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Experimento mental (gedankenexperiment)



Si tiramos 6 veces la moneda, 
y sale 6 veces cara...

¿diríamos que la moneda está cargada?

La “ciencia” hoy dice “sí”.

Más precisamente:  
“Hay evidencia significativa de que está cargada (p < 0.05, test binomial)”





Estadística (o inferencia, o análisis de datos) bayesiana 
como alternativa a la estadística frecuentista o “clásica”

Permite (entre otras cosas) incorporar 
nuestro conocimiento previo

Probabilidad como creencia

Podemos hacer afirmaciones sobre cuán 
probable es que la moneda esté cargada 

(prohibido en frecuentismo)



inferencia bayesiana vs. estadística frecuentista

probabilidad como   vs.   probabilidad como 
creencia                        frecuencia

mayormente

interpretación de la probabilidad

p(lo que yo quiera) p sólo para muestreo

objetiva 
(intersubjetiva)subjetiva



Críticas al frecuentismo: 2 niveles

•críticas de fondo: 
- ignora conocimiento previo 
-dilema (mezcla) Fisher (significance testing) vs. 
Neyman/Pearson (hypothesis testing) 

-¿inconsistente? (discusión todavía abierta)  

•críticas al (ab)uso: 
-p hacking 
-uso ciego en general 
- no específico del frecuentismo





Rechazado Aceptado



Inferencia Bayesiana

Teorema de Bayes

posterior
likelihood prior

+
p(H,D) = p(D|H)p(H) = p(H|D)p(D)

p(H|D) =
p(D|H)p(H)

p(D)



Modelo

likelihood:

prior:
✓ ⇠ Uniform(0, 1) = Beta(1, 1)

✓ ⇠ Beta(100, 100)

✓ n

k

p(k|�) =
✓

n

k

◆
�k(1� �)n�k

k ⇠ Binomial(�, n)

posterior con Bayes: p(✓|k) = p(k|✓)p(✓)
p(k)

Inferencia Bayesiana



✓ ⇠ Uniform(0, 1) = Beta(1, 1)

✓ ⇠ Beta(100, 100)

prior

posterior 
(luego de 6 caras)

✓

✓



Acumulación de Evidencia

p(H|D1) =
p(D1|H)P (H)

p(D1)

p(H|D2D1) =
p(D2|HD1)P (H|D1)

p(D2|D1)

“The posterior is the new prior”



Redes Bayesianas

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

21

Exact Inference by Complete
Enumeration

We open our toolbox of methods for handling probabilities by discussing a
brute-force inference method: complete enumeration of all hypotheses, and
evaluation of their probabilities. This approach is an exact method, and the
difficulty of carrying it out will motivate the smarter exact and approximate
methods introduced in the following chapters.

21.1 The burglar alarm

Bayesian probability theory is sometimes called ‘common sense, amplified’.
When thinking about the following questions, please ask your common sense
what it thinks the answers are; we will then see how Bayesian methods confirm
your everyday intuition.

❥Earthquake

❅❅❘

❥Burglar

##✠❥Alarm
##✠❥

Radio ❅❅❘ ❥
Phonecall

Figure 21.1. Belief network for the
burglar alarm problem.

Example 21.1. Fred lives in Los Angeles and commutes 60 miles to work.
Whilst at work, he receives a phone-call from his neighbour saying that
Fred’s burglar alarm is ringing. What is the probability that there was
a burglar in his house today? While driving home to investigate, Fred
hears on the radio that there was a small earthquake that day near his
home. ‘Oh’, he says, feeling relieved, ‘it was probably the earthquake
that set off the alarm’. What is the probability that there was a burglar
in his house? (After Pearl, 1988).

Let’s introduce variables b (a burglar was present in Fred’s house today),
a (the alarm is ringing), p (Fred receives a phonecall from the neighbour re-
porting the alarm), e (a small earthquake took place today near Fred’s house),
and r (the radio report of earthquake is heard by Fred). The probability of
all these variables might factorize as follows:

P (b, e, a, p, r) = P (b)P (e)P (a | b, e)P (p | a)P (r | e), (21.1)

and plausible values for the probabilities are:

1. Burglar probability:

P (b=1) = β, P (b=0) = 1 − β, (21.2)

e.g., β = 0.001 gives a mean burglary rate of once every three years.

2. Earthquake probability:

P (e=1) = ϵ, P (e=0) = 1 − ϵ, (21.3)

293

p(B, E, A, P,R) = p(B)p(E|B)p(A|B,E)p(P |A, B,E)p(R|P,A, B, E)

p(B, E, A, P,R) = p(B)p(E)p(A|B,E)p(P |A)p(R|E)



Modelos Jerárquicos

Datos

Hipótesis

Teorías

the parent node. Fig. 2 B–D shows how three of these
productions generate chains, orders, and trees. More complex
forms, including multidimensional spaces and cylinders, can be
generated by combining these basic forms or by using more
complex productions.

It is striking that the simple grammars in Fig. 2A generate
many of the structural forms discussed by psychologists (24) and
assumed by algorithms for unsupervised learning or exploratory
data analysis. Partitions (9, 25), chains (26), orders (1, 25, 27),
rings (28, 29), trees (1, 12, 30), hierarchies (31, 32) and grids (33)
recur again and again in formal models across many different
literatures. To highlight just one example, Inhelder and Piaget
(1) suggest that the elementary logical operations in children’s
thinking are founded on two forms: a classification structure that
can be modeled as a tree and a seriation structure that can be
modeled as an order. The popularity of the forms in Fig. 2
suggests that they are useful for describing the world, and that
they spring to mind naturally when scientists seek formal de-
scriptions of a domain.

The problem of form discovery can now be posed. Given data
D about a finite set of entities, we want to find the form F and
the structure S of that form that best capture the relationships
between these entities. We take a probabilistic approach, and
define a hierarchical generative model (34) that specifies how the
data are generated from an underlying structure, and how this
structure is generated from an underlying form (Fig. 1B). We
then search for the structure S and form F that maximize the
posterior probability

P!S, F!D" # P!D!S"P!S!F"P!F". [1]

P(F) is a uniform distribution over the forms under consider-
ation (Fig. 2). Structure S is a cluster graph, an instance of one
of the forms in Fig. 2, where the nodes represent clusters of
entities (Fig. 4A shows a cluster graph with the form of an order).
The prior P(S!F) favors graphs where k, the number of clusters,
is small: P(S!F) # !k if S is compatible with F, and P(S!F) $ 0
otherwise [see supporting information (SI) Appendix for the
definition of compatibility]. The parameter ! determines the
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Fig. 1. Finding structure in data. (A) Standard structure learning algorithms search for representations of a single form that is fixed in advance. Shown here
are methods that discover six different kinds of structures given a matrix of binary features. (B) A hierarchical model that discovers the form F and the structure
S that best account for the data D. The model searches for the form and structure that jointly maximize P(S, F!D) # P(D!S)P(S!F)P(F).
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Fig. 2. A hypothesis space of structural forms. (A) Eight structural forms and
the generative processes that produce them. Open nodes represent clusters of
objects: A hierarchy has objects located internally, but a tree may only have
objects at its leaves. The first six processes are node-replacement graph
grammars. Each grammar uses a single production, and each production
specifies how to replace a parent node with two child nodes. The seed for each
grammar is a graph with a single node (in the case of the ring, this node has
a self-link). (B–D) Growing chains, orders, and trees. At each step in each
derivation, the parent and child nodes are shown in gray. The graph gener-
ated at each step is often rearranged before the next step. In B, for instance,
the right side of the first step and the left side of the second step are identical
graphs. The red arrows in each production represent all edges that enter or
leave a parent node. When applying the order production, all nodes that
previously sent a link to the parent node now send links to both children.
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the parent node. Fig. 2 B–D shows how three of these
productions generate chains, orders, and trees. More complex
forms, including multidimensional spaces and cylinders, can be
generated by combining these basic forms or by using more
complex productions.

It is striking that the simple grammars in Fig. 2A generate
many of the structural forms discussed by psychologists (24) and
assumed by algorithms for unsupervised learning or exploratory
data analysis. Partitions (9, 25), chains (26), orders (1, 25, 27),
rings (28, 29), trees (1, 12, 30), hierarchies (31, 32) and grids (33)
recur again and again in formal models across many different
literatures. To highlight just one example, Inhelder and Piaget
(1) suggest that the elementary logical operations in children’s
thinking are founded on two forms: a classification structure that
can be modeled as a tree and a seriation structure that can be
modeled as an order. The popularity of the forms in Fig. 2
suggests that they are useful for describing the world, and that
they spring to mind naturally when scientists seek formal de-
scriptions of a domain.

The problem of form discovery can now be posed. Given data
D about a finite set of entities, we want to find the form F and
the structure S of that form that best capture the relationships
between these entities. We take a probabilistic approach, and
define a hierarchical generative model (34) that specifies how the
data are generated from an underlying structure, and how this
structure is generated from an underlying form (Fig. 1B). We
then search for the structure S and form F that maximize the
posterior probability

P!S, F!D" # P!D!S"P!S!F"P!F". [1]

P(F) is a uniform distribution over the forms under consider-
ation (Fig. 2). Structure S is a cluster graph, an instance of one
of the forms in Fig. 2, where the nodes represent clusters of
entities (Fig. 4A shows a cluster graph with the form of an order).
The prior P(S!F) favors graphs where k, the number of clusters,
is small: P(S!F) # !k if S is compatible with F, and P(S!F) $ 0
otherwise [see supporting information (SI) Appendix for the
definition of compatibility]. The parameter ! determines the
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Fig. 1. Finding structure in data. (A) Standard structure learning algorithms search for representations of a single form that is fixed in advance. Shown here
are methods that discover six different kinds of structures given a matrix of binary features. (B) A hierarchical model that discovers the form F and the structure
S that best account for the data D. The model searches for the form and structure that jointly maximize P(S, F!D) # P(D!S)P(S!F)P(F).
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Fig. 2. A hypothesis space of structural forms. (A) Eight structural forms and
the generative processes that produce them. Open nodes represent clusters of
objects: A hierarchy has objects located internally, but a tree may only have
objects at its leaves. The first six processes are node-replacement graph
grammars. Each grammar uses a single production, and each production
specifies how to replace a parent node with two child nodes. The seed for each
grammar is a graph with a single node (in the case of the ring, this node has
a self-link). (B–D) Growing chains, orders, and trees. At each step in each
derivation, the parent and child nodes are shown in gray. The graph gener-
ated at each step is often rearranged before the next step. In B, for instance,
the right side of the first step and the left side of the second step are identical
graphs. The red arrows in each production represent all edges that enter or
leave a parent node. When applying the order production, all nodes that
previously sent a link to the parent node now send links to both children.

10688 ! www.pnas.org"cgi"doi"10.1073"pnas.0802631105 Kemp and Tenenbaum

the parent node. Fig. 2 B–D shows how three of these
productions generate chains, orders, and trees. More complex
forms, including multidimensional spaces and cylinders, can be
generated by combining these basic forms or by using more
complex productions.

It is striking that the simple grammars in Fig. 2A generate
many of the structural forms discussed by psychologists (24) and
assumed by algorithms for unsupervised learning or exploratory
data analysis. Partitions (9, 25), chains (26), orders (1, 25, 27),
rings (28, 29), trees (1, 12, 30), hierarchies (31, 32) and grids (33)
recur again and again in formal models across many different
literatures. To highlight just one example, Inhelder and Piaget
(1) suggest that the elementary logical operations in children’s
thinking are founded on two forms: a classification structure that
can be modeled as a tree and a seriation structure that can be
modeled as an order. The popularity of the forms in Fig. 2
suggests that they are useful for describing the world, and that
they spring to mind naturally when scientists seek formal de-
scriptions of a domain.

The problem of form discovery can now be posed. Given data
D about a finite set of entities, we want to find the form F and
the structure S of that form that best capture the relationships
between these entities. We take a probabilistic approach, and
define a hierarchical generative model (34) that specifies how the
data are generated from an underlying structure, and how this
structure is generated from an underlying form (Fig. 1B). We
then search for the structure S and form F that maximize the
posterior probability

P!S, F!D" # P!D!S"P!S!F"P!F". [1]

P(F) is a uniform distribution over the forms under consider-
ation (Fig. 2). Structure S is a cluster graph, an instance of one
of the forms in Fig. 2, where the nodes represent clusters of
entities (Fig. 4A shows a cluster graph with the form of an order).
The prior P(S!F) favors graphs where k, the number of clusters,
is small: P(S!F) # !k if S is compatible with F, and P(S!F) $ 0
otherwise [see supporting information (SI) Appendix for the
definition of compatibility]. The parameter ! determines the
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S that best account for the data D. The model searches for the form and structure that jointly maximize P(S, F!D) # P(D!S)P(S!F)P(F).
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Fig. 2. A hypothesis space of structural forms. (A) Eight structural forms and
the generative processes that produce them. Open nodes represent clusters of
objects: A hierarchy has objects located internally, but a tree may only have
objects at its leaves. The first six processes are node-replacement graph
grammars. Each grammar uses a single production, and each production
specifies how to replace a parent node with two child nodes. The seed for each
grammar is a graph with a single node (in the case of the ring, this node has
a self-link). (B–D) Growing chains, orders, and trees. At each step in each
derivation, the parent and child nodes are shown in gray. The graph gener-
ated at each step is often rearranged before the next step. In B, for instance,
the right side of the first step and the left side of the second step are identical
graphs. The red arrows in each production represent all edges that enter or
leave a parent node. When applying the order production, all nodes that
previously sent a link to the parent node now send links to both children.
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the parent node. Fig. 2 B–D shows how three of these
productions generate chains, orders, and trees. More complex
forms, including multidimensional spaces and cylinders, can be
generated by combining these basic forms or by using more
complex productions.

It is striking that the simple grammars in Fig. 2A generate
many of the structural forms discussed by psychologists (24) and
assumed by algorithms for unsupervised learning or exploratory
data analysis. Partitions (9, 25), chains (26), orders (1, 25, 27),
rings (28, 29), trees (1, 12, 30), hierarchies (31, 32) and grids (33)
recur again and again in formal models across many different
literatures. To highlight just one example, Inhelder and Piaget
(1) suggest that the elementary logical operations in children’s
thinking are founded on two forms: a classification structure that
can be modeled as a tree and a seriation structure that can be
modeled as an order. The popularity of the forms in Fig. 2
suggests that they are useful for describing the world, and that
they spring to mind naturally when scientists seek formal de-
scriptions of a domain.

The problem of form discovery can now be posed. Given data
D about a finite set of entities, we want to find the form F and
the structure S of that form that best capture the relationships
between these entities. We take a probabilistic approach, and
define a hierarchical generative model (34) that specifies how the
data are generated from an underlying structure, and how this
structure is generated from an underlying form (Fig. 1B). We
then search for the structure S and form F that maximize the
posterior probability

P!S, F!D" # P!D!S"P!S!F"P!F". [1]

P(F) is a uniform distribution over the forms under consider-
ation (Fig. 2). Structure S is a cluster graph, an instance of one
of the forms in Fig. 2, where the nodes represent clusters of
entities (Fig. 4A shows a cluster graph with the form of an order).
The prior P(S!F) favors graphs where k, the number of clusters,
is small: P(S!F) # !k if S is compatible with F, and P(S!F) $ 0
otherwise [see supporting information (SI) Appendix for the
definition of compatibility]. The parameter ! determines the
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the generative processes that produce them. Open nodes represent clusters of
objects: A hierarchy has objects located internally, but a tree may only have
objects at its leaves. The first six processes are node-replacement graph
grammars. Each grammar uses a single production, and each production
specifies how to replace a parent node with two child nodes. The seed for each
grammar is a graph with a single node (in the case of the ring, this node has
a self-link). (B–D) Growing chains, orders, and trees. At each step in each
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ated at each step is often rearranged before the next step. In B, for instance,
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the parent node. Fig. 2 B–D shows how three of these
productions generate chains, orders, and trees. More complex
forms, including multidimensional spaces and cylinders, can be
generated by combining these basic forms or by using more
complex productions.

It is striking that the simple grammars in Fig. 2A generate
many of the structural forms discussed by psychologists (24) and
assumed by algorithms for unsupervised learning or exploratory
data analysis. Partitions (9, 25), chains (26), orders (1, 25, 27),
rings (28, 29), trees (1, 12, 30), hierarchies (31, 32) and grids (33)
recur again and again in formal models across many different
literatures. To highlight just one example, Inhelder and Piaget
(1) suggest that the elementary logical operations in children’s
thinking are founded on two forms: a classification structure that
can be modeled as a tree and a seriation structure that can be
modeled as an order. The popularity of the forms in Fig. 2
suggests that they are useful for describing the world, and that
they spring to mind naturally when scientists seek formal de-
scriptions of a domain.

The problem of form discovery can now be posed. Given data
D about a finite set of entities, we want to find the form F and
the structure S of that form that best capture the relationships
between these entities. We take a probabilistic approach, and
define a hierarchical generative model (34) that specifies how the
data are generated from an underlying structure, and how this
structure is generated from an underlying form (Fig. 1B). We
then search for the structure S and form F that maximize the
posterior probability

P!S, F!D" # P!D!S"P!S!F"P!F". [1]

P(F) is a uniform distribution over the forms under consider-
ation (Fig. 2). Structure S is a cluster graph, an instance of one
of the forms in Fig. 2, where the nodes represent clusters of
entities (Fig. 4A shows a cluster graph with the form of an order).
The prior P(S!F) favors graphs where k, the number of clusters,
is small: P(S!F) # !k if S is compatible with F, and P(S!F) $ 0
otherwise [see supporting information (SI) Appendix for the
definition of compatibility]. The parameter ! determines the
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Fig. 2. A hypothesis space of structural forms. (A) Eight structural forms and
the generative processes that produce them. Open nodes represent clusters of
objects: A hierarchy has objects located internally, but a tree may only have
objects at its leaves. The first six processes are node-replacement graph
grammars. Each grammar uses a single production, and each production
specifies how to replace a parent node with two child nodes. The seed for each
grammar is a graph with a single node (in the case of the ring, this node has
a self-link). (B–D) Growing chains, orders, and trees. At each step in each
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ated at each step is often rearranged before the next step. In B, for instance,
the right side of the first step and the left side of the second step are identical
graphs. The red arrows in each production represent all edges that enter or
leave a parent node. When applying the order production, all nodes that
previously sent a link to the parent node now send links to both children.
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the parent node. Fig. 2 B–D shows how three of these
productions generate chains, orders, and trees. More complex
forms, including multidimensional spaces and cylinders, can be
generated by combining these basic forms or by using more
complex productions.

It is striking that the simple grammars in Fig. 2A generate
many of the structural forms discussed by psychologists (24) and
assumed by algorithms for unsupervised learning or exploratory
data analysis. Partitions (9, 25), chains (26), orders (1, 25, 27),
rings (28, 29), trees (1, 12, 30), hierarchies (31, 32) and grids (33)
recur again and again in formal models across many different
literatures. To highlight just one example, Inhelder and Piaget
(1) suggest that the elementary logical operations in children’s
thinking are founded on two forms: a classification structure that
can be modeled as a tree and a seriation structure that can be
modeled as an order. The popularity of the forms in Fig. 2
suggests that they are useful for describing the world, and that
they spring to mind naturally when scientists seek formal de-
scriptions of a domain.

The problem of form discovery can now be posed. Given data
D about a finite set of entities, we want to find the form F and
the structure S of that form that best capture the relationships
between these entities. We take a probabilistic approach, and
define a hierarchical generative model (34) that specifies how the
data are generated from an underlying structure, and how this
structure is generated from an underlying form (Fig. 1B). We
then search for the structure S and form F that maximize the
posterior probability

P!S, F!D" # P!D!S"P!S!F"P!F". [1]

P(F) is a uniform distribution over the forms under consider-
ation (Fig. 2). Structure S is a cluster graph, an instance of one
of the forms in Fig. 2, where the nodes represent clusters of
entities (Fig. 4A shows a cluster graph with the form of an order).
The prior P(S!F) favors graphs where k, the number of clusters,
is small: P(S!F) # !k if S is compatible with F, and P(S!F) $ 0
otherwise [see supporting information (SI) Appendix for the
definition of compatibility]. The parameter ! determines the

crocodile

bat
gorilla

ostrich
robin

turtle
snakePCA,

MDS

Hierarchical
clustering

robin
ostrich

crocodile
snake
turtle

bat
gorilla

Unidimensional
scaling

ostrich

gorilla

crocodile

turtle

robin

bat

snake

bat
ostrich
robin

turtle

gorilla
crocodile

snake

crocodile

turtlesnake

robin
ostrich

gorilla
bat

gorillasnake

turtle batrobin

ostrichcrocodile

gorilla 
bat 

turtle 
snake 

crocodile 
robi n 

ostrich 

f  1 f  2 f  3 f  4 f  5 f 100 . . .
. . .

. . .

gorilla 
bat 

turtle 
snake 

crocodile 
robi n 

ostric h 

f  1 f  2 f  3 f  4 f  5 f 100 . . .
. . .

. . .

Clustering

Data

Structure

Form Tree

Circumplex
models

A

Minimum

B

spanning
tree

robin
ostrich

crocodile
snake
turtle

bat
gorilla

Fig. 1. Finding structure in data. (A) Standard structure learning algorithms search for representations of a single form that is fixed in advance. Shown here
are methods that discover six different kinds of structures given a matrix of binary features. (B) A hierarchical model that discovers the form F and the structure
S that best account for the data D. The model searches for the form and structure that jointly maximize P(S, F!D) # P(D!S)P(S!F)P(F).

D

⇒

⇒

⇒

⇒

⇒

⇒
⇒

⇒

⇒

⇒

C

St ru ctur al Fo rm Generativ e p  rocess 

Pa rt itio n ⇒

Chai n ⇒

Orde r ⇒

Ring ⇒

Hierarch y ⇒

Tr ee ⇒

Gr id Chai n Chai n 

Cylinder Chai n Ring 

A B

∏

∏

Fig. 2. A hypothesis space of structural forms. (A) Eight structural forms and
the generative processes that produce them. Open nodes represent clusters of
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ated at each step is often rearranged before the next step. In B, for instance,
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graphs. The red arrows in each production represent all edges that enter or
leave a parent node. When applying the order production, all nodes that
previously sent a link to the parent node now send links to both children.
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the parent node. Fig. 2 B–D shows how three of these
productions generate chains, orders, and trees. More complex
forms, including multidimensional spaces and cylinders, can be
generated by combining these basic forms or by using more
complex productions.

It is striking that the simple grammars in Fig. 2A generate
many of the structural forms discussed by psychologists (24) and
assumed by algorithms for unsupervised learning or exploratory
data analysis. Partitions (9, 25), chains (26), orders (1, 25, 27),
rings (28, 29), trees (1, 12, 30), hierarchies (31, 32) and grids (33)
recur again and again in formal models across many different
literatures. To highlight just one example, Inhelder and Piaget
(1) suggest that the elementary logical operations in children’s
thinking are founded on two forms: a classification structure that
can be modeled as a tree and a seriation structure that can be
modeled as an order. The popularity of the forms in Fig. 2
suggests that they are useful for describing the world, and that
they spring to mind naturally when scientists seek formal de-
scriptions of a domain.

The problem of form discovery can now be posed. Given data
D about a finite set of entities, we want to find the form F and
the structure S of that form that best capture the relationships
between these entities. We take a probabilistic approach, and
define a hierarchical generative model (34) that specifies how the
data are generated from an underlying structure, and how this
structure is generated from an underlying form (Fig. 1B). We
then search for the structure S and form F that maximize the
posterior probability

P!S, F!D" # P!D!S"P!S!F"P!F". [1]

P(F) is a uniform distribution over the forms under consider-
ation (Fig. 2). Structure S is a cluster graph, an instance of one
of the forms in Fig. 2, where the nodes represent clusters of
entities (Fig. 4A shows a cluster graph with the form of an order).
The prior P(S!F) favors graphs where k, the number of clusters,
is small: P(S!F) # !k if S is compatible with F, and P(S!F) $ 0
otherwise [see supporting information (SI) Appendix for the
definition of compatibility]. The parameter ! determines the
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the generative processes that produce them. Open nodes represent clusters of
objects: A hierarchy has objects located internally, but a tree may only have
objects at its leaves. The first six processes are node-replacement graph
grammars. Each grammar uses a single production, and each production
specifies how to replace a parent node with two child nodes. The seed for each
grammar is a graph with a single node (in the case of the ring, this node has
a self-link). (B–D) Growing chains, orders, and trees. At each step in each
derivation, the parent and child nodes are shown in gray. The graph gener-
ated at each step is often rearranged before the next step. In B, for instance,
the right side of the first step and the left side of the second step are identical
graphs. The red arrows in each production represent all edges that enter or
leave a parent node. When applying the order production, all nodes that
previously sent a link to the parent node now send links to both children.
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Inferencia Bayesiana
• Incorpora conocimiento a priori en forma natural 

(¡y obligatoria!) 

• Elude los p values 

• Responde en términos de distribuciones de 
probabilidad (nuestro grado de creencia) 

• Datos secuenciales: modelo de aprendizaje 

• Redes, modelos jerárquicos, 
estructura x estadística



¿Por qué ahora? 
Bayes/Laplace siglo XVIII 
Keynes 1920s 
de Finetti 1930, Probabilismo

computadoras + algoritmos

uso práctico



inferencia bayesiana vs. estadística frecuentista 

abordaje moderno: convivencia

•proyectos de largo 
plazo, con un 
especialista en el campo 

•fuerte en modelado 
•¿más ‘honesta’?

•software bundles 
•uso repetido 
•modelado mínimo



Alternativamente:  
estadística en términos de toma de decisiones,  
minimizar la péridida/maximizar la utilidad

Pero… ¿por qué probabilidades? ¿por qué Bayes?

Racionalidad en contextos de incertidumbre... 
¡Modelo del pensamiento humano!

Axiomas de Cox para los niveles de creencia: 
1) Representados por un número real 
2) “Sentido común” (inc. lógica Aristotélica) 
3) Consistencia

Dutch book arguments -coherencia



Desde Aristóteles…

Lógica

Todo hombre es mortal 
Sócrates es hombre 

Ergo Sócrates es mortal

Planteada como modelo del pensamiento

pero…



La Paradoja de Linda

p(cajera) p(cajera & feminista)

Sesgos y Heurísticas, hombre irracional 
 (Tversky & Kahneman, 1980s)

>
(racional)

<



Programa de la Cognición Bayesiana

• Lógica es adecuada en contextos de certidumbre 

• Cuando hay incertidumbre, el lenguaje racional es la 
teoría de probabilidad 

• Racionalidad acotada por nuestros recursos de 
cómputo: ilusión de irracionalidad 

• Programa general y cuantitativo



Inferencia Causal

We describe a Bayesian ideal observer model that
predicts infants’ looking times in our studies and
extends to other aspects of infants’ reasoning
about the physical world, giving a unifying expla-
nation of several classic results in infant cognition.
This model shows how powerful pure reasoning
capacities could derive from the operation of prob-
abilistic inference mechanisms constrained by
abstract principles of how objects act and interact
over time.

Pure reasoning at 12 months. We probed
preverbal infants’ expectations about unknown
future events when they witness dynamic scenes
that containmultiple potentially relevant–but also
potentially conflicting–sources of information,
similar to (but simpler than) the examples in Fig. 1.
Infants viewed movies in which four objects of
two types, identified by different shapes and col-
ors, bounced randomly inside a container with an
opening on its lower side (movies S1 to S5). After
several seconds of observed motion, an occluder
covered the container’s contents from view for
some duration between 0 and 2 s. Finally, one

object visibly exited through the bottom opening,
and the occluder faded out. Monitoring infants’
looking time to this final outcome allowed us to
assess how surprised infants were to see an object
of either type exit first.

Twelve kinds of movies were generated by
manipulating three factors relevant to predicting
these outcomes: the number of objects of each
type in the scene (three instances of one type and
one of the other type), their physical arrangement
(objects of one type were always closer to the exit
before occlusion than objects of the other type),
and the duration of occlusion (0, 1, or 2 s). Form-
ing correct expectations here requires the ability
to integrate these three information sources, guided
by abstract knowledge about how objects move:
at a minimum, qualitative knowledge about solid-
ity (objects are unlikely to pass through walls)
and spatiotemporal continuity (objects tend to
move short distances over brief time intervals).
Infants appear to be sensitive to each of these
information sources and knowledge systems in-
dividually (11, 20). We asked whether they can

also integrate them rationally to predict single
future events.

A rational prediction of which object type
will exit first should depend on both the number
and the physical arrangement of the object types,
but the relative importance of these factors should
vary with occlusion duration. After a very brief
occlusion, the objects’ locations before occlusion
are most predictive of which object type will exit
first; however, when the occlusion is prolonged,
proximity to the exit matters less because the
objects continue moving in the container. Even-
tually, after a sufficiently long occlusion, only the
number of each object type should be predictive.

In each of three experiments, infants saw four
displays varying in whether the object that exited
first belonged to the type with one or three
instances and whether that type was near or far
from the exit before occlusion. Occlusion dura-
tionwas varied across experiments (Fig. 2A).Mean
looking times (M) across all 12 displays showed
exactly the rational pattern of predictions described
above (Fig. 2, B toD). In experiment 1, with longest
occlusion times (2 s), infants looked longer when
the single unique object exited the container first
[(M3-instances) = 11.9 s,M1-instance = 15.6 s;F(1, 19) =
5.66, P = 0.028 under a repeated measures
analysis of variance (ANOVA)], but distance
from the exit had no effect [MNear = 13.5 s,MFar =
14.2 s; F(1, 19) = 0.69, P = 0.42]. In experiment
2, with intermediate occlusion times (1 s), infants
considered both factors, looking longer at the
unique object outcome [M3-instances = 11.8 s,
M1-instance = 15.0 s; F(1, 19) = 4.65, P = 0.04]
and also when an object located far from the
opening before occlusion exited first [MNear =
11.6 s,MFar = 15.1 s; F(1, 19) = 5.22, P= 0.03].
In experiment 3 with occlusion time of 0.04 s,
looking timeswere insensitive to type numerosity
[M3-instances = 14.0 s,M1-instance = 12.4 s; F(1, 19) =
0.65, P = 0.43] but were significantly longer when
an object far from the exit left the container first
[MNear = 10.2 s,MFar = 15.7 s; F(1, 19) = 16.5, P=
0.0007]. Numerosity and distance did not inter-
act in any experiment [F(1, 15) = 0.007, P= 0.93;
F(1, 17) = 2.09, P = 0.17; F(1, 13) = 1.2, P =
0.29, respectively], suggesting that infants tended
to consider both cues additively.

A Bayesian model of infants’ pure reasoning.
These experiments show that infants possess
surprisingly sophisticated abilities to integrate
multiple information sources and abstract knowl-
edge in reasoning about future outcomes. We now
analyze infants’ expectations more quantitatively
by comparing them with those of a Bayesian ideal
observer equipped with only minimal computa-
tional resources and the minimal abstract knowl-
edge about physical objects that, according to
classic research, young infants possess.

The observer’s knowledge of object dynamics
is expressed in the form of a probabilistic model
embodying the principles of solidity and spatio-
temporal continuity described above. These prin-
ciples can be formalized as a prior P(St|St–1) on
how the state St of the world at time t depends

Fig. 2. Experiments probing infants’ expectations in dynamic physical scenes. (A) Infants saw three objects
of one type and one object of another type bouncing randomly inside a container. After some time, an
occluder masked the objects, and one of four outcomes occurred: An object exited the container through
the bottom opening that was either the common object kind or the unique object, with a position before
occlusion that was either far from or near to the exit. The graph reports mean looking time (s, with SEM)
of three experiments varying the duration of occlusion before the outcome. (B) After a short (0.04 s)
occlusion, infants considered only the physical distance in forming their expectations, disregarding the
number of objects of each type. (C) When occlusion duration was increased to 1 s, infants’ looking times
reflected both the number of objects of each type and their distance from the exit. (D) When the occlusion
was longer still (2 s), infants’ looking times reflected only the numerosities of each object type, regardless
of their preocclusion distance from the exit.
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probabilistically on the state at time t – 1, which for
simplicity we express as constrained Brownian
motion: Objects move by accumulating small in-
dependent random spatial perturbations over time,
subject to the constraint that they cannot pass
through solid barriers (fig. S1).

The observer must also be equipped with
some mechanism of inference and some notion
of computational resources. Following state-of-
the-art approaches in artificial intelligence and
Bayesian models of adult cognition (21–24), we
assume that predictions are computed approxi-
mately by Monte Carlo sampling. This process
corresponds to a kind of hypothetical reasoning:
Given a particular observed scenario, the observ-
er has the capacity to consider possible future
states of the world as they may unfold according
to the observer’s probabilistic model. A similar
intuition for grounding probabilistic reasoning in
representations of possible worlds was the basis
for classic “mental models” accounts of adult
cognition (25), although our treatment differs
in explicitly formalizing probabilistic principles
of knowledge representation and inference.
Formally, the probability of a final outcome DF

given the observed data D0,…,F–1 is approxi-
mated as a sum of the scores of K hypothetical
trajectories (sequences of states S0,…,F),

PðDF jD0,...,F−1Þº ∑
K

k¼1
PðDF jSkFÞ

$ ∏
F

t¼1
PðDt−1jSkt−1ÞPðS

k
t jS

k
t−1Þ ð1Þ

where the score is a product over time steps t
of how well the kth hypothesis fits the observed
data PðDtjSkt Þ and how probable it is under the
prior on object dynamics PðSkt jSkt−1Þ. Intuitively,
an observed outcome is expected insofar as many
predicted future trajectories are consistent with
it or unexpected if it is consistent with few pre-
dicted trajectories.

In this analysis, computational resources corre-
spond to the number of hypothetical trajectories
(the samples) that an observer can construct. In
the limit of infinite samples, these Monte Carlo
predictions correspond exactly to the posterior
beliefs of the ideal Bayesian observer. This ideal
observer forms expectations about which object
will emerge first that are very similar to the pat-
tern of looking times exhibited across our three
experiments, trading off the influences of type
numerosity and proximity,modulated by occlusion
duration, just as infants do (Fig. 3). Note that be-
cause infants’ looking times are typically inversely
related to expectations, we compare looking times
to 1 – P(outcome) (26). Evaluated quantitatively,
the modeled outcome probabilities explain 88%
of the variance in infants’ mean looking times
across the 12 experimental conditions (r = 0.94,
df = 10, P < 0.0001). By comparison, each of the
three stimulus factors that wemanipulated explains
significantly less variance across these 12 condi-
tions: occlusion duration, 1%; type numerosity,
12%; and proximity, 47%. Even their best linear

combination explains only 61% of variance, with
the added cost of two ad hoc free parameters.

In contrast to this analysis, infants—or, indeed,
adults (22–24)—are unlikely to considermore than
a small sample of possible trajectories. According-
ly, we have also analyzed the model under severe
resource bounds, by using just one or two trajectories
sampled from the Bayesian posterior to form ex-
pectations. Averaged over simulated participants
and trials, this bounded model makes inferences
almost identical to the Bayesian ideal (figs. S5
and S6) [r(10) = 0.92,P < 0.05; r(10) = 0.93,P <
0.05]. Thus even with very limited processing
capacity, infants could make appropriate proba-
bilistic predictions in our task.

Modeling infants’ probabilistic and physical
intuitions. If infants’ expectations in our exper-
iments truly reflect the origins of a broad “com-
mon sense” physical reasoning capacity and if
this capacity is captured by our Bayesian model,
then the same model should be able to account

for expectations about a wider range of develop-
mental situations.

Recent studies have suggested that infants
and young children understand simple random
processes. Observing the random drawing of
some balls from a box containing differently
colored balls, infants expect colors in the sample
to be representative of proportions in the larger
population, and vice versa (18). Probabilistic ex-
pectations may also be induced by the structure
of environmental constraints, not only the dis-
tribution of object properties. For instance, when
3- and 5-year-olds (17) and 12-month-olds see a
single ball bouncing within a bounded box con-
taining three exits on one side and one on the
opposite side, they anticipate that the ball will exit
from the three-exit side; however, if the three-
exit side is obstructed, such anticipation is absent.
Our model explains all these results with no fur-
ther assumptions (fig. S2 and Fig. 4). Spatiotempo-
ral continuity as captured by the Brownianmotion

Fig. 3. The ideal Bayesian observer model. Starting with an unambiguous parse of the world into the two
types of objects and their preocclusion positions (A), the model predicts the probability for each object type
to be the first to exit as a function of occlusion duration and preocclusion distance from the exit. (B) The
joint probability that a particular type of object exits at a particular point in time can be computed from a
large number of Monte Carlo samples for each of the two starting scenarios. (C) Given the observation that
an object first emerges at a particular time, we compute the conditional probability that it is of one type or
another. (D) The predictions for our experiment consider only three points from the continuous distribu-
tions over time, corresponding to short (0 s; yellow), medium (1 s; green), and long (2 s; red) occlusion
delays. (E) We combine these conditional probabilities from both starting scenarios to predict the joint
effects of distance, object type numerosity, and occlusion duration on infants’ expectations about which
object type will emerge first, as found in experiments 1 to 3 (compare with looking-time data shown in
Fig. 2, B to D). (F) Correlation between the model predictions (x axis) and infant looking times (y axis, s
with SEM) in our three experiments. Each data point corresponds to one experimental condition.
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probabilistically on the state at time t – 1, which for
simplicity we express as constrained Brownian
motion: Objects move by accumulating small in-
dependent random spatial perturbations over time,
subject to the constraint that they cannot pass
through solid barriers (fig. S1).

The observer must also be equipped with
some mechanism of inference and some notion
of computational resources. Following state-of-
the-art approaches in artificial intelligence and
Bayesian models of adult cognition (21–24), we
assume that predictions are computed approxi-
mately by Monte Carlo sampling. This process
corresponds to a kind of hypothetical reasoning:
Given a particular observed scenario, the observ-
er has the capacity to consider possible future
states of the world as they may unfold according
to the observer’s probabilistic model. A similar
intuition for grounding probabilistic reasoning in
representations of possible worlds was the basis
for classic “mental models” accounts of adult
cognition (25), although our treatment differs
in explicitly formalizing probabilistic principles
of knowledge representation and inference.
Formally, the probability of a final outcome DF

given the observed data D0,…,F–1 is approxi-
mated as a sum of the scores of K hypothetical
trajectories (sequences of states S0,…,F),

PðDF jD0,...,F−1Þº ∑
K

k¼1
PðDF jSkFÞ

$ ∏
F

t¼1
PðDt−1jSkt−1ÞPðS

k
t jS

k
t−1Þ ð1Þ

where the score is a product over time steps t
of how well the kth hypothesis fits the observed
data PðDtjSkt Þ and how probable it is under the
prior on object dynamics PðSkt jSkt−1Þ. Intuitively,
an observed outcome is expected insofar as many
predicted future trajectories are consistent with
it or unexpected if it is consistent with few pre-
dicted trajectories.

In this analysis, computational resources corre-
spond to the number of hypothetical trajectories
(the samples) that an observer can construct. In
the limit of infinite samples, these Monte Carlo
predictions correspond exactly to the posterior
beliefs of the ideal Bayesian observer. This ideal
observer forms expectations about which object
will emerge first that are very similar to the pat-
tern of looking times exhibited across our three
experiments, trading off the influences of type
numerosity and proximity,modulated by occlusion
duration, just as infants do (Fig. 3). Note that be-
cause infants’ looking times are typically inversely
related to expectations, we compare looking times
to 1 – P(outcome) (26). Evaluated quantitatively,
the modeled outcome probabilities explain 88%
of the variance in infants’ mean looking times
across the 12 experimental conditions (r = 0.94,
df = 10, P < 0.0001). By comparison, each of the
three stimulus factors that wemanipulated explains
significantly less variance across these 12 condi-
tions: occlusion duration, 1%; type numerosity,
12%; and proximity, 47%. Even their best linear

combination explains only 61% of variance, with
the added cost of two ad hoc free parameters.

In contrast to this analysis, infants—or, indeed,
adults (22–24)—are unlikely to considermore than
a small sample of possible trajectories. According-
ly, we have also analyzed the model under severe
resource bounds, by using just one or two trajectories
sampled from the Bayesian posterior to form ex-
pectations. Averaged over simulated participants
and trials, this bounded model makes inferences
almost identical to the Bayesian ideal (figs. S5
and S6) [r(10) = 0.92,P < 0.05; r(10) = 0.93,P <
0.05]. Thus even with very limited processing
capacity, infants could make appropriate proba-
bilistic predictions in our task.

Modeling infants’ probabilistic and physical
intuitions. If infants’ expectations in our exper-
iments truly reflect the origins of a broad “com-
mon sense” physical reasoning capacity and if
this capacity is captured by our Bayesian model,
then the same model should be able to account

for expectations about a wider range of develop-
mental situations.

Recent studies have suggested that infants
and young children understand simple random
processes. Observing the random drawing of
some balls from a box containing differently
colored balls, infants expect colors in the sample
to be representative of proportions in the larger
population, and vice versa (18). Probabilistic ex-
pectations may also be induced by the structure
of environmental constraints, not only the dis-
tribution of object properties. For instance, when
3- and 5-year-olds (17) and 12-month-olds see a
single ball bouncing within a bounded box con-
taining three exits on one side and one on the
opposite side, they anticipate that the ball will exit
from the three-exit side; however, if the three-
exit side is obstructed, such anticipation is absent.
Our model explains all these results with no fur-
ther assumptions (fig. S2 and Fig. 4). Spatiotempo-
ral continuity as captured by the Brownianmotion

Fig. 3. The ideal Bayesian observer model. Starting with an unambiguous parse of the world into the two
types of objects and their preocclusion positions (A), the model predicts the probability for each object type
to be the first to exit as a function of occlusion duration and preocclusion distance from the exit. (B) The
joint probability that a particular type of object exits at a particular point in time can be computed from a
large number of Monte Carlo samples for each of the two starting scenarios. (C) Given the observation that
an object first emerges at a particular time, we compute the conditional probability that it is of one type or
another. (D) The predictions for our experiment consider only three points from the continuous distribu-
tions over time, corresponding to short (0 s; yellow), medium (1 s; green), and long (2 s; red) occlusion
delays. (E) We combine these conditional probabilities from both starting scenarios to predict the joint
effects of distance, object type numerosity, and occlusion duration on infants’ expectations about which
object type will emerge first, as found in experiments 1 to 3 (compare with looking-time data shown in
Fig. 2, B to D). (F) Correlation between the model predictions (x axis) and infant looking times (y axis, s
with SEM) in our three experiments. Each data point corresponds to one experimental condition.
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probabilistically on the state at time t – 1, which for
simplicity we express as constrained Brownian
motion: Objects move by accumulating small in-
dependent random spatial perturbations over time,
subject to the constraint that they cannot pass
through solid barriers (fig. S1).
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the-art approaches in artificial intelligence and
Bayesian models of adult cognition (21–24), we
assume that predictions are computed approxi-
mately by Monte Carlo sampling. This process
corresponds to a kind of hypothetical reasoning:
Given a particular observed scenario, the observ-
er has the capacity to consider possible future
states of the world as they may unfold according
to the observer’s probabilistic model. A similar
intuition for grounding probabilistic reasoning in
representations of possible worlds was the basis
for classic “mental models” accounts of adult
cognition (25), although our treatment differs
in explicitly formalizing probabilistic principles
of knowledge representation and inference.
Formally, the probability of a final outcome DF

given the observed data D0,…,F–1 is approxi-
mated as a sum of the scores of K hypothetical
trajectories (sequences of states S0,…,F),
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where the score is a product over time steps t
of how well the kth hypothesis fits the observed
data PðDtjSkt Þ and how probable it is under the
prior on object dynamics PðSkt jSkt−1Þ. Intuitively,
an observed outcome is expected insofar as many
predicted future trajectories are consistent with
it or unexpected if it is consistent with few pre-
dicted trajectories.

In this analysis, computational resources corre-
spond to the number of hypothetical trajectories
(the samples) that an observer can construct. In
the limit of infinite samples, these Monte Carlo
predictions correspond exactly to the posterior
beliefs of the ideal Bayesian observer. This ideal
observer forms expectations about which object
will emerge first that are very similar to the pat-
tern of looking times exhibited across our three
experiments, trading off the influences of type
numerosity and proximity,modulated by occlusion
duration, just as infants do (Fig. 3). Note that be-
cause infants’ looking times are typically inversely
related to expectations, we compare looking times
to 1 – P(outcome) (26). Evaluated quantitatively,
the modeled outcome probabilities explain 88%
of the variance in infants’ mean looking times
across the 12 experimental conditions (r = 0.94,
df = 10, P < 0.0001). By comparison, each of the
three stimulus factors that wemanipulated explains
significantly less variance across these 12 condi-
tions: occlusion duration, 1%; type numerosity,
12%; and proximity, 47%. Even their best linear

combination explains only 61% of variance, with
the added cost of two ad hoc free parameters.

In contrast to this analysis, infants—or, indeed,
adults (22–24)—are unlikely to considermore than
a small sample of possible trajectories. According-
ly, we have also analyzed the model under severe
resource bounds, by using just one or two trajectories
sampled from the Bayesian posterior to form ex-
pectations. Averaged over simulated participants
and trials, this bounded model makes inferences
almost identical to the Bayesian ideal (figs. S5
and S6) [r(10) = 0.92,P < 0.05; r(10) = 0.93,P <
0.05]. Thus even with very limited processing
capacity, infants could make appropriate proba-
bilistic predictions in our task.

Modeling infants’ probabilistic and physical
intuitions. If infants’ expectations in our exper-
iments truly reflect the origins of a broad “com-
mon sense” physical reasoning capacity and if
this capacity is captured by our Bayesian model,
then the same model should be able to account

for expectations about a wider range of develop-
mental situations.

Recent studies have suggested that infants
and young children understand simple random
processes. Observing the random drawing of
some balls from a box containing differently
colored balls, infants expect colors in the sample
to be representative of proportions in the larger
population, and vice versa (18). Probabilistic ex-
pectations may also be induced by the structure
of environmental constraints, not only the dis-
tribution of object properties. For instance, when
3- and 5-year-olds (17) and 12-month-olds see a
single ball bouncing within a bounded box con-
taining three exits on one side and one on the
opposite side, they anticipate that the ball will exit
from the three-exit side; however, if the three-
exit side is obstructed, such anticipation is absent.
Our model explains all these results with no fur-
ther assumptions (fig. S2 and Fig. 4). Spatiotempo-
ral continuity as captured by the Brownianmotion

Fig. 3. The ideal Bayesian observer model. Starting with an unambiguous parse of the world into the two
types of objects and their preocclusion positions (A), the model predicts the probability for each object type
to be the first to exit as a function of occlusion duration and preocclusion distance from the exit. (B) The
joint probability that a particular type of object exits at a particular point in time can be computed from a
large number of Monte Carlo samples for each of the two starting scenarios. (C) Given the observation that
an object first emerges at a particular time, we compute the conditional probability that it is of one type or
another. (D) The predictions for our experiment consider only three points from the continuous distribu-
tions over time, corresponding to short (0 s; yellow), medium (1 s; green), and long (2 s; red) occlusion
delays. (E) We combine these conditional probabilities from both starting scenarios to predict the joint
effects of distance, object type numerosity, and occlusion duration on infants’ expectations about which
object type will emerge first, as found in experiments 1 to 3 (compare with looking-time data shown in
Fig. 2, B to D). (F) Correlation between the model predictions (x axis) and infant looking times (y axis, s
with SEM) in our three experiments. Each data point corresponds to one experimental condition.
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Teoria de la Mente (joint Belief-Desire)

but task-dependent parameters. Goodman et al. (2009) model
adult inferences of an agent’s knowledge of the causal struc-
ture of a simple device (“Bob’s box”) based on observing
the agent interacting with the device. To our knowledge, our
work here is the first attempt to explain people’s joint infer-
ences about agents’ beliefs and desires by explicitly inverting
POMDPs – and the first model capable of reasoning about the
graded strengths and interactions between agents’ beliefs and
desires, along with the origins of agents’ beliefs via environ-
mentally constrained perceptual observations.

Computational Framework
This section describes Bayesian Theory of Mind (BToM): a
theory-based Bayesian framework (Tenenbaum, Griffiths, &
Kemp, 2006) that characterizes ToM in terms of Bayesian in-
ference over a formal, probabilistic version of the schema in
Fig. 1(a). BToM represents an ideal observer using a the-
ory of mind to understand the actions of an individual agent
within some environmental context. This ideal-observer anal-
ysis of ToM asks how closely human judgments approach the
ideal limit, but also what mental representations are necessary
to explain human judgments under hypothetically unbounded
computational resources. We will first describe BToM in gen-
eral, but informal terms before progressing to the mathemati-
cal details involved in modeling our experimental domain.

Informal sketch
For concreteness, we use as a running example a simple spa-
tial context (such as a college campus or urban landscape)
defined by buildings and perceptually distinct objects, with
agents’ actions corresponding to movement, although in gen-
eral BToM can be defined over arbitrary state and action
spaces (for example, a card game where the state describes
players’ hands and actions include draw or fold). The ob-
server’s representation of the world is composed of the en-
vironment state and the agent state (Fig. 1(a)). In a spatial
context, the state of the environment represents its physical
configuration, e.g., the location of buildings and objects, and
the state of the agent specifies its objective, external proper-
ties, such as its physical location in space.

The observer’s theory of the agent’s mind includes repre-
sentations of the agent’s subjective desires and beliefs, and
the principles by which desires and beliefs are related to ac-
tions and the environment. Similar to previous models, the
content of the agent’s desire consists of objects or events in
the world. The agent’s degree of desire is represented in terms
of the subjective reward received for taking actions in certain
states, e.g., acting to attain a goal while in close proximity to
the goal object. The agent can also act to change its own state
or the environment state at a certain cost, e.g., navigating to
reach a goal may incur a small cost at each step.

The main novel component of the current model is the in-
clusion of a representation of beliefs. Like desires, beliefs are
defined by both their content and the strength or degree with
which they are held. The content of a belief is a representa-
tion corresponding to a possible world. For instance, if the

(a) (b)

Agent
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Belief Desire

Action

Principle of
rational action

Principle of
rational belief

Xt#1

Yt#1

R

Ot#1
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Bt

At

Agent

World

Figure 1: Causal structure of theory of mind. Grey shaded nodes
are assumed to be observed (for the observer; not necessarily for the
agent, as described in the main text). (a) Schematic model of theory
of mind. Traditional accounts of ToM (e.g. Dennett, 1987; Wellman,
1990; Gopnik & Meltzoff, 1997) have proposed informal versions of
this schema, characterizing the content and causal relations of ToM
in commonsense terms, e.g., “seeing is believing” for the princi-
ple of rational belief. (b) Observer’s grounding of the theory as a
dynamic Bayes net (DBN). The DBN encodes the observer’s joint
distribution over an agent’s beliefs B1:T and desires R over time,
given the agent’s physical state sequence x1:T in environment y.

agent is unsure about the location of a particular object, its
belief contents are worlds in which the object is in different
locations. The agent’s degree of belief reflects the subjective
probability it assigns to each possible world.

The principles governing the relation between the world
and the agent’s beliefs, desires and actions can be naturally
expressed within partially observable Markov decision pro-
cesses (POMDPs). POMDPs capture the causal relation be-
tween beliefs and the world via the principle of rational belief,
which formalizes how the agent’s belief is affected by obser-
vations in terms of Bayesian belief updating. Given an ob-
servation, the agent updates its degree of belief in a particular
world based on the likelihood of receiving that observation in
that world. In a spatial setting, observations depend on the
agent’s line-of-sight visual access to features of the environ-
ment. POMDPs represent how beliefs and desires cause ac-
tions via the principle of rational action, or rational planning.
Intuitively, rational POMDP planning provides a predictive
model of an agent optimizing the tradeoff between exploring
the environment to discover the greatest rewards, and exploit-
ing known rewards to minimize costs incurred.

On observing an agent’s behavior within an environment,
the beliefs and desires that caused the agent to generate this
behavior are inferred using Bayesian inference. The observer
maintains a hypothesis space of joint beliefs and desires,
which represent the agent’s initial beliefs about the environ-
ment state and the agent’s static desires for different goals.
For each hypothesis, the observer evaluates the likelihood of
generating the observed behavior given the hypothesized be-
lief and desire. The observer integrates this likelihood with
the prior over mental states to infer the agent’s joint belief
and desire.

As an example of how this works, consider Fig. 2. The
“college campus” environment is characterized by the cam-
pus size, the location and size of buildings, and the location of

Frame 5

Frame 10

Frame 15
Figure 2: Example experimental stimulus. The small blue sprite represents the location of the agent, and the black trail with arrows superim-
posed records the agent’s movement history. The two yellow cells in opposite corners of the environment represent spots where trucks can
park, and each contains a different truck. The shaded grey area of each frame represents the area that is outside of the agent’s current view.

several different goal objects, here “food trucks”. The agent
is a hungry graduate student, leaving his office and walk-
ing around campus in search of satisfying lunch food. There
are three trucks that visit campus: Korean (K), Lebanese (L)
and Mexican (M), but only two parking spots where trucks
are allowed to park, highlighted with a yellow background
in Fig. 2. The student’s field of view is represented by the
unshaded region of the environment.

In Fig. 2, the student can initially only see where K (but not
L) is parked. Because the student can see K, they know that
the spot behind the building either holds L, M, or is empty.
By frame 10, the student has passed K, indicating that they
either want L or M (or both), and believe that their desired
truck is likely to be behind the building (or else they would
have gone straight to K under the principle of rational action).
After frame 10, the agent discovers that L is behind the build-
ing and turns back to K. Obviously, the agent prefers K to
L, but more subtly, it also seems likely that the agent wants
M more than either K or L, despite M being absent from the
scene! BToM captures this inference by resolving the desire
for L or M over K in favor of M after the agent rejects L.
In other words, BToM infers the best explanation for the ob-
served behavior – the only consistent desire that could lead
the agent to act the way it did.

Formal modeling
In the food-truck domain, the agent occupies a discrete state
space X of points in a 2D grid. The environment state Y is
the set of possible assignments of the K, L and M trucks to
parking spots. Possible actions include North, South, East,
West, Stay, and Eat. Valid actions yield the intended transi-
tion with probability 1�⇥ and do nothing otherwise; invalid
actions (e.g., moving into walls) have no effect on the state.

The agent’s visual observations are represented by the iso-
vist from the agent’s location: a polygonal region contain-
ing all points of the environment within a 360-degree field
of view (Davis & Benedikt, 1979; Morariu, Prasad, & Davis,
2007). Example isovists from different locations in one en-
vironment are shown in Fig. 2. The observation distribution

P (o|x,y) encodes which environments in Y are consistent
with the contents of the isovist from location x. We model
observation noise with the simple assumption that ambigu-
ous observations can occur with probability ⇤, as if the agent
failed to notice something that should otherwise be visible.

The observer represents the agent’s belief as a probabil-
ity distribution over Y; for y ⇤ Y , b(y) denotes the agent’s
degree of belief that y is the true state of the environment.
Bayesian belief updating at time t is a deterministic function
of the prior belief bt≠1, the observation ot, and the world state
⌃xt,y⌥. The agent’s updated degree of belief in environment
y satisfies bt(y) ⇥ P (ot|xt,y)bt≠1(y).

The agent’s reward function R(x,y,a) encodes the subjec-
tive utility the agent derives from taking action a from the
state ⌃xt,y⌥. Each action is assumed to incur a cost of 1.
Rewards result from taking the “Eat” action while at a food
truck; the magnitude of the reward depends on the strength
of the agent’s desire to eat at that particular truck. Once the
student has eaten, all rewards and costs cease, implying that
rational agents should optimize the tradeoff between the num-
ber of actions taken and the reward obtained.

The agent’s POMDP is defined by the state space, the
action space, the world dynamics, the observation model,
and the reward function. We approximate the optimal value
function of the POMDP for each hypothesized reward func-
tion using a point-based value iteration algorithm over a uni-
form discretization of the belief space. The agent’s policy is
stochastic, given by the softmax of the lookahead state-action
value function QLA (Hauskrecht, 2000): P (a|b,x,y) ⇥
exp(�QLA(b,x,y,a)). The � parameter establishes the de-
gree of determinism with which the agent executes its policy,
capturing the intuition that agents tend to, but do not always
follow the optimal policy.

Our approach to joint belief and desire inference is closely
related the model of belief filtering in Zettlemoyer, Milch, and
Kaelbling (2009), restricted to the case of one agent reasoning
about the beliefs of another. Fig. 1(b) shows the observer’s
dynamic Bayes net (DBN) model of an agent’s desires, states,
observations, beliefs and actions over time. The observer’s
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Figure 4: Eight representative scenarios from the experiment, showing the agent’s path, BToM model predictions for the agent’s desires (for
trucks K, L or M, on a scale of 1 to 7) and beliefs about the unseen parking spot (for trucks L, M or no truck (N), normalized to a probability
scale from 0 to 1), and mean human judgments for these same mental states. Error bars show standard error (n=16).

(K). Our model can produce and interpret such behavior, but it
does so without positing these explicit subgoals or the corre-
sponding parse of the agent’s motion into subsequences, each
aimed to achieve a specific goal. Extending our model to
incorporate a useful intermediate representation of goal se-
quences is an important direction for future work. Even with-
out these complexities, however, we find it encouraging to see
how well we can capture people’s joint attributions of beliefs
and desires as Bayesian inferences over a simple model of
rational agents’ planning and belief updating processes.
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intentional stance at 12 months of age. Cognition, 56, 165–193.

Goodman, N. D., Baker, C. L., Bonawitz, E. B., Mansinghka, V. K.,
Gopnik, A., Wellman, H., et al. (2006). Intuitive theories of mind:
A rational approach to false belief. In Proceedings of the Twenty-
Eighth Annual Conference of the Cognitive Science Society (pp.
1382–1390).

Goodman, N. D., Baker, C. L., & Tenenbaum, J. B. (2009). Cause
and intent: Social reasoning in causal learning. In Proceedings
of the Thirty-First Annual Conference of the Cognitive Science
Society (pp. 2759–2764).

Gopnik, A., & Meltzoff, A. N. (1997). Words, thoughts, and theo-
ries. Cambridge, MA: MIT Press.

Hauskrecht, M. (2000). Value-function approximations for partially
observable Markov decision processes. Journal of Artificial Intel-
ligence Research, 13, 33–94.

Lucas, C. G., Griffiths, T. L., Xu, F., & Fawcett, C. (2009). A
rational model of preference learning and choice prediction by
children. In Advances in Neural Information Processing Systems
21 (pp. 985–992).

Morariu, V. I., Prasad, V. S. N., & Davis, L. S. (2007). Human
activity understanding using visibility context. In IEEE/RSJ IROS
Workshop: From sensors to human spatial concepts (FS2HSC).

Onishi, K. H., & Baillargeon, R. (2005). Do 15-month-old infants
understand false beliefs? Science, 308(5719), 255–258.

Perner, J. (1991). Understanding the representational mind. Cam-
bridge, MA: MIT Press.

Tenenbaum, J. B., Griffiths, T. L., & Kemp, C. (2006). Theory-based
Bayesian models of inductive learning and reasoning. Trends in
Cognitive Sciences, 10(7), 309–318.

Ullman, T. D., Baker, C. L., Macindoe, O., Evans, O., Goodman,
N. D., & Tenenbaum, J. B. (2010). Help or hinder: Bayesian
models of social goal inference. In Advances in Neural Informa-
tion Processing Systems 22 (pp. 1874–1882).

Wellman, H. M. (1990). The child’s theory of mind. Cambridge,
MA: MIT Press.

Wimmer, H., & Perner, J. (1983). Beliefs about beliefs: Represen-
tation and constraining function of wrong beliefs in young chil-
dren’s understanding of deception. Cognition, 13(1), 103–128.

Yoshida, W., Dolan, R. J., & Friston, K. J. (2008). Game theory of
mind. PLoS Computational Biology, 4(12), 1–14.

Zettlemoyer, L. S., Milch, B., & Kaelbling, L. P. (2009). Multi-agent
filtering with infinitely nested beliefs. In Advances in Neural In-
formation Processing Systems 21 (pp. 1905–1912).

Desires Beliefs



False Belief

resources against complexity, and illuminate the above
revision puzzle. To probe these ideas experimentally we
investigate children’s predictions and explanations, in
cases when these predictions succeed and when they fail:
the false belief task with the standard outcome (surpris-
ing to CTs), and a novel “psychic” outcome (surprising
to PTs). We present only the apparatus necessary for
a first investigation, leaving important elaborations for
future work.

Formal Models
In the standard false belief task, described earlier, the
story begins with Sally putting her toy in the basket.
As the story continues there are only three (observable)
variables that have multiple outcomes: the final position
of the toy, Sally’s visual access to the final position (i.e.
whether the door of the basket and box are open), and
Sally’s action upon re-entering the room. Thus we have
the variables World, Visual Access, and Action available
to our models (see Table 1 for descriptions). In addi-
tion, there are two unobservable mental state variables:
Sally’s belief about the location of her toy, Belief, and
her Desire. We simplify the, presumably sophisticated,
sub-theory of goals and desires (see Baker et al., in press)
by collapsing desires into one variable, which indicates
whether Sally’s primary desire is her toy. (Formally, we
marginalize out all other variables in this sub-theory.)

V

W B D

A

ε

V

W B D

A

εγ

Figure 1: The dependency graphs of our Bayesian Network
Models: (a) CT model, (b) PT model. Variables abbreviated
by their first letter (see Table 1).

To specify the relationships between these variables
we fix their joint distribution by giving a causal Bayesian
network. The pattern of conditional dependencies, given
by the directed graphs in Fig. 1, codifies the intuition
that action is determined by beliefs and desires, and that
belief is a�ected by the state of the world. In the PT
model belief also depends on access2.

The conditional dependencies are parameterized by
the conditional probabilities given in Table 1. The con-
ditional probability table for action describes a simple
case of the rational agent assumption: a person will act
rationally, given her beliefs, to achieve her desires. In
this case, if Sally wants her toy she will go to the loca-
tion she believes it to be in, otherwise she goes to either
location with equal probability (surely a simplification,
but su⇤cient for present purposes). The variable De-
sire has prior probability 1 � ⇤, which will be large for

2This is a simplification: we model how belief content de-
pends on access, but it is likely that access mediates knowl-
edge (vs. ignorance) even in the earlier theory.

desirable objects (such as a toy).
For the CT model, Belief is constrained to equal

World. This is also true for the PT model when Vi-
sual Access is present, but without access Sally main-
tains her original belief, Belief = 0, with probability
1 � ⇥. The parameter ⇥ represents all the reasons, out-
side of the story, that Sally might change her mind: her
sister might tell her the toy has moved, she may have
E.S.P., she may forget that she actually left her toy in
the basket....

We assume asymmetric-beta priors on ⇤ and ⇥. In
the example simulations described below (Figures 2 and
3) the hyper-parameters were set to �(1, 10) for ⇤, in-
dicating that Sally probably wants her toy, and �(1, 5)
for ⇥, indicating that she is unlikely to change her belief
(lacking access). The relative magnitude of the two pa-
rameters determines whether it is more likely that Sally
wants something other than her toy, or that she changes
her belief – we have chosen the latter (because standard
false belief tasks emphasize that Sally wants her toy).
Otherwise, the qualitative results described below are
quite insensitive to the values of these parameters.

Prediction
Having represented our models as probability distribu-
tions, rational predictive use is now prescribed by the
algebra of probabilities: conditioned on observation of
some subset of the variables, a posterior distribution is
determined that predicts values for the remaining vari-
ables. These models are causal theories: they also sup-
port predictions of the outcome of interventions, via the
causal do operator.)

Take the example in which Sally’s toy has been moved,
but Sally doesn’t have visual access to this new loca-
tion (see schematic Fig. 2(a)). There are two possible
outcomes: Sally may look in the original location (the
basket), or the new location (the box). We may pre-
dict the probability of each outcome by marginalizing
the unobserved variables. Fig. 2(b) shows that the two
models make opposite predictions. We see that the CT
model “fails” the false belief test by predicting that Sally
will look in the new (true) location, while the PT model
“passes” by predicting the original location. The sur-
prising outcome cases di�er for the two models (looking
in the original location for CT, looking in the new loca-
tion for PT). Note that while the surprising outcome is
not impossible in either model, it is far less likely in the
CT model (as evident from Fig. 2(b)). That is, there is
an explanatory asymmetry: prima facie equivalent un-
expected outcomes weigh more heavily against the CT
model than the PT model.

Theory Revision
Strong rationality requires an agent to balance the avail-
able intuitive theories against each other. How should a
theory-user combine, or select, possible theories of a do-
main, given the body of her experience? Fortunately, the
algebra of Bayesian probability continues to prescribe ra-
tional use when there are competing models: the degree
of belief in each model is its posterior probability given

Copy Theorist

resources against complexity, and illuminate the above
revision puzzle. To probe these ideas experimentally we
investigate children’s predictions and explanations, in
cases when these predictions succeed and when they fail:
the false belief task with the standard outcome (surpris-
ing to CTs), and a novel “psychic” outcome (surprising
to PTs). We present only the apparatus necessary for
a first investigation, leaving important elaborations for
future work.

Formal Models
In the standard false belief task, described earlier, the
story begins with Sally putting her toy in the basket.
As the story continues there are only three (observable)
variables that have multiple outcomes: the final position
of the toy, Sally’s visual access to the final position (i.e.
whether the door of the basket and box are open), and
Sally’s action upon re-entering the room. Thus we have
the variables World, Visual Access, and Action available
to our models (see Table 1 for descriptions). In addi-
tion, there are two unobservable mental state variables:
Sally’s belief about the location of her toy, Belief, and
her Desire. We simplify the, presumably sophisticated,
sub-theory of goals and desires (see Baker et al., in press)
by collapsing desires into one variable, which indicates
whether Sally’s primary desire is her toy. (Formally, we
marginalize out all other variables in this sub-theory.)
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Figure 1: The dependency graphs of our Bayesian Network
Models: (a) CT model, (b) PT model. Variables abbreviated
by their first letter (see Table 1).

To specify the relationships between these variables
we fix their joint distribution by giving a causal Bayesian
network. The pattern of conditional dependencies, given
by the directed graphs in Fig. 1, codifies the intuition
that action is determined by beliefs and desires, and that
belief is a�ected by the state of the world. In the PT
model belief also depends on access2.

The conditional dependencies are parameterized by
the conditional probabilities given in Table 1. The con-
ditional probability table for action describes a simple
case of the rational agent assumption: a person will act
rationally, given her beliefs, to achieve her desires. In
this case, if Sally wants her toy she will go to the loca-
tion she believes it to be in, otherwise she goes to either
location with equal probability (surely a simplification,
but su⇤cient for present purposes). The variable De-
sire has prior probability 1 � ⇤, which will be large for

2This is a simplification: we model how belief content de-
pends on access, but it is likely that access mediates knowl-
edge (vs. ignorance) even in the earlier theory.

desirable objects (such as a toy).
For the CT model, Belief is constrained to equal

World. This is also true for the PT model when Vi-
sual Access is present, but without access Sally main-
tains her original belief, Belief = 0, with probability
1 � ⇥. The parameter ⇥ represents all the reasons, out-
side of the story, that Sally might change her mind: her
sister might tell her the toy has moved, she may have
E.S.P., she may forget that she actually left her toy in
the basket....

We assume asymmetric-beta priors on ⇤ and ⇥. In
the example simulations described below (Figures 2 and
3) the hyper-parameters were set to �(1, 10) for ⇤, in-
dicating that Sally probably wants her toy, and �(1, 5)
for ⇥, indicating that she is unlikely to change her belief
(lacking access). The relative magnitude of the two pa-
rameters determines whether it is more likely that Sally
wants something other than her toy, or that she changes
her belief – we have chosen the latter (because standard
false belief tasks emphasize that Sally wants her toy).
Otherwise, the qualitative results described below are
quite insensitive to the values of these parameters.

Prediction
Having represented our models as probability distribu-
tions, rational predictive use is now prescribed by the
algebra of probabilities: conditioned on observation of
some subset of the variables, a posterior distribution is
determined that predicts values for the remaining vari-
ables. These models are causal theories: they also sup-
port predictions of the outcome of interventions, via the
causal do operator.)

Take the example in which Sally’s toy has been moved,
but Sally doesn’t have visual access to this new loca-
tion (see schematic Fig. 2(a)). There are two possible
outcomes: Sally may look in the original location (the
basket), or the new location (the box). We may pre-
dict the probability of each outcome by marginalizing
the unobserved variables. Fig. 2(b) shows that the two
models make opposite predictions. We see that the CT
model “fails” the false belief test by predicting that Sally
will look in the new (true) location, while the PT model
“passes” by predicting the original location. The sur-
prising outcome cases di�er for the two models (looking
in the original location for CT, looking in the new loca-
tion for PT). Note that while the surprising outcome is
not impossible in either model, it is far less likely in the
CT model (as evident from Fig. 2(b)). That is, there is
an explanatory asymmetry: prima facie equivalent un-
expected outcomes weigh more heavily against the CT
model than the PT model.

Theory Revision
Strong rationality requires an agent to balance the avail-
able intuitive theories against each other. How should a
theory-user combine, or select, possible theories of a do-
main, given the body of her experience? Fortunately, the
algebra of Bayesian probability continues to prescribe ra-
tional use when there are competing models: the degree
of belief in each model is its posterior probability given

Perspective Theorist

Variable Description States
World (W ) Location of the toy. 0: Original location, 1: New location.
Access (V ) Could Sally see the toy moved? 0: No, 1: Yes.
Action (A) Where Sally looks for her toy. 0: Original location, 1: New location.
Belief (B) Where Sally thinks the toy is. 0: Original location, 1: New location.
Desire (D) Sally’s primary desire. 1: To find the toy, 0: Anything else.

P (A = 1|B,D) B D
0 0 1
1 1 1

0.5 0 0
0.5 1 0

PCT(B = 1|W ) W
0 0
1 1

PPT(B = 1|W,V ) W V
0 0 1
1 1 1
� 0 0
� 1 0

Table 1: The random variables and probability distribution tables for our models.
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Figure 2: Comparing the Models: (a) Example situations, in both cases W=1, V =0, for the Standard outcome A=0, for the
Psychic outcome A=1. (b) The predicted probability of each outcome. (c) Posterior probability of configurations of hidden
variables, after observing the outcome. This indicates degree of belief in the corresponding complete explanation. (d) Surprise
value of each variable in the modal configuration (computed as surprisal with respect to the predictive posterior).

previous experience. We may then write down a be-
lief weight comparing belief in the PT model to the CT
model:

WPT/CT = � log(P (PT|X)/P (CT|X)), (1)

where X represents experience in previous false belief
settings. When WPT/CT is strongly negative the con-
tribution from PT is negligible, and the agent behaves
as though it is a pure CT. If evidence accumulates and
shifts WPT/CT to be strongly positive the agent behaves
as a PT. In Fig. 3 we plot WPT/CT evaluated on accu-
mulating “epochs” of experience. Each epoch consists of
trials with (W,V,A) observed, but (D,B) unobserved.
The trials in each (identical) epoch encode the assump-
tions that visual access is usually available, and that,
in instances without access, the protagonist often has
a correct belief anyway (e.g. to a child, his parents of-
ten appear to have preternatural knowledge). (Specif-

ically, each epoch is twenty (W=1,V =1,A=1) trials,
six (W=1,V =0,A=1) trials, and one (W=1,V =0,A=0)
trial.) The expected transition from CT to PT does oc-
cur under these assumptions. Since this rational revision
depends on the particular character and statistics of ex-
perience, a developmental account is incomplete without
empirical research on the evidence available to children
in everyday life.

How can we understand the delayed confirmation of
the PT model? First, in the initial epoch, the CT model
is preferred due to the Bayesian Occam’s razor e�ect
(Je�erys and Berger, 1992): the PT model has additional
complexity (the free parameter �), which is penalized via
the posterior probability. However, the data themselves
are more likely under the PT model – because some of
the data represent genuine false belief situations. As
data accumulates the weight of this explanatory advan-
tage eventually overcomes complexity and the PT model

Variable Description States
World (W ) Location of the toy. 0: Original location, 1: New location.
Access (V ) Could Sally see the toy moved? 0: No, 1: Yes.
Action (A) Where Sally looks for her toy. 0: Original location, 1: New location.
Belief (B) Where Sally thinks the toy is. 0: Original location, 1: New location.
Desire (D) Sally’s primary desire. 1: To find the toy, 0: Anything else.

P (A = 1|B,D) B D
0 0 1
1 1 1

0.5 0 0
0.5 1 0

PCT(B = 1|W ) W
0 0
1 1
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0 0 1
1 1 1
� 0 0
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variables, after observing the outcome. This indicates degree of belief in the corresponding complete explanation. (d) Surprise
value of each variable in the modal configuration (computed as surprisal with respect to the predictive posterior).

previous experience. We may then write down a be-
lief weight comparing belief in the PT model to the CT
model:

WPT/CT = � log(P (PT|X)/P (CT|X)), (1)

where X represents experience in previous false belief
settings. When WPT/CT is strongly negative the con-
tribution from PT is negligible, and the agent behaves
as though it is a pure CT. If evidence accumulates and
shifts WPT/CT to be strongly positive the agent behaves
as a PT. In Fig. 3 we plot WPT/CT evaluated on accu-
mulating “epochs” of experience. Each epoch consists of
trials with (W,V,A) observed, but (D,B) unobserved.
The trials in each (identical) epoch encode the assump-
tions that visual access is usually available, and that,
in instances without access, the protagonist often has
a correct belief anyway (e.g. to a child, his parents of-
ten appear to have preternatural knowledge). (Specif-

ically, each epoch is twenty (W=1,V =1,A=1) trials,
six (W=1,V =0,A=1) trials, and one (W=1,V =0,A=0)
trial.) The expected transition from CT to PT does oc-
cur under these assumptions. Since this rational revision
depends on the particular character and statistics of ex-
perience, a developmental account is incomplete without
empirical research on the evidence available to children
in everyday life.

How can we understand the delayed confirmation of
the PT model? First, in the initial epoch, the CT model
is preferred due to the Bayesian Occam’s razor e�ect
(Je�erys and Berger, 1992): the PT model has additional
complexity (the free parameter �), which is penalized via
the posterior probability. However, the data themselves
are more likely under the PT model – because some of
the data represent genuine false belief situations. As
data accumulates the weight of this explanatory advan-
tage eventually overcomes complexity and the PT model

Variable Description States
World (W ) Location of the toy. 0: Original location, 1: New location.
Access (V ) Could Sally see the toy moved? 0: No, 1: Yes.
Action (A) Where Sally looks for her toy. 0: Original location, 1: New location.
Belief (B) Where Sally thinks the toy is. 0: Original location, 1: New location.
Desire (D) Sally’s primary desire. 1: To find the toy, 0: Anything else.

P (A = 1|B,D) B D
0 0 1
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previous experience. We may then write down a be-
lief weight comparing belief in the PT model to the CT
model:

WPT/CT = � log(P (PT|X)/P (CT|X)), (1)

where X represents experience in previous false belief
settings. When WPT/CT is strongly negative the con-
tribution from PT is negligible, and the agent behaves
as though it is a pure CT. If evidence accumulates and
shifts WPT/CT to be strongly positive the agent behaves
as a PT. In Fig. 3 we plot WPT/CT evaluated on accu-
mulating “epochs” of experience. Each epoch consists of
trials with (W,V,A) observed, but (D,B) unobserved.
The trials in each (identical) epoch encode the assump-
tions that visual access is usually available, and that,
in instances without access, the protagonist often has
a correct belief anyway (e.g. to a child, his parents of-
ten appear to have preternatural knowledge). (Specif-

ically, each epoch is twenty (W=1,V =1,A=1) trials,
six (W=1,V =0,A=1) trials, and one (W=1,V =0,A=0)
trial.) The expected transition from CT to PT does oc-
cur under these assumptions. Since this rational revision
depends on the particular character and statistics of ex-
perience, a developmental account is incomplete without
empirical research on the evidence available to children
in everyday life.

How can we understand the delayed confirmation of
the PT model? First, in the initial epoch, the CT model
is preferred due to the Bayesian Occam’s razor e�ect
(Je�erys and Berger, 1992): the PT model has additional
complexity (the free parameter �), which is penalized via
the posterior probability. However, the data themselves
are more likely under the PT model – because some of
the data represent genuine false belief situations. As
data accumulates the weight of this explanatory advan-
tage eventually overcomes complexity and the PT model

Variable Description States
World (W ) Location of the toy. 0: Original location, 1: New location.
Access (V ) Could Sally see the toy moved? 0: No, 1: Yes.
Action (A) Where Sally looks for her toy. 0: Original location, 1: New location.
Belief (B) Where Sally thinks the toy is. 0: Original location, 1: New location.
Desire (D) Sally’s primary desire. 1: To find the toy, 0: Anything else.
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previous experience. We may then write down a be-
lief weight comparing belief in the PT model to the CT
model:

WPT/CT = � log(P (PT|X)/P (CT|X)), (1)

where X represents experience in previous false belief
settings. When WPT/CT is strongly negative the con-
tribution from PT is negligible, and the agent behaves
as though it is a pure CT. If evidence accumulates and
shifts WPT/CT to be strongly positive the agent behaves
as a PT. In Fig. 3 we plot WPT/CT evaluated on accu-
mulating “epochs” of experience. Each epoch consists of
trials with (W,V,A) observed, but (D,B) unobserved.
The trials in each (identical) epoch encode the assump-
tions that visual access is usually available, and that,
in instances without access, the protagonist often has
a correct belief anyway (e.g. to a child, his parents of-
ten appear to have preternatural knowledge). (Specif-

ically, each epoch is twenty (W=1,V =1,A=1) trials,
six (W=1,V =0,A=1) trials, and one (W=1,V =0,A=0)
trial.) The expected transition from CT to PT does oc-
cur under these assumptions. Since this rational revision
depends on the particular character and statistics of ex-
perience, a developmental account is incomplete without
empirical research on the evidence available to children
in everyday life.

How can we understand the delayed confirmation of
the PT model? First, in the initial epoch, the CT model
is preferred due to the Bayesian Occam’s razor e�ect
(Je�erys and Berger, 1992): the PT model has additional
complexity (the free parameter �), which is penalized via
the posterior probability. However, the data themselves
are more likely under the PT model – because some of
the data represent genuine false belief situations. As
data accumulates the weight of this explanatory advan-
tage eventually overcomes complexity and the PT model

Variable Description States
World (W ) Location of the toy. 0: Original location, 1: New location.
Access (V ) Could Sally see the toy moved? 0: No, 1: Yes.
Action (A) Where Sally looks for her toy. 0: Original location, 1: New location.
Belief (B) Where Sally thinks the toy is. 0: Original location, 1: New location.
Desire (D) Sally’s primary desire. 1: To find the toy, 0: Anything else.
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variables, after observing the outcome. This indicates degree of belief in the corresponding complete explanation. (d) Surprise
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previous experience. We may then write down a be-
lief weight comparing belief in the PT model to the CT
model:

WPT/CT = � log(P (PT|X)/P (CT|X)), (1)

where X represents experience in previous false belief
settings. When WPT/CT is strongly negative the con-
tribution from PT is negligible, and the agent behaves
as though it is a pure CT. If evidence accumulates and
shifts WPT/CT to be strongly positive the agent behaves
as a PT. In Fig. 3 we plot WPT/CT evaluated on accu-
mulating “epochs” of experience. Each epoch consists of
trials with (W,V,A) observed, but (D,B) unobserved.
The trials in each (identical) epoch encode the assump-
tions that visual access is usually available, and that,
in instances without access, the protagonist often has
a correct belief anyway (e.g. to a child, his parents of-
ten appear to have preternatural knowledge). (Specif-

ically, each epoch is twenty (W=1,V =1,A=1) trials,
six (W=1,V =0,A=1) trials, and one (W=1,V =0,A=0)
trial.) The expected transition from CT to PT does oc-
cur under these assumptions. Since this rational revision
depends on the particular character and statistics of ex-
perience, a developmental account is incomplete without
empirical research on the evidence available to children
in everyday life.

How can we understand the delayed confirmation of
the PT model? First, in the initial epoch, the CT model
is preferred due to the Bayesian Occam’s razor e�ect
(Je�erys and Berger, 1992): the PT model has additional
complexity (the free parameter �), which is penalized via
the posterior probability. However, the data themselves
are more likely under the PT model – because some of
the data represent genuine false belief situations. As
data accumulates the weight of this explanatory advan-
tage eventually overcomes complexity and the PT model
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Abstract

Many human activities require precise judgments about the
physical properties and dynamics of multiple objects. Clas-
sic work suggests that people’s intuitive models of physics
are relatively poor and error-prone, based on highly simplified
heuristics that apply only in special cases or incorrect general
principles (e.g., impetus instead of momentum). These con-
clusions seem at odds with the breadth and sophistication of
naive physical reasoning in real-world situations. Our work
measures the boundaries of people’s physical reasoning and
tests the richness of intuitive physics knowledge in more com-
plex scenes. We asked participants to make quantitative judg-
ments about stability and other physical properties of virtual
3D towers. We found their judgments correlated highly with a
model observer that uses simulations based on realistic phys-
ical dynamics and sampling-based approximate probabilistic
inference to efficiently and accurately estimate these proper-
ties. Several alternative heuristic accounts provide substan-
tially worse fits. Keywords: intuitive physics, dynamics, per-
ception, model

Introduction
Intuitive physics is a core domain of common-sense reason-
ing, developing early in infancy and central in adult thought
(Baillargeon, 2007). Yet, despite decades of research, there is
no consensus on certain basic questions: What kinds of inter-
nal models of the physical world do human minds build? How
rich and physically accurate are they? How is intuitive phys-
ical knowledge represented or used to guide physical judg-
ments?

The kinds of judgments we consider are those necessary to
navigate, interact with, and constructively modify real-world
physical environments. Consider the towers of blocks shown
in Fig. 1. How stable are these configurations, or how likely
are they to fall? If they fall, in what direction will the blocks
scatter? Where could a block be added or removed from the
tower to significantly alter the configuration’s stability? Peo-
ple make such judgments with relative ease, yet the literature
on intuitive physics has little to say about how they do so.

Classic research focused on the limits of human physical
reasoning. One line of work argued that people’s understand-
ing of simple object trajectories moving under inertial dynam-
ics was biased away from the true Newtonian dynamics, to-
wards a more “Aristotelian” or “impetus” kinematic theory
(Caramazza, McCloskey, & Green, 1981; McCloskey, 1983),
yet no precise model of an intuitive impetus theory was de-
veloped. Studies of how people judge relative masses in two-
body collisions concluded that humans are limited to mak-
ing physical judgments based on simple heuristics, or become
confused in tasks requiring attention to more than one dimen-
sion of a dynamic scene (Todd & Jr., 1982; Gilden & Proffitt,
1989a, 1989b, 1994). Neither the impetus accounts nor the
simple one-dimensional heuristic accounts attempted to ex-
plain how people might reason about complex scenes such as
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Figure 1: Three towers of varying height and stability. Each tower
(A, B, C) corresponds to a colored point in Fig. 3. A is clearly
unstable, C clearly stable, while B (matched in height to C) is less
obvious.

Fig. 1, or gave any basis to think people might reason about
them with a high degree of accuracy.

Here we argue for a different view. We hypothesize that
humans can make physical judgments using an internal gen-
erative model that approximates the principles of Newtonian
mechanics applied to three-dimensional solid bodies. They
use this model to forward-simulate future outcomes given be-
liefs about the world state, and make judgments based on the
outcomes of these simulations. We believe that only by posit-
ing such rich internal models can we explain how people are
able to perform complex everyday tasks like constructing and
predicting properties of stacks of objects, balancing or stabi-
lizing precariously arranged objects, or intercepting or avoid-
ing multiple moving, interacting objects.

The physical laws of the internal models we propose are es-
sentially deterministic, but people’s judgments are probabilis-
tic. Capturing that probabilistic structure is crucial for pre-
dicting human judgments precisely and explaining how intu-
itive physical reasoning successfully guides adaptive behav-
ior, decision-making and planning in the world. We can in-
corporate uncertainty in several ways. Objects’ positions and
velocities and their key physical properties (e.g., mass, coeffi-
cients of friction) may only be inferred with limited precision
from perceptual input. People may also be uncertain about
the underlying physical dynamics, or may consider the action
of unobserved or unknown exogenous forces on the objects
in the scene (e.g., a gust of wind, or someone bumping into
the table). We can represent these sources of uncertainty in
terms of probability distributions over the values of state vari-
ables, parameters or latent forces in the deterministic physi-
cal model. By representing these distributions approximately
in terms of small sets of samples, uncertainty can be propa-
gated through the model’s physical dynamics using only ana-
log mental simulations. Thus a resource-bounded observer
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can make appropriate predictions of future outcomes with-
out complex probabilistic calculations. Even though these
simulations may approximate reality only roughly, and with
large numbers of objects may only be sustainable for brief
durations, they can still be sufficient to make useful judg-
ments about complex scenes on short time-scales. Our goal
in the present work is to quantitatively compare several such
judgments – mainly degree of stability and direction of fall –
across human observers, variants of our model, and plausible
alternative accounts based on simple, model-free heuristics.

Several recent lines of research suggest approximate New-
tonian principles underlie human judgments about dynamics
and stability (Zago & Lacquaniti, 2005; Fleming, Barnett-
Cowan, & Bülthoff, 2010). Perhaps closest to this study is
the work of Sanborn, Mansinghka, and Griffiths (2009), who
showed that perception of relative mass from two-body col-
lisions is well-modeled as Bayesian inference in a generative
model with Newtonian dynamics. Like us, they frame intu-
itive physics as a kind of probabilistic Newtonian mechan-
ics in which uncertainty about latent variables gives rise to
uncertain predictions of physical outcomes. The main inno-
vation of our work is to capture physical knowledge with a
three-dimensional and realistic object-based physics simula-
tion, and to implement probabilistic inference using sample-
based approximations; Sanborn et al. used a simpler Bayesian
network that was specialized to the case of two point masses
colliding in one dimension. Our more general framing allows
us to test whether and how a probabilistic-Newtonian frame-
work can scale up to explain intuitive physical reasoning in
complex scenes such as Fig. 1.

Model
We frame human physical judgments using a probabilistic
model observer (Fig. 2) that combines three components:
perception, physical reasoning, and decision. The perception
component defines a mapping from input images to internal
beliefs about the states of objects in a scene. The physical
reasoning component describes how internal physics knowl-
edge is used to predict future object states. The decision com-
ponent describes how these predicted states are used to pro-
duce a desired property judgment. Uncertainty may enter into
any or all of these components. For simplicity in this paper
we have modeled uncertainty only in the perception compo-
nent, assuming that observers compute a noisy representation
of objects’ positions in the three-dimensional scene.1 When
the noise variance ⇥2 equals 0, the model’s outputs are deter-
ministic and correspond to physical ground-truth judgments.
We investigate how the addition of noise, along with several
other assumptions about the limitations of realistic observers,
might fit human judgments better than the perfect predictions
of physical ground-truth.

1Similar noise distributions applied to objects’ states could also
represent other sources of uncertainty, such as unknown latent forces
in the world that might perturb the objects’ state or uncertainty
about specific physical dynamics. Here we do not distinguish these
sources of uncertainty but leave this as a question for future work.
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Figure 2: Model schematic. Our model has 3 components, per-
ception, physical reasoning, and decision. During perception, an
uncertain belief about the tower is inferred from an image. During
physical reasoning, tower samples are drawn from this belief distri-
bution, and a physical simulation is applied to each. To make deci-
sions about physical properties, the simulation outcomes are evalu-
ated and averaged.

Our specific experimental focus is on judgments about dy-
namic events with towers of blocks (Fig. 1), so the relevant
object states St are the locations and orientations of all blocks
in the tower at time t. The effect of Newtonian physics over
time on the tower, which includes gravitational forces, elastic
collisions, transfer of energy, is represented by the function
�(·), which inputs St and temporal duration T , and outputs
the subsequent state St+T = �(St ,T ). Our implementation of
physical predictions used the Open Dynamics Engine (ODE,
www.ode.org), a standard computer physics engine, which,
critically, allows precise simulation of rigid-body dynamics
with momentous collisions. The physical properties the ob-
server wishes to predict are represented as predicates over the
current and future tower states, f (St ,St+T ). We examine two
kinds of judgments about the future state ST of a tower first
observed at t = 0:

1. What proportion of the tower will fall, f f all(S0,ST )?
2. In what direction will the tower fall, fdir(S0,ST )?

We quantify degree of stability as the proportion of a tower
that remains standing following the application of physics for
duration T . This definition matches the objective notion that
a tower that entirely collapses should be judged less stable
than one for which a single block teeters off.

Observer model Predicting a physical tower property
means computing f (S0,ST ) = f (S0,�(S0,T )). In principle,
deterministic physics implies that knowledge of S0 and �(·)
is sufficient to predict future physical properties perfectly.
However, a realistic observer does not have direct access to
tower states, S0, so must rely on uncertain perceptual infer-
ences to draw beliefs about the tower. The observer forms
beliefs about S0 conditioned on an image, I, and represents
these beliefs, Ŝ0, with the distribution, Pr(Ŝ0|I).

Applying physics to the inferred initial state Ŝ0 induces
a future state ŜT = �(Ŝ0,T ) with distribution Pr(ŜT |I). As
above, predicting a physical property means computing
f (Ŝ0, ŜT ) = f (Ŝ0,�(Ŝ0,T )). To make decisions about physi-
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