
Fundamentos de Inferencia Bayesiana 

Modelos Gráficos e Inferencia Exacta



• Los nodos son variables, las aristas codifican 
dependencias. Cuidado: ¡No es causalidad! 

• En particular: Directed Acyclic Graphs (DAGs) 

• Nodos observables y latentes 

• Notación de placas: variables repetidas 

• Convenciones frecuentes:  
gris: observable, blanco: latente.  
circular: continuo, cuadrado: discreto.

Modelos Gráficos Probabilísticos 
(PGMs, Pearl 1998)
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También equivalente…
¡No!

p(A,B,C) = p(C|A,B)p(A)p(B)

Distribuciones vs. DAGs

p(A,B,C) = p(A|B,C)p(B|C)p(C)



“Inversa”: No todas las independencias 
pueden ser capturadas en un DAG

Distribuciones vs. DAGs
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Semántica: independencia condicional…  
Las flechas no necesariamente indican causalidad

6$ DAGsDistribuciones



Inferencia Exacta

Llama el vecino diciendo que sonó la alarma… 
¿Hubo un ladrón?

En la radio reportan que hay un terremoto… 
“Ah, era eso”
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Exact Inference by Complete
Enumeration

We open our toolbox of methods for handling probabilities by discussing a
brute-force inference method: complete enumeration of all hypotheses, and
evaluation of their probabilities. This approach is an exact method, and the
difficulty of carrying it out will motivate the smarter exact and approximate
methods introduced in the following chapters.

21.1 The burglar alarm

Bayesian probability theory is sometimes called ‘common sense, amplified’.
When thinking about the following questions, please ask your common sense
what it thinks the answers are; we will then see how Bayesian methods confirm
your everyday intuition.

❥Earthquake

❅❅❘

❥Burglar

##✠❥Alarm
##✠❥

Radio ❅❅❘ ❥
Phonecall

Figure 21.1. Belief network for the
burglar alarm problem.

Example 21.1. Fred lives in Los Angeles and commutes 60 miles to work.
Whilst at work, he receives a phone-call from his neighbour saying that
Fred’s burglar alarm is ringing. What is the probability that there was
a burglar in his house today? While driving home to investigate, Fred
hears on the radio that there was a small earthquake that day near his
home. ‘Oh’, he says, feeling relieved, ‘it was probably the earthquake
that set off the alarm’. What is the probability that there was a burglar
in his house? (After Pearl, 1988).

Let’s introduce variables b (a burglar was present in Fred’s house today),
a (the alarm is ringing), p (Fred receives a phonecall from the neighbour re-
porting the alarm), e (a small earthquake took place today near Fred’s house),
and r (the radio report of earthquake is heard by Fred). The probability of
all these variables might factorize as follows:

P (b, e, a, p, r) = P (b)P (e)P (a | b, e)P (p | a)P (r | e), (21.1)

and plausible values for the probabilities are:

1. Burglar probability:

P (b=1) = β, P (b=0) = 1 − β, (21.2)

e.g., β = 0.001 gives a mean burglary rate of once every three years.

2. Earthquake probability:

P (e=1) = ϵ, P (e=0) = 1 − ϵ, (21.3)
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Inferencia Exacta

P (b, e, a, p, r) = P (r|p, a, e, b)P (p|a, e, b)P (a|e, b)P (e|b)P (b)

P (b, e, a, p, r) = P (r|e)P (p|a)P (a|e, b)P (e)P (b)

¿Pero por qué? ¿Cuál es el problema?



Midiendo el espacio… 
P (b, e, a, p, r) = P (r|p, a, e, b)P (p|a, e, b)P (a|e, b)P (e|b)P (b)

P (b, e, a, p, r) = P (r|e)P (p|a)P (a|e, b)P (e)P (b)

=       16       +      8      +    4    +   2   + 131

2   +   2   +   4   + 1 + 1 = 10

Redujimos el tamaño del problema 
estableciendo las (in)dependencias



Curse of dimensionality
El espacio de hipótesis crece exponencialmente con 

el número de variables.. Imposible explorarlo 

Blessing of abstraction
Si imponemos estructura, reducimos la 

dimensionalidad efectiva 

Structure x Statistics
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with, e.g., ϵ = 0.001; our assertion that the earthquakes are independent
of burglars, i.e., the prior probability of b and e is P (b, e) = P (b)P (e),
seems reasonable unless we take into account opportunistic burglars who
strike immediately after earthquakes.

3. Alarm ringing probability: we assume the alarm will ring if any of the
following three events happens: (a) a burglar enters the house, and trig-
gers the alarm (let’s assume the alarm has a reliability of αb = 0.99, i.e.,
99% of burglars trigger the alarm); (b) an earthquake takes place, and
triggers the alarm (perhaps αe = 1% of alarms are triggered by earth-
quakes?); or (c) some other event causes a false alarm; let’s assume the
false alarm rate f is 0.001, so Fred has false alarms from non-earthquake
causes once every three years. [This type of dependence of a on b and e
is known as a ‘noisy-or’.] The probabilities of a given b and e are then:

P (a=0 | b= 0, e=0) = (1 − f), P (a=1 | b=0, e=0) = f
P (a=0 | b= 1, e=0) = (1 − f)(1 − αb), P (a=1 | b=1, e=0) = 1 − (1 − f)(1 − αb)
P (a=0 | b= 0, e=1) = (1 − f)(1 − αe), P (a=1 | b=0, e=1) = 1 − (1 − f)(1 − αe)
P (a=0 | b= 1, e=1) = (1 − f)(1 − αb)(1 − αe), P (a=1 | b=1, e=1) = 1 − (1 − f)(1 − αb)(1 − αe)

or, in numbers,

P (a=0 | b= 0, e=0) = 0.999, P (a=1 | b=0, e=0) = 0.001
P (a=0 | b= 1, e=0) = 0.009 99, P (a=1 | b=1, e=0) = 0.990 01
P (a=0 | b= 0, e=1) = 0.989 01, P (a=1 | b=0, e=1) = 0.010 99
P (a=0 | b= 1, e=1) = 0.009 890 1, P (a=1 | b=1, e=1) = 0.990 109 9.

We assume the neighbour would never phone if the alarm is not ringing
[P (p=1 | a=0) = 0]; and that the radio is a trustworthy reporter too
[P (r =1 | e= 0) = 0]; we won’t need to specify the probabilities P (p=1 | a=1)
or P (r =1 | e=1) in order to answer the questions above, since the outcomes
p = 1 and r =1 give us certainty respectively that a=1 and e=1.

We can answer the two questions about the burglar by computing the
posterior probabilities of all hypotheses given the available information. Let’s
start by reminding ourselves that the probability that there is a burglar, before
either p or r is observed, is P (b=1) = β = 0.001, and the probability that an
earthquake took place is P (e=1) = ϵ = 0.001, and these two propositions are
independent.

First, when p=1, we know that the alarm is ringing: a=1. The posterior
probability of b and e becomes:

P (b, e | a= 1) =
P (a=1 | b, e)P (b)P (e)

P (a=1)
. (21.4)

The numerator’s four possible values are

P (a=1 | b=0, e=0) × P (b=0) × P (e=0) = 0.001 × 0.999× 0.999 = 0.000 998
P (a=1 | b=1, e=0) × P (b=1) × P (e=0) = 0.990 01 × 0.001× 0.999 = 0.000 989
P (a=1 | b=0, e=1) × P (b=0) × P (e=1) = 0.010 99 × 0.999× 0.001 = 0.000 010 979
P (a=1 | b=1, e=1) × P (b=1) × P (e=1) = 0.990 109 9× 0.001× 0.001 = 9.9 × 10−7.

The normalizing constant is the sum of these four numbers, P (a=1) = 0.002,
and the posterior probabilities are

P (b=0, e=0 | a=1) = 0.4993
P (b=1, e=0 | a=1) = 0.4947
P (b=0, e=1 | a=1) = 0.0055
P (b=1, e=1 | a=1) = 0.0005.

(21.5)
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f = 0.001 ↵e = 0.01

Poniendo números
P (b, e, a, p, r) = P (r|e)P (p|a)P (a|e, b)P (e)P (b)
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probability of b and e becomes:

P (b, e | a= 1) =
P (a=1 | b, e)P (b)P (e)

P (a=1)
. (21.4)

The numerator’s four possible values are

P (a=1 | b=0, e=0) × P (b=0) × P (e=0) = 0.001 × 0.999× 0.999 = 0.000 998
P (a=1 | b=1, e=0) × P (b=1) × P (e=0) = 0.990 01 × 0.001× 0.999 = 0.000 989
P (a=1 | b=0, e=1) × P (b=0) × P (e=1) = 0.010 99 × 0.999× 0.001 = 0.000 010 979
P (a=1 | b=1, e=1) × P (b=1) × P (e=1) = 0.990 109 9× 0.001× 0.001 = 9.9 × 10−7.

The normalizing constant is the sum of these four numbers, P (a=1) = 0.002,
and the posterior probabilities are

P (b=0, e=0 | a=1) = 0.4993
P (b=1, e=0 | a=1) = 0.4947
P (b=0, e=1 | a=1) = 0.0055
P (b=1, e=1 | a=1) = 0.0005.

(21.5)
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with, e.g., ϵ = 0.001; our assertion that the earthquakes are independent
of burglars, i.e., the prior probability of b and e is P (b, e) = P (b)P (e),
seems reasonable unless we take into account opportunistic burglars who
strike immediately after earthquakes.

3. Alarm ringing probability: we assume the alarm will ring if any of the
following three events happens: (a) a burglar enters the house, and trig-
gers the alarm (let’s assume the alarm has a reliability of αb = 0.99, i.e.,
99% of burglars trigger the alarm); (b) an earthquake takes place, and
triggers the alarm (perhaps αe = 1% of alarms are triggered by earth-
quakes?); or (c) some other event causes a false alarm; let’s assume the
false alarm rate f is 0.001, so Fred has false alarms from non-earthquake
causes once every three years. [This type of dependence of a on b and e
is known as a ‘noisy-or’.] The probabilities of a given b and e are then:

P (a=0 | b= 0, e=0) = (1 − f), P (a=1 | b=0, e=0) = f
P (a=0 | b= 1, e=0) = (1 − f)(1 − αb), P (a=1 | b=1, e=0) = 1 − (1 − f)(1 − αb)
P (a=0 | b= 0, e=1) = (1 − f)(1 − αe), P (a=1 | b=0, e=1) = 1 − (1 − f)(1 − αe)
P (a=0 | b= 1, e=1) = (1 − f)(1 − αb)(1 − αe), P (a=1 | b=1, e=1) = 1 − (1 − f)(1 − αb)(1 − αe)

or, in numbers,

P (a=0 | b= 0, e=0) = 0.999, P (a=1 | b=0, e=0) = 0.001
P (a=0 | b= 1, e=0) = 0.009 99, P (a=1 | b=1, e=0) = 0.990 01
P (a=0 | b= 0, e=1) = 0.989 01, P (a=1 | b=0, e=1) = 0.010 99
P (a=0 | b= 1, e=1) = 0.009 890 1, P (a=1 | b=1, e=1) = 0.990 109 9.

We assume the neighbour would never phone if the alarm is not ringing
[P (p=1 | a=0) = 0]; and that the radio is a trustworthy reporter too
[P (r =1 | e= 0) = 0]; we won’t need to specify the probabilities P (p=1 | a=1)
or P (r =1 | e=1) in order to answer the questions above, since the outcomes
p = 1 and r =1 give us certainty respectively that a=1 and e=1.

We can answer the two questions about the burglar by computing the
posterior probabilities of all hypotheses given the available information. Let’s
start by reminding ourselves that the probability that there is a burglar, before
either p or r is observed, is P (b=1) = β = 0.001, and the probability that an
earthquake took place is P (e=1) = ϵ = 0.001, and these two propositions are
independent.

First, when p=1, we know that the alarm is ringing: a=1. The posterior
probability of b and e becomes:

P (b, e | a= 1) =
P (a=1 | b, e)P (b)P (e)

P (a=1)
. (21.4)

The numerator’s four possible values are

P (a=1 | b=0, e=0) × P (b=0) × P (e=0) = 0.001 × 0.999× 0.999 = 0.000 998
P (a=1 | b=1, e=0) × P (b=1) × P (e=0) = 0.990 01 × 0.001× 0.999 = 0.000 989
P (a=1 | b=0, e=1) × P (b=0) × P (e=1) = 0.010 99 × 0.999× 0.001 = 0.000 010 979
P (a=1 | b=1, e=1) × P (b=1) × P (e=1) = 0.990 109 9× 0.001× 0.001 = 9.9 × 10−7.

The normalizing constant is the sum of these four numbers, P (a=1) = 0.002,
and the posterior probabilities are

P (b=0, e=0 | a=1) = 0.4993
P (b=1, e=0 | a=1) = 0.4947
P (b=0, e=1 | a=1) = 0.0055
P (b=1, e=1 | a=1) = 0.0005.

(21.5)
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Exact Inference by Complete
Enumeration

We open our toolbox of methods for handling probabilities by discussing a
brute-force inference method: complete enumeration of all hypotheses, and
evaluation of their probabilities. This approach is an exact method, and the
difficulty of carrying it out will motivate the smarter exact and approximate
methods introduced in the following chapters.

21.1 The burglar alarm

Bayesian probability theory is sometimes called ‘common sense, amplified’.
When thinking about the following questions, please ask your common sense
what it thinks the answers are; we will then see how Bayesian methods confirm
your everyday intuition.

❥Earthquake

❅❅❘

❥Burglar

##✠❥Alarm
##✠❥

Radio ❅❅❘ ❥
Phonecall

Figure 21.1. Belief network for the
burglar alarm problem.

Example 21.1. Fred lives in Los Angeles and commutes 60 miles to work.
Whilst at work, he receives a phone-call from his neighbour saying that
Fred’s burglar alarm is ringing. What is the probability that there was
a burglar in his house today? While driving home to investigate, Fred
hears on the radio that there was a small earthquake that day near his
home. ‘Oh’, he says, feeling relieved, ‘it was probably the earthquake
that set off the alarm’. What is the probability that there was a burglar
in his house? (After Pearl, 1988).

Let’s introduce variables b (a burglar was present in Fred’s house today),
a (the alarm is ringing), p (Fred receives a phonecall from the neighbour re-
porting the alarm), e (a small earthquake took place today near Fred’s house),
and r (the radio report of earthquake is heard by Fred). The probability of
all these variables might factorize as follows:

P (b, e, a, p, r) = P (b)P (e)P (a | b, e)P (p | a)P (r | e), (21.1)

and plausible values for the probabilities are:

1. Burglar probability:

P (b=1) = β, P (b=0) = 1 − β, (21.2)

e.g., β = 0.001 gives a mean burglary rate of once every three years.

2. Earthquake probability:

P (e=1) = ϵ, P (e=0) = 1 − ϵ, (21.3)

293

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

21

Exact Inference by Complete
Enumeration

We open our toolbox of methods for handling probabilities by discussing a
brute-force inference method: complete enumeration of all hypotheses, and
evaluation of their probabilities. This approach is an exact method, and the
difficulty of carrying it out will motivate the smarter exact and approximate
methods introduced in the following chapters.

21.1 The burglar alarm

Bayesian probability theory is sometimes called ‘common sense, amplified’.
When thinking about the following questions, please ask your common sense
what it thinks the answers are; we will then see how Bayesian methods confirm
your everyday intuition.
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Example 21.1. Fred lives in Los Angeles and commutes 60 miles to work.
Whilst at work, he receives a phone-call from his neighbour saying that
Fred’s burglar alarm is ringing. What is the probability that there was
a burglar in his house today? While driving home to investigate, Fred
hears on the radio that there was a small earthquake that day near his
home. ‘Oh’, he says, feeling relieved, ‘it was probably the earthquake
that set off the alarm’. What is the probability that there was a burglar
in his house? (After Pearl, 1988).

Let’s introduce variables b (a burglar was present in Fred’s house today),
a (the alarm is ringing), p (Fred receives a phonecall from the neighbour re-
porting the alarm), e (a small earthquake took place today near Fred’s house),
and r (the radio report of earthquake is heard by Fred). The probability of
all these variables might factorize as follows:

P (b, e, a, p, r) = P (b)P (e)P (a | b, e)P (p | a)P (r | e), (21.1)

and plausible values for the probabilities are:

1. Burglar probability:

P (b=1) = β, P (b=0) = 1 − β, (21.2)

e.g., β = 0.001 gives a mean burglary rate of once every three years.

2. Earthquake probability:

P (e=1) = ϵ, P (e=0) = 1 − ϵ, (21.3)
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 no hace falta, ya que p=1 => a=1            
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with, e.g., ϵ = 0.001; our assertion that the earthquakes are independent
of burglars, i.e., the prior probability of b and e is P (b, e) = P (b)P (e),
seems reasonable unless we take into account opportunistic burglars who
strike immediately after earthquakes.

3. Alarm ringing probability: we assume the alarm will ring if any of the
following three events happens: (a) a burglar enters the house, and trig-
gers the alarm (let’s assume the alarm has a reliability of αb = 0.99, i.e.,
99% of burglars trigger the alarm); (b) an earthquake takes place, and
triggers the alarm (perhaps αe = 1% of alarms are triggered by earth-
quakes?); or (c) some other event causes a false alarm; let’s assume the
false alarm rate f is 0.001, so Fred has false alarms from non-earthquake
causes once every three years. [This type of dependence of a on b and e
is known as a ‘noisy-or’.] The probabilities of a given b and e are then:

P (a=0 | b= 0, e=0) = (1 − f), P (a=1 | b=0, e=0) = f
P (a=0 | b= 1, e=0) = (1 − f)(1 − αb), P (a=1 | b=1, e=0) = 1 − (1 − f)(1 − αb)
P (a=0 | b= 0, e=1) = (1 − f)(1 − αe), P (a=1 | b=0, e=1) = 1 − (1 − f)(1 − αe)
P (a=0 | b= 1, e=1) = (1 − f)(1 − αb)(1 − αe), P (a=1 | b=1, e=1) = 1 − (1 − f)(1 − αb)(1 − αe)

or, in numbers,

P (a=0 | b= 0, e=0) = 0.999, P (a=1 | b=0, e=0) = 0.001
P (a=0 | b= 1, e=0) = 0.009 99, P (a=1 | b=1, e=0) = 0.990 01
P (a=0 | b= 0, e=1) = 0.989 01, P (a=1 | b=0, e=1) = 0.010 99
P (a=0 | b= 1, e=1) = 0.009 890 1, P (a=1 | b=1, e=1) = 0.990 109 9.

We assume the neighbour would never phone if the alarm is not ringing
[P (p=1 | a=0) = 0]; and that the radio is a trustworthy reporter too
[P (r =1 | e= 0) = 0]; we won’t need to specify the probabilities P (p=1 | a=1)
or P (r =1 | e=1) in order to answer the questions above, since the outcomes
p = 1 and r =1 give us certainty respectively that a=1 and e=1.

We can answer the two questions about the burglar by computing the
posterior probabilities of all hypotheses given the available information. Let’s
start by reminding ourselves that the probability that there is a burglar, before
either p or r is observed, is P (b=1) = β = 0.001, and the probability that an
earthquake took place is P (e=1) = ϵ = 0.001, and these two propositions are
independent.

First, when p=1, we know that the alarm is ringing: a=1. The posterior
probability of b and e becomes:

P (b, e | a= 1) =
P (a=1 | b, e)P (b)P (e)

P (a=1)
. (21.4)

The numerator’s four possible values are

P (a=1 | b=0, e=0) × P (b=0) × P (e=0) = 0.001 × 0.999× 0.999 = 0.000 998
P (a=1 | b=1, e=0) × P (b=1) × P (e=0) = 0.990 01 × 0.001× 0.999 = 0.000 989
P (a=1 | b=0, e=1) × P (b=0) × P (e=1) = 0.010 99 × 0.999× 0.001 = 0.000 010 979
P (a=1 | b=1, e=1) × P (b=1) × P (e=1) = 0.990 109 9× 0.001× 0.001 = 9.9 × 10−7.

The normalizing constant is the sum of these four numbers, P (a=1) = 0.002,
and the posterior probabilities are

P (b=0, e=0 | a=1) = 0.4993
P (b=1, e=0 | a=1) = 0.4947
P (b=0, e=1 | a=1) = 0.0055
P (b=1, e=1 | a=1) = 0.0005.

(21.5)

no hace falta, ya que e=1 => r=1
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with, e.g., ϵ = 0.001; our assertion that the earthquakes are independent
of burglars, i.e., the prior probability of b and e is P (b, e) = P (b)P (e),
seems reasonable unless we take into account opportunistic burglars who
strike immediately after earthquakes.

3. Alarm ringing probability: we assume the alarm will ring if any of the
following three events happens: (a) a burglar enters the house, and trig-
gers the alarm (let’s assume the alarm has a reliability of αb = 0.99, i.e.,
99% of burglars trigger the alarm); (b) an earthquake takes place, and
triggers the alarm (perhaps αe = 1% of alarms are triggered by earth-
quakes?); or (c) some other event causes a false alarm; let’s assume the
false alarm rate f is 0.001, so Fred has false alarms from non-earthquake
causes once every three years. [This type of dependence of a on b and e
is known as a ‘noisy-or’.] The probabilities of a given b and e are then:

P (a=0 | b= 0, e=0) = (1 − f), P (a=1 | b=0, e=0) = f
P (a=0 | b= 1, e=0) = (1 − f)(1 − αb), P (a=1 | b=1, e=0) = 1 − (1 − f)(1 − αb)
P (a=0 | b= 0, e=1) = (1 − f)(1 − αe), P (a=1 | b=0, e=1) = 1 − (1 − f)(1 − αe)
P (a=0 | b= 1, e=1) = (1 − f)(1 − αb)(1 − αe), P (a=1 | b=1, e=1) = 1 − (1 − f)(1 − αb)(1 − αe)

or, in numbers,

P (a=0 | b= 0, e=0) = 0.999, P (a=1 | b=0, e=0) = 0.001
P (a=0 | b= 1, e=0) = 0.009 99, P (a=1 | b=1, e=0) = 0.990 01
P (a=0 | b= 0, e=1) = 0.989 01, P (a=1 | b=0, e=1) = 0.010 99
P (a=0 | b= 1, e=1) = 0.009 890 1, P (a=1 | b=1, e=1) = 0.990 109 9.

We assume the neighbour would never phone if the alarm is not ringing
[P (p=1 | a=0) = 0]; and that the radio is a trustworthy reporter too
[P (r =1 | e= 0) = 0]; we won’t need to specify the probabilities P (p=1 | a=1)
or P (r =1 | e=1) in order to answer the questions above, since the outcomes
p = 1 and r =1 give us certainty respectively that a=1 and e=1.

We can answer the two questions about the burglar by computing the
posterior probabilities of all hypotheses given the available information. Let’s
start by reminding ourselves that the probability that there is a burglar, before
either p or r is observed, is P (b=1) = β = 0.001, and the probability that an
earthquake took place is P (e=1) = ϵ = 0.001, and these two propositions are
independent.

First, when p=1, we know that the alarm is ringing: a=1. The posterior
probability of b and e becomes:

P (b, e | a= 1) =
P (a=1 | b, e)P (b)P (e)

P (a=1)
. (21.4)

The numerator’s four possible values are

P (a=1 | b=0, e=0) × P (b=0) × P (e=0) = 0.001 × 0.999× 0.999 = 0.000 998
P (a=1 | b=1, e=0) × P (b=1) × P (e=0) = 0.990 01 × 0.001× 0.999 = 0.000 989
P (a=1 | b=0, e=1) × P (b=0) × P (e=1) = 0.010 99 × 0.999× 0.001 = 0.000 010 979
P (a=1 | b=1, e=1) × P (b=1) × P (e=1) = 0.990 109 9× 0.001× 0.001 = 9.9 × 10−7.

The normalizing constant is the sum of these four numbers, P (a=1) = 0.002,
and the posterior probabilities are

P (b=0, e=0 | a=1) = 0.4993
P (b=1, e=0 | a=1) = 0.4947
P (b=0, e=1 | a=1) = 0.0055
P (b=1, e=1 | a=1) = 0.0005.

(21.5)

Noisy-OR
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with, e.g., ϵ = 0.001; our assertion that the earthquakes are independent
of burglars, i.e., the prior probability of b and e is P (b, e) = P (b)P (e),
seems reasonable unless we take into account opportunistic burglars who
strike immediately after earthquakes.

3. Alarm ringing probability: we assume the alarm will ring if any of the
following three events happens: (a) a burglar enters the house, and trig-
gers the alarm (let’s assume the alarm has a reliability of αb = 0.99, i.e.,
99% of burglars trigger the alarm); (b) an earthquake takes place, and
triggers the alarm (perhaps αe = 1% of alarms are triggered by earth-
quakes?); or (c) some other event causes a false alarm; let’s assume the
false alarm rate f is 0.001, so Fred has false alarms from non-earthquake
causes once every three years. [This type of dependence of a on b and e
is known as a ‘noisy-or’.] The probabilities of a given b and e are then:

P (a=0 | b= 0, e=0) = (1 − f), P (a=1 | b=0, e=0) = f
P (a=0 | b= 1, e=0) = (1 − f)(1 − αb), P (a=1 | b=1, e=0) = 1 − (1 − f)(1 − αb)
P (a=0 | b= 0, e=1) = (1 − f)(1 − αe), P (a=1 | b=0, e=1) = 1 − (1 − f)(1 − αe)
P (a=0 | b= 1, e=1) = (1 − f)(1 − αb)(1 − αe), P (a=1 | b=1, e=1) = 1 − (1 − f)(1 − αb)(1 − αe)

or, in numbers,

P (a=0 | b= 0, e=0) = 0.999, P (a=1 | b=0, e=0) = 0.001
P (a=0 | b= 1, e=0) = 0.009 99, P (a=1 | b=1, e=0) = 0.990 01
P (a=0 | b= 0, e=1) = 0.989 01, P (a=1 | b=0, e=1) = 0.010 99
P (a=0 | b= 1, e=1) = 0.009 890 1, P (a=1 | b=1, e=1) = 0.990 109 9.

We assume the neighbour would never phone if the alarm is not ringing
[P (p=1 | a=0) = 0]; and that the radio is a trustworthy reporter too
[P (r =1 | e= 0) = 0]; we won’t need to specify the probabilities P (p=1 | a=1)
or P (r =1 | e=1) in order to answer the questions above, since the outcomes
p = 1 and r =1 give us certainty respectively that a=1 and e=1.

We can answer the two questions about the burglar by computing the
posterior probabilities of all hypotheses given the available information. Let’s
start by reminding ourselves that the probability that there is a burglar, before
either p or r is observed, is P (b=1) = β = 0.001, and the probability that an
earthquake took place is P (e=1) = ϵ = 0.001, and these two propositions are
independent.

First, when p=1, we know that the alarm is ringing: a=1. The posterior
probability of b and e becomes:

P (b, e | a= 1) =
P (a=1 | b, e)P (b)P (e)

P (a=1)
. (21.4)

The numerator’s four possible values are

P (a=1 | b=0, e=0) × P (b=0) × P (e=0) = 0.001 × 0.999× 0.999 = 0.000 998
P (a=1 | b=1, e=0) × P (b=1) × P (e=0) = 0.990 01 × 0.001× 0.999 = 0.000 989
P (a=1 | b=0, e=1) × P (b=0) × P (e=1) = 0.010 99 × 0.999× 0.001 = 0.000 010 979
P (a=1 | b=1, e=1) × P (b=1) × P (e=1) = 0.990 109 9× 0.001× 0.001 = 9.9 × 10−7.

The normalizing constant is the sum of these four numbers, P (a=1) = 0.002,
and the posterior probabilities are

P (b=0, e=0 | a=1) = 0.4993
P (b=1, e=0 | a=1) = 0.4947
P (b=0, e=1 | a=1) = 0.0055
P (b=1, e=1 | a=1) = 0.0005.

(21.5)

Luego del llamado…
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with, e.g., ϵ = 0.001; our assertion that the earthquakes are independent
of burglars, i.e., the prior probability of b and e is P (b, e) = P (b)P (e),
seems reasonable unless we take into account opportunistic burglars who
strike immediately after earthquakes.

3. Alarm ringing probability: we assume the alarm will ring if any of the
following three events happens: (a) a burglar enters the house, and trig-
gers the alarm (let’s assume the alarm has a reliability of αb = 0.99, i.e.,
99% of burglars trigger the alarm); (b) an earthquake takes place, and
triggers the alarm (perhaps αe = 1% of alarms are triggered by earth-
quakes?); or (c) some other event causes a false alarm; let’s assume the
false alarm rate f is 0.001, so Fred has false alarms from non-earthquake
causes once every three years. [This type of dependence of a on b and e
is known as a ‘noisy-or’.] The probabilities of a given b and e are then:

P (a=0 | b= 0, e=0) = (1 − f), P (a=1 | b=0, e=0) = f
P (a=0 | b= 1, e=0) = (1 − f)(1 − αb), P (a=1 | b=1, e=0) = 1 − (1 − f)(1 − αb)
P (a=0 | b= 0, e=1) = (1 − f)(1 − αe), P (a=1 | b=0, e=1) = 1 − (1 − f)(1 − αe)
P (a=0 | b= 1, e=1) = (1 − f)(1 − αb)(1 − αe), P (a=1 | b=1, e=1) = 1 − (1 − f)(1 − αb)(1 − αe)

or, in numbers,

P (a=0 | b= 0, e=0) = 0.999, P (a=1 | b=0, e=0) = 0.001
P (a=0 | b= 1, e=0) = 0.009 99, P (a=1 | b=1, e=0) = 0.990 01
P (a=0 | b= 0, e=1) = 0.989 01, P (a=1 | b=0, e=1) = 0.010 99
P (a=0 | b= 1, e=1) = 0.009 890 1, P (a=1 | b=1, e=1) = 0.990 109 9.

We assume the neighbour would never phone if the alarm is not ringing
[P (p=1 | a=0) = 0]; and that the radio is a trustworthy reporter too
[P (r =1 | e= 0) = 0]; we won’t need to specify the probabilities P (p=1 | a=1)
or P (r =1 | e=1) in order to answer the questions above, since the outcomes
p = 1 and r =1 give us certainty respectively that a=1 and e=1.

We can answer the two questions about the burglar by computing the
posterior probabilities of all hypotheses given the available information. Let’s
start by reminding ourselves that the probability that there is a burglar, before
either p or r is observed, is P (b=1) = β = 0.001, and the probability that an
earthquake took place is P (e=1) = ϵ = 0.001, and these two propositions are
independent.

First, when p=1, we know that the alarm is ringing: a=1. The posterior
probability of b and e becomes:

P (b, e | a= 1) =
P (a=1 | b, e)P (b)P (e)

P (a=1)
. (21.4)

The numerator’s four possible values are

P (a=1 | b=0, e=0) × P (b=0) × P (e=0) = 0.001 × 0.999× 0.999 = 0.000 998
P (a=1 | b=1, e=0) × P (b=1) × P (e=0) = 0.990 01 × 0.001× 0.999 = 0.000 989
P (a=1 | b=0, e=1) × P (b=0) × P (e=1) = 0.010 99 × 0.999× 0.001 = 0.000 010 979
P (a=1 | b=1, e=1) × P (b=1) × P (e=1) = 0.990 109 9× 0.001× 0.001 = 9.9 × 10−7.

The normalizing constant is the sum of these four numbers, P (a=1) = 0.002,
and the posterior probabilities are

P (b=0, e=0 | a=1) = 0.4993
P (b=1, e=0 | a=1) = 0.4947
P (b=0, e=1 | a=1) = 0.0055
P (b=1, e=1 | a=1) = 0.0005.

(21.5)

¿Cuál es la probabilidad de que haya entrado un ladrón?
Marginalizamos…
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To answer the question, ‘what’s the probability a burglar was there?’ we
marginalize over the earthquake variable e:

P (b=0 | a=1) = P (b=0, e=0 | a=1) + P (b=0, e=1 | a=1) = 0.505
P (b=1 | a=1) = P (b=1, e=0 | a=1) + P (b=1, e=1 | a=1) = 0.495.

(21.6)
So there is nearly a 50% chance that there was a burglar present. It is impor-
tant to note that the variables b and e, which were independent a priori, are
now dependent. The posterior distribution (21.5) is not a separable function of
b and e. This fact is illustrated most simply by studying the effect of learning
that e = 1.

When we learn e=1, the posterior probability of b is given by
P (b | e= 1, a=1) = P (b, e=1 | a=1)/P (e= 1 | a=1), i.e., by dividing the bot-
tom two rows of (21.5), by their sum P (e=1 | a=1) = 0.0060. The posterior
probability of b is:

P (b=0 | e=1, a=1) = 0.92
P (b=1 | e=1, a=1) = 0.08. (21.7)

There is thus now an 8% chance that a burglar was in Fred’s house. It is
in accordance with everyday intuition that the probability that b=1 (a pos-
sible cause of the alarm) reduces when Fred learns that an earthquake, an
alternative explanation of the alarm, has happened.

Explaining away

This phenomenon, that one of the possible causes (b=1) of some data (the
data in this case being a=1) becomes less probable when another of the causes
(e=1) becomes more probable, even though those two causes were indepen-
dent variables a priori, is known as explaining away. Explaining away is an
important feature of correct inferences, and one that any artificial intelligence
should replicate.

If we believe that the neighbour and the radio service are unreliable or
capricious, so that we are not certain that the alarm really is ringing or that
an earthquake really has happened, the calculations become more complex,
but the explaining-away effect persists; the arrival of the earthquake report r
simultaneously makes it more probable that the alarm truly is ringing, and
less probable that the burglar was present.

In summary, we solved the inference questions about the burglar by enu-
merating all four hypotheses about the variables (b, e), finding their posterior
probabilities, and marginalizing to obtain the required inferences about b.

◃ Exercise 21.2.[2 ] After Fred receives the phone-call about the burglar alarm,
but before he hears the radio report, what, from his point of view, is the
probability that there was a small earthquake today?

21.2 Exact inference for continuous hypothesis spaces

Many of the hypothesis spaces we will consider are naturally thought of as
continuous. For example, the unknown decay length λ of section 3.1 (p.48)
lives in a continuous one-dimensional space; and the unknown mean and stan-
dard deviation of a Gaussian µ,σ live in a continuous two-dimensional space.
In any practical computer implementation, such continuous spaces will neces-
sarily be discretized, however, and so can, in principle, be enumerated – at a
grid of parameter values, for example. In figure 3.2 we plotted the likelihood

Luego del reporte en la radio…
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“Explaining away” 
Una de las posibles causas de un efecto 
se vuelve menos probable cuando otra 

causa se vuelve más probable



Patrones de inferencia
• Explaining away: una de las posibles causas de un efecto 

se vuelve menos probable cuando otra causa se vuelve 
más probable 
  

• Screening off: dos variables dependientes sólo a través de 
una tercera variable se vuelven independientes 
condicionadas a la observación de esa variable (en causa 
común como en cadenas) 

• Non-monotonic reasoning: agregar una hipótesis puede 
reducir el número de conclusiones a las que se puede 
llegar (imposible en primer orden). Ejemplo: Tweety ave, 
Tweety avestruz 



De vuelta a la binomial.. ahora con n desconocido

k ⇠ Binomial(�, n)

� ⇠ Uniforme(0, 1)

n ⇠ Uniforme(1, N
max

)

✓ n

k



Ejemplo con varias observaciones (encuesta)

� ⇠ Uniforme(0, 1)

n ⇠ Uniforme(1, N
max

)
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k

ki ⇠ Binomial(�, n)

i = 1, . . . ,m



Summarizing Joint Distributions
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Figure 3.10: Joint posterior distribution (scatterplot) of the probability of return θ and the number
of surveys m for observed counts k = {16, 18, 22, 25, 27}. The histograms show the marginal
densities. The red cross shows the expected value of the joint posterior, and the green circle shows
the mode (i.e., maximum likelihood), both estimated from the posterior samples.

For this example, it is intuitively obvious why the joint posterior distribution has the clear non-linear
structure it does. One possible way in which 20 surveys might be returned is if there were only about 50
surveys, but 40% were returned. Another possibility is that there were 500 surveys, but only a 4% return
rate. In general, the number and return rate can trade-off against each other, sweeping out the joint posterior
distribution seen in Figure 3.10.

Exercises

1. The basic moral of this example is that it is often worth thinking about joint posterior distributions
over model parameters. In this case the marginal posterior distributions are probably misleading.
Potentially even more misleading are common (and often perfectly appropriate) point estimates of
the joint distribution. The red cross in Figure 3.10 shows the expected value of the joint posterior, as
estimated from the samples. Notice that it does not even lie in a region of the parameter space with
any posterior mass. Does this make sense?

2. The green circle in Figure 3.8 shows an approximation to the mode (i.e., the sample with maximum
likelihood) from the joint posterior samples. Does this make sense?

3. Try the very slightly changed data k = {16, 18, 22, 25, 28}. How does this change the joint posterior,
the marginal posteriors, the expected point, and the maximum likelihood point? If you were com-
fortable with the mode, are you still comfortable? [This example is based heavily on one I read in

35
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media

¡Atención a la conjunta! (problemático con muchas variables..)

k = {16, 18, 22, 25, 27}



Wagenmakers & Lee: 3.4, 3.5

Práctica
A B

C

D

Muestre cómo se simplifica la probabilidad 
conjunta usando las independencias 

condicionales codificadas en el DAG. 
  

Escriba primero una expresión general sin usar 
las independencias, y luego otra utilizándolas. 

Cuente el número de entradas en cada 
expresión asumiendo variables ternarias.


