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En principio, un problema jerárquico
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¿Cuántas cajas hay atrás del árbol?



Occam: prefiramos la explicación más simple

Dirac: porque es más bella 
o: ¡porque esta estrategia viene funcionando bien!

Inferencia Bayesiana: lo dice la cuenta
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Figure 28.3. Why Bayesian
inference embodies Occam’s razor.
This figure gives the basic
intuition for why complex models
can turn out to be less probable.
The horizontal axis represents the
space of possible data sets D.
Bayes’ theorem rewards models in
proportion to how much they
predicted the data that occurred.
These predictions are quantified
by a normalized probability
distribution on D. This
probability of the data given
model Hi, P (D |Hi), is called the
evidence for Hi.
A simple model H1 makes only a
limited range of predictions,
shown by P (D |H1); a more
powerful model H2, that has, for
example, more free parameters
than H1, is able to predict a
greater variety of data sets. This
means, however, that H2 does not
predict the data sets in region C1

as strongly as H1. Suppose that
equal prior probabilities have been
assigned to the two models. Then,
if the data set falls in region C1,
the less powerful model H1 will be
the more probable model.

(Paul Dirac)); the second reason is the past empirical success of Occam’s razor.
However there is a different justification for Occam’s razor, namely:

Coherent inference (as embodied by Bayesian probability) auto-
matically embodies Occam’s razor, quantitatively.

It is indeed more probable that there’s one box behind the tree, and we can
compute how much more probable one is than two.

Model comparison and Occam’s razor

We evaluate the plausibility of two alternative theories H1 and H2 in the light
of data D as follows: using Bayes’ theorem, we relate the plausibility of model
H1 given the data, P (H1 |D), to the predictions made by the model about
the data, P (D |H1), and the prior plausibility of H1, P (H1). This gives the
following probability ratio between theory H1 and theory H2:

P (H1 |D)
P (H2 |D)

=
P (H1)
P (H2)

P (D |H1)
P (D |H2)

. (28.1)

The first ratio (P (H1)/P (H2)) on the right-hand side measures how much our
initial beliefs favoured H1 over H2. The second ratio expresses how well the
observed data were predicted by H1, compared to H2.

How does this relate to Occam’s razor, when H1 is a simpler model than
H2? The first ratio (P (H1)/P (H2)) gives us the opportunity, if we wish, to
insert a prior bias in favour of H1 on aesthetic grounds, or on the basis of
experience. This would correspond to the aesthetic and empirical motivations
for Occam’s razor mentioned earlier. But such a prior bias is not necessary:
the second ratio, the data-dependent factor, embodies Occam’s razor auto-
matically. Simple models tend to make precise predictions. Complex models,
by their nature, are capable of making a greater variety of predictions (figure
28.3). So if H2 is a more complex model, it must spread its predictive proba-
bility P (D |H2) more thinly over the data space than H1. Thus, in the case
where the data are compatible with both theories, the simpler H1 will turn out
more probable than H2, without our having to express any subjective dislike
for complex models. Our subjective prior just needs to assign equal prior prob-
abilities to the possibilities of simplicity and complexity. Probability theory
then allows the observed data to express their opinion.

Let us turn to a simple example. Here is a sequence of numbers:

−1, 3, 7, 11.

The task is to predict the next two numbers, and infer the underlying process
that gave rise to this sequence. A popular answer to this question is the
prediction ‘15, 19’, with the explanation ‘add 4 to the previous number’.

What about the alternative answer ‘−19.9, 1043.8’ with the underlying
rule being: ‘get the next number from the previous number, x, by evaluating

Caricatura de modelos 
sencillos

Bayes Factor



-1, 3, 7, 11, ...
¿Cuáles son los próximos dos números de la secuencia?

15, 19
sumar 4 al anterior

-19.9, 1043.8
evaluar sobre el anterior x:

�x

3
/11 + 9/11x2 + 23/11

Formalizando: 
progresión aritmética, sumar n 
función cúbica a partir del anterior 
(con c, d, e: fracciones)

x ! cx

3 + dx

2 + e

Ha

Hc

¡¡Tomemos priors iguales!!



(Tomamos intervalos -50 a 50)

progresión aritmética, sumar n 
función cúbica a partir del anterior 
(con c, d, e: fracciones)

x ! cx

3 + dx

2 + e

Ha

Hc
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−x3/11 + 9/11x2 + 23/11’? I assume that this prediction seems rather less
plausible. But the second rule fits the data (−1, 3, 7, 11) just as well as the
rule ‘add 4’. So why should we find it less plausible? Let us give labels to the
two general theories:

Ha – the sequence is an arithmetic progression, ‘add n’, where n is an integer.

Hc – the sequence is generated by a cubic function of the form x → cx3 +
dx2 + e, where c, d and e are fractions.

One reason for finding the second explanation, Hc, less plausible, might be
that arithmetic progressions are more frequently encountered than cubic func-
tions. This would put a bias in the prior probability ratio P (Ha)/P (Hc) in
equation (28.1). But let us give the two theories equal prior probabilities, and
concentrate on what the data have to say. How well did each theory predict
the data?

To obtain P (D |Ha) we must specify the probability distribution that each
model assigns to its parameters. First, Ha depends on the added integer n,
and the first number in the sequence. Let us say that these numbers could
each have been anywhere between −50 and 50. Then since only the pair of
values {n=4, first number= − 1} give rise to the observed data D = (−1, 3,
7, 11), the probability of the data, given Ha, is:

P (D |Ha) =
1

101
1

101
= 0.00010. (28.2)

To evaluate P (D |Hc), we must similarly say what values the fractions c, d
and e might take on. [I choose to represent these numbers as fractions rather
than real numbers because if we used real numbers, the model would assign,
relative to Ha, an infinitesimal probability to D. Real parameters are the
norm however, and are assumed in the rest of this chapter.] A reasonable
prior might state that for each fraction the numerator could be any number
between −50 and 50, and the denominator is any number between 1 and 50.
As for the initial value in the sequence, let us leave its probability distribution
the same as in Ha. There are four ways of expressing the fraction c = −1/11 =
−2/22 = −3/33 = −4/44 under this prior, and similarly there are four and two
possible solutions for d and e, respectively. So the probability of the observed
data, given Hc, is found to be:

P (D |Hc) =
(

1
101

)(
4

101
1
50

)(
4

101
1
50

)(
2

101
1
50

)

= 0.0000000000025 = 2.5 × 10−12. (28.3)

Thus comparing P (D |Hc) with P (D |Ha) = 0.00010, even if our prior prob-
abilities for Ha and Hc are equal, the odds, P (D |Ha) : P (D |Hc), in favour
of Ha over Hc, given the sequence D = (−1, 3, 7, 11), are about forty million
to one. ✷

This answer depends on several subjective assumptions; in particular, the
probability assigned to the free parameters n, c, d, e of the theories. Bayesians
make no apologies for this: there is no such thing as inference or prediction
without assumptions. However, the quantitative details of the prior proba-
bilities have no effect on the qualitative Occam’s razor effect; the complex
theory Hc always suffers an ‘Occam factor’ because it has more parameters,
and so can predict a greater variety of data sets (figure 28.3). This was only
a small example, and there were only four data points; as we move to larger

dónde empiezo y 
cuánto salto

Calculamos la Evidencia para cada modelo
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abilities for Ha and Hc are equal, the odds, P (D |Ha) : P (D |Hc), in favour
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to one. ✷

This answer depends on several subjective assumptions; in particular, the
probability assigned to the free parameters n, c, d, e of the theories. Bayesians
make no apologies for this: there is no such thing as inference or prediction
without assumptions. However, the quantitative details of the prior proba-
bilities have no effect on the qualitative Occam’s razor effect; the complex
theory Hc always suffers an ‘Occam factor’ because it has more parameters,
and so can predict a greater variety of data sets (figure 28.3). This was only
a small example, and there were only four data points; as we move to larger

c d e

Los odds son de 40 millones a 1..
Lo mismo pasa en la ciencia: Copérnico vs. epiciclos



Inferencia en dos niveles

1) Ajuste de Modelos
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expectation of a ‘loss function’. This chapter concerns inference alone and no
loss functions are involved. When we discuss model comparison, this should
not be construed as implying model choice. Ideal Bayesian predictions do not
involve choice between models; rather, predictions are made by summing over
all the alternative models, weighted by their probabilities.

Bayesian methods are able consistently and quantitatively to solve both
the inference tasks. There is a popular myth that states that Bayesian meth-
ods differ from orthodox statistical methods only by the inclusion of subjective
priors, which are difficult to assign, and which usually don’t make much dif-
ference to the conclusions. It is true that, at the first level of inference, a
Bayesian’s results will often differ little from the outcome of an orthodox at-
tack. What is not widely appreciated is how a Bayesian performs the second
level of inference; this chapter will therefore focus on Bayesian model compar-
ison.

Model comparison is a difficult task because it is not possible simply to
choose the model that fits the data best: more complex models can always
fit the data better, so the maximum likelihood model choice would lead us
inevitably to implausible, over-parameterized models, which generalize poorly.
Occam’s razor is needed.

Let us write down Bayes’ theorem for the two levels of inference described
above, so as to see explicitly how Bayesian model comparison works. Each
model Hi is assumed to have a vector of parameters w. A model is defined
by a collection of probability distributions: a ‘prior’ distribution P (w |Hi),
which states what values the model’s parameters might be expected to take;
and a set of conditional distributions, one for each value of w, defining the
predictions P (D |w,Hi) that the model makes about the data D.

1. Model fitting. At the first level of inference, we assume that one model,
the ith, say, is true, and we infer what the model’s parameters w might
be, given the data D. Using Bayes’ theorem, the posterior probability
of the parameters w is:

P (w |D,Hi) =
P (D |w,Hi)P (w |Hi)

P (D |Hi)
, (28.4)

that is,

Posterior =
Likelihood × Prior

Evidence
.

The normalizing constant P (D |Hi) is commonly ignored since it is irrel-
evant to the first level of inference, i.e., the inference of w; but it becomes
important in the second level of inference, and we name it the evidence
for Hi. It is common practice to use gradient-based methods to find the
maximum of the posterior, which defines the most probable value for the
parameters, wMP; it is then usual to summarize the posterior distribution
by the value of wMP, and error bars or confidence intervals on these best-
fit parameters. Error bars can be obtained from the curvature of the pos-
terior; evaluating the Hessian at wMP, A = −∇∇ lnP (w |D,Hi)|wMP

,
and Taylor-expanding the log posterior probability with ∆w = w−wMP:

P (w |D,Hi) ≃ P (wMP |D,Hi) exp
(
−1/2∆wTA∆w

)
, (28.5)

we see that the posterior can be locally approximated as a Gaussian
with covariance matrix (equivalent to error bars) A−1. [Whether this
approximation is good or not will depend on the problem we are solv-
ing. Indeed, the maximum and mean of the posterior distribution have
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σw
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P (w |Hi)
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Figure 28.5. The Occam factor.
This figure shows the quantities
that determine the Occam factor
for a hypothesis Hi having a
single parameter w. The prior
distribution (solid line) for the
parameter has width σw. The
posterior distribution (dashed
line) has a single peak at wMP

with characteristic width σw|D.
The Occam factor is

σw|DP (wMP |Hi) =
σw|D

σw
.

no fundamental status in Bayesian inference – they both change under
nonlinear reparameterizations. Maximization of a posterior probabil-
ity is useful only if an approximation like equation (28.5) gives a good
summary of the distribution.]

2. Model comparison. At the second level of inference, we wish to infer
which model is most plausible given the data. The posterior probability
of each model is:

P (Hi |D) ∝ P (D |Hi)P (Hi). (28.6)

Notice that the data-dependent term P (D |Hi) is the evidence for Hi,
which appeared as the normalizing constant in (28.4). The second term,
P (Hi), is the subjective prior over our hypothesis space, which expresses
how plausible we thought the alternative models were before the data
arrived. Assuming that we choose to assign equal priors P (Hi) to the
alternative models, models Hi are ranked by evaluating the evidence. The
normalizing constant P (D) =

∑
i P (D |Hi)P (Hi) has been omitted from

equation (28.6) because in the data-modelling process we may develop
new models after the data have arrived, when an inadequacy of the first
models is detected, for example. Inference is open ended: we continually
seek more probable models to account for the data we gather.

To repeat the key idea: to rank alternative models Hi, a Bayesian eval-
uates the evidence P (D |Hi). This concept is very general: the ev-
idence can be evaluated for parametric and ‘non-parametric’ models
alike; whatever our data-modelling task, a regression problem, a clas-
sification problem, or a density estimation problem, the evidence is a
transportable quantity for comparing alternative models. In all these
cases the evidence naturally embodies Occam’s razor.

Evaluating the evidence

Let us now study the evidence more closely to gain insight into how the
Bayesian Occam’s razor works. The evidence is the normalizing constant for
equation (28.4):

P (D |Hi) =
∫

P (D |w,Hi)P (w |Hi) dw. (28.7)

For many problems the posterior P (w |D,Hi) ∝ P (D |w,Hi)P (w |Hi) has
a strong peak at the most probable parameters wMP (figure 28.5). Then,
taking for simplicity the one-dimensional case, the evidence can be approx-
imated, using Laplace’s method, by the height of the peak of the integrand
P (D |w,Hi)P (w |Hi) times its width, σw|D:
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P (D |Hi) ≃ P (D |wMP,Hi)︸ ︷︷ ︸ × P (wMP |Hi)σw|D︸ ︷︷ ︸
.

Evidence ≃ Best fit likelihood × Occam factor

(28.8)

Thus the evidence is found by taking the best-fit likelihood that the model
can achieve and multiplying it by an ‘Occam factor’, which is a term with
magnitude less than one that penalizes Hi for having the parameter w.

Interpretation of the Occam factor

The quantity σw|D is the posterior uncertainty in w. Suppose for simplicity
that the prior P (w |Hi) is uniform on some large interval σw, representing the
range of values of w that were possible a priori, according to Hi (figure 28.5).
Then P (wMP |Hi) = 1/σw, and

Occam factor =
σw|D
σw

, (28.9)

i.e., the Occam factor is equal to the ratio of the posterior accessible volume
of Hi’s parameter space to the prior accessible volume, or the factor by which
Hi’s hypothesis space collapses when the data arrive. The model Hi can be
viewed as consisting of a certain number of exclusive submodels, of which only
one survives when the data arrive. The Occam factor is the inverse of that
number. The logarithm of the Occam factor is a measure of the amount of
information we gain about the model’s parameters when the data arrive.

A complex model having many parameters, each of which is free to vary
over a large range σw, will typically be penalized by a stronger Occam factor
than a simpler model. The Occam factor also penalizes models that have to
be finely tuned to fit the data, favouring models for which the required pre-
cision of the parameters σw|D is coarse. The magnitude of the Occam factor
is thus a measure of complexity of the model; it relates to the complexity of
the predictions that the model makes in data space. This depends not only
on the number of parameters in the model, but also on the prior probability
that the model assigns to them. Which model achieves the greatest evidence
is determined by a trade-off between minimizing this natural complexity mea-
sure and minimizing the data misfit. In contrast to alternative measures of
model complexity, the Occam factor for a model is straightforward to evalu-
ate: it simply depends on the error bars on the parameters, which we already
evaluated when fitting the model to the data.

Figure 28.6 displays an entire hypothesis space so as to illustrate the var-
ious probabilities in the analysis. There are three models, H1,H2,H3, which
have equal prior probabilities. Each model has one parameter w (each shown
on a horizontal axis), but assigns a different prior range σW to that parame-
ter. H3 is the most ‘flexible’ or ‘complex’ model, assigning the broadest prior
range. A one-dimensional data space is shown by the vertical axis. Each
model assigns a joint probability distribution P (D,w |Hi) to the data and
the parameters, illustrated by a cloud of dots. These dots represent random
samples from the full probability distribution. The total number of dots in
each of the three model subspaces is the same, because we assigned equal prior
probabilities to the models.

When a particular data set D is received (horizontal line), we infer the pos-
terior distribution of w for a model (H3, say) by reading out the density along
that horizontal line, and normalizing. The posterior probability P (w |D,H3)
is shown by the dotted curve at the bottom. Also shown is the prior distribu-
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P (D |Hi) ≃ P (D |wMP,Hi)︸ ︷︷ ︸ × P (wMP |Hi)σw|D︸ ︷︷ ︸
.

Evidence ≃ Best fit likelihood × Occam factor

(28.8)

Thus the evidence is found by taking the best-fit likelihood that the model
can achieve and multiplying it by an ‘Occam factor’, which is a term with
magnitude less than one that penalizes Hi for having the parameter w.

Interpretation of the Occam factor

The quantity σw|D is the posterior uncertainty in w. Suppose for simplicity
that the prior P (w |Hi) is uniform on some large interval σw, representing the
range of values of w that were possible a priori, according to Hi (figure 28.5).
Then P (wMP |Hi) = 1/σw, and

Occam factor =
σw|D
σw

, (28.9)

i.e., the Occam factor is equal to the ratio of the posterior accessible volume
of Hi’s parameter space to the prior accessible volume, or the factor by which
Hi’s hypothesis space collapses when the data arrive. The model Hi can be
viewed as consisting of a certain number of exclusive submodels, of which only
one survives when the data arrive. The Occam factor is the inverse of that
number. The logarithm of the Occam factor is a measure of the amount of
information we gain about the model’s parameters when the data arrive.

A complex model having many parameters, each of which is free to vary
over a large range σw, will typically be penalized by a stronger Occam factor
than a simpler model. The Occam factor also penalizes models that have to
be finely tuned to fit the data, favouring models for which the required pre-
cision of the parameters σw|D is coarse. The magnitude of the Occam factor
is thus a measure of complexity of the model; it relates to the complexity of
the predictions that the model makes in data space. This depends not only
on the number of parameters in the model, but also on the prior probability
that the model assigns to them. Which model achieves the greatest evidence
is determined by a trade-off between minimizing this natural complexity mea-
sure and minimizing the data misfit. In contrast to alternative measures of
model complexity, the Occam factor for a model is straightforward to evalu-
ate: it simply depends on the error bars on the parameters, which we already
evaluated when fitting the model to the data.

Figure 28.6 displays an entire hypothesis space so as to illustrate the var-
ious probabilities in the analysis. There are three models, H1,H2,H3, which
have equal prior probabilities. Each model has one parameter w (each shown
on a horizontal axis), but assigns a different prior range σW to that parame-
ter. H3 is the most ‘flexible’ or ‘complex’ model, assigning the broadest prior
range. A one-dimensional data space is shown by the vertical axis. Each
model assigns a joint probability distribution P (D,w |Hi) to the data and
the parameters, illustrated by a cloud of dots. These dots represent random
samples from the full probability distribution. The total number of dots in
each of the three model subspaces is the same, because we assigned equal prior
probabilities to the models.

When a particular data set D is received (horizontal line), we infer the pos-
terior distribution of w for a model (H3, say) by reading out the density along
that horizontal line, and normalizing. The posterior probability P (w |D,H3)
is shown by the dotted curve at the bottom. Also shown is the prior distribu-
tion P (w |H3) (cf. figure 28.5). [In the case of model H1 which is very poorly
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28.2 Example

Let’s return to the example that opened this chapter. Are there one or two
boxes behind the tree in figure 28.1? Why do coincidences make us suspicious?

Let’s assume the image of the area round the trunk and box has a size
of 50 pixels, that the trunk is 10 pixels wide, and that 16 different colours of
boxes can be distinguished. The theory H1 that says there is one box near
the trunk has four free parameters: three coordinates defining the top three
edges of the box, and one parameter giving the box’s colour. (If boxes could
levitate, there would be five free parameters.)

The theory H2 that says there are two boxes near the trunk has eight free
parameters (twice four), plus a ninth, a binary variable that indicates which
of the two boxes is the closest to the viewer.

1?

or 2?

Figure 28.7. How many boxes are
behind the tree?

What is the evidence for each model? We’ll do H1 first. We need a prior on
the parameters to evaluate the evidence. For convenience, let’s work in pixels.
Let’s assign a separable prior to the horizontal location of the box, its width,
its height, and its colour. The height could have any of, say, 20 distinguishable
values, so could the width, and so could the location. The colour could have
any of 16 values. We’ll put uniform priors over these variables. We’ll ignore
all the parameters associated with other objects in the image, since they don’t
come into the model comparison between H1 and H2. The evidence is

P (D |H1) =
1
20

1
20

1
20

1
16

(28.11)

since only one setting of the parameters fits the data, and it predicts the data
perfectly.

As for model H2, six of its nine parameters are well-determined, and three
of them are partly-constrained by the data. If the left-hand box is furthest
away, for example, then its width is at least 8 pixels and at most 30; if it’s
the closer of the two boxes, then its width is between 8 and 18 pixels. (I’m
assuming here that the visible portion of the left-hand box is about 8 pixels
wide.) To get the evidence we need to sum up the prior probabilities of all
viable hypotheses. To do an exact calculation, we need to be more specific
about the data and the priors, but let’s just get the ballpark answer, assuming
that the two unconstrained real variables have half their values available, and
that the binary variable is completely undetermined. (As an exercise, you can
make an explicit model and work out the exact answer.)

P (D |H2) ≃
1
20

1
20

10
20

1
16

1
20

1
20

10
20

1
16

2
2
. (28.12)

Thus the posterior probability ratio is (assuming equal prior probability):

P (D |H1)P (H1)
P (D |H2)P (H2)

=
1

1
20

10
20

10
20

1
16

(28.13)

= 20 × 2 × 2 × 16 ≃ 1000/1. (28.14)

So the data are roughly 1000 to 1 in favour of the simpler hypothesis. The
four factors in (28.13) can be interpreted in terms of Occam factors. The more
complex model has four extra parameters for sizes and colours – three for sizes,
and one for colour. It has to pay two big Occam factors (1/20 and 1/16) for the
highly suspicious coincidences that the two box heights match exactly and the
two colours match exactly; and it also pays two lesser Occam factors for the
two lesser coincidences that both boxes happened to have one of their edges
conveniently hidden behind a tree or behind each other.
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come into the model comparison between H1 and H2. The evidence is
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since only one setting of the parameters fits the data, and it predicts the data
perfectly.

As for model H2, six of its nine parameters are well-determined, and three
of them are partly-constrained by the data. If the left-hand box is furthest
away, for example, then its width is at least 8 pixels and at most 30; if it’s
the closer of the two boxes, then its width is between 8 and 18 pixels. (I’m
assuming here that the visible portion of the left-hand box is about 8 pixels
wide.) To get the evidence we need to sum up the prior probabilities of all
viable hypotheses. To do an exact calculation, we need to be more specific
about the data and the priors, but let’s just get the ballpark answer, assuming
that the two unconstrained real variables have half their values available, and
that the binary variable is completely undetermined. (As an exercise, you can
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Thus the posterior probability ratio is (assuming equal prior probability):

P (D |H1)P (H1)
P (D |H2)P (H2)

=
1
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= 20 × 2 × 2 × 16 ≃ 1000/1. (28.14)

So the data are roughly 1000 to 1 in favour of the simpler hypothesis. The
four factors in (28.13) can be interpreted in terms of Occam factors. The more
complex model has four extra parameters for sizes and colours – three for sizes,
and one for colour. It has to pay two big Occam factors (1/20 and 1/16) for the
highly suspicious coincidences that the two box heights match exactly and the
two colours match exactly; and it also pays two lesser Occam factors for the
two lesser coincidences that both boxes happened to have one of their edges
conveniently hidden behind a tree or behind each other.

(aproximando restricciones en los parámetros)
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So the data are roughly 1000 to 1 in favour of the simpler hypothesis. The
four factors in (28.13) can be interpreted in terms of Occam factors. The more
complex model has four extra parameters for sizes and colours – three for sizes,
and one for colour. It has to pay two big Occam factors (1/20 and 1/16) for the
highly suspicious coincidences that the two box heights match exactly and the
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So the data are roughly 1000 to 1 in favour of the simpler hypothesis. The
four factors in (28.13) can be interpreted in terms of Occam factors. The more
complex model has four extra parameters for sizes and colours – three for sizes,
and one for colour. It has to pay two big Occam factors (1/20 and 1/16) for the
highly suspicious coincidences that the two box heights match exactly and the
two colours match exactly; and it also pays two lesser Occam factors for the
two lesser coincidences that both boxes happened to have one of their edges
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462 37 — Bayesian Inference and Sampling Theory

How strongly does this data set favour H1 over H0?
We answer this question by computing the evidence for each hypothesis.

Let’s assume uniform priors over the unknown parameters of the models. The
first hypothesis H0: pA+ = pB+ has just one unknown parameter, let’s call it
p.

P (p |H0) = 1 p ∈ (0, 1). (37.17)

We’ll use the uniform prior over the two parameters of model H1 that we used
before:

P (pA+, pB+ |H1) = 1 pA+ ∈ (0, 1), pB+ ∈ (0, 1). (37.18)

Now, the probability of the data D under model H0 is the normalizing constant
from the inference of p given D:

P (D |H0) =
∫

dp P (D | p)P (p |H0) (37.19)

=
∫

dp p(1 − p) × 1 (37.20)

= 1/6. (37.21)

The probability of the data D under model H1 is given by a simple two-
dimensional integral:

P (D |H1) =
∫ ∫

dpA+ dpB+ P (D | pA+, pB+)P (pA+, pB+ |H1) (37.22)

=
∫

dpA+ pA+

∫
dpB+ (1 − pB+) (37.23)

= 1/2 × 1/2 (37.24)
= 1/4. (37.25)

Thus the evidence ratio in favour of model H1, which asserts that the two
effectivenesses are unequal, is

P (D |H1)
P (D |H0)

=
1/4
1/6

=
0.6
0.4

. (37.26)

So if the prior probability over the two hypotheses was 50:50, the posterior
probability is 60:40 in favour of H1. ✷

Is it not easy to get sensible answers to well-posed questions using Bayesian
methods?

[The sampling theory answer to this question would involve the identical
significance test that was used in the preceding problem; that test would yield
a ‘not significant’ result. I think it is greatly preferable to acknowledge what
is obvious to the intuition, namely that the data D do give weak evidence in
favour of H1. Bayesian methods quantify how weak the evidence is.]

37.2 Dependence of p-values on irrelevant information

In an expensive laboratory, Dr. Bloggs tosses a coin labelled a and b twelve
times and the outcome is the string

aaabaaaabaab,

which contains three bs and nine as.
What evidence do these data give that the coin is biased in favour of a?
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Dr. Bloggs consults his sampling theory friend who says ‘let r be the num-
ber of bs and n = 12 be the total number of tosses; I view r as the random
variable and find the probability of r taking on the value r = 3 or a more
extreme value, assuming the null hypothesis pa = 0.5 to be true’. He thus
computes

P (r ≤ 3 |n=12,H0) =
3∑

r=0

(
n

r

)
1/2n =

((12
0

)
+
(12

1

)
+
(12

2

)
+
(12

3

))
1/212

= 0.07, (37.27)

and reports ‘at the significance level of 5%, there is not significant evidence
of bias in favour of a’. Or, if the friend prefers to report p-values rather than
simply compare p with 5%, he would report ‘the p-value is 7%, which is not
conventionally viewed as significantly small’. If a two-tailed test seemed more
appropriate, he might compute the two-tailed area, which is twice the above
probability, and report ‘the p-value is 15%, which is not significantly small’.
We won’t focus on the issue of the choice between the one-tailed and two-tailed
tests, as we have bigger fish to catch.

Dr. Bloggs pays careful attention to the calculation (37.27), and responds
‘no, no, the random variable in the experiment was not r: I decided before
running the experiment that I would keep tossing the coin until I saw three
bs; the random variable is thus n’.

Such experimental designs are not unusual. In my experiments on error-
correcting codes I often simulate the decoding of a code until a chosen number
r of block errors (bs) has occurred, since the error on the inferred value of log pb

goes roughly as
√

r, independent of n.

Exercise 37.1.[2 ] Find the Bayesian inference about the bias pa of the coin
given the data, and determine whether a Bayesian’s inferences depend
on what stopping rule was in force.

According to sampling theory, a different calculation is required in order
to assess the ‘significance’ of the result n = 12. The probability distribution
of n given H0 is the probability that the first n−1 tosses contain exactly r−1
bs and then the nth toss is a b.

P (n |H0, r) =
(

n−1
r−1

)
1/2n

. (37.28)

The sampling theorist thus computes

P (n ≥ 12 | r =3,H0) = 0.03. (37.29)

He reports back to Dr. Bloggs, ‘the p-value is 3% – there is significant evidence
of bias after all!’

What do you think Dr. Bloggs should do? Should he publish the result,
with this marvellous p-value, in one of the journals that insists that all exper-
imental results have their ‘significance’ assessed using sampling theory? Or
should he boot the sampling theorist out of the door and seek a coherent
method of assessing significance, one that does not depend on the stopping
rule?

At this point the audience divides in two. Half the audience intuitively
feel that the stopping rule is irrelevant, and don’t need any convincing that
the answer to exercise 37.1 (p.463) is ‘the inferences about pa do not depend
on the stopping rule’. The other half, perhaps on account of a thorough
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