
Fundamentos de Inferencia Bayesiana

Algoritmos de Muestreo

El/los problema/s
1) Generar muestras de p(x)

2) Estimar el valor esperado de funciones bajo p(x)

� =

Z
�(x)p(x)dx

Si resolvemos el primero… {x(1),x(2), . . . ,x(R)}

�̂ =
1

R

X

r

�(x(r))Estimador

¿Por qué es difícil?
¡¡Tenemos p(x)!!

Dos dificultades:

p(H|D) / p(D|H)p(H)Ej. Bayes:

2) Aun con Z, podemos evaluar p(x) en cualquier punto,
pero no en todo punto x

Las muestras deberían venir principalmente de dónde p(x) es grande,
pero, ¿cómo saber dónde es grande sin evaluarla en todos lados?

Muchas veces, tenemos sólo p⇤(x)

1) Normalización: p(x) = p⇤(x)/Z

Analogía: medir la concentración
de plankton en un lago

Problema 1: tomar muestras de agua
Problema 2: estimar la concentración media de plankton

Algunos números

Modelo de 30 variables continuas, tomamos un grid
de 50 pasos para cada dimensión, y una

computadora de 10 GHz que evalúa la posterior
10^10 veces por segundo…

50^30 evaluaciones / 10^10 (evaluaciones/s) ~ 2^132 s

Edad del universo: 2^58 s

Rejection Sampling
Tenemos Q(x) de la que sí podemos
tomar muestras, y c tal que:

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

364 29 — Monte Carlo Methods

(a)

x

P ∗(x)
cQ∗(x)

(b)

x

u

x

P ∗(x)
cQ∗(x) Figure 29.8. Rejection sampling.

(a) The functions involved in
rejection sampling. We desire
samples from P (x) ∝ P ∗(x). We
are able to draw samples from
Q(x) ∝ Q∗(x), and we know a
value c such that c Q∗(x) > P ∗(x)
for all x. (b) A point (x, u) is
generated at random in the lightly
shaded area under the curve
c Q∗(x). If this point also lies
below P ∗(x) then it is accepted.

So if we draw a hundred samples, what will the typical range of weights be?
We can roughly estimate the ratio of the largest weight to the median weight
by doubling the standard deviation in equation (29.27). The largest weight
and the median weight will typically be in the ratio:

wmax
r

wmed
r

= exp
(√

2N
)

. (29.28)

In N = 1000 dimensions therefore, the largest weight after one hundred sam-
ples is likely to be roughly 1019 times greater than the median weight. Thus an
importance sampling estimate for a high-dimensional problem will very likely
be utterly dominated by a few samples with huge weights.

In conclusion, importance sampling in high dimensions often suffers from
two difficulties. First, we need to obtain samples that lie in the typical set of P ,
and this may take a long time unless Q is a good approximation to P . Second,
even if we obtain samples in the typical set, the weights associated with those
samples are likely to vary by large factors, because the probabilities of points
in a typical set, although similar to each other, still differ by factors of order
exp(

√
N), so the weights will too, unless Q is a near-perfect approximation to

P .

29.3 Rejection sampling

We assume again a one-dimensional density P (x) = P ∗(x)/Z that is too com-
plicated a function for us to be able to sample from it directly. We assume
that we have a simpler proposal density Q(x) which we can evaluate (within a
multiplicative factor ZQ, as before), and from which we can generate samples.
We further assume that we know the value of a constant c such that

cQ∗(x) > P ∗(x), for all x. (29.29)

A schematic picture of the two functions is shown in figure 29.8a.
We generate two random numbers. The first, x, is generated from the

proposal density Q(x). We then evaluate cQ∗(x) and generate a uniformly
distributed random variable u from the interval [0, cQ∗(x)]. These two random
numbers can be viewed as selecting a point in the two-dimensional plane as
shown in figure 29.8b.

We now evaluate P ∗(x) and accept or reject the sample x by comparing the
value of u with the value of P ∗(x). If u > P ∗(x) then x is rejected; otherwise
it is accepted, which means that we add x to our set of samples {x(r)}. The
value of u is discarded.

Why does this procedure generate samples from P (x)? The proposed point
(x, u) comes with uniform probability from the lightly shaded area underneath
the curve cQ∗(x) as shown in figure 29.8b. The rejection rule rejects all the
points that lie above the curve P ∗(x). So the points (x, u) that are accepted
are uniformly distributed in the heavily shaded area under P ∗(x). This implies

Algoritmo:
1) Tomamos muestra x de Q(x)
2) Evaluamos cQ*(x) y tomamos

muestra u de Uniforme(0, cQ*(x))
3) Si u > P*(x), rechazamos x, si no,

la aceptamos

Rejection Sampling

Funciona bien si Q es una buena aproximación a P

En muchas dimensiones: por lo general,
difícil incluso hallar c

Si no, c va a tener que ser grande, y
habrá muchos rechazos

-4 -3 -2 -1 0 1 2 3 4

P(x)
cQ(x)

Ej. dos gaussianas, una con desvio 1% mayor

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

29.4: The Metropolis–Hastings method 365

that the probability density of the x-coordinates of the accepted points must
be proportional to P ∗(x), so the samples must be independent samples from
P (x).

Rejection sampling will work best if Q is a good approximation to P . If Q
is very different from P then, for cQ to exceed P everywhere, c will necessarily
have to be large and the frequency of rejection will be large.

-4 -3 -2 -1 0 1 2 3 4

P(x)
cQ(x)

Figure 29.9. A Gaussian P (x) and
a slightly broader Gaussian Q(x)
scaled up by a factor c such that
c Q(x) ≥ P (x).

Rejection sampling in many dimensions

In a high-dimensional problem it is very likely that the requirement that cQ∗

be an upper bound for P ∗ will force c to be so huge that acceptances will be
very rare indeed. Finding such a value of c may be difficult too, since in many
problems we know neither where the modes of P ∗ are located nor how high
they are.

As a case study, consider a pair of N -dimensional Gaussian distributions
with mean zero (figure 29.9). Imagine generating samples from one with stan-
dard deviation σQ and using rejection sampling to obtain samples from the
other whose standard deviation is σP . Let us assume that these two standard
deviations are close in value – say, σQ is 1% larger than σP . [σQ must be larger
than σP because if this is not the case, there is no c such that cQ exceeds P
for all x.] So, what value of c is required if the dimensionality is N = 1000?
The density of Q(x) at the origin is 1/(2πσ2

Q)N/2, so for cQ to exceed P we
need to set

c =
(2πσ2

Q)N/2

(2πσ2
P)N/2

= exp
(

N ln
σQ

σP

)
. (29.30)

With N = 1000 and σQ

σP
= 1.01, we find c = exp(10) ≃ 20,000. What will the

acceptance rate be for this value of c? The answer is immediate: since the
acceptance rate is the ratio of the volume under the curve P (x) to the volume
under cQ(x), the fact that P and Q are both normalized here implies that
the acceptance rate will be 1/c, for example, 1/20,000. In general, c grows
exponentially with the dimensionality N , so the acceptance rate is expected
to be exponentially small in N .

Rejection sampling, therefore, whilst a useful method for one-dimensional
problems, is not expected to be a practical technique for generating samples
from high-dimensional distributions P (x).

29.4 The Metropolis–Hastings method

Importance sampling and rejection sampling work well only if the proposal
density Q(x) is similar to P (x). In large and complex problems it is difficult
to create a single density Q(x) that has this property.

xx(1)

Q(x; x(1))

P ∗(x)

xx(2)

Q(x; x(2))

P ∗(x)

Figure 29.10. Metropolis–Hastings
method in one dimension. The
proposal distribution Q(x′; x) is
here shown as having a shape that
changes as x changes, though this
is not typical of the proposal
densities used in practice.

The Metropolis–Hastings algorithm instead makes use of a proposal den-
sity Q which depends on the current state x(t). The density Q(x′;x(t)) might
be a simple distribution such as a Gaussian centred on the current x(t). The
proposal density Q(x′;x) can be any fixed density from which we can draw
samples. In contrast to importance sampling and rejection sampling, it is not
necessary that Q(x′;x(t)) look at all similar to P (x) in order for the algorithm
to be practically useful. An example of a proposal density is shown in fig-
ure 29.10; this figure shows the density Q(x′;x(t)) for two different states x(1)

and x(2).
As before, we assume that we can evaluate P ∗(x) for any x. A tentative

new state x′ is generated from the proposal density Q(x′;x(t)). To decide

p(x) =
1

(2⇡�2)N/2
e

� x

2

2�2

c crece exponencialmente con la dimensión N
aquí c~1.35 para N=30 pero c~20000 para N=1000

Rejection Sampling

Útil para distribuciones unidimensionales,
pero no para dimensiones altas

Importance Sampling
Técnica para el problema 2, estimar valores esperados de

funciones, no para tomar muestras.

Nuevamente, podemos evaluar P*(x) pero no tomar muestras
de P(x), y contamos con Q(x) de la que podemos tomar

muestras y podemos evaluar Q*(x)

Queremos estimar el
valor esperado de �(x)

x

P ∗(x) Q∗(x)
φ(x)

Queremos estimar el
valor esperado de

Importance Sampling

�(x)

x

P ∗(x) Q∗(x)
φ(x)

Algoritmo:
1) Generar R muestras de Q(x):
2) Computar los pesos de las distintas muestras:

3) Estimar el valor esperado como:

{x(1),x(2), . . . ,x(R)}

�̂ =
1

R

X

r

�(x(r))

wr ⌘ P

⇤(x(r))

Q

⇤(x(r))

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

362 29 — Monte Carlo Methods

But P (x) is too complicated a function for us to be able to sample from it
directly. We now assume that we have a simpler density Q(x) from which we
can generate samples and which we can evaluate to within a multiplicative
constant (that is, we can evaluate Q∗(x), where Q(x) = Q∗(x)/ZQ). An
example of the functions P ∗, Q∗ and φ is shown in figure 29.5. We call Q the

x

P ∗(x) Q∗(x)
φ(x)

Figure 29.5. Functions involved in
importance sampling. We wish to
estimate the expectation of φ(x)
under P (x) ∝ P ∗(x). We can
generate samples from the simpler
distribution Q(x) ∝ Q∗(x). We
can evaluate Q∗ and P ∗ at any
point.

sampler density.
In importance sampling, we generate R samples {x(r)}R

r=1 from Q(x). If
these points were samples from P (x) then we could estimate Φ by equa-
tion (29.6). But when we generate samples from Q, values of x where Q(x) is
greater than P (x) will be over-represented in this estimator, and points where
Q(x) is less than P (x) will be under-represented. To take into account the
fact that we have sampled from the wrong distribution, we introduce weights

wr ≡ P ∗(x(r))
Q∗(x(r))

(29.21)

which we use to adjust the ‘importance’ of each point in our estimator thus:

Φ̂ ≡
∑

r wrφ(x(r))∑
r wr

. (29.22)

◃ Exercise 29.1.[2, p.384] Prove that, if Q(x) is non-zero for all x where P (x) is
non-zero, the estimator Φ̂ converges to Φ, the mean value of φ(x), as R
increases. What is the variance of this estimator, asymptotically? Hint:
consider the statistics of the numerator and the denominator separately.
Is the estimator Φ̂ an unbiased estimator for small R?

A practical difficulty with importance sampling is that it is hard to estimate
how reliable the estimator Φ̂ is. The variance of the estimator is unknown
beforehand, because it depends on an integral over x of a function involving
P ∗(x). And the variance of Φ̂ is hard to estimate, because the empirical
variances of the quantities wr and wrφ(x(r)) are not necessarily a good guide
to the true variances of the numerator and denominator in equation (29.22).
If the proposal density Q(x) is small in a region where |φ(x)P ∗(x)| is large
then it is quite possible, even after many points x(r) have been generated, that
none of them will have fallen in that region. In this case the estimate of Φ
would be drastically wrong, and there would be no indication in the empirical
variance that the true variance of the estimator Φ̂ is large.

(a)
-7.2

-7

-6.8

-6.6

-6.4

-6.2

10 100 1000 10000 100000 1000000

(b)
-7.2

-7

-6.8

-6.6

-6.4

-6.2

10 100 1000 10000 100000 1000000

Figure 29.6. Importance sampling
in action: (a) using a Gaussian
sampler density; (b) using a
Cauchy sampler density. Vertical
axis shows the estimate Φ̂. The
horizontal line indicates the true
value of Φ. Horizontal axis shows
number of samples on a log scale.

Cautionary illustration of importance sampling

In a toy problem related to the modelling of amino acid probability distribu-
tions with a one-dimensional variable x, I evaluated a quantity of interest us-
ing importance sampling. The results using a Gaussian sampler and a Cauchy
sampler are shown in figure 29.6. The horizontal axis shows the number of

Importance Sampling

x

P ∗(x) Q∗(x)
φ(x)

wr ⌘ P

⇤(x(r))

Q

⇤(x(r))

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

362 29 — Monte Carlo Methods

But P (x) is too complicated a function for us to be able to sample from it
directly. We now assume that we have a simpler density Q(x) from which we
can generate samples and which we can evaluate to within a multiplicative
constant (that is, we can evaluate Q∗(x), where Q(x) = Q∗(x)/ZQ). An
example of the functions P ∗, Q∗ and φ is shown in figure 29.5. We call Q the

x

P ∗(x) Q∗(x)
φ(x)

Figure 29.5. Functions involved in
importance sampling. We wish to
estimate the expectation of φ(x)
under P (x) ∝ P ∗(x). We can
generate samples from the simpler
distribution Q(x) ∝ Q∗(x). We
can evaluate Q∗ and P ∗ at any
point.

sampler density.
In importance sampling, we generate R samples {x(r)}R

r=1 from Q(x). If
these points were samples from P (x) then we could estimate Φ by equa-
tion (29.6). But when we generate samples from Q, values of x where Q(x) is
greater than P (x) will be over-represented in this estimator, and points where
Q(x) is less than P (x) will be under-represented. To take into account the
fact that we have sampled from the wrong distribution, we introduce weights

wr ≡ P ∗(x(r))
Q∗(x(r))

(29.21)

which we use to adjust the ‘importance’ of each point in our estimator thus:

Φ̂ ≡
∑

r wrφ(x(r))∑
r wr

. (29.22)

◃ Exercise 29.1.[2, p.384] Prove that, if Q(x) is non-zero for all x where P (x) is
non-zero, the estimator Φ̂ converges to Φ, the mean value of φ(x), as R
increases. What is the variance of this estimator, asymptotically? Hint:
consider the statistics of the numerator and the denominator separately.
Is the estimator Φ̂ an unbiased estimator for small R?

A practical difficulty with importance sampling is that it is hard to estimate
how reliable the estimator Φ̂ is. The variance of the estimator is unknown
beforehand, because it depends on an integral over x of a function involving
P ∗(x). And the variance of Φ̂ is hard to estimate, because the empirical
variances of the quantities wr and wrφ(x(r)) are not necessarily a good guide
to the true variances of the numerator and denominator in equation (29.22).
If the proposal density Q(x) is small in a region where |φ(x)P ∗(x)| is large
then it is quite possible, even after many points x(r) have been generated, that
none of them will have fallen in that region. In this case the estimate of Φ
would be drastically wrong, and there would be no indication in the empirical
variance that the true variance of the estimator Φ̂ is large.

(a)
-7.2

-7

-6.8

-6.6

-6.4

-6.2

10 100 1000 10000 100000 1000000

(b)
-7.2

-7

-6.8

-6.6

-6.4

-6.2

10 100 1000 10000 100000 1000000

Figure 29.6. Importance sampling
in action: (a) using a Gaussian
sampler density; (b) using a
Cauchy sampler density. Vertical
axis shows the estimate Φ̂. The
horizontal line indicates the true
value of Φ. Horizontal axis shows
number of samples on a log scale.

Cautionary illustration of importance sampling

In a toy problem related to the modelling of amino acid probability distribu-
tions with a one-dimensional variable x, I evaluated a quantity of interest us-
ing importance sampling. The results using a Gaussian sampler and a Cauchy
sampler are shown in figure 29.6. The horizontal axis shows the number of

Difícil estimar cuán confiable es el estimador: si Q(x) es chica en un
lugar donde es grande, estimamos mal sin enterarnos..|�(x)P ⇤(x)|

En muchas dimensiones, difícil “embocar” la región típica de
probabilidad de P(x), luego gran variación en los pesos.. Incluso
en la región típica, los pesos difieren por factores de orden exp(

p
N)

Pesos normalizados

w̃r =
RwrP
r0 wr0

Tamaño efectivo de muestra

Re↵ =
R2

P
r w̃

2
r

Entonces.. ¿qué hacemos?

MCMC
Markov Chain Monte Carlo

Cadenas de Markov: la probabilidad del siguiente
estado depende del estado en que estamos

Monte Carlo: Proceso Aleatorio

Algoritmo:
1) Elegir valor inicial x(0)
2) Para t=1…, repetir:

a) Tomar muestra de
b) Calcular la razón de densidades
c) Tomar:

Algoritmo de Metropolis
Nuevamente, somos capaces de evaluar P*(x) en cualquier x

Densidad de propuestas Q(x;x’), que depende del
estado actual x’, y es simétrica en x, x'

r =
P

⇤(x0)

P

⇤(x(t�1))

Q(x0;x(t�1))

x

(t)
=

(
x

0
con probabilidad min(r, 1)

x

(t�1)
en otro caso

Las muestras repetidas no se descartan, son muestras válidas

276 BASICS OF MARKOV CHAIN SIMULATION

Figure 11.1 Five independent sequences of a Markov chain simulation for the bivariate unit normal
distribution, with overdispersed starting points indicated by solid squares. (a) After 50 iterations,
the sequences are still far from convergence. (b) After 1000 iterations, the sequences are nearer to
convergence. Figure (c) shows the iterates from the second halves of the sequences; these represent
a set of (correlated) draws from the target distribution. The points in Figure (c) have been jittered
so that steps in which the random walks stood still are not hidden. The simulation is a Metropolis
algorithm described in the example on page 278, with a jumping rule that has purposely been cho-
sen to be inefficient so that the chains will move slowly and their random-walk-like aspect will be
apparent.

tribution is the specified p(θ|y) and to run the simulation long enough that the distribution
of the current draws is close enough to this stationary distribution. For any specific p(θ|y),
or unnormalized density q(θ|y), a variety of Markov chains with the desired property can
be constructed, as we demonstrate in Sections 11.1–11.3.

Once the simulation algorithm has been implemented and the simulations drawn, it
is absolutely necessary to check the convergence of the simulated sequences; for example,
the simulations of Figure 11.1a are far from convergence and are not close to the target
distribution. We discuss how to check convergence in Section 11.4, and in Section 11.5 we
construct an expression for the effective number of simulation draws for a correlated sample.
If convergence is painfully slow, the algorithm should be altered, as discussed in the next
chapter.

This chapter introduces the basic Markov chain simulation methods—the Gibbs sampler
and the Metropolis-Hastings algorithm—in the context of our general computing approach
based on successive approximation. We sketch a proof of the convergence of Markov chain
simulation algorithms and present a method for monitoring the convergence in practice.
We illustrate these methods in Section 11.6 for a hierarchical normal model. For most of
this chapter we consider simple and familiar (even trivial) examples in order to focus on
the principles of iterative simulation methods as they are used for posterior simulation.
Many examples of these methods appear in the recent statistical literature and also in the
later parts this book. Appendix C shows the details of implementation in the computer
languages R and Stan for the educational testing example from Chapter 5.

11.1 Gibbs sampler

A particular Markov chain algorithm that has been found useful in many multidimensional
problems is the Gibbs sampler, also called alternating conditional sampling, which is defined
in terms of subvectors of θ. Suppose the parameter vector θ has been divided into d
components or subvectors, θ = (θ1, . . . , θd). Each iteration of the Gibbs sampler cycles
through the subvectors of θ, drawing each subset conditional on the value of all the others.
There are thus d steps in iteration t. At each iteration t, an ordering of the d subvectors of
θ is chosen and, in turn, each θtj is sampled from the conditional distribution given all the

Algoritmo de Metropolis Normal bivariada

50 pasos 1000 pasos Muestras

Aquí: saltos pequeños, comportamiento
random walk.. ineficiente

¡Método útil en altas dimensiones!

Algoritmo de Metropolis ¿Por qué funciona?
Esquema de la prueba, en dos pasos:
1) Probar que la secuencia simulada es una cadena de
Markov con una distribución estacionaria única (paso
técnico, usando propiedades de estas cadenas)

2) Probar que la distribución estacionaria de la cadena
es la distribución deseada

⇧(x)Q(x0;x) = ⇧(x0)Q(x;x0) Balance detallado, condición
suficiente para estacionareidad

P

⇤(xb)Q(xa;xb)
P

⇤(xa)

P

⇤(xb)
= P

⇤(xa)Q(xb;xa)

P

⇤(xa)Q(xb;xa)xa ! xb

xb ! xa

Tomamos xa, xb : P
⇤(xb) � P

⇤(xa)

r =
P

⇤(x0)

P

⇤(x(t�1))

Algoritmo:
1) Elegir valor inicial x(0)
2) Para t=1…, repetir:

a) Tomar muestra de
b) Calcular la razón de densidades
c) Tomar:

Algoritmo de Metropolis-Hastings
Similar a Metropolis, sin imponer simetría en la densidad Q(x;x’)

Q(x0;x(t�1))

x

(t)
=

(
x

0
con probabilidad min(r, 1)

x

(t�1)
en otro caso

Las muestras repetidas no se descartan, son muestras válidas

r =
P

⇤(x0)

P

⇤(x(t�1))

Q(x(t�1);x0)

Q(x0;x(t�1))

r =
P

⇤(x0)

P

⇤(x(t�1))

Prueba idéntica, ahora los factores Q en r compensan la falta de simetría

Algoritmo de Gibbs
No podemos muestrear de P(x), pero sí de las

condicionales P(xi|{xj}j≠i)

Muestreamos una a una…

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

29.5: Gibbs sampling 371

new value of x1. This brings us to the new state x(t+1), and completes the
iteration.

In the general case of a system with K variables, a single iteration involves
sampling one parameter at a time:

x(t+1)
1 ∼ P (x1 |x(t)

2 , x(t)
3 , . . . , x(t)

K) (29.35)

x(t+1)
2 ∼ P (x2 |x(t+1)

1 , x(t)
3 , . . . , x(t)

K) (29.36)

x(t+1)
3 ∼ P (x3 |x(t+1)

1 , x(t+1)
2 , . . . , x(t)

K), etc. (29.37)

Convergence of Gibbs sampling to the target density

◃ Exercise 29.4.[2] Show that a single variable-update of Gibbs sampling can
be viewed as a Metropolis method with target density P (x), and that
this Metropolis method has the property that every proposal is always
accepted.

Because Gibbs sampling is a Metropolis method, the probability distribution
of x(t) tends to P (x) as t → ∞, as long as P (x) does not have pathological
properties.

◃ Exercise 29.5.[2, p.385] Discuss whether the syndrome decoding problem for a
(7, 4) Hamming code can be solved using Gibbs sampling. The syndrome
decoding problem, if we are to solve it with a Monte Carlo approach,
is to draw samples from the posterior distribution of the noise vector
n = (n1, . . . , nn, . . . , nN),

P (n | f , z) =
1
Z

N∏

n=1

fnn
n (1 − fn)(1−nn) [Hn=z], (29.38)

where fn is the normalized likelihood for the nth transmitted bit and z
is the observed syndrome. The factor [Hn=z] is 1 if n has the correct
syndrome z and 0 otherwise.

What about the syndrome decoding problem for any linear error-correcting
code?

Gibbs sampling in high dimensions

Gibbs sampling suffers from the same defect as simple Metropolis algorithms
– the state space is explored by a slow random walk, unless a fortuitous pa-
rameterization has been chosen that makes the probability distribution P (x)
separable. If, say, two variables x1 and x2 are strongly correlated, having
marginal densities of width L and conditional densities of width ϵ, then it will
take at least about (L/ϵ)2 iterations to generate an independent sample from
the target density. Figure 30.3, p.390, illustrates the slow progress made by
Gibbs sampling when L ≫ ϵ.

However Gibbs sampling involves no adjustable parameters, so it is an at-
tractive strategy when one wants to get a model running quickly. An excellent
software package, BUGS, makes it easy to set up almost arbitrary probabilistic
models and simulate them by Gibbs sampling (Thomas et al., 1992).1

1http://www.mrc-bsu.cam.ac.uk/bugs/

Prueba de convergencia: cada paso es un método
Metropolis en el que se aceptan todas las propuestas

Algoritmo de Gibbs

GIBBS SAMPLER 277

Figure 11.2 Four independent sequences of the Gibbs sampler for a bivariate normal distribution
with correlation ρ = 0.8, with overdispersed starting points indicated by solid squares. (a) First 10
iterations, showing the componentwise updating of the Gibbs iterations. (b) After 500 iterations,
the sequences have reached approximate convergence. Figure (c) shows the points from the second
halves of the sequences, representing a set of correlated draws from the target distribution.

other components of θ:
p(θj |θt−1

−j , y),

where θt−1
−j represents all the components of θ, except for θj , at their current values:

θt−1
−j = (θt1, . . . , θ

t
j−1, θ

t−1
j+1, . . . , θ

t−1
d).

Thus, each subvector θj is updated conditional on the latest values of the other components
of θ, which are the iteration t values for the components already updated and the iteration
t− 1 values for the others.

For many problems involving standard statistical models, it is possible to sample di-
rectly from most or all of the conditional posterior distributions of the parameters. We
typically construct models using a sequence of conditional probability distributions, as in
the hierarchical models of Chapter 5. It is often the case that the conditional distributions
in such models are conjugate distributions that provide for easy simulation. We present an
example for the hierarchical normal model at the end of this chapter and another detailed
example for a normal-mixture model in Section 22.2. Here, we illustrate the workings of
the Gibbs sampler with a simple example.

Example. Bivariate normal distribution
Consider a single observation (y1, y2) from a bivariate normally distributed population
with unknown mean θ = (θ1, θ2) and known covariance matrix

(1 ρ
ρ 1

)
. With a uniform

prior distribution on θ, the posterior distribution is
(
θ1
θ2

)∣∣∣∣ y ∼ N

((
y1
y2

)
,

(
1 ρ

ρ 1

))
.

Although it is simple to draw directly from the joint posterior distribution of (θ1, θ2),
for the purpose of exposition we demonstrate the Gibbs sampler here. We need the
conditional posterior distributions, which, from the properties of the multivariate nor-
mal distribution (either equation (A.1) or (A.2) on page 580), are

θ1|θ2, y ∼ N(y1 + ρ(θ2 − y2), 1− ρ2)
θ2|θ1, y ∼ N(y2 + ρ(θ1 − y1), 1− ρ2).

The Gibbs sampler proceeds by alternately sampling from these two normal distribu-
tions. In general, we would say that a natural way to start the iterations would be
with random draws from a normal approximation to the posterior distribution; such

10 pasos 50 pasos Muestras

Normal bivariada con corr=0.8

Random walk “cuadrado”

Otras técnicas
• Hamiltonian Monte Carlo (HMC) 

Inspirado en física, usa el momento de las muestras
además de la posición. Método robusto y de uso
general (STAN).

• Sequential Monte Carlo (SMC)  
En lugar de acumular muestras en la historia (MCMC), a
cada paso llevamos una estimación de la distribución.
Ejemplos: particle filters.  
En general, buenos modelos cognitivos, ya que
demandan menos, por lo que son más plausibles como
mecanismo psicológico.

Wagenmakers & Lee: 6.1, 6.2

Práctica

