitudes, as usual
can be described by the canonical transformationap�=�iK�i�ip. The calculation leads to the following
general expression for the amplitude of the Josephson current:

jm = r�T
∑
�n>0

∫
dpz exp(−�nL/vF) cos(Lt ||M/Sv⊥) ,

�= [1− (M/S)2]; r ∝ |V |2|�1|2|�2|2 . (8.12)

Eq. (8.12) contains the integration over the transverse cross-section of the Fermi surface (over5).
Assume that thewidthof thebarrierL?�N, �N is thecoherence length for thenormal layer,Eq. (8.6).Then
one can keep only the first term of sum in (8.12). In the tight-binding approximationt||(pz)= t0 cos(pzd)

(d is the interlayer distance). Integrating overpz, we arrive at the following expression:

jm = j0
me−L/�N(T )J0(�M/S) . (8.13)

Here�N(T ) is the coherence length inside thebarrier (seeabove),j0
m=[1−(M/S)2]Tr,�=(t0/TC)(L/�0);

�0 = 2vF/2�TC; vF = v0
F is the maximum value of the component of the Fermi velocity alongL. It is

essential that�?1; indeed for manganitest0?TC andL?�0. If the cantingM/S is not negligibly small
then one can use an asymptotic form of the Bessel function,J0(x), and we obtain

jm ≈ (��M/2S)−1/2j0
me−L/�N(T )Cos(�M/S − �/4) . (8.14)

Eq. (8.14) above is valid ifL?�N(T ) = 2vF/2�T . NearT = 0K this condition is not satisfied. In this
region one can replace the summation in Eq. (8.12) by integration, and we obtain

jm = j0
m�0J0(�M/S) . (8.15)

Again at �?1, if M/S is not close to zero, one can use the asymptotic expression forJ0(x)

(cf. Eq. (8.14)).
Therefore, the antiferromagnetic barrier in accordancewithEqs. (8.12)–(8.15) does transfer the Joseph-

son current; in this case the exchange field does not break the Cooper pairs. In principle, however, the
mutual magnetic orientations of layers can be controlled by an external magnetic field. Thus, the AFM
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structure can be transformed into the ferromagnetic configuration(AFM → FM). The complete AFM→
FM reorientation would result in a drastic impact forbidding the Josephson current for the FM casejm=0.
This follows from our result in Eq. (8.12); indeed, thenM = S andjm = 0.

It is very interesting, that, according to (8.14), one observes the oscillatory dependence of the amplitude
of the Josephson current on an external magnetic field:j0 ∝ cos(�M/S − �/4). Canted moments may
be induced by even a week field and would result at�?1 in rapid and large (“Giant”) changes in the
Josephsoncurrent (“Giant”magnetooscillations for the Josephsoncontactwith thepresenceofA-structure
as a weak link). The oscillating dependence was theoretically obtained byBuzdin et al. (1982)for the
ferromagnetic barrier who considered the oscillations caused bychange in the barrierthickness. As was
described above, for the antiferromagnetic barrier, one can observe this effect as due toslight variations
in the external magnetic fieldvalue.

Speaking of the manganite-superconductor systems, one should mention also interesting study
(Habermeier, 2004) of the Sh-M superlattices (Sh≡YBa2Cu3O7−x is the high temperature supercon-
ducting oxide, andM ≡La2/3Ca1/3MnO3 is the manganite in the ferromagnetic metallic state). As is
known, the high temperature superconducting compounds are layered compounds which can be treated
as 2D systems (CuO planes) connected by intrinsic Josephson coupling (Kleiner et al., 1992; Scheekga
et al., 1998). Various properties of this multilayer system have been studied. By changing the parame-
ters of each component, one can strongly affect the values of the superconducting critical temperature
andTC ≡ Tcurie. It was shown also that the opening of the pseudogap in YBa2Cu3O7−x (the pseudo-
gap phenomenon is usually observed in the underdoped cuprates and manifests itself in the existence
of the energy gap structure above the superconducting critical temperature) leads to weakening of the
interlayer ferromagnetic coupling and to the reduction ofTcurie. This system is an artificial structure
analogous to the natural S-FM superlattice, realized by the family of ruthenates RuSr2RECu2O8 and
RuSr2RE2−yCeyCu2O10 with RE=Gd, Eu (Felner et al., 1997; Chu et al., 2000).

9. Conclusion

Manganites display the very rich phase diagram. The phases differ in their conductivity (metallic
vs. insulating), anisotropy of their properties (layered vs. 3D), magnetic structure (ferromagnetic vs.
antiferromagnetic), appearing in countless combinations. Research in the area was re-energized after
the discovery of the colossal magnetoresistance (CMR). However, our understanding of manganites still
remains not complete. Many interesting questions, such, for instance, as the role of the JT effects and
competing interactions for numerous symmetry structures, competition between DE and superexchange,
and magnetic terms must be resolved on a more quantitative level.

In thisReviewweweremainly interested in the low temperature properties ofmanganites, that is, first of
all, in the nature of the ground state and its dependence on doping. It was demonstrated (Section 3) that the
metal–insulator transitionat thedoping levelxc ≈ 0.17 realizes itself as apercolationphenomenonand the
valuexc is the universal percolation threshold. The percolative character of the metal–insulator transition
with doping resulting in such non-trivial and uncommon features as coexistence and interweaving of the
phases with different properties, singles out manganites between many other materials. For example, for
x <xc (insulating state) the material has tiny metallic inclusions. Atx >xc (or T <TC) the compound,
however, contains inclusions of the insulating phase, or penetrating antiferromagnetic islands.
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It turns out that one can built up a sensible quantitative theory that explains self-consistently main
peculiarities in these materials by using a relatively simple Hamiltonian (Section 4) which contains, as
the key ingredients, hopping term, Hund’s and Jahn–Teller interactions. One sees that the band approach
utilizing all these interactions, provides an adequate and unifying approach even to a phase diagram as a
whole, and properties of materials with different compositions.

Note also that this review contains many results obtained analytically. It is clear that such an approach
has a serious advantage not only because it allows one to gain an additional insight, but also because the
calculations are tractable, whereas the numerical results are sometimes contradictory (cf.,Dagotto et al.,
2001; Furukawa, 2003b).

The study of manganites continues to undergo an intensive experimental and theoretical develop-
ment. Unfortunately, sample’s quality remains a major obstacle for experimental study so far and, sub-
sequently, for various applications. It is not accidentally that there many contradictory reports for sam-
ples with the same nominal composition. However, recent progress with sample preparation looks very
promising.

There are, of course, still many interesting theoretical challenges that we have been mentioning in our
review. Among them: a detailed analysis of the polaronic states occurring atx <xc and above the Curie
temperature for the metallic ferromagnetic phase, conductivity mechanisms, calculation of magnetore-
sistance with use of the two-band model, quantitative understanding of the interplay between the double
exchange and superexchange spin interactions, evaluation of a whole class of fundamental properties
(e.g., spin waves spectrum for the insulating phase), etc.

In summary, this paper contains a description of main experimental facts and new basic ideas that allow
the transparent interpretation of manganites’properties as a whole. We discuss transition to the ferromag-
netic and metallic state at finite doping and demonstrate that in these materials such an insulator-to-metal
transition represents a fundamentally new type of the transition that must be described in the percolation
terms. The same approach turns out to be applicable for the transition at the Curie temperature.As a result
of the percolation theory approach, the view of these materials, both above and below the transition point,
is that of inhomogeneous media consisting of tiny islands of interweaving sub-phases, thus, realizing
a special case of phase separation. These basic new ideas have been now verified experimentally with
the use of various experimental techniques (neutron data, Mossbauer spectroscopy, heat capacity and
magnetization measurements, etc.).

Wehavealso shown that even the quantitative understanding of numerousmanganites’properties canbe
achieved by making use of a generalized two-band model that takes into account of the crystal-field-split
d-shell of the Mn3+ ions, the Zener’s double exchange interaction and strong electron-phonon interaction
due to the cooperative JT effect. We have traced changes in the ground state with doping, describe
various manganites’ low temperature properties, both thermodynamic and kinetic ones, and compared
the theoretical predictions with experimental data. As a result, one arrives to the self-consistent and
quantitative understanding of main physics in the metallic manganites. With the theoretical expressions
in hands some other effects are discussed. Thus, an attention was given to phenomena taking place in
the contact area of two manganites’ phases. A giant oscillations in the Josephson current of a S–AFM–S
junction using as a barrier the antiferromagnetic metallic A-phase are predicted as a function of weak
applied magnetic fields. The experimentally observed strong isotope effect is explained.

We think that the study of these remarkable materials is far from being complete, and we hope that the
description of various properties of manganites and challenges, presented in this article, will be useful
for future research in this area.
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Appendix A. Basis set: real functions

Hereweaddress somedetails regarding theenergy spectrum.Theexplicit calculations for theelectronic
spectrum were performed with use of complex basis set (5.2) which emphasizes the cubic symmetry. As
was noted above (Section 5.1) one can also use the set of real functions (5.3), or, more exactly:

�1= dz2=(5/16�)1/2f (r)r−2(2z2− x2− y2) ∝ 3Cos2 ϑ− 1 , (A.1)

�2= dx2−y2=(5/16�)1/2f (r)r−2(x2− y2) ∝ Sin2 ϑCos2 ϑ . (A.2)

There is a simple connection between the two sets, Eq. (5.4). The basis set of real functions is more
commonly used in literature. In addition, unlike (5.2) their use allows better qualitative “visualization”
of the relevant charge distribution on orbitals. Of course, the energy spectrum and the values of measured
quantities do not depend on the choice of the basis set, even though various matrix elements are different.

The periodic Bloch wave function can be constructed as the superposition:

�(�r)=
∑
n

ei�k�an{�	1(�r − �an)+ �	2(�r − �an)} . (A.3)

With use of the stationary Schrödinger equation, one can obtain the following secular equation for the
energy,
:∣∣∣∣∣∣

∑
i

I i
11coski − 


∑
i

I i
12coski∑

i

I i
21coski

∑
i

I i
22coski − 


∣∣∣∣∣∣= 0 . (A.4)

Herei = {x, y, z}, I i
kl =

∫
�(r)
k T �e(�r − �ani)d�, k, l = {1,2}, T describes the hopping (cf. Eq.(5.6′)).

Introducing the constantsA ∝ ∫ �1�1zd� and� ∝ ∫ �2�2z d�; �iz=�i,z+a, we obtain, after straight-
forward calculations, spectrum (5.8).

With use of the basis set (A.1), (A.2) one can calculate various properties. For example, the analysis
of optical properties (Section 5.6) requires the calculation of the matrix elements of the off-diagonal
operator�̂ (see Eq. (5.38)). The calculation utilizing real functions as a basis set, leads to the expression
for the interband matrix element

〈1�k|�̂|2�k〉 = 0.5[(�S+/��k)S− − (�S−/��k)S+] , (A.5)

S± = (1± �/�) ,

�= 2 coskz − f+ ,
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where

f+ =
∑
i

coski ;

�= 2


∑

i

coski −
∑
i �=m

coski coskm


 ,

Eq. (5.42) then follows from Eq. (A.5).

Appendix B. Analysis of the interface problem in the continuous model

One can obtain a general solution of Eq. (8.1) in continuous limit. In that case, one can solve the
Poisson equation on each side of the contact and, after using the boundary conditions, obtain a general
solution.

If the plane of the interface coincides withyzplane, the potential will depend onx only. We assume
the spectrum of the electrons to have a parabolic form:
(k)= k2/2m. The concentration of electrons is
given by

nel(x)= (2m)3/2

3�223
[�(x)]3/2 , (B.1)

where�(x) is a local chemical potential. Taking into account (B.1), we have to solve the Poisson equation

d2�

dx2 =
4�e2

t
[NSr(x)− nel(x)] , (B.2)

whereNSr is a Sr concentration defined by

NSr(x)=
{
NL , x�0 ,

NR, x�0 .
(B.3)

We introduce the following notations:�(x)+ �(x)= �= const, where� is an electrochemical potential
and�(x) is

�(x)=
{

�L(x), x�0 ,

�R(x), x�0 .
(B.4)

The boundary conditions for the potential preserving the charge conservation are

�L(0)= �R(0),
d�L

dx
= d�R

dx

∣∣∣∣
x=0

. (B.5)

Afterwards, one can obtain numerically solution of Eq. (B.2), seeFig. 14(Dzero et al., 2003). It is useful
to obtain the solution of the Poisson equation (B.2) in the linear approximation, assuming�(x) is small
compared to�. After a very simple algebra, (B.2) takes the following form:

d2�(x)

dx2 = 1

�2 [�(x)− �(±)] , (B.6)
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where

1

�2 =
(

2e2(2m)3/2

�23

)
�1/2 ,

�(±∞)= (2m)3/2/(3�223)�3/2−NL(R)

2(2m)3/2/(2�223)�1/2
. (B.7)

Taking into account the boundary conditions (B.5), the integration of (B.7) is straightforward. Thus the
solution of (B.7) reads

�(x)=
{

�(+∞)+ ��e−x/�, x�0 ,

�(−∞)− ��e−x/�, x <0 ,
(B.8)

where�� = 0.5(�(−∞) − �(+∞)). As it is easy to see, the result given by (B.8) reproduces all the
features of our numerical solution shown inFigs. 14(a) and (b).
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