Fundamentos de Inferencia Bayesiana

Modelos Gráficos e Inferencia Exacta

Modelos Gráficos Probabilísticos (*PGMs, Pearl* 1998)

- Los nodos son variables, las aristas codifican dependencias. Cuidado: ¡No es *causalidad*!
- En particular: Directed Acyclic Graphs (DAGs)
- Nodos *observables* y *latentes*
- Notación de *placas*: variables repetidas
- Convenciones frecuentes: gris: observable, blanco: latente. circular: continuo, cuadrado: discreto.

"Inversa": No todas las independencias pueden ser capturadas en un DAG

Semántica: independencia condicional... Las flechas no necesariamente indican causalidad

Inferencia Exacta

Llama el vecino diciendo que sonó la alarma... ¿Hubo un ladrón?

En la radio reportan que hay un terremoto... "Ah, era eso"

Inferencia Exacta

P(b, e, a, p, r) = P(r|p, a, e, b)P(p|a, e, b)P(a|e, b)P(e|b)P(b) \downarrow P(b, e, a, p, r) = P(r|e)P(p|a)P(a|e, b)P(e)P(b) \downarrow Pero por qué? \downarrow Cuál es el problema?

Midiendo el espacio...

P(b, e, a, p, r) = P(r|p, a, e, b)P(p|a, e, b)P(a|e, b)P(e|b)P(b)

31 = 16 + 8 + 4 + 2 + 1

P(b, e, a, p, r) = P(r|e)P(p|a)P(a|e, b)P(e)P(b)2 + 2 + 4 + 1 + 1 = 10

Redujimos el tamaño del problema estableciendo las (in)dependencias

Curse of dimensionality

El espacio de hipótesis crece exponencialmente con el número de variables.. Imposible explorarlo

Blessing of abstraction

Si imponemos estructura, reducimos la dimensionalidad efectiva

Structure x Statistics

Poniendo números

P(b, e, a, p, r) = P(r|e)P(p|a)P(a|e, b)P(e)P(b)

 $\begin{array}{ll} P(b=1)=\beta, & P(b=0)=1-\beta & \beta=0.001 & (\text{un robo cada} \\ P(e=1)=\epsilon, & P(e=0)=1-\epsilon & \epsilon=0.001 & \text{tres años}) \end{array}$

 $P(a=0 | b=0, e=0) = (1-f), \qquad P(a=1 | b=0, e=0) = f$ $P(a=0 | b=1, e=0) = (1-f)(1-\alpha_b), \qquad P(a=1 | b=1, e=0) = 1-(1-f)(1-\alpha_b)$ $P(a=0 | b=1, e=1) = (1-f)(1-\alpha_e), \qquad P(a=1 | b=0, e=1) = 1-(1-f)(1-\alpha_e)$ $P(a=0 | b=1, e=1) = (1-f)(1-\alpha_b)(1-\alpha_e), \qquad P(a=1 | b=1, e=1) = 1-(1-f)(1-\alpha_b)(1-\alpha_e)$ $f = 0.001 \qquad \alpha_b = 0.99 \qquad \alpha_e = 0.01 \qquad \bigvee$ P(p=1 | a=0) = 0 P(a=0 | b=0, e=1) = 0

P(p=1 | a=1) no hace falta, ya que p=1 => a=1

$$P(r=1 | e=0) = 0$$

 $P(r=1 | e=1)$ no hace falta, ya que $e=1 => r=1$

Luego del llamado...

$$P(b, e \mid a = 1) = \frac{P(a = 1 \mid b, e)P(b)P(e)}{P(a = 1)} \qquad P(b = 1, e = 0 \mid a = 1) = 0.4947$$
$$P(b = 0, e = 1 \mid a = 1) = 0.0055$$
$$P(b = 1, e = 1 \mid a = 1) = 0.0005$$

¿Cuál es la probabilidad de que haya entrado un ladrón? Marginalizamos...

$$\begin{array}{rcl} P(b=0 \mid a=1) &=& P(b=0, \ e=0 \mid a=1) + P(b=0, \ e=1 \mid a=1) &=& 0.505 \\ P(b=1 \mid a=1) &=& P(b=1, \ e=0 \mid a=1) + P(b=1, \ e=1 \mid a=1) &=& 0.495 \end{array}$$

Luego del reporte en la radio...

$$P(b \mid e = 1, a = 1) = P(b, e = 1 \mid a = 1) / P(e = 1 \mid a = 1)$$

$$P(b=0 | e=1, a=1) = 0.92$$

$$P(b=1 | e=1, a=1) = 0.08$$

"Explaining away" Una de las posibles causas de un efecto se vuelve *menos* probable cuando otra causa se vuelve *más* probable

P(b=0, e=0 | a=1) =

0.4993

Patrones de inferencia

- Explaining away: una de las posibles causas de un efecto se vuelve menos probable cuando otra causa se vuelve más probable
- Screening off: dos variables dependientes sólo a través de una tercera variable se vuelven independientes condicionadas a la observación de esa variable (en causa común como en cadenas)
- Non-monotonic reasoning: agregar una hipótesis puede reducir el número de conclusiones a las que se puede llegar (imposible en primer orden). Ejemplo: Tweety ave, Tweety avestruz

De vuelta a la binomial.. ahora con n desconocido

 $k \sim \text{Binomial}(\theta, n)$ $\theta \sim \text{Uniforme}(0, 1)$ $n \sim \text{Uniforme}(1, N_{max})$

Ejemplo con varias observaciones (encuesta)

 $k_i \sim \text{Binomial}(\theta, n)$ $\theta \sim \text{Uniforme}(0, 1)$ $n \sim \text{Uniforme}(1, N_{max})$

 $k = \{16, 18, 22, 25, 27\}$

¡Atención a la conjunta! (problemático con muchas variables..)

Práctica

Muestre cómo se simplifica la probabilidad conjunta usando las independencias condicionales codificadas en el DAG.

Escriba primero una expresión general sin usar las independencias, y luego otra utilizándolas.

Cuente el número de entradas en cada expresión asumiendo variables *ternarias.*

Wagenmakers & Lee: 3.4, 3.5