Fundamentos de Inferencia Bayesiana

Algoritmos de Muestreo

El/los problema/s

1) Generar *muestras* de $p(\mathbf{x})$

2) Estimar el valor esperado de funciones bajo $p(\mathbf{x})$

$$\Phi = \int \phi(\mathbf{x}) p(\mathbf{x}) d\mathbf{x}$$

Si resolvemos el primero... $\{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(R)}\}$

Estimador
$$\hat{\Phi} = \frac{1}{R} \sum_{r} \phi(\mathbf{x}^{(r)})$$

¿Por qué es difícil? ¡Tenemos *p*(**x**)!!

Dos dificultades:

1) Normalización: $p(\mathbf{x}) = p^*(\mathbf{x})/Z$

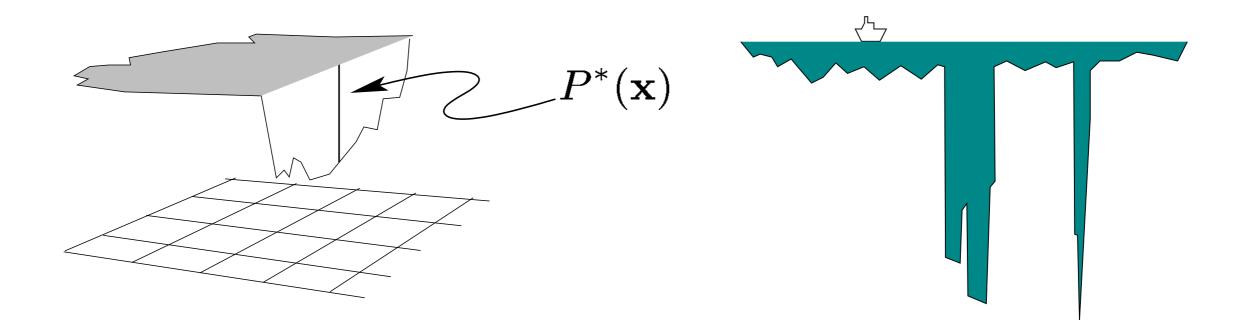
Muchas veces, tenemos sólo $p^*(\mathbf{x})$

Ej. Bayes: $p(H|D) \propto p(D|H)p(H)$

2) Aun con Z, podemos evaluar p(x) en cualquier punto, pero no en todo punto x

Las muestras deberían venir principalmente de dónde $p(\mathbf{x})$ es grande, pero, ¿cómo saber dónde es grande sin evaluarla en todos lados?

Analogía: medir la concentración de plankton en un lago



Problema 1: tomar muestras de agua Problema 2: estimar la concentración media de plankton

Algunos números

Modelo de 30 variables continuas, tomamos un *grid* de 50 pasos para cada dimensión, y una computadora de 10 GHz que evalúa la posterior 10^10 veces por segundo...

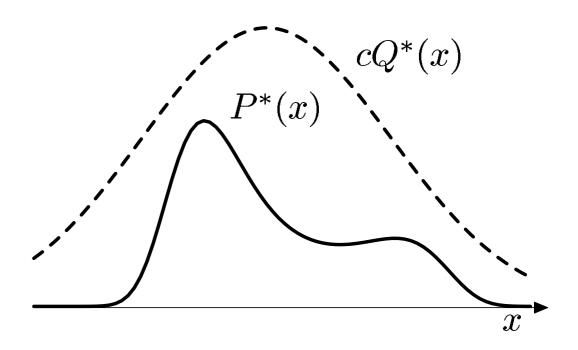
50^30 evaluaciones / 10^10 (evaluaciones/s) ~ 2^132 s

Edad del universo: 2^58 s

Rejection Sampling

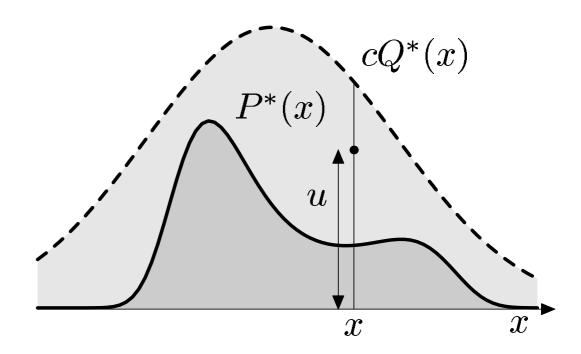
Tenemos Q(x) de la que **sí** podemos tomar muestras, y *c* tal que:

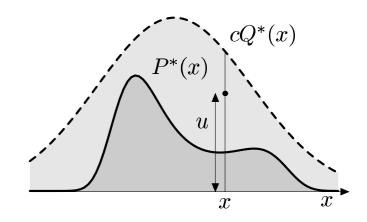
 $cQ^{*}(x) > P^{*}(x)$



<u>Algoritmo</u>:

- 1) Tomamos muestra x de Q(x)
- Evaluamos cQ*(x) y tomamos muestra u de Uniforme(0, cQ*(x))
- 3) Si u > P*(x), rechazamos x, si no,
 la aceptamos





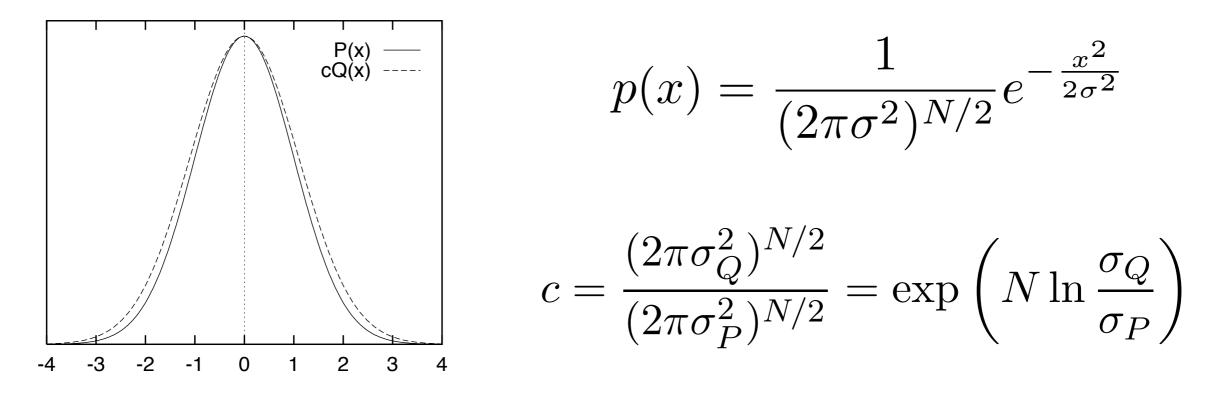
Funciona bien si Q es una buena aproximación a P

Si no, c va a tener que ser grande, y habrá muchos rechazos

En muchas dimensiones: por lo general, difícil incluso hallar c

Rejection Sampling

Ej. dos gaussianas, una con desvio 1% mayor



c crece exponencialmente con la dimensión N aquí $c \sim 1.35$ para N=30 pero $c \sim 20000$ para N=1000

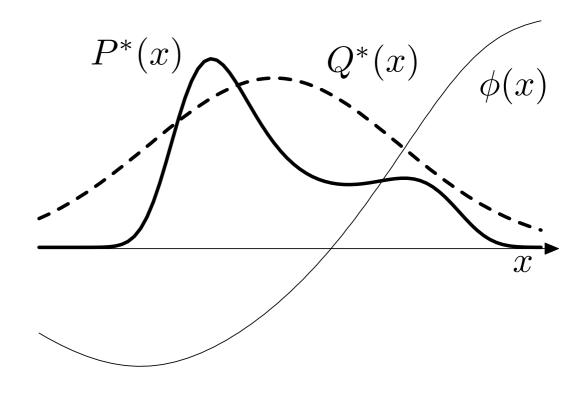
Útil para distribuciones unidimensionales, pero no para dimensiones altas

Importance Sampling

Técnica para el problema 2, estimar valores esperados de funciones, no para tomar muestras.

Nuevamente, podemos evaluar $P^*(x)$ pero no tomar muestras de P(x), y contamos con Q(x) de la que podemos tomar muestras y podemos evaluar $Q^*(x)$

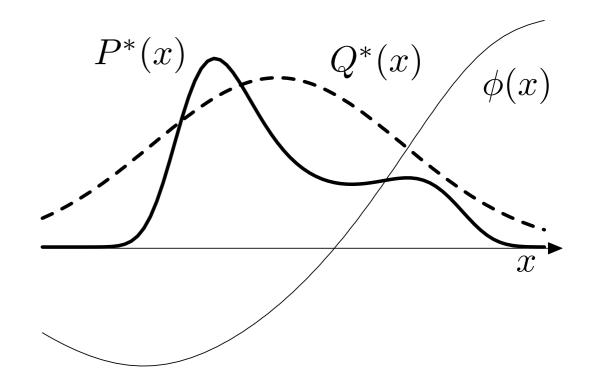
Queremos estimar el valor esperado de $\phi(x)$



Importance Sampling

Queremos estimar el valor esperado de $\phi(x)$

$$\hat{\Phi} = \frac{1}{R} \sum_{r} \phi(\mathbf{x}^{(r)})$$

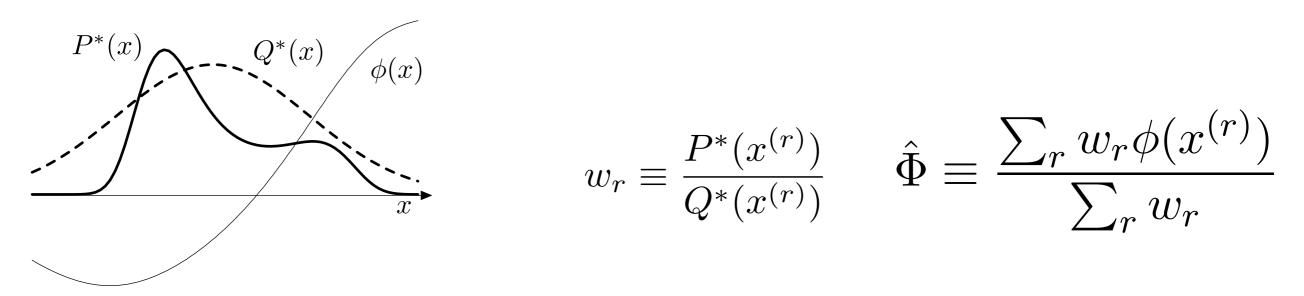


<u>Algoritmo:</u>

- 1) Generar *R* muestras de Q(x): { $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(R)}$ } 2) Computar los *pesos* de las distintas muestras: $w_r \equiv \frac{P^*(x^{(r)})}{Q^*(x^{(r)})}$
- 3) Estimar el valor esperado como:

$$\hat{\Phi} \equiv \frac{\sum_{r} w_{r} \phi(x^{(r)})}{\sum_{r} w_{r}}$$

Importance Sampling



Difícil estimar cuán confiable es el estimador: si Q(x) es chica en un lugar donde $|\phi(x)P^*(x)|$ es grande, estimamos mal sin enterarnos..

Tamaño efectivo de muestra

$$R_{\text{eff}} = \frac{R^2}{\sum_r \tilde{w}_r^2}$$
Pesos normalizados

$$\tilde{w}_r = \frac{Rw_r}{\sum_{r'} w_{r'}}$$

En muchas dimensiones, difícil "embocar" la región típica de probabilidad de P(x), luego gran variación en los pesos.. Incluso en la región típica, los pesos difieren por factores de orden $\exp(\sqrt{N})$

Entonces.. ¿qué hacemos?

MCMC

Markov Chain Monte Carlo

Cadenas de Markov: la probabilidad del siguiente estado depende del estado en que estamos

Monte Carlo: Proceso Aleatorio

Algoritmo de Metropolis

Nuevamente, somos capaces de evaluar $P^*(x)$ en cualquier x

Densidad de propuestas Q(x;x'), que depende del estado actual x', y es simétrica en x, x'

<u>Algoritmo</u>:

- 1) Elegir valor inicial $x^{(0)}$
- 2) Para *t=1...*, repetir:
 - a) Tomar muestra de $Q(x'; x^{(t-1)})$
 - b) Calcular la razón de densidades $r = -\frac{1}{2}$

$$\frac{P(x)}{P^*(x^{(t-1)})}$$

D*(a)/

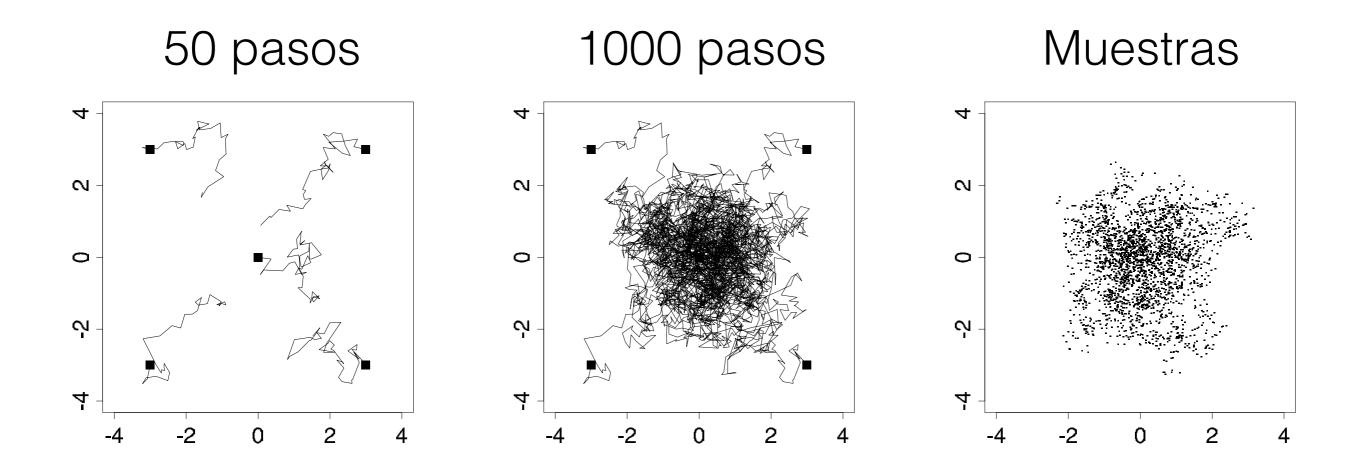
c) Tomar:

$$x^{(t)} = \begin{cases} x' & \text{con probabilidad } \min(r, 1) \\ x^{(t-1)} & \text{en otro caso} \end{cases}$$

Las muestras repetidas no se descartan, son muestras válidas

Algoritmo de Metropolis

Normal bivariada



Aquí: saltos pequeños, comportamiento random walk.. ineficiente

¡Método útil en altas dimensiones!

Algoritmo de *Metropolis* ¿Por qué funciona?

Esquema de la prueba, en dos pasos:

1) Probar que la secuencia simulada es una cadena de Markov con una distribución estacionaria única (paso técnico, usando propiedades de estas cadenas)

 $\Pi(x)Q(x';x) = \Pi(x')Q(x;x')$ Balance detallado, condición suficiente para estacionareidad

2) Probar que la distribución estacionaria de la cadena es la distribución deseada

Tomamos
$$x_a, x_b : P^*(x_b) \ge P^*(x_a)$$

 $x_a \to x_b P^*(x_a)Q(x_b; x_a) \swarrow^{r = \frac{P^*(x')}{P^*(x^{(t-1)})}}$
 $x_b \to x_a P^*(x_b)Q(x_a; x_b)\frac{P^*(x_a)}{P^*(x_b)} = P^*(x_a)Q(x_b; x_a)$

Algoritmo de Metropolis-Hastings

Similar a *Metropolis*, sin imponer simetría en la densidad Q(x;x')

 $r = \frac{P^{+}(x^{'})}{P^{*}(x^{(t-1)})}$ <u>Algoritmo</u>: 1) Elegir valor inicial $x^{(0)}$ 2) Para *t*=1..., repetir: a) Tomar muestra de $Q(x'; x^{(t-1)})$ b) Calcular la razón de densidades $r = \frac{P^*(x')}{P^*(x^{(t-1)})} \frac{Q(x^{(t-1)};x')}{Q(x'\cdot x^{(t-1)})}$ c) Tomar: $x^{(t)} = \begin{cases} x' & \text{con probabilidad } \min(r, 1) \\ x^{(t-1)} & \text{en otro caso} \end{cases}$

Las muestras repetidas no se descartan, son muestras válidas

Prueba idéntica, ahora los factores Q en r compensan la falta de simetría

Algoritmo de Gibbs

No podemos muestrear de $P(\mathbf{x})$, pero sí de las condicionales $P(x_i | \{x_j\}_{j \neq i})$

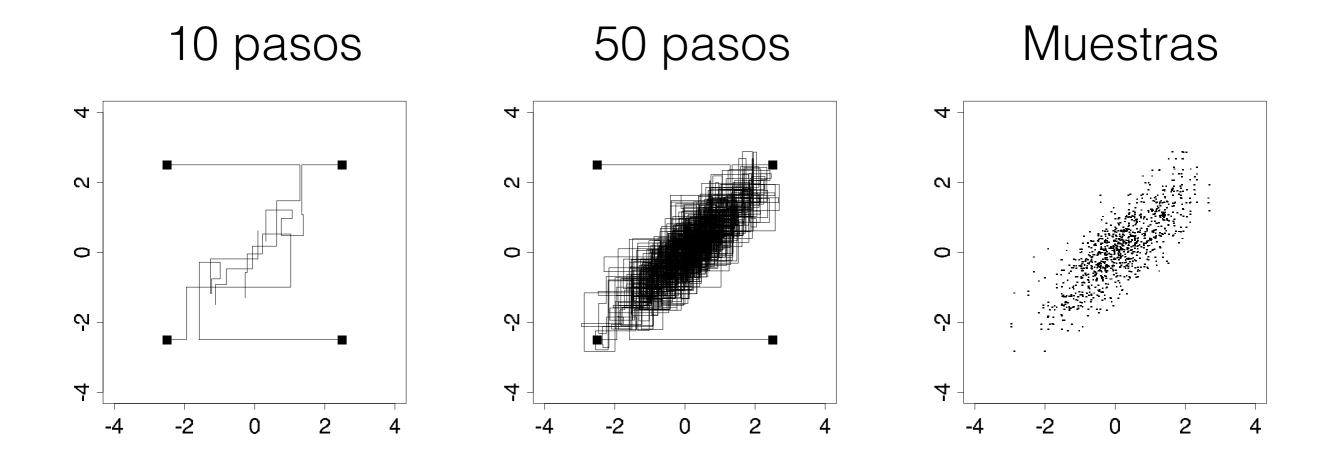
Muestreamos una a una...

$$\begin{array}{ll} x_1^{(t+1)} & \sim & P(x_1 \mid x_2^{(t)}, x_3^{(t)}, \dots, x_K^{(t)}) \\ x_2^{(t+1)} & \sim & P(x_2 \mid x_1^{(t+1)}, x_3^{(t)}, \dots, x_K^{(t)}) \\ x_3^{(t+1)} & \sim & P(x_3 \mid x_1^{(t+1)}, x_2^{(t+1)}, \dots, x_K^{(t)}), \text{ etc.} \end{array}$$

Prueba de convergencia: cada paso es un método Metropolis en el que se aceptan todas las propuestas

Algoritmo de Gibbs

Normal bivariada con corr=0.8



Random walk "cuadrado"

Otras técnicas

- Hamiltonian Monte Carlo (HMC) Inspirado en física, usa el momento de las muestras además de la posición. Método robusto y de uso general (STAN).
- Sequential Monte Carlo (SMC)

 En lugar de acumular muestras en la historia (MCMC), a cada paso llevamos una estimación de la distribución.
 Ejemplos: particle filters.
 En general, buenos modelos cognitivos, ya que demandan menos, por lo que son más plausibles como
 - mecanismo psicológico.

Práctica

Wagenmakers & Lee: 6.1, 6.2