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PREFACE

This book teaches you how to do Bayesian modeling. Using modern computer software—and,
in particular, the WinBUGS program—this turns out to be surprisingly straightforward. After
working through the examples provided in this book, you should be able to build your own Bayesian
models, apply them to your own data, and draw your own conclusions.

This book is based on three principles. The first is that of accessability : the book’s only
prerequisite is that you know how to operate a computer; you do not need any advanced knowledge
of statistics or mathematics. The second principle is that of applicability : the examples in this book
are meant to illustrate how Bayesian modeling can be useful for problems that people in cognitive
science care about. The third principle is that of practicality : this book offers a hands-on, “just
do it” approach, one that we feel keeps students interested and motivated to learn more.

In line with these three principles, this book has little content that is purely theoretical. Hence,
you will not learn from this book why the Bayesian philosophy to inference is as compelling as it
is; neither will you learn much about the intricate details of modern sampling algorithms such as
Markov chain Monte Carlo, even though this book could not exist without them.

The goal of this book is to facilitate and promote the use of Bayesian modeling in cognitive
science. As shown by means of examples throughout this book, Bayesian modeling is ideally suited
for applications in cognitive science – it is trivial to first construct a basic model, and then add
individual differences as random effects or separate groups, add substantive prior information, add
covariates, add a contaminant process, etc. In other words, Bayesian modeling is flexible and
respects the complexities that are inherent in the modeling of cognitive phenomena.

This book has been used in master courses at the University of California at Irvine and at the
University of Amsterdam. We have found that students master the material quickly, and that they
appreciate a statistical framework in which inference is coherent and rational, even if they might
not acknowledge this explicitly.

We hope that after completing this course, you will have gained not only a new understanding
of statistics (yes, it can make sense), but also the technical skills to implement statistical models
that professional but non-Bayesian cognitive scientists dare only dream about.

We like to thank John Miyamoto for constructive criticism and suggestions for improvement,
and Dora Matzke for her help in programming and plotting.

Michael D. Lee

Irvine, USA
Eric-Jan Wagenmakers

Amsterdam, The Netherlands
August 2010
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Parameter Estimation for Statistical
Models
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chapter 1

BAYESIAN PARAMETER ESTIMATION

As is customary, we introduce Bayesian parameter estimation by means of the binomial example.
Assume we prepare for you a series of 10 factual true/false questions of equal difficulty. Interest
centers on your latent probability θ of answering any one question correctly. In Bayesian inference,
uncertainty with respect to parameters is—at any point in time—quantified by probability distri-
butions. Thus, in order to get the Bayesian inference machine off the ground, we need to specify
our uncertainty with respect to θ before seeing the data. Suppose you do not know anything about
the topic or about the difficulty level of the questions. Then, a reasonable “prior distribution”,
denoted by p(θ), is one that assigns equal probability to every value of θ. This uniform distribution
is shown by the dotted horizontal line in Figure 1.1.

Now we proceed with the test, and find that you answered 9 out of 10 questions correctly.
After having seen these data, our updated knowledge about θ is described by a “posterior dis-
tribution”, denoted p(θ|s, n), where s = 9 and n = 10 indicate the number of successes and the
number of questions, respectively. Assume that the probability of the data is given by the binomial
distribution:

p(s|θ, n) =

(

n

s

)

θs(1 − θ)n−s. (1.1)
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Figure 1.1: Bayesian parameter estimation for binomial rate parameter θ, after observing 9 correct
responses and 1 incorrect response. The mode of the posterior distribution for θ is 0.9, equal to
the maximum likelihood estimate, and the 95% confidence interval extends from 0.59 to 0.98.
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1. Bayesian Parameter Estimation

The transition from prior p(θ) to posterior p(θ|s, n) is then given by Bayes’ rule,

p(θ|s, n) =
p(s|θ, n)p(θ)

p(s|n)
. (1.2)

This equation is often verbalized as

posterior =
likelihood × prior

marginal likelihood
. (1.3)

Note that the marginal likelihood (i.e., the probability of the observed data) does not involve
the parameter θ, and is given by a single number that ensures that the area under the posterior
distribution equals 1. Therefore, Equation 1.2 is often written as

p(θ|s, n) ∝ p(s|θ, n)p(θ), (1.4)

which says that the posterior is proportional to the likelihood times the prior.
The solid line in Figure 1.1 shows the posterior distribution for θ, which is obtained when

the uniform prior is updated with data s = 9 and n = 10. The central tendency of a posterior
distribution is often summarized by its mean, median, or mode. Note that with a uniform prior, the
mode of a posterior distribution coincides with the classical maximum likelihood estimate or MLE,
θ̂ = s/n = 0.9 (Myung, 2003). The spread of a posterior distribution is most easily captured by a
Bayesian x% confidence interval that extends from the (x/2)th to the (100 − x/2)th percentile of
the posterior distribution. For the posterior distribution in Figure 1.1, a 95% Bayesian confidence
interval for θ extends from 0.59 to 0.98. In contrast to the classical or orthodox confidence interval,
this means that one can be 95% confident that the true value of θ lies in between 0.59 and 0.98.

Now suppose we design a new set of 5 questions, of equal difficulty as before. How can we
formalize our expectations about your performance on this new set? In other words, how can we
use the posterior distribution p(θ|n = 10, s = 9)— which after all represents everything that we
know about θ from the old set— to predict the number of correct responses out of the new set of
nrep = 5 questions? The mathematical solution is to integrate over the posterior,

∫

p(srep|θ, nrep =
5)p(θ|n = 10, s = 9)dθ, where srep is the predicted number of correct responses out of the additional
set of 5 questions. Computationally, one may think of this procedure as repeatedly drawing a
random value θi from the posterior, and using that value to every time determine a single srep

i by
means of Equation 1.1. The end result is p(srep), the predictive density of the possible number of
correct responses in the additional set of 5 questions. The important point is that by integrating
over the posterior, all predictive uncertainty is taken into account. In contrast, much of classical
inference relies on the “plug–in principle” that in this case would lead us to predict p(srep) solely
based on θ̂, the maximum likelihood estimate. Plug–in procedures ignore uncertainty in θ, and
hence lead to predictions that are overconfident, that is, predictions that are less variable than
they should be (Aitchison & Dunsmore, 1975).1

You are now presented with the new set of 5 questions. You answer 3 out of 5 correctly.
How do we combine this new information with the old? Or, in other words, how do we update
our knowledge of θ? Consistent with intuition, Bayes’ rule entails that the prior that should be
updated based on your performance for the new set is the posterior that was obtained based on
your performance for the old set. Or, as Lindley put it, “today’s posterior is tomorrow’s prior”
(Lindley, 1972, p. 2). When all the data have been collected, however, the precise order in which

1It should be acknowledged that classical statisticians can account for uncertainty in the estimation of θ by
repeatedly drawing a bootstrap sample from the data, calculating the associated bootstrap MLE, and finding the
corresponding prediction for s

rep (e.g., Wagenmakers, Ratcliff, Gomez, & Iverson, 2004).
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this was done is irrelevant; the results from the 15 questions could have been analyzed as a single
batch, they could have been analyzed sequentially, one–by–one, they could have been analyzed by
first considering the set of 10 questions and next the set of 5, or vice versa. For all these cases, the
end result, the final posterior distribution for θ, is identical. This again contrasts with classical
inference, in which inference for sequential designs is radically different from that for non–sequential
designs (for a discussion, see e.g., Anscombe, 1963).

Thus, a posterior distribution describes our uncertainty with respect to a parameter of interest,
and the posterior is useful—or, as a Bayesian would have it, necessary—for probabilistic prediction
and for sequential updating. Unfortunately, the posterior distribution or any of its summary
measures can only be obtained in closed form for a restricted set of relatively simple models. To
illustrate in the case of our binomial example, the uniform prior is a so–called beta distribution
with parameters α = 1 and β = 1, and when combined with the binomial likelihood this yields a
posterior that is also a beta distribution, be it with parameters α + s and β + n − s. In simple
conjugate cases such as these, where the prior and the posterior belong to the same distributional
family, it is possible to obtain closed form solutions for the posterior distribution, but in other
more interesting cases it is not.

For a long time, researchers did not know how to proceed with Bayesian inference when the
posterior could not be obtained in close form. As a result, practitioners interested in models of
realistic complexity did not much use Bayesian inference. This situation changed dramatically with
the advent of computer–driven sampling methodology generally known as Markov chain Monte
Carlo (i.e., MCMC; e.g., Gamerman & Lopes, 2006; Gilks, Richardson, & Spiegelhalter, 1996).
Using MCMC techniques such as Gibbs sampling or the Metropolis–Hastings algorithm, researchers
can now directly sample sequences of values from the posterior distribution of interest, foregoing
the need for closed form analytic solutions. At the time of writing, the adage is that Bayesian
models are limited only by the user’s imagination.

To provide a concrete and simple illustration of Bayesian inference using MCMC, we revisit our
binomial example of 9 correct responses out of 10 questions, and the associated inference problem
for θ, the probability of answering any one question correctly. Throughout this article, we use the
general–purpose WinBUGS program (Lunn, Thomas, Best, & Spiegelhalter, 2000; an introduction
for psychologists is given by Sheu & O’Curry, 1998) that allows the user to specify and fit models
without having to hand–code the MCMC algorithms. Although WinBUGS does not work for every
application, it will work for most applications in the field of psychology. The WinBUGS program
is easy to learn and is supported by a large community of active researchers.

The WinBUGS program requires the user to construct a file that contains the model specifica-
tion, a file that contains initial values for the model parameters, and a file that contains the data.
The model specification file is most important. For our binomial example, we set out to obtain
samples from the prior and the posterior of θ. The associated WinBUGS model specification code
is three lines long:

model

{

theta ~ dbeta(1,1) # the uniform prior for updating by the data

k ~ dbin(theta,n) # the data; in our example, k = 9 and n = 10

thetaprior ~ dbeta(1,1) # a uniform prior not for updating

}

In this code, the “∼” or twiddle symbol denotes “is distributed as”, dbeta(a,b) indicates the beta
distribution with parameters a and b, and dbin(theta,n) indicates the binomial distribution with
rate theta and n observations. These and many other distributions are build in to the WinBUGS

5



1. Bayesian Parameter Estimation

MCMC Iteration
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Figure 1.2: Three MCMC chains for binomial rate parameter θ, after observing 9 correct responses
and 1 incorrect response.

system. The “#” or hash sign is used for commenting out what should not be compiled. As
WinBUGS is a declarative language, the order of the three lines is inconsequential.

When this code is executed, the user obtains a sequence of samples (i.e., an MCMC chain)
from the posterior p(θ|D) and a sequence of samples from the prior p(θ). In more complex models,
it may take some time before the chain converges from its starting value to what is called its
stationary distribution. To make sure that we only use those samples that come from the stationary
distribution (and are hence unaffected by the starting values) it is good practice to discard the first
samples as “burn–in”, and to diagnose convergence by running multiple chains.

For instance, Figure 1.2 shows the first 100 iterations for three chains that were set up to draw
values from the posterior for θ. It is evident that the three chains are “mixing” well, suggesting
early convergence. Quantitative measures for diagnosing convergence are also available (e.g., the
Gelman and Rubin (1992) R̂ statistic, that compares within–chain to between–chain variability;
for more recommendations regarding convergence see e.g., Gelman, 1996; Gelman & Hill, 2007).

After assuring ourselves that the chains have converged, we can use the sampled values to plot
a histogram, construct a density estimate, and compute values of interest. To illustrate, the three
chains from Figure 1.2 were run for 3000 iterations each, for a total of 9000 samples for the prior
and the posterior of θ. Figure 1.3 plots histograms2 for the prior (i.e., dotted line) and the posterior
(i.e., thick solid line). To visualize how the histograms are constructed from the MCMC chains,
the bottom panel of Figure 1.3 plots the MCMC chains sideways; the histograms are created by
collapsing the values along the “MCMC iteration” axis and onto the “θ” axis.

In the top panel of Figure 1.3, the thin solid lines represent logspline nonparametric density
estimates (Stone, Hansen, Kooperberg, & Truong, 1997). The mode of the logspline density esti-

2These histograms were constructed such that the total area under each histogram equals one.
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mate for the posterior of θ is 0.89, whereas the 95% confidence interval is (0.59, 0.98), matching
the analytical result shown in Figure 1.1.
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Figure 1.3: MCMC–based Bayesian parameter estimation for binomial rate parameter θ, after
observing 9 correct responses and 1 incorrect response. The thin solid lines indicate the fit of
a nonparametric logspline density estimator. Based on this density estimator, the mode of the
posterior distribution for θ is approximately 0.89, and the 95% confidence interval extends from
0.59 to 0.98, closely matching the analytical results from Figure 1.1.

Of course, this example represents an ideal scenario; in more complicated models, convergence
might be obtained only after many MCMC iterations – that is, chains may move very slowly from
their starting point to the stationary distribution, and even after they get there the chains may
take a long time to collect enough independent samples. This problem is often easy to diagnose
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1. Bayesian Parameter Estimation

by running multiple chains and by computing the correlations between successive samples – a high
autocorrelation suggests slow convergence or slow mixing. Thus, for complex models it is important
to use MCMC algorithms that are efficient, reliable, and quick. This is currently an active area of
research. Nevertheless, the fundamental theoretical obstacles for Bayesian parameter estimation
have been overcome. In fields such as statistics, artificial intelligence, and machine learning, MCMC
algorithms are now used on a routine basis.
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chapter 2

GETTING STARTED WITH WINBUGS

with Dora Matzke

Throughout this course book, you will use the WinBUGS (Lunn et al., 2000) software to work
your way through the exercises. Although it is possible to do the exercises using the graphical
user interface provided by the WinBUGS package, you can also use the Matlab or R programs to
interact with WinBUGS.

2.1 Installing WinBUGS, Matbugs, and R2WinBugs

Installing WinBUGS

WinBUGS is a currently free software, and is available at http://www.mrc-bsu.cam.ac.uk/bugs/.
Download the most recent version, including any patches, and make sure you go to the effort of
downloading and applying the registration key. Some of the exercises in this course might work
without the registration key, but some of them will not. You can download WinBUGS and the
registration key directly from http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml.

Installing Matlab and Matbugs

Matlab is a commercial software, and is available at http://www.mathworks.com/. As best we
know, any reasonably recent version of Matlab should let you do the exercises in this course. Also,
as best we know, no toolboxes are required. To give Matlab the ability to interact with WinBUGS,
download the freely available matbugs.m function and put it in your Matlab working directory. You
can download matbugs.m directly from http://www.cs.ubc.ca/~murphyk/Software/MATBUGS/

matbugs.html.

Installing R and R2WinBUGS

R is a free software, and is available at http://www.r-project.org/. You can download the
Windows version of R directly from http://cran.nedmirror.nl/bin/windows/base/. To give R
the ability to interact with WinBUGS, you have to install the R2WinBUGS package. To install the
R2WinBUGS package, start R and select the Install Package(s) option in the Packages menu.
Once you chose your preferred CRAN mirror (e.g., Netherlands (Amsterdam 2)), select R2WinBUGS
in the Packages window and click on OK.

2.2 Using the Applications

An Example with the Binomial Distribution

We will illustrate the use of WinBUGS, Matbugs, and R by means of a simple example involving a
binary process. A binary process is anything where there are only two possible outcomes. It might
be that something either happens or does not happen, or that something either succeeds or fails,
or that something takes one value rather than the other. An inference that is often important for
these sorts of processes is the underlying rate at which the process takes one value rather than the

9



2. Getting Started

other. Inferences about the rate can be made by observing how many times the process takes each
value over a number of trials.

Suppose that one of the values (e.g., the number of successes) happens on k out of n trials.
These are known, or observed, data. The unknown variable of interest is the rate θ at which the
values are produced. Assuming that the trials are statistically independent (i.e., what happened
on one trial does not influence the other trials), the number of successes k follows a Binomial
distribution, k ∼ Binomial

(

θ, n
)

. This relationship means that by observing the k successes out
of n trials, it is possible to update our knowledge about the rate θ. The basic idea of Bayesian
analysis is that what we know, and what we do not know, about the variables of interest is always
represented by probability distributions. Data like k and n allow us to update prior distributions
for the unknown variables into posterior distributions that incorporate the new information.

The graphical model representation of our binomial example is shown in Figure 2.1. The
nodes represent all the variables that are relevant to the problem. The graph structure is used
to indicate dependencies between the variables, with children depending on their parents. We use
the conventions of representing unobserved variables without shading and observed variables with
shading, and continuous variables with circular nodes and discrete variables with square nodes.

Thus, the observed discrete counts of the numbers of successes k and the number of trials n
are represented by shaded and square nodes, and the unknown continuous rate θ is represented
by an unshaded and circular node. Because the number of successes k depends on the number of
trials n and on the rate of success θ, the nodes representing n and θ are directed towards the node
representing k. We will start with the prior assumption that all possible rates between 0 and 1 are
equally likely. We will thus assume a uniform prior on θ, θ ∼ Uniform

(

0, 1
)

.

θ

k

n

θ ∼ Uniform(0, 1)

k ∼ Binomial(θ, n)

Figure 2.1: Graphical model for inferring the rate of a binary process.

The advantage of using the language of graphical models is that it gives a complete and inter-
pretable representation of a Bayesian probabilistic model. Also, WinBUGS can easily implement
graphical models, and its various built-in computational algorithms are then able to do all of the
inferences automatically.

10



Using the Applications

Using WinBUGS

WinBUGS requires the user to construct a file that contains the data, a file that contains the
starting values for the model parameters, and a file that contains the model specification. The
WinBUGS model specification code associated with our binomial example is as follows:

model {

# Prior on Rate

theta ~ dbeta(1,1)

# Observed Counts

k ~ dbin(theta,n)

}

Note that, even though conceptually the prior on θ is Uniform
(

0, 1
)

, it has been implemented as
Beta

(

1, 1
)

. These two distributions are the same, but WinBUGS seems to have fewer computational
problems with the Beta distribution version.

To implement the model shown in Figure 2.1 and to obtain samples from the posterior distri-
bution of θ, you need to work your way through the following steps.

1. Copy the model specification text above and paste it in a text file. Save the file, for instance
as “Rate 1.txt”.

2. Start WinBUGS. Open your newly created model specification file by selecting the Open

option in the File menu, choosing the appropriate directory, and double-clicking on the
model specification file. Don’t forget to select files of type “txt”, or you might be searching
for a long time. Now check the syntax of the model specification code by selecting the
Specification option in the Model menu. Once the Specification Tool window is opened
(Figure 2.2), highlight the word “model” at the beginning of the code and click on check

model. If the model is syntactically correct and all parameters are given priors, the message
“model is syntactically correct” will appear in the status bar all the way in the bottom left
corner of the WinBUGS window (beware, the letters are very small and difficult to see).

3. Create a text file that contains the data. The content of the file should look like this:

list(

k=5,

n=10

)

Save the file, for instance as “Data.Rate 1.txt”.

4. Open the data file and load the data. To open the data file, select the Open option in the
File menu, select the appropriate directory, and double-click on the data file. To load the
data, highlight the word “list” at the beginning of the data file and click on load data in the
Specification Tool window (Figure 2.2). If the data is successfully loaded, the message
“data is loaded” will appear in the status bar.

5. Set the number of chains. Multiple chains amount to multiple independent runs of the same
model with the same data (although you can vary the starting point per chain), and so provide
a key test of convergence—something we will discuss in more detail in a later chapter. In our
binomial example, we will run two chains. To set the number of chains, type “2” in the field
labelled num of chains in the Specification Tool window (Figure 2.2).

11



2. Getting Started

Figure 2.2: Model Specification Tool.

6. Compile the model. To compile the model, click on compile in the Specification Tool

window (Figure 2.2). If the model is successfully compiled, the message “model compiled”
will appear in the status bar.

7. Create a text file that contains the starting values of the unobserved variables (i.e., parameter
θ). If you do not specify the starting values, WinBUGS will try to get them from the prior,
which may or may not lead to numerical crashes. It is therefore safer to give a starting value
to all unobserved variables (especially nodes that have no parents).

The content of the file should look like this:

list(

theta=0.1

)

list(

theta=0.9

)

Save the file, for instance as “Start.values.txt”.

12
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8. Open the file that contains the starting values by selecting the Open option in the File menu,
selecting the appropriate directory, and double-clicking on the file. To load the starting value
of θ for the first chain, highlight the word “list” at the beginning of the file and click on load

inits in the Specification Tool window (Figure 2.2). To load the starting value for the
second chain, highlight the second “list” command and click on load inits once again. If
the starting values are successfully loaded, the message “model is initialized” will appear in
the status bar.

9. Set monitors to store the sampled values of the parameters of interest. To set a monitor for
θ, select the Samples option from the Inference menu. Once the Sample Monitor Tool

window (Figure 2.3) is opened, type “theta” in the field labelled node and click on set.

10. Specify the number of samples you want to record. To this end, you first have to specify (1)
the total number of samples you want to draw from the posterior of θ; and (2) the number of
burn-in samples that you want to discard at the beginning of a sampling run. The number of
recorded samples equals the total number of samples minus the number of burn-in samples.
In our binomial example, we will not discard any of the samples and will set out to obtain
20, 000 samples from the posterior of θ. To specify the number of recorded samples, type “1”
in the field labelled beg (i.e., WinBUGS will start recording from the first sample) and type
“20000” in the field labelled end in the Sample Monitor Tool window (Figure 2.3).

Figure 2.3: Sample Monitor Tool.

11. Set “live” trace plots of the unobserved parameters of interest. WinBUGS allows you to
monitor the sampling run in real-time; this can be useful on long sampling runs, for debugging,
and for diagnosing whether the chains have converged. To set a “live” trace plot of θ, click
on trace in the Sample Monitor Tool window (Figure 2.3) and wait for an empty plot to
appear on the screen. Once WinBUGS starts to sample from the posterior, the trace plot of
θ will appear live on the screen.

12. Specify the total number of samples that you want to draw from the posterior. To this end,
select the Update option from the Model menu. Once the Update Tool window (see 2.4)
is opened, type “20000” in the field labelled updates. Typically, the number you enter in
the Update Tool window will correspond to the number you entered in the end field of the
Sample Monitor Tool.

13
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13. Specify how many samples should be drawn between the recorded samples. You can, for
example, specify that only every second drawn sample should be recorded; this is important
when successive samples are not independent but autocorrelated. In our binomial example,
we will record every sample that is drawn from the posterior of θ. To specify this, type “1”
in the field labelled thin in the Update Tool window (Figure 2.4).

14. Specify the number of samples after which WinBUGS should refresh its display. To this end,
type “100” in the field labelled refresh in the Update Tool window (Figure 2.4).

15. Sample from the posterior. To sample from the posterior of θ, click on update in the Update

Tool window (Figure 2.4). During sampling, the message “model updating” will appear in
the status bar. Once the sampling is finished, the message “update took x secs” will appear
in the status bar.

Figure 2.4: Update Tool.

16. Specify the output format. WinBUGS can produce two types of output; it can open a new
window for each new piece of output or it can paste all output into a single log file. To specify
the output format for our binomial example, select Output options from the Options menu,
and click on log in the Output options window.

17. Obtain summary statistics of the posterior distribution. To request summary statistics based
on the sampled values of θ, select the Samples option in the Inference menu, and click
on stats in the Sample Monitor Tool window (Figure 2.3). WinBUGS will paste a table
reporting various summary statistics for θ in the log file.

18. Plot the posterior distribution. To plot the posterior distribution of θ, click on density in the
Sample Monitor Tool window (Figure 2.3). WinBUGS will paste the posterior distribution
of θ in the log file.

Figure 2.5 shows the log file that contains the results for our binomial example. The first five
lines of the log file document the steps that you took to specify and initialize the model. The first
output item is the Dynamic trace plot that allows you to monitor θ during sampling and is useful
for diagnosing whether the chains have reached convergence. In this case, we can be reasonably
confident that convergence has been achieved because the two chains (shown in different colors)
are overlapping one another. The second output item is the Node statistics table that presents
the summary statistics for θ. Among others, the table shows the mean, the standard deviation,
and the median of the sampled values of θ. The last output item is the Kernel density plot that
shows the posterior distribution of θ.

14



Using the Applications

Figure 2.5: Example of an output log file.

How did WinBUGS produce the results in Figure 2.5? The model specification file implemented
the graphical model from Figure 2.1, saying that there is a rate θ with a uniform prior, that
generates k successes out of n observations. The data file supplied the observed data, setting k = 5
and n = 10. WinBUGS then sampled from the posterior of the unobserved variable θ. ‘Sampling’
means drawing a set of values, so that the relative probability that any particular value will be
sampled is proportional to the density of the posterior distribution at that value. For this example,
the posterior samples for θ are a sequence of numbers like 0.5006, 0.7678, 0.3283, 0.3775, 0.4126,
. . .

In one sense, it would be nice to understand exactly how WinBUGS managed to generate the
posterior samples. In another sense, if you are interested in building and analyzing models and
data, you do not necessarily need to understand the computational basis of posterior sampling
(any more than you need to know how SPSS calculates a t-test statistic). If you understand the
conceptual basis that underlies the generation of the posterior samples, you can happily build
models and analyze data without worrying about the intricacies of Gibbs Sampling, Adaptive
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Rejection Sampling, Markov-Chain Monte-Carlo, and all the rest.1

Error Messages

If the syntax of your model file is incorrect or the data and starting values are incompatible with
your model specification, WinBUGS will balk and produce an error message. Error messages can
provide useful information when it comes to debugging your WinBUGS code. The error messages
are displayed in the bottom left corner of the status bar (the very small letters).

With respect to errors in the model specification, suppose, for example, that you mistakenly
use the “assign” operator (<-) to specify the distribution of the prior on the rate parameter (θ)
and the distribution of the observed data (k):

model {

#Prior on Rate

theta <- dbeta(1,1)

#Observed Counts

k <- dbin(theta,n)

}

As WinBUGS requires you to use the tilde symbol (“∼”) to denote the distributions of the prior
and the data, it will produce the following error message: “unknown type of logical function”
(Figure 2.6). As another example, suppose that you mistype the distribution of the observed counts
(k), and you mistakenly specify the distribution of k as follows:

k ~ dbon(theta,n)

WinBUGS will not recognize dbon as an existing probability distribution, and will produce the
following error message: “unknown type of probability density” (Figure 2.7).

With respect to errors in the data file, suppose that your data file contains the following data:
k = -5 and n = 10. Note, however, that k is the number of successes in the 10 trials and it is
specified to be binomially distributed. WinBUGS therefore expects the value of k to lie between 0
and n and it will produce the following error message: “value of binomial k must be between

zero and order of k” (Figure 2.8).
Finally, with respect to erroneous starting values, suppose that you chose 1.5 as the starting

value of θ for the second chain. Because θ is the probability of getting 5 successes in 10 trials,
WinBUGS expects the starting value for θ to lie between 0 and 1. Therefore, specifying a value
such as 1.5 produces the following error message: “value of proportion of binomial k must

be between zero and one” (Figure 2.9).

Exercises

Once you got WinBUGS and the scripts up and running, here is a list of exercises to complete.
Try and think of the message each exercise has for making inferences about psychological variables
from data.

1Some students find this a relief. Others find it deeply disturbing. For the disturbed, there are many Bayesian
texts that give detailed accounts of Bayesian inference using computational sampling. Start with the summary for
cognitive scientists presented by Griffiths, Kemp, and Tenenbaum (2008). Continue with the relevant chapters in
the excellent book by MacKay (2003), which is freely available on the Web, and follow the more technical references
from there.
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Figure 2.6: WinBUGS error message as a result of incorrect logical operators.

1. Alter the data to k = 50 and n = 100, and compare the posterior for the rate θ to the original
with k = 5 and n = 10.

2. Alter the data to k = 99 and n = 100, and comment on the shape of the posterior for the
rate θ.

3. Alter the data to k = 0 and n = 1, and comment on what this demonstrates about the
Bayesian approach.

Using Matbugs

We will use the matbugs function to call the WinBUGS software from within Matlab, and to return
the results of the WinBUGS sampling to a Matlab variable for further analysis. The code we are
using to do this is below (see also Rate_1.m).

% Set the working directory

cd D:\WinBUGS_Book\Matlab_codes

% Data

k=5;n=10;

% WinBUGS Parameters

nchains=2; % How Many Chains?

nburnin=0; % How Many Burn-in Samples?

nsamples=2e4; %How Many Recorded Samples?

17
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Figure 2.7: WinBUGS error message as a result of a misspecified probability density.

% Assign Matlab Variables to the Observed WinBUGS Nodes

datastruct = struct(’k’,k,’n’,n);

% Initialize Unobserved Variables

start.theta= [0.1 0.9];

for i=1:nchains

S.theta = start.theta(i); % An Intial Value for the Success Rate

init0(i) = S;

end

% Use WinBUGS to Sample

[samples, stats] = matbugs(datastruct, ...

fullfile(pwd, ’Rate_1.txt’), ...

’init’, init0, ...

’nChains’, nchains, ...

’view’, 1, ’nburnin’, nburnin, ’nsamples’, nsamples, ...

’thin’, 1, ’DICstatus’, 0, ’refreshrate’,100, ...

’monitorParams’, {’theta’}, ...

’Bugdir’, ’C:/Program Files/WinBUGS14’);

Some of these options control software input and output:

• datastruct contains the data that you want to pass from Matlab to WinBUGS.

• fullfile gives the name of the text file that contains the WinBUGS scripting of your
graphical model (i.e., the model specification file).
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Figure 2.8: WinBUGS error message as a result of incorrect data.

• view controls the termination of WinBUGS. If view is set to 0, WinBUGS is closed auto-
matically at the end of the sampling. If view is set to 1, WinBUGS remains open and it
pastes the results of the sampling run in a log output file. To be able to inspect the results
in WinBUGS, maximize the log output file and scroll up to the top of the page. Note that
if you subsequently want WinBUGS to return the results to Matlab, you first have to close
WinBUGS.

• refreshrate gives the number of samples after which WinBUGS should refresh its display.

• monitorParams gives the list of variables that will be monitored and returned to Matlab in
the samples variable.

• Bugdir gives the location of the WinBUGS software.

The other options define the values for the computational sampling parameters:

• init gives the starting values for the unobserved variables.

• nChains gives the number of chains.

• nburnin gives the number of ‘burn-in’ samples.
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Figure 2.9: WinBUGS error message as a result of an incorrect starting value.

• nsamples gives the number of recorded samples that will be drawn from the posterior.

• thin gives the number of drawn samples between those that are recorded.

• DICstatus gives an option to calculate the Divergence Information Criterion (DIC) statistic
that the authors of WinBUGS like (because they invented it). The DIC statistic is intended
to be used for model selection, but is open to challenge. If DICstatus is set to 0, the DIC
statistic will not be calculated. If it is set to 1, WinBUGS will calculate the DIC statistic.

How did the WinBUGS script and Matlab work together to produce the posterior samples of θ?
The WinBUGS model specification script defined the graphical model from Figure 2.1. The Matlab
code supplied the observed data and the starting values for θ, and called WinBUGS. WinBUGS
then sampled from the posterior of θ and returned the sampled values in the Matlab variable
samples.theta. You can plot the histogram of these sampled values using Matlab (see Rate_1.m).
It should look something like the jagged line in Figure 2.10. Because the probability of any value
appearing in the sequence of posterior samples is decided by its relative posterior probability, the
histogram is an approximation to the posterior distribution of θ.

Besides the sequence of posterior samples, WinBUGS also returns some useful summary statis-
tics to Matlab. The variable stats.mean gives the mean of the posterior samples for each un-
observed variable, which approximates its posterior expectation. This can often (but not always,
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Figure 2.10: Posterior distribution of rate θ for k = 5 successes out of n = 10 trials, based on
20,000 posterior samples.

as later exercises explore) be a useful point-estimate summary of all the information in the full
posterior distribution. Similarly, stats.std gives the standard deviation of the posterior samples
for each unobserved variable.

Finally, WinBUGS also returns the so-called R̂ statistic in the stats.Rhat variable. This is a
statistic about the sampling procedure itself, not about the posterior distribution. The R̂ statistic
is proposed by Brooks and Gelman (1997) and it gives information about convergence. The basic
idea is to run two or more chains and measure the ratio of within–to between–chain variance. If
this ratio is close to 1, the independent sampling sequences are probably giving the same answer,
and there is reason to trust the results.

Using R2WinBUGS

We will use the bugs() function in the R2WinBUGS package to call the WinBUGS software from
within R, and to return the results of the WinBUGS sampling to a R variable for further analysis.
The code we are using to do this is below (see also Rate_1.R).

setwd("D:/WinBUGS_Book/R_codes") #Set the working directory

library(R2WinBUGS) #Load the R2WinBUGS package

bugsdir = "C:/Program Files/WinBUGS14"

k = 5

n = 10

data = list("k", "n")

myinits = list(

list(theta = 0.1),

list(theta = 0.9))
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parameters = c("theta")

samples = bugs(data, inits=myinits, parameters,

model.file ="Rate_1.txt",

n.chains=2, n.iter=20000, n.burnin=0, n.thin=1,

DIC=F, bugs.directory=bugsdir,

codaPkg=F, debug=T)

Some of these options control software input and output:

• data contains the data that you want to pass from R to WinBUGS.

• parameters gives the list of variables that will be monitored and returned to R in the samples
variable.

• model.file gives the name of the text file that contains the WinBUGS scripting of your
graphical model (i.e., the model specification file). Avoid using non-alphanumeric characters
(e.g., “&” and “*”) in the directory and file names. Also, make sure that the name of the
directory that contains the model file is not too long, otherwise WinBUGS will generate the
following error message : “incompatible copy”. If WinBUGS fails to locate a correctly
specified model file, try to include the entire path in the model.file argument.

• bugs.directory gives the location of the WinBUGS software.

• codaPkg controls the content of the variable that is returned from WinBUGS. If codaPkg is
set to FALSE, WinBUGS returns a variable that contains the results of the sampling run.
If codaPkg is set to TRUE, WinBUGS returns a variable that contains the file names of the
WinBUGS outputs and the corresponding paths. You can access these output files by means
of the R function read.bugs().

• debug controls the termination of WinBUGS. If debug is set to FALSE, WinBUGS is closed
automatically at the end of the sampling. If debug is set to TRUE, WinBUGS remains open
and it pastes the results of the sampling run in a log output file. To be able to inspect the
results in WinBUGS, maximize the log output file and scroll up to the top of the page. Note
that if you subsequently want WinBUGS to return the results in the R samples variable,
you first have to close WinBUGS! In general, you will not be able to use R again until after
you terminate WinBUGS.

The other options define the values for the computational sampling parameters:

• inits assigns starting values to the unobserved variables. If you want WinBUGS to choose
these starting values for you, replace inits=myinits in the call to bugs with inits=NULL.

• n.chains gives the number of chains.

• n.iter gives the number of recorded samples that will be drawn from the posterior.

• n.burnin gives the number of ‘burn-in’ samples.

• n.thin gives the number of drawn samples between those that are recorded.

• DIC gives an option to calculate the DIC statistic. If DIC is set to FALSE, the DIC statistic
will not be calculated. If it is set to TRUE, WinBUGS will calculate the DIC statistic.
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WinBUGS returns the sampled values of θ in the R variable samples. You can access these
values by typing samples$sims.array. You can also plot the histogram of these sampled values
using R (see Rate_1.R). Besides the sequence of posterior samples, WinBUGS also returns some
useful statistics to R. You can access the summary statistics of the posterior samples, as well as
the R̂ statistic mentioned in the previous section by typing samples.

2.3 Online Help and Useful URLs

Online Help for WinBUGS

• The BUGS Project webpage (http://www.mrc-bsu.cam.ac.uk/bugs/weblinks/webresource
.shtml) provides useful links to various articles, tutorial materials, and lecture notes about
Bayesian modeling and the WinBUGS software.

• The BUGS discussion list (https://www.jiscmail.ac.uk/cgi-bin/webadmin?A0=bugs) is
an online forum where WinBUGS users can exchange tips, ask questions, and share worked
examples.

For Mac users

You can run WinBUGS on Macs using emulators, such as Darwine. As best we know, you need a
Dual Core Intel based Mac and the latest stable version of Darwine to be able to use R2WinBUGS.

• The Darwine emulator is available at http://www.kronenberg.org/darwine/.

• The R2WinBUGS reference manual on the R-project webpage (http://cran.r-project
.org/web/packages/R2WinBUGS/index.html) provides instructions on how to run R2winBUGS
on Macs.

• Further information on how to run R2WinBUGS on Macs is available at http://ggorjan

.blogspot.com/2008/10/runnning-r2winbugs-on-mac.html and http://idiom.ucsd.edu/

~rlevy/winbugsonmacosx.pdf.

• Further information on how to run WinBUGS on Macs using a Matlab or R interface is
available at http://web.mit.edu/yarden/www/bayes.html and http://www.ruudwetzels

.com/index.php?src=MacBUGS.

For Linux users

You can run WinBUGS under Linux using emulators, such as Wine and CrossOver.

• The BUGS Project webpage provides useful links to various examples on how to run Win-
BUGS under Linux (http://www.mrc-bsu.cam.ac.uk/bugs/faqs/contents.shtml) and how
to run WinBUGS using a Matlab interface (http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/
remote14.shtml).

• The R2WinBUGS reference manual on the R-project webpage (http://cran.r-project
.org/web/packages/R2WinBUGS/index.html) provides instructions on how to run R2winBUGS
under Linux.
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Further Reading

Ntzoufras, I. (2009). Bayesian modeling using WinBUGS. Hoboken, NJ: Wiley.

Ntzoufras (2009) provides an easily accessible introduction to the use of WinBUGS. The book also
presents a variety of Bayesian modeling examples, with the emphasis on Generalized Linear Models.

Spiegelhalter, D., Best, N. & Lunn, D. (2003). WinBUGS User Manual 1.4. MRC Biostatistic
Unit, Cambridge, UK.

The WinBUGS User Manual provides an introduction to the use of WinBUGS, including a useful tutorial
and various tips and tricks for new users.
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chapter 3

INFERENCES INVOLVING BINOMIAL DISTRIBUTIONS

3.1 The Difference Between Two Rates

Following up the binomial example in the previous chapter, suppose that now we have two different processes,
producing k1 and k2 successes out of n1 and n2 trials, respectively. First, we will make the assumption the
underlying rates are different, so they correspond to different latent variables θ1 and θ2. Our interest is in
the values of these rates, as estimated from the data, and in the difference δ = θ1 − θ2 between the rates.

θ1

k1

n1

θ2

k2

n2

δ

k1 ∼ Binomial(θ1, n1)

k2 ∼ Binomial(θ2, n2)

θ1 ∼ Beta(1, 1)

θ2 ∼ Beta(1, 1)

δ = θ1 − θ2

Figure 3.1: Graphical model for inferring the difference in the rates of two binary process.

The graphical model representation for this problem is shown in Figure 3.1. The new notation is that
the deterministic variable δ is shown by a double-bordered node.

The following code implements the graphical model in WinBUGS.

# Difference Between Two Rates

model {

# Prior on Rates

theta1 ~ dbeta(1,1)

theta2 ~ dbeta(1,1)

# Observed Counts

k1 ~ dbin(theta1,n1)

k2 ~ dbin(theta2,n2)

# Difference between Rates

delta <- theta1-theta2

}

The code Rate_2.m (Matlab) or Rate_2.R (R) makes up some data (i.e., sets values k1 = 5, k2 = 7,
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n1 = n2 = 10), and then calls WinBUGS to sample from the graphical model. WinBUGS returns to
Matlab/R posterior samples from θ1, θ2 and δ. If the main research question is how different the rates are,
then δ is the most relevant variable, and its posterior distribution is shown in Figure 3.2.
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Figure 3.2: Posterior distribution of the difference between two rates δ = θ1 − θ2.

There are many computations that the posterior samples for δ support that might usefully summarize
the full information in the posterior distribution. The code Rate_2.m (Matlab) or Rate_2.R (R) produces
a set of these, including

• The mean value, which approximates the expectation of the posterior. This is the point-estimate
corresponding to quadratic loss (i.e., try to pick a single value close to the truth, with bigger deviations
from the truth being punished more heavily).

• The value with maximum density in the posterior samples, approximating the posterior mode. This
known as the maximum a posteriori (MAP) estimate, and is the same as the maximum likelihood
estimate (MLE) for ‘flat’ priors. This point-estimate corresponds to 0-1 loss (i.e., try to pick the single
most likely value). Estimating the mode requires evaluating the likelihood function at each posterior
sample, and so requires a bit more post-processing work in Matlab or R.

• The median value, which is the point-estimate corresponding to linear loss.

• The 95% credible interval. This is much like a confidence interval in standard statistics, giving the
upper and lower values, between which 95% of samples fall. Thus, it approximates the bounds on the
posterior distribution that contain 95% of the posterior density. It is easy to see how to modify the
Matlab/R code to produce credible intervals for criteria other than 95%.

For the current problem, the mean of δ is -0.17, the mode is -0.20, the median is -0.17, and the 95%
credible interval is [−0.52, 0.21].

Exercises

Once the code is working, here are some exercises.
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1. Compare the data sets k1 = 8, n1 = 10, k2 = 7, n2 = 10 and k1 = 80, n1 = 100, k2 = 70, n2 = 100.

2. Try the data k1 = 0, n1 = 1, k2 = 0, n2 = 5.

3. In what context might different possible summaries of the posterior distribution of δ (i.e., point
estimates, or credible intervals) be reasonable, and when might it be important to show the full
posterior distribution?

3.2 Inferring a Common Rate

We continue to consider two binary processes, producing k1 and k2 successes out of n1 and n2 trials,
respectively, but now assume the underlying rate for both is the same. This means there is just one rate, θ.

The graphical model representation for this problem is shown in Figure 3.3.

θ

k1

n1

k2

n2

k1 ∼ Binomial(θ, n1)

k2 ∼ Binomial(θ, n2)

θ ∼ Beta(1, 1)

Figure 3.3: Graphical model for inferring the common rate underlying two binary processes.

An equivalent graphical model, using plate notation, is shown in Figure 3.4. Plates are bounding
rectangles that enclose independent replications of graphical structure within the whole model. In this case,
the plate encloses the two observed counts and numbers of trials. Because there is only one latent rate θ
(i.e., the same probability drives both binary processes) it is not iterated inside the plate. One way to think
of plates, which some people find helpful, is as “for loops” from computer programming languages (including
WinBUGS itself).

The following code implements the graphical model in WinBUGS.

# Inferring A Common Rate

model{

# Prior on Single Rate

theta ~ dbeta(1,1)

# Observed Counts

k1 ~ dbin(theta,n1)

k2 ~ dbin(theta,n2)

}

The code Rate_3.m (Matlab) or Rate_3.R (R) makes up some data (i.e., set values for k1, k2, n1 and
n2), and then call WinBUGS to sample from the graphical model.

27



3. Some Examples With Binomials

θ

ki

ni

ki ∼ Binomial(θ, ni)

θ ∼ Beta(1, 1)

i = 1, 2

Figure 3.4: Graphical model for inferring the common rate underlying two binary processes, using
plate notation

Exercises

Once the code is working, here are some exercises.

1. Try the data k1 = 14, n1 = 20, k2 = 16, n2 = 20. How could you report the inference about the
common rate θ?

2. Try the data k1 = 0, n1 = 10, k2 = 10, n2 = 10. What does this analysis infer the common rate θ to
be? Do you believe the inference?

3. Compare the data sets k1 = 7, n1 = 10, k2 = 3, n2 = 10 and k1 = 5, n1 = 10, k2 = 5, n2 = 10.
Make sure, following on from the previous question, that you understand why the comparison works
the way it does.

4. Try the data k1 = 0, n1 = 1, k2 = 2, n2 = 100.

3.3 Prior and Posterior Prediction

One conceptual way to think about Bayesian analysis is that Bayes Rule provides a bridge between the
unobserved parameters of models and the observed measurement of data. The most useful part of this
bridge is that data allows us to update the uncertainty (represented by probability distributions) about
parameters. But the bridge can handle two way traffic, and so there is a richer set of possibilities for relating
parameters to data. There are really four things we can think about, and they are all important and useful.

• First, the prior over parameters captures our initial assumptions or state of knowledge about the
psychological variables they represent.

• Secondly, the prior predictive tells us what data to expect, given our model (this is the combined
likelihood function defined by the sampling distributions and graph structure of a graphical model)
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and our current state of knowledge (this is what is represented by the priors). The prior predictive
is a distribution over data, and gives the relative probability of different observable outcomes before
any data have been seen.

• Thirdly, the posterior over parameters captures what we know about the psychological variables
having updated the prior information with the evidence provided by data.

• Finally, the posterior predictive tells us what data expect, given the same model we started with, but
with a current state of knowledge that has been updated by the observed data. Again, the posterior
predictive is a distribution over data, and gives the relative probability of different observable outcomes
after data have been seen. It can be viewed as a way to assess the ‘adequacy’ or ‘fit’ of a model, because
it shows whether the model is able to describe the patterns in the data it was designed to explain.

As an example to illustrate these ideas, we stay with a common rate problem, but generalize it to more
than two observed processes. Say, for example, a set of i = 1, . . . ,m people each provide a number of
successes ki out of n binary trials, and everybody is assumed to have the same underlying rate of success θ.
The graphical model for this is shown in Figure 3.5.

θ

ki

n

ki ∼ Binomial(θ, n)

θ ∼ Beta(1, 1)

i = 1, . . . , m

Figure 3.5: Graphical model for the common rate underling many binary processes.

The following code implements the graphical model in WinBUGS, and provides sampling for not just
the posterior, but also for the prior, prior predictive and posterior predictive. To allow sampling from the
prior, we use a dummy variable thetaprior that is identical to the one we actually do inference on, but is
itself independent of the data, and so is never updated. Prior predictive sampling is achieved by the variable
priorpredk that samples data using the same Binomial likelihood, but relying on the prior rate.

Posterior predictive sampling is achieved by the variable postpredk that samples data using the same
Binomial likelihood, but relying on a ‘cut’ copy of the posterior rate. WinBUGS provides the cut functional-
ity for making inferences about missing or unobserved data, and the posterior predictive can be conceived in
that way, as the unavailable next data sample that would be observed. The key feature of cutting a variable
is that sampling can flow downwards, but inference cannot flow upwards. This means that inferences about
θ are not affected by considering additional missing posterior predictive data.

# Prior And Posterior Prediction

model{

# Observed Counts
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3. Some Examples With Binomials

for (i in 1:m){

k[i] ~ dbin(theta,n)

}

# Prior on Common Rate

theta ~ dbeta(1,1)

# Prior Predictive

# This Is A "Dummy" Variable That Copies The Prior

# But Is Never Updated By Data

thetaprior ~ dbeta(1,1)

priorpredk ~ dbin(thetaprior,n)

# Posterior Predictive

# The Cut Function Allows Sampling To Flow Forward

# But Prevents Inference Flowing Back

theta.cut <- cut(theta)

postpredk ~ dbin(theta.cut,n)

}

The code Rate_4.m (Matlab) or Rate_4.R (R) makes up some data, and then calls WinBUGS to sample
from the graphical model. The code also draws the four distributions, two in the parameter space (the prior
and posterior for θ), and two in the data space (the prior predictive and posterior predictive for k). It should
look something like Figure 3.6.
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Figure 3.6: Prior and posterior for the success rate (top panel), and prior and posterior predictive
for counts of the number of successes (bottom panel), based on data giving k[i] = {3, 1, 4, 5}
successes out of n = 10 trials.
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Distributions, Information and Updating

Exercises

1. Make really sure you understand the prior, posterior, prior predictive and posterior predictive quan-
tities, and how they relate to each other (e.g., why is the top panel of Figure 3.6 a line plot, while
the bottom panel is a bar graph?). Understanding these ideas is the key to understanding Bayesian
analysis. Check your understanding by trying other data sets.

2. Recall the inference about θ for the previous exercise with just two binary processes, with data k1 = 0,
n1 = 10, k2 = 10, n2 = 10. How could predictive distributions help understand and diagnose the
counter-intuitive aspects of this inference?

3. In October 2009, the Dutch newspaper “Trouw” reported on research conducted by Hester Trompetter,
a student from the Radboud University in the city of Nijmegen. For her undergraduate thesis, Hester
had interviewed 121 older adults living in nursing homes. Out of these 121 older adults, 24 (about
20%) indicated that they had at some point been bullied by their fellow residents. Hester confidently
rejected the suggestion that her study may have been too small to draw reliable conclusions: “If I
would have talked to more people, the result would have changed by one or two percent at the most.”
Is Hester correct? Use WinBUGS to find the 95% credible interval for the expected number of bullied
residents, assuming you would test a new group of 121 older adults living in nursing homes. Do you
think this credible interval is plausible, or is it still too large or too small?

3.4 Distributions, Information and Updating

One of the nice properties of using the θ ∼ Beta
(

α, β
)

prior distribution for a rate θ, is that it has a natural
interpretation. The α and β values can be thought of as counts of “prior successes” and “prior failures”,
respectively. This means, using a θ ∼ Beta

(

3, 1
)

prior corresponds to having the prior information that 4
previous observations have been made, and 3 of them were successes.

Or, more elaborately, starting with a θ ∼ Beta
(

3, 1
)

is the same as starting with a θ ∼ Beta
(

1, 1
)

,
and then seeing data giving two more successes (i.e., the posterior distribution in the second scenario
will be same as the prior distribution in the first). As always in Bayesian analysis, inference starts with
prior information, and updates that information—by changing the probability distribution representing the
uncertain information—as more information becomes available. The catch-cry is that “today’s posteriors
are tomorrow’s priors.”

When a type of likelihood function (in this case, the Binomial) does not change the type of distribution
(in this case, the Beta) going from the posterior to the prior, they are said to have a “conjugate” rela-
tionship. This is valued a lot in analytic approaches to Bayesian inference, because it makes for tractable
calculations. It is not so important for that reason in computational approaches, because sampling methods
can handle easily much more general relationships between parameter distributions and likelihood functions.
But conjugacy is still useful in computational approaches because of the natural semantics it gives in setting
prior distributions.

This example gives a little more detail on the interpretation of counts for rate problems. The graphical
model for the problem is shown in Figure 3.7. It is essentially the same simple model used in Chapter 2,
except the prior on the rate is now θ ∼ Beta

(

ǫ, ǫ
)

, where ǫ > 0 is intended to be a small number.

The prior distribution θ ∼ Beta
(

0, 0
)

is known as the “Haldane” prior. It expresses a certain type
of ignorance about a rate parameters, as neatly explained by Jaynes (2003, pp. 382–385). Through the
interpretation of prior counts, a Beta

(

0, 0
)

corresponds to having seen nothing about the binary process.

The widely-used uniform prior Beta
(

1, 1
)

, however, corresponds to having seen one success and one failure.
So, the uniform prior makes sense in cases where it is known the binary process can produce both successes
and failures (the prior says both have been seen), and the Haldane prior makes sense in cases where not even
that information is known. Note that if you start with a Haldane prior, then see a success and a failure, you
end up with the uniform prior.

The Haldane prior is improper (i.e., it is not really a distribution, but the limit of a sequence of distri-
butions), but WinBUGS requires proper distributions. This is why the Haldane is approximated using the
small constant ǫ in Figure 3.7. The following code implements the graphical model in WinBUGS, using a
concrete value ǫ = 0.01. It also allows for the prior distribution to be sampled.
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3. Some Examples With Binomials

θ

k

n

θ ∼ Beta(ǫ, ǫ)

k ∼ Binomial(θ, n)

Figure 3.7: Graphical model for inferring the rate of a binary process, using a near-Haldane prior
on the rate.

# Summarizing Distributions

model {

# Prior on Rate

theta ~ dbeta(.01,.01)

# Observed Counts

k ~ dbin(theta,n)

# This Is A "Dummy" Variable That Copies The Prior

# But Is Never Updated By Data

thetaprior ~ dbeta(.01,.01)

}

The code Rate_5.m (Matlab) or Rate_5.R (R) sets the data to be one success and one failure (i.e.,
k = 1 from n = 2), and then calls WinBUGS to sample from the graphical model. The results are shown in
Figure 3.8. The posterior distribution, as should be expected, is essentially uniform over the whole range of
possible rates. The prior has almost all of its mass near the extreme rates of 0 and 1.

After a bit of thought, the strange shape of the prior makes sense. When we do not know that both
success and failure are possible, it is usually the case that something always succeeds or always fails (i.e.,
always takes one value or the other). Imagine a whole set of binary processes that involve asking a person
repeatedly the Dutch word for “cheese”. The binary process is whether or not they give the right answer
(“kaas”) on each repetition. You would expect that many of these binary processes will have a success rate
of 0 (i.e., those people who do not speak Dutch, and guess wrongly on each repetition). You would expect
many other of these binary processes to have a success rate of 1 (i.e., those people who do speak Dutch, and
keep saying the right answer). Only for a select few of the binary processes would you expect both successes
and failures over repetitions (i.e., those people who are learning Dutch, and sometimes remember the word,
but sometimes do not). Over all people, the distribution of prior expectations about success rates would
look qualitatively like the prior in Figure 3.8 (i.e., lots of non-Dutch speakers, lots of Dutch speakers, and
few who are in the learning process).

This problem is a good example of the basic process of Bayesian inference for a model. Start with a
prior distribution over the variables that captures—as well as possible—what is known about the relatively
likelihoods of each possible value of those variables. Then, as additional information (often in the form
of empirical data) become available, update those distributions to incorporate the new knowledge, and
(usually) become less uncertain about the values of the variables.

Of course, specifying priors may be easy or hard, in much the same way that specifying the probabilistic
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Figure 3.8: Prior and posterior distribution for a rate with a near-Haldane prior, and one observed
success and failure.

model (which variables are relevant, how they depend on each other, how they are distributed) may be easy
or hard. In fact, the prior distribution really is part of the modeling exercise, because it is the priors together
with the likelihood defined by the graph structure and distributions that determine the prior predictive; and
these are the data patterns the model as a whole expects to see. One of the attractive features of the
Bayesian approach is that all of these prior assumptions are explicitly built into modeling, and, from there,
the machinery of Bayesian inference—with its axiomatic grounding in the laws of probability—can then
automatically incorporate new information.

Exercises

1. Suppose you are asked to give a point estimate of the prior and posterior distributions in Figure 3.8.
How would you answer?

3.5 Summarizing Joint Distributions

So far, we have assumed that the number of successes k and number of total observations n is known, but
that the underlying rate θ is unknown. This has meant that our parameter space has been one-dimensional.
Everything learned from data is incorporated into a single probability distribution representing the relative
likelihood of different values for the rate θ.

For many problems in cognitive science (and more generally), however, there will be more than one
unknown variable of interest. This final binomial process example makes both the rate θ and the total
number n unknown, and so the problem is to infer both simultaneously from counts of successes k.

To make the problem concrete, suppose you have five helpers distribute a bundle of surveys to houses.
You know that each bundle contained the same number of surveys, n, but you do not know what that
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3. Some Examples With Binomials

number was. The only information you have is that the maximum bundle is (say) Nmax = 500, and so n
must be between 1 and Nmax.

You also do not know what the rate of return for the surveys is. But you are willing to assume that
each helper distributed to houses selected in a random enough way that it is reasonable to believe the return
rates are the same. Suppose you set a prior on this rate θ ∼ Uniform

(

0, 1
)

.
Inferences can simultaneously be made about n and θ from the actual number of surveys returned for

each of the helpers. Assuming the surveys themselves are able to be identified with their distributing helper
when returned, the data will take the form of m = 5 counts, one for each helper, giving the number of
returned surveys for each.

θ

ki

n

ki ∼ Binomial(θ, n)

θ ∼ Beta(1, 1)

n ∼ Uniform(1, Nmax)

i = 1, . . . , m

Figure 3.9: Graphical model for the joint inference of n and θ from a set of m observed counts of
successes k1, . . . , km.

The graphical model for this problem is shown in Figure 3.9, and the following code implements the
graphical model in WinBUGS.

# Inferring return rate and numbers of surveys from observed returns

model {

# Likelihood

for (i in 1:m){

k[i] ~ dbin(theta,n)

}

# Priors

theta ~ dbeta(1,1)

n ~ dunif(0,Nmax)

}

The code Rate_6.m (Matlab, requires the Statistics Toolbox) or Rate_6.R (R) uses the data k =
{16, 18, 22, 25, 27}, and then calls WinBUGS to sample from the graphical model. Figure 3.10 shows the joint
posterior distribution over n and θ as a scatterplot, and the marginal distributions of each as histograms.

It is clear that the joint posterior distributions carries more information than the marginal posterior
distributions. This is very important. It means that just looking at the marginal distributions will not give
a complete account of the inferences made, and may provide a misleading account.

An intuitive graphical way to see that there is extra information in the joint posterior is to see if it is well
approximated by the product of the marginal distributions. Imagine sampling a point from the histogram for
n, and then sampling one from the histogram for θ, and plotting the two-dimensional point corresponding to
these samples. Then imagine repeating this process many times. It should be clear the resulting scatterplot
would be different from the joint posterior scatterplot in Figure 3.10. So, the joint carries information not
available from the marginals.
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Figure 3.10: Joint posterior distribution (scatterplot) of the probability of return θ and the number
of surveys m for observed counts k = {16, 18, 22, 25, 27}. The histograms show the marginal
densities. The red cross shows the expected value of the joint posterior, and the green circle shows
the mode (i.e., maximum likelihood), both estimated from the posterior samples.

For this example, it is intuitively obvious why the joint posterior distribution has the clear non-linear
structure it does. One possible way in which 20 surveys might be returned is if there were only about 50
surveys, but 40% were returned. Another possibility is that there were 500 surveys, but only a 4% return
rate. In general, the number and return rate can trade-off against each other, sweeping out the joint posterior
distribution seen in Figure 3.10.

Exercises

1. The basic moral of this example is that it is often worth thinking about joint posterior distributions
over model parameters. In this case the marginal posterior distributions are probably misleading.
Potentially even more misleading are common (and often perfectly appropriate) point estimates of
the joint distribution. The red cross in Figure 3.10 shows the expected value of the joint posterior, as
estimated from the samples. Notice that it does not even lie in a region of the parameter space with
any posterior mass. Does this make sense?

2. The green circle in Figure 3.8 shows an approximation to the mode (i.e., the sample with maximum
likelihood) from the joint posterior samples. Does this make sense?

3. Try the very slightly changed data k = {16, 18, 22, 25, 28}. How does this change the joint posterior,
the marginal posteriors, the expected point, and the maximum likelihood point? If you were com-
fortable with the mode, are you still comfortable? [This example is based heavily on one I read in

35



3. Some Examples With Binomials

a book, but have lost the reference. If you know which one, could you please let me know, so I can
acknowledge it? Ta.]
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chapter 4

INFERENCES INVOLVING GAUSSIAN DISTRIBUTIONS

4.1 Inferring Means and Standard Deviations

One of the most common inferential problems involving assuming data following a Gaussian (also known as
the ‘Normal’, ‘Central’, ‘Maxwellian’) distribution, and inferring the mean and standard deviation of this
distribution from a sample of observed independent data.

The graphical model representation for this problem is shown in Figure 4.1. The data are the n observa-
tions x1, . . . , xn. The mean of the Gaussian is µ and the standard deviation is σ. WinBUGS parameterizes
the Gaussian distribution in terms of the mean and precision, not the mean and variance or the mean
and standard deviation. These are all simply related, with the variance being σ2 and the precision being
λ = 1/σ2.

The prior used for µ is intended to be ‘flat’ and uninformative. It is a Gaussian centered on zero, but with
very low precision (i.e., very large variance), and gives prior probability to a wide range of possible means
for the data. When the goal is to estimate parameters, this sort of approach seems relatively uncontroversial
in the literature.

Setting priors for standard deviations (or variances, or precisions) is trickier, and certainly more contro-
versial. If there is any relevant information that helps put the data on scale, so that bounds can be set on
reasonable possibilities for the standard deviation, then setting a uniform over that range is advocated by
Gelman (2006). In this first example, we assume the data are all small enough that setting an upper bound
of 10 on the standard deviation covers all the possibilities.

xi

µ σ µ ∼ Gaussian(0, 0.001)

σ ∼ Uniform(0, 10)

xi ∼ Gaussian(µ, 1

σ2 )

i = 1, . . . , n

Figure 4.1: Graphical model for inferring the mean and standard deviation of data generated by a
Gaussian distribution.

The following code implements the graphical model in WinBUGS. Note the conversion of the standard
deviation sigma into the precision parameter lambda used to sample from a Gaussian.

# Inferring The Mean And Standard Deviation Of A Gaussian

model{

# Data Come From A Gaussian

for (i in 1:n){

x[i] ~ dnorm(mu,lambda)

}
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4. Some Examples With Gaussians

# Priors

mu ~ dnorm(0,.001)

sigma ~ dunif(0,10)

lambda <- 1/pow(sigma,2)

}

The code Gaussian_1.m (Matlab) or Gaussian_1.R (R) creates some artificial data, and applies the
graphical model to do inference.

Exercises

Once the code is working, here are some exercises.

1. Try a few data sets, varying what you expect the mean and standard deviation to be, and how many
data you observe.

2. Try changing the assumption about the upper bound of 10 on the prior for the standard deviation.
Characterize those cases where it makes no practical difference to the inferences drawn, and those
cases where it does matter. Interpret the difference between these two cases in terms of whether and
how the prior assumptions contribute substantial information to the problem.

3. In Matlab or R, plot the joint posterior of µ and σ (e.g., using the command scatterhist in Matlab,
or plot in R). Interpret the plot.

4. Suppose you knew the standard deviation of the Gaussian was 1.0, but still wanted to infer the mean
from data. This is a realistic question: For example, knowing the standard deviation might amount
to knowing the noise associated with measuring some psychological trait using a test instrument. The
xi values could then be repeated measures for the same person, and their mean the trait value you are
trying to infer. Modify the WinBUGS script and Matlab/R code to do this. What does the revised
graphical model look like?

5. Suppose you knew the mean of the Gaussian was zero, but wanted to infer the standard deviation from
data. This is also a realistic question: Suppose you know the error associated with a measurement is
unbiased, so its average or mean is zero, but you are unsure how much noise there is in the instrument.
Inferring the standard deviation is then a sensible way to infer the noisiness of the instrument. Once
again, modify the WinBUGS script and Matlab/R code to do this. Once again, what does the revised
graphical model look like?

4.2 The Seven Scientists

This problem is from MacKay (2003, p. 309) where it is (among other things) treated to a Bayesian solution,
but not quite using a graphical modeling approach, nor relying on computational sampling methods.

Seven scientists with wildly-differing experimental skills all make a measurement of the same quantity.
They get the answers x = {−27.020, 3.570, 8.191, 9.898, 9.603, 9.945, 10.056}. Intuitively, it seems clear that
the first two scientists are pretty inept measurers, and that the true value of the quantity is probably just a
bit below 10. The main problem is to find the posterior distribution over the measured quantity, telling us
what we can infer from the measurement. A secondary problem is to infer something about the measurement
skills of the seven scientists.

The graphical model for one (good) way of solving this problem is shown in Figure 4.2. The assumption
is that all the scientists have measurements that follow a Gaussian distribution, but with different standard
deviations. However, because they are all measuring the same quantity, each Gaussian has the same mean,
it is just the standard deviation that differs.

Notice the different approach to setting priors about the standard deviations used in this example.
This approach has a theoretical basis in scale invariance arguments (i.e., choosing to set a prior so that
changing the measurement scale of the data does not affect inference). While the idea is attractive, it
quickly gets complicated, and most likely for fundamental and important reasons. The invariant prior turns
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The Seven Scientists

xiµ

σi µ ∼ Gaussian(0, 0.001)

σ ∼ InvSqrtGamma(0.001, 0.001)

xi ∼ Gaussian(µ, 1

σ2 )

i = 1, . . . , n

Figure 4.2: Graphical model for the seven scientists problem.

out (see Jaynes, 2003) to be improper, meaning it is not really a distribution, but the limit of a sequence
of distributions, much like the Haldane distribution in the earlier rate problem. Once again, WinBUGS
requires proper distributions always be used, and so the InvSqrtGamma

(

.001, .001
)

is intended as a proper
approximation to the theoretical improper prior. This raises the issue of whether inference is sensitive to
the essentially arbitrary value 0.001. Gelman (2006) raises some other challenges to this approach, and it
is probably fair to say it is declining in popularity in the applied literature. But, it is still worth knowing
about.

Anyway, the following code implements the graphical model in Figure 4.2 in WinBUGS. Notice that
the Inverse-SquareRoot-Gamma prior distribution is implemented by first setting a prior for the precision,
λ ∼ Gamma

(

.001, .001
)

and then re-parameterization to the standard deviation.

# The Seven Scientists

model{

# Data Come From Gaussians With Common Mean But Different Precisions

for (i in 1:n){

x[i] ~ dnorm(mu,lambda[i])

}

# Priors

mu ~ dnorm(0,.001)

for (i in 1:n){

sigma[i] <- 1/sqrt(lambda[i])

lambda[i] ~ dgamma(.001,.001)

}

}

The code Gaussian_2.m (Matlab) or Gaussian_2.R (R) applies the seven scientist data to the graphical
model.

Exercises

1. Draw posterior samples using the Matlab/R code, and reach conclusions about the value of the
measured quantity, and about the accuracies of the seven scientists.

2. Change the graphical model in Figure 4.2 to use a uniform prior over the standard deviation, as
was done in Figure 4.1. Experiment with the effect the upper bound of this uniform prior has on
inference. This may be a case—involving many standard deviations, but only getting one datum
relevant to each—where the scale invariance ideas might be important.
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4.3 Repeated Measurement of IQ

In this example, we will consider how to estimate the IQ of a set of people, each of whom have done multiple
IQ tests. The data are the measures xij for the i = 1, . . . , n people and their j = 1, . . . ,m repeated test
scores.

We assume that the differences in repeated test scores are Gaussian error with zero mean, but some
unknown precision. The mean of the Gaussian a person’s test scores corresponds to their IQ measure. This
will be different for each person. The standard deviation of the Gaussians corresponds to the accuracy of
the testing instruments in measuring the one underlying IQ value. We assume this is the same for every
person, since it is conceived as a property of the tests themselves.

The graphical model for this problem is shown in Figure 4.3. Because we know quite a bit about the
IQ scale, it makes sense to set priors for the mean and standard deviation using this knowledge. Our first
attempts to set priors (these are re-visited in the exercises) simply assume the actual IQ values are equally
likely to be anywhere between 0 and 300, and standard deviations are anywhere between 0 and 100.

xij

µi

σ

µi ∼ Uniform(0, 300)

σ ∼ Uniform(0, 100)

xij ∼ Gaussian(µi,
1

σ2 )

j = 1, . . . ,m

i = 1, . . . , n

Figure 4.3: Graphical model for inferring the IQ from repeated measures.

The following code implements the graphical model in WinBUGS.

# Repeated Measures Of IQ

model{

# Data Come From A Gaussian With Different Means But Common Precision

for (i in 1:n){

for (j in 1:m){

x[i,j] ~ dnorm(mu[i],lambda)

}

}

# Priors

sigma ~ dunif(0,100)

lambda <- 1/pow(sigma,2)

for (i in 1:n){

mu[i] ~ dunif(0,300)

}

}
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The code Gaussian_3.m (Matlab) or Gaussian_3.R (R) creates a data set corresponding to there being
three people, with test scores of (90, 95, 100), (105, 110, 115), and (150, 155, 160), and applies the graphical
model.

Exercises

1. Draw posterior samples using the Matlab/R Code. Estimate each person’s IQ as the mean of the
posterior distribution for their µi. What can we say about the precision of the three IQ tests?

2. Now, use a more realistic prior assumption for the µi means. Theoretically, IQ distributions should
have a mean of 100, and a standard deviation of 15. This corresponds to having a prior of mu[i] ~

dnorm(100,.0044), instead of mu[i] ~ dunif(0,300). Make this change in the WinBUGS script,
and re-run the inference. How do the estimates of IQ given by the means change? Why?

3. Repeat both of the above stages (i.e., using both priors on µi) with a new, but closely related, data
set that has scores of (94, 95, 96), (109, 110, 111), and (154, 155, 156). How do the different prior
assumptions affect IQ estimation for these data. Why does it not follow the same pattern as the
previous data?
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chapter 5

SOME EXAMPLES OF BASIC DATA ANALYSIS

5.1 Pearson Correlation

The Pearson-product moment correlation coefficient, usually denoted r, is a very widely-used measure of the
relationship between two variables. It ranges between +1, indicating a perfect positive linear relationship, to
0, indicating no linear relationship, to −1 indicating a perfect negative relationship. Usually the correlation
r is reported as a single number (a ‘point estimate’), perhaps together with a frequentist significance test.

But, rather than just having a single number to measure the correlation, it seems like it would be nice
to have a posterior distribution for r, saying how likely each possible level of correlation was. There are
frequentist confidence interval methods that try to do this, as well as various analytic Bayesian results
based on asymptotic approximations. These approaches might have some merit, but they also clearly have
problems. And, it is easy to set up a graphical model that allows inferences about the correlation coefficient
for any data and set of prior assumptions about the correlation.

xi

µ1 µ2 σ1 σ2r µ1, µ2 ∼ Gaussian(0, 0.001)

σ1, σ2 ∼ InvSrqtGamma(0.001, 0.001)

r ∼ Uniform(−1, 1)

xi ∼ MultivariateGaussian

(

(µ1, µ2) ,

[

σ2
1 rσ1σ2

rσ1σ2 σ2
2

]

−1)

i observations

Figure 5.1: Graphical model for inferring a correlation coefficient.

One graphical model for doing this is shown in Figure 5.1. The observed data take the form xi = (xi1, xi2)
for the ith person or unit observed, and, following the theory behind the correlation coefficient, are modeled
as draws from a Multivariate Gaussian distribution. The parameters of this distribution are the means and
standard deviations of the two dimensions, and the correlation coefficient that links them.

In Figure 5.1, the variances are given the approximations to theoretically ‘non-informative’ priors, as
discussed earlier. The correlation coefficient itself is given a uniform prior over its possible range. All of
these choices would be easily modified, with one obvious change being to give the correlation prior more
density around 0. One of the best features of the computational approach to Bayesian inference we are using
is that it is quick and easy to try alternative assumptions like these.

The following code implements the graphical model shown in Figure 5.1 in WinBUGS.

# Pearson Correlation

model {

# Likelihood

for (i in 1:n){

x[i,1:2] ~ dmnorm(mu[],TI[,])

}

# Priors

mu[1] ~ dnorm(0,.001)

mu[2] ~ dnorm(0,.001)
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5. Basic Data Analysis

lambda[1] ~ dgamma(.001,.001)

lambda[2] ~ dgamma(.001,.001)

r ~ dunif(-1,1)

# Reparameterization

sigma[1] <- 1/sqrt(lambda[1])

sigma[2] <- 1/sqrt(lambda[2])

T[1,1] <- 1/lambda[1]

T[1,2] <- r*sigma[1]*sigma[2]

T[2,1] <- r*sigma[1]*sigma[2]

T[2,2] <- 1/lambda[2]

TI[1:2,1:2] <- inverse(T[1:2,1:2])

}

The code Correlation_1.m (Matlab) or Correlation_1.R (R) includes several data sets, described in
the Exercises below, and uses WinBUGS to sample from the graphical model.

For the first data set in the Matlab/R code, the results shown in Figure 5.2 are produced. The left panel
shows a scatterplot of the raw data. The right panel shows the posterior distribution of r, together with the
standard frequentist point-estimate.
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Figure 5.2: Data (left panel) and posterior distribution for correlation coefficient (right panel).
The broken line shows the frequentist point-estimate.

Exercises

1. The second data set in the Matlab/R code is just the first data set from Figure 5.2 repeated twice.
Interpret the differences in the posterior distributions for r for these two data sets.

2. Compare the scatterplots and posterior distributions for the first data set to those from the third,
fourth and fifth data sets in the Matlab/R code. What is the moral of the story?
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The Kappa Coefficient of Agreement

3. The current graphical model assumes that the values from the two variables—the xi = (xi1, xi2)—
are observed with perfect accuracy. When might this be a problematic assumption? How could the
current approach be extended to make more realistic assumptions?

5.2 The Kappa Coefficient of Agreement

An important statistical inference problem in a range of physical, biological, behavioral and social sciences
is to decide how well one decision-making method agrees with another. An interesting special case considers
only binary decisions, and views one of the decision-making methods as giving objectively true decisions to
which the other aspires. This problem occurs often in medicine, when cheap or easily administered methods
for diagnosis are evaluated in terms of how well they agree with a more expensive or complicated ‘gold
standard’ method.

For this problem, when both decision-making methods make n independent assessments, the data D take
the form of four counts: a observations where both methods decide ‘one’, b observations where the objective
method decides ‘one’ but the surrogate method decides ‘zero’, c observations where the objective method
decides ‘zero’ but the surrogate method decides ‘one’, and d observations where both methods decide ‘zero’,
with n = a+ b+ c+ d.

A variety of orthodox statistical measures have been proposed for assessing agreement using these data
(but see Basu, Banerjee, & Sen, 2000, for a Bayesian approach). Useful reviews are provided by Agresti
(1992), Banerjee, Capozzoli, McSweeney, and Sinha (1999), Fleiss, Levin, and Paik (2003), Kraemer (1992),
Kraemer, Periyakoil, and Noda (2004) and Shrout (1998). Of all the measures, however, it is reasonable to
argue that the conclusion of Uebersax (1987) that “the kappa coefficient is generally regarded as the statistic
of choice for measuring agreement” (p. 140) remains true.

Cohen’s (1960) kappa statistic estimates the level of observed agreement

po =
a+ d

n

relative to the agreement that would be expected by chance alone (i.e., the overall probability for the first
method to decide ‘one’ times the overall probability for the second method to decide ‘one’, and added to
this the overall probability for the second method to decide ‘zero’ times the overall probability for the first
method to decide ‘zero’)

pe =
(a+ b) (a+ c) + (b+ d) (c+ d)

n2
,

and is given by

κ =
po − pe

1 − pe
.

Kappa lies on a scale of −1 to +1, with values below 0.4 often interpreted as “poor” agreement beyond
chance, values between 0.4 and 0.75 interpreted as “fair to good” agreement beyond chance, and values
above 0.75 interpreted as “excellent” agreement beyond chance (Landis & Koch, 1977). The key insight of
kappa as a measure of agreement is its correction for chance agreement.

The graphical model for a Bayesian version of kappa is shown in Figure 5.3. The key latent variables
are α, β and γ: Once you understand these, the result of the model is easier to follow.

The rate α is the rate at which the gold standard method decides ‘one’. This means (1 − α) is the rate
at which the gold standard method decides ‘zero’. The rate β is the rate at which the surrogate method
decides ‘one’ when the gold standard decides ‘one’. The rate γ is the rate at which the surrogate method
decides ‘zero’ when the gold standard decides ‘zero’. The best way to interpret β and γ is that they are
the rate of agreement of the surrogate method with the gold standard, for the ‘one’ and ‘zero’ decisions
respectively.

Using the rates α, β and γ, it is possible to calculate the probabilities that both methods will decide
‘one’, πa = αβ, that the gold standard will decide ‘one’ but the surrogate will decide zero, πb = α (1 − β),
the gold standard will decide ‘zero’ but the surrogate will decide ‘one’, πc = (1 − α) (1 − γ), and that both
methods will decide ‘zero’, πd = (1 − α) γ.
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D

πa πb πc πd

αβ γ

κξ ψ

κ = (ξ − ψ)/ (1 − ψ)

ξ = αβ + (1 − α) γ

ψ = (πa + πb) (πa + πc) + (πb + πd) (πc + πd)

α ∼ Beta(1, 1)

β ∼ Beta(1, 1)

γ ∼ Beta(1, 1)

πa = αβ

πb = α (1 − β)

πc = (1− α) (1 − γ)

πd = (1 − α) γ

D ∼ Multinomial([πa, πb, πc, πd] , n)

Figure 5.3: Graphical model for inferring the kappa coefficient of agreement.

These probabilities, in turn, describe how the observed data, D, made up of the counts a, b, c, and d,
are generated. They come from a Multinomial distribution with n trials, where on each trial there is a πa

probability of generating an a count, πb probability for a b count, and so on.
So, observing the data D allows inferences to be made about the key rates α, β and γ. The remaining

variables in the graphical model in Figure 5.3 just re-express these rates in the way needed to provide an
analogue to the kappa measure of chance corrected agreement. The ξ variable measures the observed rate
of agreement, which is ξ = αβ+ (1 − α) γ. The ψ variable measures the rate of agreement that would occur
by chance, which is ψ = (πa + πb) (πa + πc) + (πb + πd) (πc + πd), and could be expressed in terms of α, β
and γ (prize to the first person to do this correctly). Finally κ is the chance corrected measure of agreement
on the −1 to +1 scale, given by κ = (ξ − ψ) / (1 − ψ).

The following code implements the graphical model in WinBUGS.

# Kappa Coefficient of Agreement

model {

# Underlying Rates

# Rate objective method decides ’one’

alpha ~ dbeta(1,1)

# Rate surrogate method decides ’one’ when objective method decides ’one’

beta ~ dbeta(1,1)

# Rate surrogate method decides ’zero’ when objective method decides ’zero’

gamma ~ dbeta(1,1)

# Probabilities For Each Count

pi[1] <- alpha*beta

pi[2] <- alpha*(1-beta)

pi[3] <- (1-alpha)*(1-gamma)
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pi[4] <- (1-alpha)*gamma

# Count Data

d[1:4] ~ dmulti(pi[],n)

# Derived Measures

# Rate surrogate method agrees with the objective method

xi <- alpha*beta+(1-alpha)*gamma

# Rate of chance agreement

psi <- (pi[1]+pi[2])*(pi[1]+pi[3])+(pi[2]+pi[4])*(pi[3]+pi[4])

# Chance corrected agreement

kappa <- (xi-psi)/(1-psi)

}

The code Kappa_1.m (Matlab) or Kappa_1.R (R) passes several data sets, described in the Exercises
below, to WinBUGS to sample from the graphical model.

Exercises

1. Influenza Clinical Trial Poehling, Griffin, and Dittus (2002) reported data evaluating a rapid bedside
test for influenza using a sample of 233 children hospitalized with fever or respitory symptoms. Of
the 18 children known to have influenza, the surrogate method identified 14 and missed 4. Of the
215 children known not to have influenza, the surrogate method correctly rejected 210 but falsely
identified 5. These data correspond to a = 14, b = 4, c = 5, and d = 210.

Plot posterior distributions of the interesting variables, and reach a scientific conclusion. That is,
pretend you are a consultant for the clinical trial. What would your two- or three-sentence ‘take home
message’ conclusion be to your customers?

2. Hearing Loss Assessment Trial Grant (1974) reported data from a screening of a pre-school population
intended to assess the adequacy of a school nurse assessment of hearing loss in relation to expert
assessment. Of those children assessed as having hearing loss by the expert, 20 were correctly identified
by the nurse and 7 were missed. Of those assessed as not having hearing loss by the expert, 417 were
correctly diagnosed by the nurse but 103 were incorrectly diagnosed as having hearing loss. These
data correspond to a = 20, b = 7, c = 103, d = 417.

Once again, plot posterior distributions of the interesting variables, and reach a scientific conclusion.
Once again, what would your two- or three-sentence ‘take home message’ conclusion be to your
customers?

3. Salem Witch Trial Data Believe it or not, Mather and Mather (1979) report data on the association
between whether or not people were diagnosed as possessed by Satan and whether they were treated
by being hanged or not being hanged. Their data are reproduced below.

Not Possessed Possessed
Not Hanged 157 0

Hanged 13 0

Apply the kappa graphical model to these data. There are at least two serious points to be made.
There are probably many less serious ones. Concentrate on the former. (Hints: What would a
frequentist do with the column of zero counts, and does it make a difference which method you treat
as the gold standard?)

5.3 Change Detection in Time Series Data

This case study involves near-infrared spectrographic data, in the form of oxygenated hemoglobin counts of
frontal lobe activity during an attention task in Attention Deficit Hyperactivity Disorder (ADHD) adults.
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I don’t have any idea what that means, but it gets up the quinella of sounding neuro and clinical, and so
must be impressive and eminently fundable work.

The interesting modeling problem is that a change is expected in the time series of counts because of
the attention task. The statistical problem is to identify the change. To do this, we are going to make a
number of fairly strong assumptions. In particular, we will assume that the counts come from a Gaussian
distribution that always has the same variance, but changes its mean at one specific point in time. The
main interest is therefore in making an inference about this change-point.

µ1 µ2λ

ci tiτ

i samples

µ1 ∼ Gaussian(0, 0.001)

µ2 ∼ Gaussian(0, 0.001)

λ ∼ Gamma(0.001, 0.001)

τ ∼ Uniform(0, tmax)

ci ∼
{

Gaussian(µ1, λ) if ti < τ

Gaussian(µ2, λ) if ti ≥ τ

Figure 5.4: Graphical model for detecting a single change-point in time series.

Figure 5.4 presents a graphical model for detecting the change-point. The observed data are the counts
ci at time ti for the ith sample. The unobserved variable τ is the time at which the change happens, and
so controls whether the counts have mean µ1 or µ2. A uniform prior over the full range of possible times is
assumed for the change-point, and generic uninformative priors are given to the means and the precision.

The following code implements this graphical model in WinBUGS.

# Change Detection

model {

# Data Come From A Gaussian

for (i in 1:n){

c[i] ~ dnorm(mu[z1[i]],lambda)

}

# Group Means

mu[1] ~ dnorm(0,.001)

mu[2] ~ dnorm(0,.001)

# Common Precision

lambda ~ dgamma(.001,.001)

sigma <- 1/sqrt(lambda)

# Which Side is Time of Change Point?

for (i in 1:n){

z[i] <- step(t[i]-tau)

z1[i] <- z[i]+1

}

# Prior On Change Point

tau ~ dunif(0,tmax)

}

Note the use of the step function. This function returns 1 if its argument is greater than or equal to
zero, and 0 otherwise. The z1 variable, however, serves as an indicator variable for mu, and therefore it
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Figure 5.5: Identification of change-point in time series data.

needs to take on values 1 and 2. This is the reason why z is transformed to z1. Study this code and make
sure you understand what the step function accomplishes in this example.

The code ChangeDetection_1.m (Matlab) or ChangeDetection_1.R (R) applies the model to the near-
infrared spectrographic data. The 1178 count data did not come with times, so uniform sampling is assumed,
giving t = 1, . . . , 1778.

The code produces a simple analysis, finding the mean of the posteriors for τ , µ1 and µ2, and using
these summary points to overlay the inferences over the raw data. The result should look something like
Figure 5.5.

Exercises

1. Draw the posterior distributions for the change-point, the means, and the common standard deviation.

2. Figure 5.5 shows the mean of the posterior distribution for the change-point (this is the point in time
where the two horizontal lines meet). Can you think of a situation in which such a plotting procedure
can be misleading?

3. Imagine that you apply this model to a data set that has two change-points instead of one. What
could happen?

5.4 Censored Data

Since 13 April 2005, Cha Sa-soon—a 68-year old grandmother living in Jeonju, South Korea—had repeatedly
tried to pass the written exam for a driving licence. In South Korea, this exam features 50 four-choice
questions; in order to pass, one is required to score at least 60 points out of a maximum of 100. In the
following, we assume that each correct answer is worth 2 points, so that in order to pass one needs to answer
at least 30 questions correctly.

What makes Cha Sa-soon special is that she failed to pass the test on 949 consecutive occasions, spending
the equivalent of 4,200 US dollar on application fees. In her last, 950th attempt, Cha Sa-soon scored the
required minimum of 30 correct questions and finally obtained her written exam. After her 775th failure, in
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February 2009, Mrs Cha told Reuters news agency “I believe you can achieve your goal if you persistently
pursue it. So don’t give up your dream, like me. Be strong and do your best.”

We know that on her final and 950th attempt, Cha Sa-soon answered 30 questions correctly. In addition,
news agencies report that in her 949 unsuccessful attempts, the number of correct answers had ranged from
15 to 25. Armed with this knowledge, what can we say about θ, the latent probability that Cha Sa-soon can
answer any one question correctly? Note that we assume that each question is equally difficult, and that
Cha Sa-soon does not learn from her earlier attempts.

What makes these data special is that for the failed attempts, we do not know the precise scores—we
only know that these scores range from 15 to 25. In statistical terms, these data are said to be censored,
both from below and above. The following code, inspired by Gelman and Hill (2007, p. 405), shows how
WinBUGS deals with censored data.

model

{

for (i in 1:nattempts)

{

# If the data were unobserved (y[i] equals "cens"), then they must

# range from 15 to 25:

z.low[i] <- 15*equals(y[i],cens)

z.high[i] <- nquestions - ((nquestions-25)*equals(y[i],cens))

z[i] ~ dbin(theta,nquestions)I(z.low[i],z.high[i])

}

# Uniform prior on theta:

theta ~ dbeta(1,1)

}

Here the vector y[i] contains the data, where a failed attempt is scored as 29 (i.e., the value of cens).
Vector z[i] also contains the data, but here a failed attempt is denoted by NA.

Note the use of the equals command, a command that returns 1 when its arguments match, and 0
when they mismatch; thus, when y[i] is equal to cens, z.low[i] is 15, and otherwise it is 0. In similar
fashion, the line that begins with z.high[i] states that when y[i] is equal to cens, z.high[i] is 25, and
otherwise z.high[i] is nquestions (i.e., 50).

The code Cha_Sa-soon.R (R) applies the model to the data from Cha Sa-soon. The posterior density
for θ is shown in Figure 5.6. As can be seen, the posterior is relatively peaked—despite the fact that we do
not know the actual scores for 949 of the 950 results, we were still able to infer a lot about θ.

Exercises

1. Do you think Cha Sa-soon could have passed the test by just guessing? Give at least two arguments
to support your claim.

2. What happens when you increase the interval in which you know the data are located? (i.e., the
interval that is now 15-25)

3. What happens when you decrease the number of failed attempts?

4. What happens when you increase Cha Sa-soon’s final score?
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Figure 5.6: Posterior density for Cha Sa-soon’s probability of answering any four-choice question
correctly.
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chapter 6

EXAMS, QUIZZES, LATENT GROUPS, AND MISSING DATA

6.1 Exam Scores

Suppose a group of 15 people sit an exam made up of 40 true-or-false questions, and they get 21, 17, 21,
18, 22, 31, 31, 34, 34, 35, 35, 36, 39, 36, and 35 right. These scores suggest that the first 5 people were just
guessing, but the last 10 had some level of knowledge.

One way to make statistical inferences along these lines is to assume there are two different groups of
people. These groups have different probabilities of success, with the guessing group having a probability of
0.5, and the knowledge group having a probability greater than 0.5. Whether each person belongs to the first
or the second group is a latent and unobserved variable that can take just two values. Using this approach,
the goal is to infer to which group each person belongs, and also the rate of success for the knowledge group.

n

ki

θi

zi

φ0φ1

i = 1, . . . , p

zi ∼ Bernoulli(1/2)

φ0 = 1/2

φ1 ∼ Uniform(0.5, 1)

θi = φzi

ki ∼ Binomial(θi, n)

Figure 6.1: Graphical modeling for inferring membership of two latent groups, with different rates
of success in answering exam questions.

A graphical model for doing this is shown in Figure 6.1. The number of correct answers for the ith
person is ki, and is out of n = 40. The probability of success on each question for the ith person is the
rate θi. This rate is either φ0, if the person is in the guessing group, or φ1 if the person is in the knowledge
group. Which group they are in is determined by their binary indicator variable zi, with zi = 0 if the ith
person is in the guessing group, and zi = 1 is they are in the knowledge group. This means we can define
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θi = φzi
.

We assume each of these indicator variables equally likely to be 0 or 1 a priori, so they have the prior
zi ∼ Bernoulli

(

1/2
)

. For the guessing group, we assume that the rate is φ0 = 1/2. For the knowledge group,

we use a prior where all rate possibilities greater than 1/2 are equally likely, so that φ1 ∼ Uniform
(

0.5, 1
)

.
The following code implements the graphical model in WinBUGS. Notice the use of a dummy variable

z1[i] <- z[i]+1, which—just as in the previous change-point example—allows WinBUGS array structures
to be indexed in assigning theta[i].

# Exam Scores

model{

# Each Person Belongs To One Of Two Latent Groups

for (i in 1:p){

z[i] ~ dbern(0.5)

z1[i] <- z[i]+1

}

# First Group Just Guesses

phi[1] <- 0.5

# Second Group Has Some Uknown Greater Rate Of Success

phi[2] ~ dunif(0.5,1)

# Data Follow Binomial With Rate Given By Each Person’s Group Assignment

for (i in 1:p){

theta[i] <- phi[z1[i]]

k[i] ~ dbin(theta[i],n)

}

}

The code ExamsQuizzes_1.m (Matlab) or ExamsQuizzes_1.R (R) makes inferences about group mem-
bership, and the success rate of the knowledge group, using the model.

Exercises

1. Draw some conclusions about the problem from the posterior distribution. Who belongs to what
group, and how confident are you?

2. The initial allocations of people to the two groups in this code is random, and so will be different
every time you run it. Check that this does not affect the final results from sampling.

3. Include an extra person in the exam, with a score of 28 out of 40. What does their posterior distribution
for z tell you?

4. What happens if you change the prior on the success rate of the second group to be uniform over the
whole range (0, 1), and so allow for worse-than-guessing performance?

5. What happens if you change the initial expectation that everybody is equally likely to belong to either
group, and have an expectation that people generally are not guessing, with (say), zi ∼ Bernoulli

(

0.9
)

?

6.2 Exam Scores With Individual Differences

Probably the best thing about the previous example is that it shows how naturally and easily sampling can
find discrete latent groups. But the model itself has at least one big weakness, which is that it assumes all
the people in the knowledge group have exactly the same rate of success on the questions.

One straightforward way to allow for individual differences in the knowledge group is to extend the
model hierarchically. This involves drawing the success rate for each of the people in the knowledge group
from an over-arching distribution. One convenient (but not perfect) choice for this ‘individual differences’
distribution is a Gaussian. It is a natural statistical model for individual variation, at least in the absence of
any rich theory. But it has the problem of allowing for success rates below zero and above one. An inelegant
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but practical and effective way to deal with this is simply to censor the sampled success rates to the valid
range.

n

ki

θi

zi

φ0φi1

µ

λ

i = 1, . . . , p

zi ∼ Bernoulli(1/2)

φ0 = 1/2

φi1 ∼ Gaussian(µ, λ)

µ ∼ Uniform(0.5, 1)

λ ∼ Gamma(0.001, 0.001)

θi =

{

φ0 if zi is 0

φi1 if zi is 1

ki ∼ Binomial(θi, n)

Figure 6.2: Graphical modeling for inferring membership of two latent groups, with different rates
of success in answering exam questions, allowing for individual differences in the knowledge group.

A graphical model that implements this idea is shown in Figure 6.2. It extends the original model
by having a knowledge group success rate φi1 for the ith person. These success rates are drawn from a
Gaussian distribution with mean µ and precision λ. The mean µ is given a Uniform prior between 0.5 and
1.0, consistent with the original assumption that people in the knowledge group have a greater than chance
success rate.

The following code implements the graphical model in WinBUGS. Notice that is includes a posterior
predictive variable predphi for the knowledge group success rates of each person.

# Exam Scores With Individual Differences

model {

# Each Person Belongs To One Of Two Latent Groups

for (i in 1:p){

z[i] ~ dbern(0.5)

z1[i] <- z[i]+1

}

# The Second Group Now Allows Individual Differences

# So There Is a Rate Per Person

for (i in 1:p){

# First Group Is Still Just Guesses

theta[i,1] <- 0.5

# Second Group Drawn From A Censored Gaussian Distribution
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theta[i,2] ~ dnorm(mu,lambda)I(0,1) # Censor The Probability To (0,1)

}

# Second Group Mean, Precision (And Standard Deviation)

mu ~ dunif(0.5,1) # Greater Than 0.5 Average Success Rate

lambda ~ dgamma(.001,.001)

sigma <- 1/sqrt(lambda)

# Posterior Predictive For Second Group

mu.cut <- cut(mu)

lambda.cut <- cut(lambda)

predphi ~ dnorm(mu.cut,lambda.cut)I(0,1)

# Data Follow Binomial With Rate Given By Each Person’s Group Assignment

for (i in 1:p){

k[i] ~ dbin(theta[i,z1[i]],n)

}

}

The code ExamsQuizzes_2.m (Matlab) or ExamsQuizzes_2.R (R) makes inferences about group mem-
bership, the success rate of each person the knowledge group, and the mean and standard deviation of the
over-arching Gaussian for the knowledge group.

Exercises

1. Compare the results of the hierarchical model with the original model that did not allow for individual
differences.

2. Interpret the posterior predictive distribution given by the variable predphi. How does this distribu-
tion relate to the posterior distribution for mu?

3. What does the posterior distribution for the variable theta[1,2] mean?

4. In what sense could the latent assignment of people to groups in this case study be considered a form
of model selection?

5. What is the problem with assuming a Gaussian group distribution on a rate parameter? Can you
think of a solution to this problem?

6.3 Twenty Questions

Suppose a group of 10 people attend a lecture, and are asked a set of 20 questions afterwards, with every
answer being either correct or incorrect. The pattern of data is shown in Table 6.1. From this pattern of
correct and incorrect answers we want to infer two things. The first is how well each person attended to the
lecture. The second is how hard each of the questions was.

One way to make these inferences is to specify a model of how a person’s attentiveness and a question’s
difficulty combine to give an overall probability the question will be answered correctly. A very simple model
involves assuming each person listens to some proportion of the lecture, and that each question has some
probability of being answered correctly if the person was listening at the right point in the lecture.

A graphical model that implements this idea is shown in Figure 6.3. Under the model, if the ith person’s
probability of listening is pi, and the jth question’s probability of being answered correctly if the relevant
information is heard is qj , then the probability the ith person will answer the jth question correctly is just
θij = piqj . The observed pattern of correct and incorrect answers, where kij = 1 if the ith person answered
the jth question correctly, and kij = 0 if they did not, then is a draw from a Bernoulli distribution with
probability θij .

The following code implements the graphical model in WinBUGS.

# Twenty Questions

model {
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Table 6.1: Correct answers (ones) and incorrect answers (zeros), for 10 people on 20 questions.

Question

A B C D E F G H I J K L M N O P Q R S T

Person 1 1 1 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 0 0
Person 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Person 3 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0
Person 4 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0
Person 5 1 0 1 1 0 1 1 1 0 1 0 0 1 0 0 0 0 1 0 0
Person 6 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 0 1 0 0
Person 7 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
Person 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Person 9 0 1 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0 1
Person 10 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0

kij

θijpi qj

i = 1, . . . , np

j = 1, . . . , nq

pi ∼ Beta(1, 1)

qj ∼ Beta(1, 1)

θij = piqj

kij ∼ Bernoulli(θij)

Figure 6.3: Graphical modeling for inferring the rate people listened to a lecture, and the difficulty
of the questions.

# Correctness Of Each Answer Is Bernoulli Trial

for (i in 1:np){

for (j in 1:nq){

k[i,j] ~ dbern(theta[i,j])

}

}

# Probability Correct Is Product Of Question By Person Rates

for (i in 1:np){

for (j in 1:nq){

theta[i,j] <- p[i]*q[j]

}

}

# Priors For People and Questions

for (i in 1:np){
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p[i] ~ dbeta(1,1)

}

for (j in 1:nq){

q[j] ~ dbeta(1,1)

}

}

The code ExamsQuizzes_3.m (Matlab) or ExamsQuizzes_3.R (R) makes inferences about the data in
Table 6.1 using the model.

Exercises

1. Draw some conclusions about how well the various people listened, and about the difficulties of the
various questions. Do the marginal posterior distributions you are basing your inference on seem
intuitively reasonable?

2. Once that is done, we get to the fun bit. We now suppose that three of the answers were not recorded.
Think of a Scantron1 with coffee spilled on it being eaten by a dog. Our new data set, with missing
data, now take the form shown in Table 6.2.

Table 6.2: Correct answers (ones) and incorrect answers (zeros), for 10 people on 20 questions,
with three missing entries shown by question marks.

Question

A B C D E F G H I J K L M N O P Q R S T

Person 1 1 1 1 1 0 0 1 1 0 1 0 0 ? 0 0 1 0 1 0 0
Person 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Person 3 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0
Person 4 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0
Person 5 1 0 1 1 0 1 1 1 0 1 0 0 1 0 0 0 0 1 0 0
Person 6 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 0 1 0 0
Person 7 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
Person 8 0 0 0 0 ? 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Person 9 0 1 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0 1
Person 10 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 ? 0 0

Bayesian inference will automatically make predictions about these missing values (i.e., “fill in the
blanks”) by using the same probabilistic model that generated the observed data. Missing data are
entered as nan (“not a number”) in Matlab, and “NA” (“not available”) in R or WinBUGS. Including
the variable k as one to monitor when sampling will then provide posterior values for the missing
values. That is, it provides information about the relative likelihood of the missing values being each
of the possible alternatives, using the statistical model and the available data.

Look through the Matlab/R code to see how all of this is implemented in the second dataset. Run
the script, and interpret the posterior distributions for the three missing values. Are they reasonable
inferences? Finally, think of a more realistic application for inferring missing values in cognitive
modeling than dogs eating coffee flavored Scantrons.

1A machine-readable form on which students mark answers to academic test questions.
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6.4 The Two Country Quiz

Suppose a group of people take a historical quiz, and each answer for each person is scored as correct or
incorrect. Some of the people are Thai, and some are Moldovan. Some of the questions are about Thai
history, and would be very likely to be known by any Thai person, but very unlikely to be known by people
from outside the region. The rest of the questions are about Moldovan history, and would be very likely to
be known by any Moldovan, but not by others.

We do not know who is Thai or Moldovan, and we do not know the content of the questions. All we
have are the data shown in Table 6.3. Spend some time just looking at the data, and try to infer which
people are from the same country, and which questions relate to their country.

Table 6.3: Correct answers (ones) and incorrect answers (zeros), for eight people on eight questions
in the country quiz.

Question

A B C D E F G H

Person 1 1 0 0 1 1 0 0 1
Person 2 1 0 0 1 1 0 0 1
Person 3 0 1 1 0 0 1 0 0
Person 4 0 1 1 0 0 1 1 0
Person 5 1 0 0 1 1 0 0 1
Person 6 0 0 0 1 1 0 0 1
Person 7 0 1 0 0 0 1 1 0
Person 8 0 1 1 1 0 1 1 0

A good way to make these inferences formally is to assume there are two types of answers. For those
where the nationality of the person matches the origin of the question will be correct with high probability.
For those where a person is being asked about the other country will have a very low probability of being
correct.

kij

θijxi zj

α β

i = 1, . . . , np

j = 1, . . . , nq

α ∼ Beta(1, 1)

β ∼ Beta(1, 1)

xi ∼ Bernoulli(1/2)

zj ∼ Bernoulli(1/2)

θij =

{

α if xi = zj
β if xi 6= zj

kij ∼ Bernoulli(θij)

Figure 6.4: Graphical model for inferring the country of origin for people and questions.

A graphical model that implements this idea is shown in Figure 6.4. The rate α is the (high) probability
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of a person from a country correctly answering a question about their country’s history. The rate β is the
(low) probability of a person correctly answering a question about the other country’s history. The binary
indicator variable xi assigns the ith person to one or other country, and zj similarly assigns the jth question
to one or other country. The probability the ith person will answer the jth question correctly is θij , which
is simply α if the country assignments match, and β if they do not. Finally, the actual data kij indicating
whether or not the answer was correct follows a Bernoulli distribution with rate θij .

The following code implements the graphical model in WinBUGS.

# The Two Country Quiz

model {

# Probability Of Not Forgetting And Guessing

alpha ~ dbeta(1,1) # Not Forgetting

beta ~ dbeta(1,1) # Guessing

# Group Membership For People and Questions

for (i in 1:np){

pz[i] ~ dbern(0.5)

pz1[i] <- pz[i]+1

}

for (j in 1:nq){

qz[j] ~ dbern(0.5)

qz1[j] <- qz[j]+1

}

# Probability Correct For Each Person-Question Comination By Groups

# High If Person Group Matches Question Group

# Low If No Match

for (i in 1:np){

for (j in 1:nq){

theta[i,j,1,1] <- alpha

theta[i,j,1,2] <- beta

theta[i,j,2,1] <- beta

theta[i,j,2,2] <- alpha

}

}

# Data Are Bernoulli By Rate

for (i in 1:np){

for (j in 1:nq){

k[i,j] ~ dbern(theta[i,j,pz1[i],qz1[j]])

}

}

}

The code ExamsQuizzes_4.m (Matlab) or ExamsQuizzes_4.R makes inferences about the data in Ta-
ble 6.3 using the model.

Exercises

1. Interpret the posterior distributions for x[i], z[j], alpha and beta. Do the formal inferences agree
with your original intuitions?

2. It is actually quite possible the result you get from this analysis changes from sampling run to sampling
run, and some of them may be counter-intuitive. The basic problem is a common one for these sorts
of mixture models of model indeterminacy. The probability α is used whenever xi = zj . If this
corresponds to a Thai person answering a Thai question, then α should be high, as we expect. But
there is nothing stopping the model from coding Thai people as xi = 1 and Moldovan questions as
zj = 1, in which case α will be low. Effectively, with this coding, α and β will swap roles. Overall,
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there are four possibilities (two ways people can be encoded, by two ways questions can be encoded).
Our semantics of α being knowledge-based and β being ignorance-based will apply for 2 of these 4
possible encodings, but will be reversed for the other two. The core problem is that, while we give
semantics to α and β in our description of the model, they are statistically defined the same way.
This is the indeterminacy. How can this problem can be overcome, not just by being flexible in
interpretation, but by defining the statistical model itself more carefully?

3. Now suppose that three extra people enter the room late, and begin to take the quiz. One of them
(Late Person 1) has answered the first four questions, the next (Late Person 2) has only answered the
first question, and the final new person (Late Person 3) is still sharpening their pencil, and has not
started the quiz. This situation can be represented as an updated data set, now with missing data, as
in Table 6.4. Interpret the inferences the model makes about the nationality of the late people, and
whether or not they will get the unfinished questions correct.

Table 6.4: Correct answers (ones) and incorrect answers (zeros), for eight people, and three late
people, on eight questions in the country quiz.

Question

A B C D E F G H

Person 1 1 0 0 1 1 0 0 1
Person 2 1 0 0 1 1 0 0 1
Person 3 0 1 1 0 0 1 0 0
Person 4 0 1 1 0 0 1 1 0
Person 5 1 0 0 1 1 0 0 1
Person 6 0 0 0 1 1 0 0 1
Person 7 0 1 0 0 0 1 1 0
Person 8 0 1 1 1 0 1 1 0
Late Person 1 1 0 0 1 ? ? ? ?
Late Person 2 0 ? ? ? ? ? ? ?
Late Person 3 ? ? ? ? ? ? ? ?

4. Finally, suppose that you are now given the correctness scores for a set of 10 new people, whose data
were not previously available, but who form part of the same group of people we are studying. The
updated data set is shown in Table 6.5. Interpret the inferences the model makes about the nationality
of the new people. Revisit the inferences about the late people, and whether or not they will get the
unfinished questions correct. Does the inference drawn by the model for the third late person match
your intuition? There is a problem here. How could it be fixed?
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Table 6.5: Correct answers (ones) and incorrect answers (zeros), for eight people, three late people,
and ten new people, on eight questions in the country quiz.

Question

A B C D E F G H

New Person 1 1 0 0 1 1 0 0 1
New Person 2 1 0 0 1 1 0 0 1
New Person 3 1 0 0 1 1 0 0 1
New Person 4 1 0 0 1 1 0 0 1
New Person 5 1 0 0 1 1 0 0 1
New Person 6 1 0 0 1 1 0 0 1
New Person 7 1 0 0 1 1 0 0 1
New Person 8 1 0 0 1 1 0 0 1
New Person 9 1 0 0 1 1 0 0 1
New Person 10 1 0 0 1 1 0 0 1
Person 1 1 0 0 1 1 0 0 1
Person 2 1 0 0 1 1 0 0 1
Person 3 0 1 1 0 0 1 0 0
Person 4 0 1 1 0 0 1 1 0
Person 5 1 0 0 1 1 0 0 1
Person 6 0 0 0 1 1 0 0 1
Person 7 0 1 0 0 0 1 1 0
Person 8 0 1 1 1 0 1 1 0
Late Person 1 1 0 0 1 ? ? ? ?
Late Person 2 0 ? ? ? ? ? ? ?
Late Person 3 ? ? ? ? ? ? ? ?
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chapter 7

CONVERGENCE

Throughout the previous chapters, we have tacitly assumed that our single MCMC chain was drawing
samples from the posterior distribution at the very outset. This does not always happen, and it is important
that you are aware of the different methods that can be used to verify that the MCMC samples you base
your inference on are indeed samples that come from the posterior distribution.

Indeed, you may have already wondered about the fact that a few chains appeared to show some initial
dependence on their starting values, as illustrated in Figure 7.1.

Figure 7.1: Brief dependence on initial values for parameters from the “Change Detection in Time
Series Data” example discussed earlier.

In this example, the initial lack of convergence is very short-lived, and consequently the inference is
hardly affected at all. The next example demonstrates why lack of convergence can be a real concern.
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7.1 A Hierarchical Weighted Average Model and the
Conjunction Fallacy

When asked to combine probability statements, people sometimes behave irrationally. Consider for instance
the famous example from Tversky and Kahneman (1983):

Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As
a student, she was deeply concerned with issues of discrimination and social justice and also
participated in anti-nuclear demonstrations. What is the probability of each of the following?

1. Linda is a bank teller. (A)

2. Linda is active in the feminist movement. (B)

3. Linda is a bank teller and is active in the feminist movement. (A&B)

Suppose that you assign to Statement 1 a probability of .05, that is, PA = .05, and you assign to State-
ment 2 a probability of .5, that is, PB = .5. If events A and B are independent, a rational agent would now
determine the probability of the conjunction, Statement 3, to be the product of the two constituent proba-
bilities: PAB = PA × PB = .05 × .5 = .025. Regardless of whether the events are completely independent
(in the Linda example, they are probably not), the key insight is that—from a rational perspective—the
probability of the conjunction has to be less than the probability of the least likely constituent.

Confronted with the Linda problem, however, many people make an irrational judgment and can state
that, for instance, PA = .05, PB = .5, and PAB = .1. This irrational judgment is known as the conjunction
error, and several models and theories have been proposed to explain it.

Here we focus on a particularly simple model, which states that people determine the conjunctive
probability, PAB by taking a weighted average (Carlson & Yates, 1989; Fantino, Kulik, Stolarz–Fantino, &
Wright, 1997; Nilsson, Winman, Juslin, & Hansson, 2009):

PAB
i = βiP

A
i + (1 − βi)P

B
i , (7.1)

where the subscript i indicates that the associated quantities may differ from one individual to the next,
PB

i is higher than PA
i , and β ∈ [0, 1].

In a recent study, Nilsson et al. (2009) reported and analyzed data from an experiment that featured
33 participants, each of which completed 90 Linda-like problems in which it was required to assess the
probability of two constituents as well as the probability of the conjunction.

To analyze these data in WinBUGS, we start by building a graphical model, shown in Figure 7.3. In
the model, each participant has its own rate parameter βi. We would like to assume that these individual
parameters are drawn from some group-level Normal distribution (as in the earlier example “Exam Scores
with Individual Differences”), but there is a complication: the rate scale only ranges from 0 to 1, whereas
the Normal distribution ranges from −∞ to +∞.

One solution to this problem is to first transform the rate scale to a different scale. Figure 7.2 shows one
such transformation, the so-called probit transformation. The probit transform is the inverse cumulative
distribution function of the standard Normal distribution, so that, for instance, a rate of βi = 0.5 maps onto
a probit rate of φi = 0, and a rate of βi = 0.975 maps onto a probit rate of φi = 1.96. The main point is
that, in contrast to the rate scale, the probit scale covers the entire real line. Another useful fact is that a
standard Normal distribution on the probit scale, φ ∼ N(0, 1) corresponds to a flat, uniform distribution on
the rate scale, β ∼ U(0, 1).

Returning to the graphical model, we assume that each participant has its own rate parameter βi, and
we assume that the probit-transformed parameters φi come from a Normal group distribution with mean
µ and standard deviation σ. From the estimated βi and the observed PA

ij and PB
ij follows a deterministic

prediction about the observed conjunction PAB
ij , given by Equation 7.1. In WinBUGS, variables can only

fulfill a single function, and they cannot both be observed and deterministically determined (try it and
you will receive the error message “multiple definitions of node PAB[1, 1]”). To get around this limitation,
we state that PAB

ij is Normally distributed with a mean equal to Equation 7.1, and a very high precision,
thereby mimicking the deterministic prediction from the model.

The following code implements the graphical model in WinBUGS.
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Figure 7.2: The probit transformation. β = Φ(φ) and φ = Φ−1(β), where Φ denotes the cumulative
distribution function of the standard Normal distribution.

model

{

for (i in 1:nsubj)

{

# Each Individual i Has a Personal Beta

# We First Transform the Beta[i]’s to the Probit Scale,

# and Call These betaphi[i]’s:

beta[i] <- phi(betaphi[i])

# Personal betaphi’s Come From a Group-Level Normal:

betaphi[i] ~ dnorm(muphi,tauphi)

}

# Priors for the Group-Level Normal:

muphi ~ dnorm(0,1)

tauphi <- pow(sigmaphi,-2)

sigmaphi ~ dunif(0,10)

# Obtain the Mean on the Probability Scale

mu <- phi(muphi)

# Derive WA Predictions:

for (i in 1:nsubj)

{

for (j in 1:nitem)

{

theta[i,j] <- ((beta[i]*PA[i,j])+((1-beta[i])*PB[i,j]))

PAB[i,j] ~ dnorm(theta[i,j], lambda)
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}

}

# The First Line Above Computes the Model Predictions theta[i,j];

# The Second Line Connects theta[i,j] to the Data

# Because theta[i,j] is Really a Point Prediction, We’ll Use

# "dnorm(theta[i,j],lambda)", Where the Precision lambda is

# Set Very High:

lambda <- 1000

}

PA
ij PB

ij

PAB
ij

θij βi

φi

µ

σ

λ

µ ∼ Gaussian
(

0, 1
)

σ ∼ Uniform
(

0, 10
)

φi ∼ Gaussian
(

µ, 1
σ2

)

θij = βiP
A
ij + (1 − βi)P

B
ij

PAB
ij ∼ Gaussian

(

θij , λ = 1000
)

j = 1, . . . , 90

i = 1, . . . , 33

Figure 7.3: Graphical model for the hierarchical weighted average model that explains the con-
junction fallacy.

Exercises

1. When you consider the graphical model shown in Figure 7.3, is there a particular source of variability
that is potentially important but left unaccounted for?

2. What strong prediction does the weighted average model make with respect to conjunctions PAB?

7.2 Assessing and Improving Convergence

The code Convergence_1.m (Matlab) or Convergence_1.R (R) makes inferences about the data. Run it. To
study convergence, we have implemented three chains, and gave them different starting values. The result
should look similar to those shown in Figure 7.4. It is quite clear that the chains behave very differently
from what we have seen before. Look at this figure for a while, and write down the different features that
all suggest that the sampling process has not yet converged. What measures can you think of to remedy
the situation?

To check whether or not the sampling process has converged to the posterior distribution, we can use
various tests, including the following (see also Gelman, 1996; Gelman & Hill, 2007):
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Figure 7.4: Long-term dependence on initial values for parameters from the weighted average
model.

1. When the sampling process has converged, chains with substantially different starting values should
be indistinguishable from each other (this is why it is important to run more than a single chain,
especially for non-standard models).

2. When the sampling process has converged, chains should vary around a constant mean (i.e., there
should not be a slow drift up or down).

3. When the sampling process has converged, each individual chain should look like a “fat hairy cater-
pillar”. This occurs when successive values are relatively independent, or when a chain consists of
relatively many samples.

4. Formal tests for convergence also exists. One of the most prominent of those is the Gelman and Rubin
(1992) R̂ statistic that compares the between-chain variance to the within-chain variance. When the
chain has converged, R̂ should be very close to 1. As a rule of thumb, values higher than 1.1 are
(deeply) suspect.

When you use the R2WinBUGS program, R̂ is automatically available after you execute the samples

= bugs(...) command—just type plot(samples) and you should see output similar to that shown
in Figure 7.5. It is noteworthy that the R̂ for the muphi parameter is close to 1.06 (in R2WinBUGS,
this can be seen by typing samples$summary); this suggests possible convergence, but Figure 7.4
suggests that convergence is obtained only for the final 100 samples or so.

Lack of convergence can originate from different sources: the data (too little, too much in violation
of the assumed model), the model (misspecified, too many parameters, too much dependence between the
parameters), or the prior (unrealistic). Consequently, lack of convergence may be addressed in several ways.
The most elegant way is by slightly changing the model formulation through reparameterizations that speed
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Figure 7.5: R̂ convergence measures for the samples from the weighted average model shown in
Figure 7.4, as obtained from the R2WinBUGS package.

up convergence (e.g., Gelman & Hill, 2007). You can also check the data for anomalies, and perhaps use
transformations to achieve a better match between the data and the model.

But before you start jumping through hoops to achieve better convergence, we advise you to try two
easy methods first: (1) eliminate the first m iterations of each chain as “burn-in”— usually m = 1000 does
the trick; (2) take more samples. This method is not particularly sophisticated, but when your chain is
moving relatively slowly through the posterior distribution, you simply have to wait longer to obtain a set
of representative samples.

Exercises

1. Change the code in Convergence_1.m (Matlab) or in Convergence_1.R (R) to draw 10,000 samples
with 1000 samples burn-in. Go get yourself a cup of coffee and await the results. Have the chains
converged? Did the posterior of mu change compared to what you had before?

2. What do you notice with respect to the range of the individual beta’s? What does this mean for the
conjunction?

3. When you use the R2WinBUGS package, you also have access to the Coda package (Plummer, Best,
Cowles, & Vines, 2006), which makes it easy to assess convergence, both formally and informally. The
relevant code is available as Convergence_2.R. Study and run this code.
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4. When you use the R2WinBUGS package, type help(package="coda") at the R prompt. Take a look
at some of the other formal tests of convergence, and give them a try.

5. Can you suggest some ways to improve the model? (this is a more general question that is not
specifically related to convergence)

6. How would you assess whether the model provides a satisfactory account of the data? (again, this is
a more general question that is not specifically related to convergence)
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chapter 8

INDIVIDUAL DIFFERENCES IN MEMORY RETENTION

Finding a lawful relationship between memory retention and time is about the oldest cognitive modeling
question, going back to Ebbinghaus in the 1880s. The usual experiment involves given people (or animals)
many items of information on a list, and then testing their ability to remember items from the list after
different periods of time have elapsed. Various mathematical functions, usually with psychological interpre-
tations, have been proposed as describing the relationship between time and the level of retention. These
include models like exponential decay, power, and hyperbolic functions (Rubin & Wenzel, 1996; Rubin,
Hinton, & Wenzel, 1999).

Our example relies on a simplified version of the exponential decay model. The model assumes that the
probability an item will be remembered after a period of time t has elapsed is θt = exp (−αt) + β, with the
restriction 0 < θt < 1. The α parameter corresponds to the rate of decay of information. The β parameter
corresponds to a baseline level of remembering that is assumed to remain even after very long time periods.
This model may or may not be regarded as a serious theoretical contender in the memory retention modeling
literature, but is useful for simulation and illustrative purposes. Our analyses are based on fictitious data
from a potential memory retention study.

Our fictitious data are given in Table 8.1, and relate to 4 subjects tested on 18 items at 10 time intervals:
1, 2, 4, 7, 12, 21, 35, 59, 99, and 200 seconds. The number of items tested and the first 9 time intervals are
those used by Rubin et al. (1999), in an attempt to consider data that realistically could be measured in a
psychological experiment. Each datum in Table 8.1 simply counts the number of correct memory recalls for
each subject at each time interval. Included in Table 8.1 are missing data, shown by ‘–’ symbols, so that we
can test the prediction and generalization properties of models. All of the subjects have missing data for the
final time period of 200 seconds, so we can test the ability of the model to generalize to new measurements.
For Subject 4, there are no data at all, so we can test the ability of models to generalize to new subjects.

8.1 No Individual Differences

The graphical model for our first attempt to account for the data is shown in Figure 8.1. In the graphical
model, nodes represent variables of interest, and the graph structure is used to indicate dependencies between
the variables, with children depending on their parents. We use the conventions of representing continuous
variables with circular nodes and discrete variables with square nodes, and unobserved variables without
shading and observed variables with shading. For unobserved variables, we distinguish between stochastic
variables with single borders and deterministic variables with double borders. We also use plate notation,
enclosing with square boundaries subsets of the graph that have independent replications in the model.

The model in Figure 8.1 assumes is that every subject has the same retention curve, and so there is one
true value for the α and β parameters. The outer plate with j = 1, . . . , T corresponds to the T = 10 different
time periods, whose values are given by the observed tj variable. Together with the α and β parameters,
these time periods define the probability and item with be remembered. The probability of remembering
for the jth time period is the deterministic θj node.

The inner plate with i = 1, . . . , N corresponds to the N = 4 subjects. Each has the same probability of
recall at any given time period, but their experimental data, given by the success counts kij and (potentially)
the number of trials nij vary, and so are inside the plate. For the data in Table 8.1, the kij data are the
counts of remembered items, and nij = 18 because 18 items were presented for every subject at every time
interval. The success counts are Binomially distributed according to the success rate and number of trials.

The following code implements the graphical model in WinBUGS.

# Retention With No Individual Differences

model {

# Data Follow A Binomial Distribution
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Table 8.1: Fictitious memory retention data, giving the number out of 18 items correctly recalled
for 3 subjects over 9 time intervals, and including an extra retention interval of 200 secs and an
extra subject as missing data.

Time Interval (secs)

Subject 1 2 4 7 12 21 35 59 99 200

1 18 18 16 13 9 6 4 4 4 –
2 17 13 9 6 4 4 4 4 4 –
3 14 10 6 4 4 4 4 4 4 –
4 – – – – – – – – – –

tj θj

kij

nij

α β

α ∼ Uniform(0, 1)

β ∼ Uniform(0, 1)

θj = exp (−αtj) + β 0 < θj < 1

kij ∼ Binomial(θj, nij)

i = 1, . . . , N

j = 1, . . . , T

Figure 8.1: Graphical model for the exponential decay model of memory retention, assuming no
individual differences.

for (i in 1:ns){

for (j in 1:nt){

k[i,j] ~ dbin(theta[i,j],n[i,j])

}

}

# Retention Rate At Each Lag For Each Subject Decays Exponentially

for (i in 1:ns){

for (j in 1:nt){

theta[i,j] <- min(1,exp(-alpha*t[j])+beta)

}

}

# Priors

alpha ~ dunif(0,1)

beta ~ dunif(0,1)
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0

1

β

0 1
α

Figure 8.2: The joint and marginal posterior distributions over the decay and permanent retention
parameters α and β, for the model that assumes no individual differences.

# Posterior Predictive

beta.cut <- cut(beta)

alpha.cut <- cut(alpha)

for (i in 1:ns){

for (j in 1:nt){

predtheta[i,j] <- min(1,exp(-alpha.cut*t[j])+beta.cut)

predk[i,j] ~ dbin(predtheta[i,j],n[i,j])

}

}

}

The code Retention_1.m (Matlab) or Retention_1.R (R) applies the model to the fabricated data, and
produces analysis of the posterior and posterior predictive distributions.

The joint posterior distribution over α and β is shown in the main panel of Figure 8.2, as a two-
dimensional scatterplot. Each of the 50 points in the scatterplot corresponds to a posterior sample selected
at random from the 104 available. The marginal distributions of both α and β are shown below and to the
right, and are based on all 104 samples. The marginals show the distribution of each parameter, conditioned
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Figure 8.3: The posterior predictive for the model that assumes no individual differences, against
the data from the four subjects.

on the data, considered independently (i.e., averaged across) the other parameter.
It is clear from Figure 8.2 that the joint posterior carries more information than the two marginal

distributions. If the joint posterior were independent, it would be just the product of the two marginals,
and carry no extra information. But the joint posterior shows a mild relationship, with larger values of
α generally corresponding to larger values of β. This can be interpreted psychologically as meaning the
relatively higher baselines are needed to model the data if relatively greater rates of decay are used.

Figure 8.3 shows the posterior predictive distribution over the number of successful retentions at each
time interval. For each subject, at each interval, the squares show the posterior mass given to each possible
number of items recalled. These correspond to the models predictions about observed behavior in the
retention experiment, based on what the model has learned from the data. Also shown, by the black squares
and connecting lines, are the actual observed data for each subject, where available.

The obvious feature of Figure 8.3 is that the current model does not meet a basic requirement of
descriptive adequacy. For both Subjects 1 and 3 the model gives little posterior probability to the observed
data at many time periods. It predicts a steeper rate of decay than shown by the data of Subject 1, and a
shallower rate of decay than shown by the data of Subject 3. After evaluating the model using the posterior
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tj θij

kij

nij

αi βi

αi ∼ Uniform(0, 1)

βi ∼ Uniform(0, 1)

θij = exp (−αitj) + βi 0 < θj < 1

kij ∼ Binomial(θij, nij)

i = 1, . . . , N

j = 1, . . . , T

Figure 8.4: Graphical model for the exponential decay model of memory retention, assuming full
individual differences.

predictive analysis, we can conclude that the assumption of no individual differences is inappropriate. It
is important to understand that this conclusion neuters the usefulness of the posterior distribution over
parameters, as shown in Figure 8.2. This posterior distribution is conditioned on the assumption that the
model is appropriate, and is not relevant when our conclusion is that the model is fundamentally deficient.

Exercises

1. Why is the posterior predictive distribution for all four subjects the same? Are there any (real or
fabricated) data that could make the model predict different patters of retention for different subjects?
What about if there were massive qualitative differences, such as one subject remembering everything,
and the other two remembering nothing?

8.2 Full Individual Differences

A revised graphical model that does accommodate individual differences is shown in Figure 8.4. The change
from the previous model is that every subject now has their own αi and βi parameters, and that the
probability of retention for an item θij now changes for both subjects and retention intervals.

The following code implements the graphical model in WinBUGS.

# Retention With Full Individual Differences

model {

# Data Follow A Binomial Distribution

for (i in 1:ns){

for (j in 1:nt){

k[i,j] ~ dbin(theta[i,j],n[i,j])

}

}
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8. Memory Retention

# Retention Rate At Each Lag For Each Subject Decays Exponentially

for (i in 1:ns){

for (j in 1:nt){

theta[i,j] <- min(1,exp(-alpha[i]*t[j])+beta[i])

}

}

# Priors For Each Subject

for (i in 1:ns){

alpha[i] ~ dunif(0,1)

beta[i] ~ dunif(0,1)

}

# Posterior Predictive

for (i in 1:ns){

alpha.cut[i] <- cut(alpha[i])

beta.cut[i] <- cut(beta[i])

for (j in 1:nt){

predtheta[i,j] <- min(1,exp(-alpha.cut[i]*t[j])+beta.cut[i])

predk[i,j] ~ dbin(predtheta[i,j],n[i,j])

}

}

}

The code Retention_2.m (Matlab) or Retention_2.R (R) applies the model to the fabricated data, and
again produces analysis of the posterior and posterior predictive.

The joint posterior distributions for each subject are shown in the main panel of Figure 8.5. Each point
the scatterplot corresponds to a posterior sample, with different markers representing different subjects.
The first, second, third and fourth subjects use ‘+’, ‘⋆’, ‘x‘ and ‘o’ markers, respectively. The marginal
distributions are shown below and to the right, and use different line styles to represent the subjects.

Figure 8.6 shows the same analysis of the posterior predictive distribution over the number of successful
retentions at each time interval, for each subject. It is clear that allowing for individual differences lets
the model achieve a basic level of descriptive adequacy for Subjects 1 and 3. The posteriors in Figure 8.5
show that different values for the α decay parameter are used for Subject 1, 2, and 3, corresponding to our
intuitions from the earlier analysis.

The weakness in the current model is evident in its predictions for Subject 4. Because each subject
is assumed to have decay and permanent retention parameters that are different, the only information the
model has about the new subject are the priors for the α and β parameters. The relationships between
parameters for subjects that are visually evident in Figure 8.5 are not formally captured by the model. This
means, as shown in Figure 8.5, the posteriors for Subject 4 are just the priors, and so the posterior predictive
for this subject, shown in Figure 8.6, does not have any useful structure. In this way, the current model
fails a basic test of generalizability, since it does not make sensible predictions for the behavior of future
subjects.

Intuitively one might want to predict that Subject 4 will be likely to have model parameters represented
by some sort of average of Subjects 1 to 3. Carrying this intuition a bit further, one might also want Subjects
1 to 3 to have their highest likelihood parameters closer to their group mean than is the case when choosing
individual parameters independently.

Exercises

1. What are the relative strengths and weaknesses of this full individual differences model compared to
the earlier no individual differences model? Think about this, because the hierarchical approach we
consider next could be argued to combine the best features of both of these approaches.
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Figure 8.5: The joint and marginal posterior distributions over the decay and permanent retention
parameters α and β, for the model that assumes full individual differences.

8.3 Structured Individual Differences

The relationship between the parameters of structures is naturally addressed in a hierarchical model, which
is able to represent knowledge at different levels of abstraction in a cognitive model. Just as the data
have been assumed to be generated by the latent decay and permanent retention parameters for individual
subjects, we now assume that those parameters themselves are generated by more abstract latent parameters
that describe group distributions across subjects.

The specific graphical model we used to implement this idea is in Figure 8.7. The key change is that
now we are modeling the variation in the different αi and βi parameters for each subject, by assuming they
have a Gaussian distribution across subjects. This means that the αi and βi parameters are now sampled
from over-arching Gaussian distributions, themselves with unknown parameters in the form of means µα

and µβ and precisions λα and λβ .
Because they are now sampled, the αi memory decay and βi permanent retention parameters no longer

have priors explicitly specified, but inherit them from the priors on the means and precisions of the Gaussian
distributions. It is important to understand that, consequently, inferences made for one subject influence
predictions made for another. Since the means and precisions of the group-level distributions are common
to all subjects, what is learned about them from one subject affects what is known about another. It is in
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Figure 8.6: Analysis of the posterior predictive for the model that assumes full individual differ-
ences, against the data from the four subjects.

this way the hierarchical model formally represents the relationships between subjects.
The following code implements the graphical model in WinBUGS.

# Retention With Structured Individual Differences

model{

# Data Follow A Binomial Distribution

for (i in 1:ns){

for (j in 1:nt){

k[i,j] ~ dbin(theta[i,j],n[i,j])

}

}

# Retention Rate At Each Lag For Each Subject Decays Exponentially

for (i in 1:ns){

for (j in 1:nt){

theta[i,j] <- min(1,exp(-alpha[i]*t[j])+beta[i])

}
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tj θij

kij

nij

αi βi

µαλα
µβ λβ

µα ∼ Uniform(0, 1)

λα ∼ Gamma(.001, .001)

µβ ∼ Uniform(0, 1)

λβ ∼ Gamma(.001, .001)

αi ∼ Gaussian(µα, λα) 0 < αi < 1

βi ∼ Gaussian(µβ, λβ) 0 < βi < 1

θij = exp (−αitj) + βi 0 < θij < 1

kij ∼ Binomial(θij, nij)

i = 1, . . . , N

j = 1, . . . , T

Figure 8.7: Graphical model for the exponential decay model of memory retention, assuming
structured individual differences.

}

# Parameters For Each Subject Drawn From Gaussian Group Distributions

for (i in 1:ns){

alpha[i] ~ dnorm(alphamu,alphalambda)I(0,1) # Censor To Valid Range

beta[i] ~ dnorm(betamu,betalambda)I(0,1) # Censor To Valid Range

}

# Priors For Group Distributions

alphamu ~ dunif(0,1)

alphalambda ~ dgamma(.001,.001)

alphasigma <- 1/sqrt(alphalambda)

betamu ~ dunif(0,1)

betalambda ~ dgamma(.001,.001)

betasigma <- 1/sqrt(betalambda)

# Posterior Predictive For Counts

for (i in 1:ns){

alpha.cut[i] <- cut(alpha[i])

beta.cut[i] <- cut(beta[i])

for (j in 1:nt){

predtheta[i,j] <- min(1,exp(-alpha.cut[i]*t[j])+beta.cut[i])

predk[i,j] ~ dbin(predtheta[i,j],n[i,j])

}

}

}

The code Retention_3.m (Matlab) or Retention_3.R (R) applies the model to the fabricated data, and
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Figure 8.8: The joint and marginal posterior distributions over the decay and permanent retention
parameters α and β, for the model that assumes structured individual differences.

again produces analysis of the posterior and posterior predictive.
The joint and marginal posterior distributions for this model are shown in Figure 8.8 are shown using the

same markers and lines as before. For Subjects 1, 2, and 3, these distributions are extremely similar to those
found using the full individual differences model. The important difference is for Subject 4, who now has
sensible posterior distributions for both parameters. For the decay parameter α there is still considerable
uncertainty, consistent with the range of values seen for the first three subjects, but for the permanent
retention parameter β, Subject 4 now has a much more constrained posterior.

The posterior predictive distributions for each subject under the hierarchical model are shown in Fig-
ure 8.9. The predictions remain useful for the first three subjects, and are now also appropriate for Subject
4. This effective prediction for a subject from whom no data have yet been collected arises directly from
the nature of the hierarchical model. Based on the data from Subjects 1, 2, and 3, inferences are made
about the means and precisions of the group distributions for the two parameters of the retention model.
The new Subject 4 has values sampled from the Gaussians with these parameters, producing the sensible
distributions in Figure 8.8 that lead to the sensible predictions in Figure 8.9.
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Figure 8.9: Analysis of the posterior predictive for the model that assumes structured individual
differences, against the data from the four subjects.

Exercises

1. Think of a psychological model and data, with as little as possible to do with the memory retention
example, where this hierarchical approach might be useful.

2. Can you come up with a hierarchical version of the basic model that does not require you to truncate
the rate scale using the I(0,1) command? Implement this model and see whether your hierarchical
model leads to different conclusions than the ones presented here.
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chapter 9

SIGNAL DETECTION THEORY

9.1 Standard Signal Detection Theory

Signal Detection Theory (SDT: see D. M. Green & Swets, 1966; MacMillan & Creelman, 2004, for detailed
treatments) is a very general, useful, and widely employed method for drawing inferences from data in
psychology. It is particularly applicable to two-alternative forced choice experiments, although it can really
be applied to any situation that can be conceived as a 2 × 2 table of counts.

Table 9.1 gives the basic data and terminology for SDT. There are ‘signal’ trials and ‘noise’ trials, and
‘yes’ responses and ‘no’ responses. When a yes response is given for a signal trial, it is called a ‘hit’. When
a yes response is given for a noise trial, it is called a ‘false alarm’. When a no response is given for a signal
trial, it is called a ‘miss’. When a no response is given for a noise trial, it is called a ‘correct rejection’.

The basic data for a SDT analysis are just the counts of hits, false alarms, misses and correct rejection.
If you know the total number of signal and noise trials, which you typically do, then all of the variation in
the data is captured by just the hit and false alarm counts.

Table 9.1: Basic Signal Detection Theory data and terminology.

Signal Trial Noise Trial

Yes Response Hit False Alarm
No Response Miss Correct Rejection

The key assumptions of SDT are shown in Figure 9.1, and involve representation and decision-making
assumptions. Representationally, the idea is that signal and noise trials can be represented as values along
uni-dimensional ‘strength’ construct. Both types of trials are assumed to produce strengths that vary
according to a Gaussian distribution along this dimension. The signal strengths are assumed to be greater,
on average, than the noise strengths, and so the signal strength distribution has a greater mean. In the most
common equal-variance form of SDT, both the distributions are assumed to have the same variance. The
decision-making assumption of SDT is that yes and no responses are produced by comparing the strength of
the current trial to a fixed criterion. If the strength exceeds the criterion a yes response is made, otherwise
a no response is made.

Figure 9.1 provides a formal version of the equal-variance SDT model. Since the underlying strength
scale has arbitrary units, the variances are fixed to one, and the mean of the noise distribution is set to zero.
The mean of the signal distribution is d. This makes d a measure of the discriminability of the signal trials
from the noise trials, because it corresponds to the distance between the two distributions.

The strength value d/2 is special, because it is the criterion value at which both signal and noise
distributions are equally likely. In this sense, using a criterion of d/2 corresponds to unbiased responding.
The actual criterion used for responding is denoted k, and distance between this criterion and the unbiased
criterion is denoted c. This makes c a measure of bias, because it corresponds to how different the actual
criterion is from the unbiased one. Positive values of c correspond to a bias towards saying no, and so to an
increase in correct rejections at the expense of an increase in misses. Negative values of c correspond to a
bias towards saying yes, and so to an increase in hits at the expense of a increase in false alarms.

The SDT model, with its representation and decision-making assumptions, naturally makes predictions
about hit rates and false alarm rates, and so maps naturally onto the counts in Table 9.1. In Figure 9.1, the
hit rate, h, is shown as the proportion of the signal distribution above the criterion k. Similarly, the false
alarm rate, f , is the proportion of the noise distribution above the criterion k.

The usefulness of SDT is that, through this relationship, it is possible to take the sort of data in Table 9.1
and convert the counts of hits and false alarms (which are not independent) into psychologically meaningful
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Figure 9.1: Equal-variance Gaussian Signal Detection Theory Framework.

measures of discriminability and bias (which are independent). Discriminability is a measure of how easily
signal and noise trials can be distinguished. Bias is a measure of how the decision-making criterion being
used relates to the optimal criterion.

A graphical model for inferring discriminability and bias from hit and false alarm counts for i = 1, . . . , n
different cases is shown in Figure 9.2. The hit rates hi and false alarm rates fi follow from the geometry of
Figure 9.1 as functions of their associated discriminabilities di and biases ci, using the cumulative standard
Normal distribution function Φ (·). The observed counts of hits Hi and false alarms Fi are Binomially
distributed according to the hits and false alarm rates, and the number of signal trials S and noise trials N .
The priors for discriminability and bias are both Gaussian distributions, carefully constructed1 to correspond
to uniform prior distributions over the hit and false alarm rates.

The following code implements the graphical model in WinBUGS.

# Signal Detection Theory

model{

# Relating observed counts to underlying Hit and False Alarm rates

for (i in 1:n) {

# Hit counts per Subject are Binomial

# Using Hit Rates per Subject and Number of Signal Trials

HR[i] ~ dbin(h[i],S[i])

# False Alarm Counts per Subject are Binomial

# Using False Alarm Rates per Subject and Number of Signal Trials

FA[i] ~ dbin(f[i],N[i])

# Number of Signal Trials is Sum of Hit and Miss Counts per Subject

S[i] <- HR[i]+MI[i]

1With thanks to Geoff Iverson and some fancy theorem whose name I forget.
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i = 1, . . . , n

di ∼ Gaussian(0, 1/2)

ci ∼ Gaussian(0, 2)

hi = Φ( 1

2
di − ci)

fi = Φ(−1

2
di − ci)

Hi ∼ Binomial(hi, S)

Fi ∼ Binomial(fi, N )

Figure 9.2: Graphical model for signal detection theory.

# Number of Noise Trials is sum of False Alarm and Correct Rejection Counts per Subject

N[i] <- FA[i]+CR[i]

}

# Reparameterization, Converting Hit and False Alarm Rates

# to Indices for Discriminability and Bias

# Assumes Equal-Variance Gaussian Signal Detection Theory Model

for (i in 1:n) {

h[i] <- phi(d[i]/2-c[i])

f[i] <- phi(-d[i]/2-c[i])

}

# These Priors over Discriminability and Bias Correspond

# to Uniform Priors over the Hit and False Alarm Rates:

for (i in 1:n) {

d[i] ~ dnorm(0,0.5)

c[i] ~ dnorm(0,2)

}

}

The code SDT_1.m (Matlab) or SDT_1.R (R) applies the model to make inferences for three illustra-
tive data sets (described below). Figure 9.3 shows the results produced by the script, plotting posterior
distributions for discriminability, bias, hit rate and false-alarm for each data set.

In the first data set, 70 hits and 50 false-alarms are observed in 100 target and 100 distractor trials.
Because of the large number of trials, there is relatively little uncertainty surrounding the hit and false-alarm
rates, with narrow posteriors centered on 0.7 and 0.5 respectively. Discriminability and bias are also known
with some certainty, centered on about 0.5 and -0.25 respectively.

In the second data set, 7 hits and 5 false-alarms are observed in 10 target and 10 distractor trials. These
are the same rates of hit and false-alarms of the first situation, but based on many fewer samples. Accord-
ingly, the posterior distributions have (essentially) the same means, but show much greater uncertainty.
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Figure 9.3: Posterior distributions for discriminability, bias, hit rate and false-alarm rate using
three illustrative data sets.

In the third data set, perfect performance is observed, with 10 hits and no false-alarms in 10 target and
10 distractor trials. The modal hit and false-alarm rates are 1.0 and 0.0, but other possibilities have some
density. Discriminability is certain to be large, although the exact value is not clear. These data provide
no information to help estimate bias, and so it retains its prior distribution. These outcome contrasts
favorably with traditional frequentist analyses, which have to employ ad-hoc edge corrections to avoid both
discriminability and bias being undefined when either no hits or no false alarms are observed.

Exercises

1. Do you feel that the priors on discriminability and bias are plausible, a priori? Why or why not?
Try out some alternative priors and study the effect that this has on your inference for the data sets
discussed above.

2. Lehrner, Kryspin-Exner, and Vetter (1995) report data on the recognition memory for odors of three
groups of subjects. Group I had 18 subjects, all with positive HIV antibody tests, and CD-4 counts
of 240-700/mm3. Group II had 19 subjects, all also with positive HIV antibody tests, but with CD-4
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counts of 0-170/mm3. The CD-4 counts is a measure of the strength of the immune system, with a
normal range being 500-700/mm3, so Group II subjects had weaker immune systems. There was also
a control group of 18 healthy subjects.

The odor recognition task involved each subject being presented with 10 common household odors to
memorize, with a 30 sec interval between each presentation. After an interval of 15 min, a total of 20
odors were presented to subjects. This test set comprised of the 10 previously presented odors, and
10 new odors, presented in a random order. Subjects had to decide whether each odor was ‘old’ or
‘new’. The signal detection data that resulted—although one or two of the counts might be out by
one, because these data have been recovered from hit and false alarm rates truncated at two decimal
places—are shown in Table 9.2.

Table 9.2: Recognition memory for odors reported by Lehrner et al. (1995).

Control Group Group I Group II

Old Odor New Odor Old Odor New Odor Old Odor New Odor

Old Resp. 148 29 150 40 150 51
New Resp. 32 151 30 140 40 139

Analyze these three data sets using signal detection theory to infer the discriminability and bias of the
recognition performance for each group. What conclusions do you draw from this analysis? What, if
anything, can you infer about individual differences between the subjects in the same groups?

9.2 Hierarchical Signal Detection Theory

We now consider a hierarchical extension of SDT, applied to a different problem where individual subject
data are available. This allows us to model possible individual differences using a hierarchical extension
of the basic SDT model in the previous case study. The idea is that different subjects have different
discriminabilities and biases that are drawn from group-level Gaussian distributions.

The data come from the empirical evaluation, presented by Heit and Rotello (2005), of a conjecture
made by Rips (2001) that inductive and deductive reasoning can be unified within a signal detection theory
framework. The conjecture involves considering the strength of an argument as a uni-dimensional construct,
but allowing different criteria for induction and deduction. The criterion separates between ‘weak’ and
‘strong’ arguments in the inductive case, and ‘invalid’ and ‘valid’ arguments in the deductive case, with the
deductive criterion being more extreme. Under this conception, deduction is simply a more stringent form
of induction. Accordingly, empirical evidence for or against the SDT model has strong implications for the
many-threaded contemporary debate over the existence of different kinds of reasoning systems or processes
(e.g., Chater & Oaksford, 2000; Heit, 2000; Parsons & Osherson, 2001; Sloman, 1998).

In their study Heit and Rotello (2005) tested the inductive and deductive judgments of 80 participants on
eight arguments. They used a between-subjects design, so that 40 subjects were asked induction questions
about the arguments (i.e., whether the conclusion was “plausible”), while the other 40 participants were
asked deduction questions (i.e., whether the conclusion was “necessarily true”). These decisions made by
participants have a natural characterization in term of hit and false alarm counts.

One of the key analyses of Heit and Rotello (2005) used standard significance testing to reject the null
hypothesis that there was no difference between discriminability for induction and deduction conditions.
Their analysis involved calculating the mean discriminabilities for each participant, using edge-corrections
where perfect performance was observed. These sets of discriminabilities gave means of 0.93 for the deduction
condition and 1.68 for the induction condition. By calculating via the t statistic, and so assuming associated
Gaussian sampling distributions, and observing that the p-value was less than .01, Heit and Rotello (2005)
rejected the null hypothesis of equal means. According to Heit and Rotello (2005), this finding of different
discriminabilities provided evidence against the criterion-shifting uni-dimensional account offered by SDT.
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Figure 9.4: Graphical model for hierarchical signal detection theory.

While the statistical inference methods used by Heit and Rotello (2005) are widely used and accepted,
they explicitly or implicitly make a number of problematic assumptions that can be dealt with effectively
using the Bayesian approach. First, the uncertainty about the discriminability of each individual is ignored,
since it is represented by a single point estimate. Intuitively, making decisions corresponding, for example,
to three hits and one false alarm is consistent, to varying degrees, with a range of possible hit and false-alarm
rates, and hence, to varying degrees, with a range of discriminabilities. The Bayesian approach naturally
represents this uncertainty by making prior assumptions about hit and false-alarm rates, and then using
the evidence provided by the decisions to calculate posterior distributions. These posterior distributions are
naturally mapped into posterior distributions for discriminability and bias according to SDT, which avoids
the need for ad-hoc edge corrections. Perhaps most importantly, the statistical analysis undertaken by Heit
and Rotello (2005) above (implicitly) assumes there are no individual differences across participants within
each condition.

A graphical model for inferring discriminability and bias from hit and false alarm counts for i = 1, . . . , n
subjects, but allowing Gaussian variation in the discriminability and bias across the group of subjects, is
shown in Figure 9.4.

The following code implements the graphical model in WinBUGS.

# Hierarchical Signal Detection Theory

model{

# Relating observed counts to underlying Hit and False Alarm rates

for (i in 1:n) {

HR[i] ~ dbin(h[i],S[i])

FA[i] ~ dbin(f[i],N[i])

S[i] <- HR[i]+MI[i]

N[i] <- FA[i]+CR[i]
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}

# Reparameterization Using SDT

for (i in 1:n) {

h[i] <- phi(d[i]/2-c[i])

f[i] <- phi(-d[i]/2-c[i])

}

# Group Distributions

for (i in 1:n) {

c[i] ~ dnorm(muc,lambdac)

d[i] ~ dnorm(mud,lambdad)

}

# Priors

muc ~ dnorm(0,.001)

mud ~ dnorm(0,.001)

lambdac ~ dgamma(.001,.001)

lambdad ~ dgamma(.001,.001)

sigmac <- 1/sqrt(lambdac)

sigmad <- 1/sqrt(lambdad)

}

The code SDT_2.m (Matlab) or SDT_2.R (R) applies the model to the Heit and Rotello (2005) data. Of
key interest for testing the Rips (2001) conjecture is how the group-level means for bias and (especially)
discriminability differ between the induction and deduction conditions.

With the initial sampling setting in this script, the joint posterior of these means will resemble that
shown in Figure 9.5. The dark points in the joint distribution scatterplot and dark lines in the marginal
densities correspond to the deduction condition, while the light points and lines correspond to the induction
condition. Notice the strange set of samples leading from zero to the main part of the sampled distribution.
This is clear evidence that the sampling run requires some samples before it locates itself in the posterior
distribution. This problem is exactly what the concept of burn-in sampling was introduced to solve. Burn-in
samples are initial samples that are not recorded, and not used in the analysis. Also notice that the marginal
densities are poorly estimated, because there are not enough recorded samples.

Exercises

1. Study the lack of convergence more formally—run multiple chains and compute tests of convergence
such as the R̂ statistic.

2. The convergence problem can be fixed by introducing a burn-in period and increasing the number of
samples. Make the required changes and run the adjusted Matlab/R script. The new results should
resemble those in Figure 9.6. With this new and improved analysis, what conclusion do you draw
about the Rips (2001) conjecture? How else could this modeling approach be used to address the
question?

3. Are there still aspects of the MCMC chain that worry you? Confirm your suspicion by monitoring
and assessing the behavior of the MCMC chains for the individual c[i] parameters.

9.3 Parameter Expansion⋆

with Dora Matzke

If you run the code that implements the hierarchical signal detection model discussed above, you will
notice that the chains of the hierarchical variance parameter σc did not converge properly. As shown in
Figure 9.7, the σc chains got repeatedly stuck near zero (i.e., at iterations 1400, 5000, 8500 and 9800 in
the induction condition, and at iteration 2500 in the deduction condition) and it required several iterations
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Figure 9.5: The joint posterior over µd and µc for the induction (dark) and deduction (light)
conditions.
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Figure 9.6: An improved joint posterior over µd and µc for the induction (dark) and deduction
(light) conditions, using a burn-in period and more recorded samples.
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before the chains moved forward. This particular type of nonconvergence is fairly common in complicated
hierarchical Bayesian models. The problem is as follows. Suppose that σc happened to be estimated near
zero. As a result, the bias ci parameters will be pooled toward their population mean µc because the ci’s
are updated based on the current value of σc. In turn, σc will be estimated near zero again because it is
updated based on the current values of ci. Eventually, the chain of σc will break out of the “zero variance
trap”. However, this may require several iterations and, as you can see in the top panel of Figure 9.7, the
chain is likely to get stuck again.

Induction condition

Deduction condition

Figure 9.7: MCMC chains of the σc parameter of the hierarchical signal detection model.

A good way to enable the sampling process to escape the trap is to augment the original model with
redundant multiplicative parameters using a technique known as parameter expansion (e.g., Gelman, 2004;
Gelman & Hill, 2007; Liu & Wu, 1999). For example, we can extend our hierarchical signal detection model
with two multiplicative parameters, say ξc and ξd. The role of these additional parameters is to rescale the
original ci and di parameters and their corresponding variances σc and σd.

The graphical model that implements the parameter-expanded model is shown in Figure 9.8. Note that
the new model is equivalent to the original hierarchical signal detection model; the new model is simply
a reparameterization of the original model. In the parameter-expanded model, ci and σc are rescaled by
multiplying them with ξc. The ci parameter is now expressed in terms of µc, ξc and δci

, and σc is expressed
in terms of |ξc|σnew

c . Similarly the di and σd parameters are rescaled by multiplying them with ξd. The
di parameter is now expressed in terms of µd, ξd and δdi

, and σd is expressed in terms of |ξd|σnew
d . The

rationale behind parameter expansion is that updating the ξc and ξd parameters includes an additional
random component in the sampling process. This component causes the samples of σc = |ξc|σnew

c and
σd = |ξd|σnew

d to be less dependent on the previous iteration and prevents the chains to get trapped near
zero regardless of how small their previous value was. Keep in mind, however, that in order to draw
inferences under the original model, the parameters from the expanded model must be transformed back to
their original scale. For example, if you want to draw inference about the original σc parameter, you should
consider the estimate of |ξc|σnew

c instead of reporting only σnew
c .

The following code implements the graphical model in WinBUGS.

# Hierarchical Signal Detection Theory

model{

# Relating observed counts to underlying Hit and False Alarm rates

for (i in 1:n) {
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Figure 9.8: Graphical model for the parameter-expanded hierarchical signal detection theory.

HR[i] ~ dbin(h[i],S[i])

FA[i] ~ dbin(f[i],N[i])

S[i] <- HR[i]+MI[i]

N[i] <- FA[i]+CR[i]

}

# Reparameterization Using SDT

for (i in 1:n) {

h[i] <- phi(d[i]/2-c[i])

f[i] <- phi(-d[i]/2-c[i])

}

# Group Distributions

for (i in 1:n) {

c[i] <- muc+ xiC*deltac[i]

d[i] <- mud+ xiD*deltad[i]

deltac[i] ~ dnorm(0,lambdacNew)

deltad[i] ~ dnorm(0,lambdadNew)

}

# Priors
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muc ~ dnorm(0,0.001)

mud ~ dnorm(0,0.001)

xiC ~ dbeta(1,1)

xiD ~ dbeta(1,1)

lambdacNew ~ dgamma(.1,.1)

lambdadNew ~ dgamma(.1,.1)

sigmacNew <- 1/sqrt(lambdacNew)

sigmadNew <- 1/sqrt(lambdadNew)

sigmac <- abs(xiC)*sigmacNew

sigmad <- abs(xiD)*sigmadNew

}

The code SDT_3.m (Matlab) or SDT_3.R (R) applies the parameter-expanded model to the Heit and
Rotello (2005) data. After you run the code, WinBUGS should display MCMC chains similar to those
shown in Figure 9.9. The chains for the variance parameter σc now seem to have properly converged; the
chains have successfully escaped the “zero variance trap” and look like fat hairy caterpillars.

Induction condition

Deduction condition

Figure 9.9: MCMC chains of the σc parameter of the parameter-expanded hierarchical signal
detection model.
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chapter 10

MULTIDIMENSIONAL SCALING MODELS OF STIMULUS REPRESENTATION

Multidimensional Scaling (MDS) representations of stimuli use a low-dimensional metric space in which
points correspond to stimuli (e.g., Shepard, 1980). The idea is to infer where these points should lie—based
on similarity data that (one way or another) experimentally measure the similarities between every possible
pair of stimuli—so that more similar stimuli have nearer points.

There are many sorts of MDS models, but we will just consider a simple but very useful one known
sometimes as ‘metric’ MDS. To do this, we will assume the similarities are related to distances using the
exponential decay relationship advocated by Shepard (1987). That is, we will assume that the empirically
observed similarities decay exponentially as the distance between their representing points increases.

One interesting issue in MDS modeling involves the interpretation of different possible metrics used to
measure the distances. Typically, consideration is restricted to the Minkowskian family of distance metrics.
For points pi = (pi1, . . . , piD) and pj = (pj1, . . . , pjD) in a D-dimensional space, the Minkowski r-metric
distance is given by

dij =

[

D
∑

x=1

|pix − pjx|r
]1/r

. (10.1)

The r = 1 (City-Block) and r = 2 (Euclidean) cases are usually associated with, respectively, so-called
‘separable’ and ‘integral’ stimulus domains (Garner, 1974; Shepard, 1991). The basic idea is that many
stimulus domains, like different shapes of different sizes, have component dimensions that can be attended
to separately. These are termed separable, and are well modeled by the distance metric that treats each
dimension independently in accruing distance. Other stimulus domains, like color, however, have component
dimensions that are ‘fused’, and not easily distinguished, and so the comparison of stimuli involves all of
the dimensions simultaneously. These are termed integral, and are well modeled by the familiar Euclidean
distance metric. In addition, metrics with r < 1 have been given a psychological justification (e.g., Gati &
Tversky, 1982; Shepard, 1987, 1991) in terms of modeling stimuli with component dimensions that ‘compete’
for attention.

10.1 City-Block MDS

Figure 10.1 presents a graphical model for MDS. At the top is the coordinate representation of the points
corresponding to stimuli. The pix node corresponds to the single coordinate value of the ith stimulus on
the xth dimension, and the surrounding plates repeat these coordinates over the stimuli and dimensions.
We make the obvious prior assumption that all of the coordinates have equal prior probability of being
anywhere in a large region. Given the value of r, and the coordinate locations pix, the pairwise distances
dij are automatically given by Equation 10.1.

The similarity data we consider provide similarity ratings for each pair of stimuli as generated indepen-
dently by many subjects. The observed similarity between the ith and jth stimuli given by the kth subject
is denoted sijk, and so is enclosed by an additional plate representing the subjects. These similarities are
assumed to be generated as the exponential decay of the distance between these points, but subject to Gaus-
sian noise with common variance across all subjects and stimulus pairs. We put a uniform prior distribution
on the standard deviation of the noise, as recommended by Gelman (2006).

This graphical model is implemented by the following WinBUGS code. Notice the way the pt variables
are mapped to a translation invariant form p. This is because if all the coordinate points in an MDS
representation are moved in the same direction, the distances between the points are preserved. To remove
this indeterminacy, the p variable at each sample is pt variable with the center of mass constrained to be
the origin.
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Figure 10.1: Graphical model for metric multidimensional scaling.

# Multidimensional Scaling

model {

# Similarity data

for (i in 1:NSTIM) {

for (j in 1:NSTIM) {

for (k in 1:NSUBJ) {

s[i,j,k] ~ dnorm(mu[i,j],lambda)I(0,1)

}

mu[i,j] <- exp(-d[i,j])

d[i,j] <- pow(pow(abs(pt[i,1]-pt[j,1]),r)+pow(abs(pt[i,2]-pt[j,2]),r),1/r)

}

}

# Translation Invariant Points

for (i in 1:NSTIM) {

for (x in 1:2) {

p[i,x] <- pt[i,x]-mean(pt[1:NSTIM,x])

}

}

# Priors

for (i in 1:NSTIM) {

for (x in 1:2) {

pt[i,x] ~ dunif(-5,5)

}

}

sigma ~ dunif(0,0.5)
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Figure 10.2: Multidimensional scaling points posterior representation.

lambda <- 1/pow(sigma,2)

}

The code MultidimensionalScaling_1.m (Matlab) or MultidimensionalScaling_1.R (R) applies the
model to data giving similarity ratings for 9 participants on 9 circles of different sizes with radial lines at
different angles, following (essentially) a 3× 3 factorial design, as reported by Treat, MacKay, and Nosofsky
(1999). The analysis assumes the stimuli are separable, and so uses r = 1.

The posterior distribution of the representing points is shown in Figure 10.2, and clearly shows the basic
3 × 3 design. Notice how the posterior naturally expresses the uncertainty about the exact representing
point assumed by the MDS representational model.

Exercises

1. Draw the posterior distribution for the common variance.

2. Do some analysis that presents an account of how well the MDS representation fits the data. There
are many possibilities. One way would be to show the relationship between the mu variables and
the empirical similarities, perhaps as a scatter-plot. Another way might be to overlay the empirical
distances on a representational display like Figure 10.2. There are certainly other ways: Be creative.

10.2 Euclidean MDS With Individual Differences

Our second MDS analysis relates to the similarities between ten spectral colors, as reported by Helm (1959).
Color is regarded as the prototypical integral stimulus domain, and so provides a contrast with the separable
domain we have just used. And spectral color MDS representations are a famous example of the whole MDS
idea, because they typically transform a physical representation based on the wavelength single dimension
into a two-dimensional psychological representation, known as a ‘color circle’ or ‘color horse-shoe’. In this
representation, the high psychological similarity between red and violet, at opposite ends of the physical
spectrum, is represented.
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Figure 10.3: Graphical model for metric multidimensional scaling with individual differences.

The Helm (1959) data have the additional interesting feature of containing individual differences. Of the
16 subjects, 11 are known to have normal color vision, while 5 have a color deficiency known as deuteronomy.

Figure 10.1 presents a graphical model for MDS that provides one (but certainly not the only) way
to express and make inferences about the individual differences. The basic idea is that there are now two
groups of subjects, and each group has their own MDS representation. The binary variable zk identifies
to which group the k subject belongs. In our analysis, we will treat some of these assignments as known
(i.e., observed), and some as unknown (i.e., latent). The terms ‘semi-supervised’ and ‘partially observed’
are good ones to describe this set-up, and the lighter shading, between the fully observed and unobserved
shadings, is intended to indicate the idea in the graphical model.

The following WinBUGS code implements the graphical model in Figure 10.3 in the context of a par-
ticular analysis, where the assignment of 10 subjects is known (the z variables that are assigned values) but
the assignment of the other 6 subjects is unknown (the z variables that are assigned priors).

# Multidimensional Scaling With Two Groups

model {

# Similarity data

for (i in 1:NSTIM) {

for (j in 1:NSTIM) {

for (k in 1:NSUBJ) {

s[i,j,k] ~ dnorm(mu[i,j,z[k]],lambda)I(0,1)

}

for (g in 1:2) {

mu[i,j,g] <- exp(-d[i,j,g])

d[i,j,g] <- pow(pow(abs(pt[i,1,g]-pt[j,1,g]),r)

+pow(abs(pt[i,2,g]-pt[j,2,g]),r),1/r)

}
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}

}

# Two Groups

for (i in 1:6) {

z01[i] ~ dbern(0.5)

z[i] <- z01[i]+1

}

z[7] <- 1

z[8] <- 1

z[9] <- 1

z[10] <- 1

z[11] <- 1

z[12] <- 1

z[13] <- 2

z[14] <- 2

z[15] <- 2

z[16] <- 2

# Translation Invariant Points

for (i in 1:NSTIM) {

for (x in 1:2) {

for (g in 1:2) {

p[i,x,g] <- pt[i,x,g]-mean(pt[1:NSTIM,x,g])

}

}

}

# Priors

for (i in 1:NSTIM) {

for (x in 1:2) {

for (g in 1:2) {

pt[i,x,g] ~ dunif(-5,5)

}

}

}

sigma ~ dunif(0,0.5)

lambda <- 1/pow(sigma,2)

}

The code MultidimensionalScaling_2.m (Matlab) or MultidimensionalScaling_2.R (R) completes
the analysis, choosing the 10 known and 6 unknown assignments from the Helm (1959) data. Notice that
the metric parameter is set to r = 1.8, which is near integral, but not fully integral. This is consistent with
the results for these data presented by Lee (2008), who made inferences about the metric parameter. It also
sidesteps a weakness of the current WinBUGS implementation of the MDS model, which has translation
but not rotation invariance. For r 6= 2 there is no natural rotation invariance, but this would be needed
if r = 2 was assumed. I think the right way to approach this is, much as the center of mass was used to
solve the translation problem, to use the moment of inertia (the rotational mechanics equivalent of center
of mass), and rotate to the principal axis representation. But I do not know how to do this yet.

A simple analysis of the unobserved z variables shows that the correct inferences are made. The first
4 subjects are really color-normal, the final two are color-deficient. The posterior distribution of the repre-
senting points for both groups are shown in Figure 10.2, and clearly shows the perfect color circle for the
color-normal group, and the distorted color-circle for the deuteronomy group.

Exercises

1. Assess whether or not the MCMC chains for the different parameters have converged.
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Figure 10.4: Multidimensional scaling points posterior representations for the normal (left panel)
and deficient (right panel) sub-group.

2. What do you think of partial observability? Does it depend on how many observed cases are needed
to make good inferences about the unobserved ones? (Compare the situation where for every 6
undiagnosed subjects we needed 10 diagnosed ones, versus the case where once we have 10 diagnoses,
every new subject can be correctly diagnosed using this approach).

3. It would be possible to write much more elegant and general code for the partial observability. Think
about a good way to achieve this.

4. You could solve the rotation invariance issue for me.
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chapter 11

THE TAKE THE BEST MODEL OF HEURISTIC DECISION-MAKING⋆

The Take the Best (TTB) heuristic model of decision-making (Gigerenzer & Goldstein, 1996) is a very simple
account of how people choose between two stimuli on some criterion. It addresses decision tasks like “which
of Frankfurt or Munich has the larger population?”, “which of a catfish and a herring is more fertile?”, and
“which of these two professors has the higher salary?”. These are clearly all important issues.

TTB assumes that all stimuli are represented in terms of the presence or absence of a common set
of cues. So, Frankfurt and Munich, along with other German cities, might be represented in terms of
whether or not they have an international airport, whether they have hosted the Olympics, whether they
have a football/soccer team in the Bundesliga, and so on. TTB assumes these cues are always binary,
says nothing about how they are generated, nor how they are assigned to stimuli, nor how they and their
assignments change over time. Remember the day you were in St. Pauli when Hamburg were relegated from
the Bundesliga?

Associated with each cue in TTB is a ‘cue validity’. This validity measures the proportion of times, for
those pairs of stimuli where one has the cue and the other does not, that the cue belonged to the stimulus
that with the greater criterion value. For example, the validity of the cue ‘has an airport’, for a set of cities,
is the proportion of times the larger city has the airport, when attention is restricted to just those pairs
of cities where only one has an airport. By this definition, cue validities must range between 0 and 1. In
practice, if a cue validity was smaller than 0.5, it makes sense to recode the cue in terms of the absence of
the property. This tactic guarantees all validities are between 0.5 and 1. TTB does not explicitly say much
about how validities are learned from experience, although Gigerenzer and colleagues have presented some
relevant work (e.g., Todd & Dieckmann, 2005; Martignon & Laskey, 1999).

TTB as a cognitive process account of how people make decisions is based around interesting and sensible
answers to three basic questions.

• The first question is “how do people search their environment for information?”. TTB says people
search the cues in validity order, starting with the highest validity cue and working their way down.

• The second question is “how do people decide to terminate their search for information?”. Here
TTB proposes a radical answer, saying that people stop searching as soon as they have found one
discriminating cue. That is, the first cue found that belongs to one stimulus but not the other is
enough to stop searching.

• The final question is “once people have stopped searching, how do they decide?”. TTB proposes,
simply, that people choose the stimulus with the first discriminating cue. If no discriminating cue is
found, and all of the cues are exhausted, TTB proposes people guess.

11.1 TTB With Fixed Search Order

A graphical model for implementing TTB is shown in Figure 11.1. The experimental data are the decisions
made for a set of questions. The binary kq indicates the decision (i.e., the stimulus that was chosen) for the
qth question, and pq1 and pq2 give the two stimuli for qth question. The patterns of cue membership are
also known, with cik = 1 if the ith stimulus has the kth cue, and cik = 0 if it does not. The search order for
cues is specified by the observed variable s.

To make the inherently deterministic TTB model a probabilistic model suited to Bayesian implementa-
tion, a responding rate parameter γ is included. The idea is that the model follows the decision made by
TTB with probability γ. This is done via the deterministic θq variable, which, for every qth question, gives
probability γ to the TTB choice and 1 − γ to the non-TTB choice. We use a γ ∼ Beta

(

1, 1
)

prior.
The following code implements TTB in WinBUGS. The code assumes that the cues representing stimuli

are in the desired search order. So, if cues are to be searched in order of their validities, as in TTB, the first
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Figure 11.1: Graphical model for TTB with known search order.

cue needs to be the most valid, the second cue the second-most valid, and so on (i.e., the information in s
in the graphical model is implicitly in the cik values). One advantage of this approach is that other fixed
search strategies could easily be implemented by supplying the cues in different orders.

There are a couple of noteworthy things in the code. The basic approach is to calculate a weighted sum
for each question (i.e., each stimulus pair), with more valid cues receiving exponentially more weight. This
means the total weight is dominated by the highest validity cue for each stimulus, and the stimulus with
the highest validity cue overall will have the greatest weighted sum.

The other trick is more of an ugly hack. WinBUGS will not sample the deterministic variable sc that
measures the accuracy of TTB. To overcome this, the stochastic variable gamma is added and subtracted in
defining sc. This makes WinBUGS happy to record the samples for sc, without (obviously) changing its
value.

# Take The Best With Known Search Order

model {

# Observed Decisions

for (i in 1:nq) {

k[i] ~ dbern(theta[i,d1[i]])

}

# TTB Decision

for (i in 1:nq){

# Cue contributions to decision

for (j in 1:nc){

w[i,j] <- (c[p[i,1],j]-c[p[i,2],j])*pow(2,vo[j]-1)

}

# TTB takes the first cue, or they are not different

# First object gives d1[i]=3, Second object gives d1[i]=1, Same gives d1[i]=2

dtmp[i] <- sum(w[i,1:nc])

d[i] <- -1*step(-dtmp[i])+step(dtmp[i])

d1[i] <- d[i]+2

# Goes with TTB decision with probability gamma, or guesses

theta[i,1] <- 1-gamma
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theta[i,2] <- 0.5

theta[i,3] <- gamma

# Whether decision was correct

correct[i] <- equals(k[i],1)*equals(d1[i],3)

+equals(k[i],0)*equals(d1[i],1)

+0.5*equals(d1[i],2)

}

# Proportion of correct decision, with hack to insure monitoring

sc <- sum(correct[1:nq])/nq+gamma-gamma

# Priors

gamma ~ dbeta(1,1)

}

The code TakeTheBest_1.m (Matlab) or TakeTheBest_1.R (R) uses two data sets made available by the
Gigerenzer group. The Citworld one is the famous German cities data set, which has 83 cities represented
in terms of 9 cues, with population as the criterion. The professor data sets is less well studied (and less well
documented), but has fewer stimuli and cues, and so is a computationally less burdensome first example.

The Matlab/R code generates the observed ‘experimental’ data by finding the correct decision for each
pair of stimuli. That is, it behaves as if it were a subject in a task asked to compare every possible pair
of stimuli, and always makes the correct decision. In the context of a real experiment, this part of the
could would be replaced with experimental data giving the decisions subjects actually made, for whatever
sequence of questions they were asked.

Running this code will give as the main output the variable sc, which is simply the proportion of the
observed decisions correctly predicted by TTB. (Note that because this variable is deterministic, WinBUGS
will crash trying to draw its density. Look at its history or stats instead in the GUI).

Exercises

1. Try a few different search orders, by changing the Matlab/R code to alter the order of the columns
of the c matrix. What effect does this have on the accuracy of TTB? Is the cue validity order
recommended by TTB guaranteed to be the best order? If so, why? If not, why not?

2. The original exposition of TTB (Gigerenzer & Goldstein, 1996) included a ‘recognition’ stage that
preceded the search of cues. The idea is that if one stimulus is recognized but the other is not (e.g., you
have heard of Berlin but not Magdeburg), you will choose the one you recognize. If neither stimulus is
recognized, TTB says you guess. If both are recognized, the cue search process we have implemented
is used. How could the current graphical model be extended to include this recognition stage?

3. What is the relationship between the γ responding rate and the sc accuracy measure?

11.2 Inferring the TTB Search Order

One of the nice consequences of representing cognitive models in the form of graphical models is that
alternative analyses often suggest themselves immediately. A good example of this relates to the search
order. Figure 11.2 presents a modified graphical model in which the search order s is now unobserved.

This small modeling change makes the psychology of the inference much more interesting. Now, rather
than assuming a search order, an inference is made about what search order is being used, based on the
observed decisions being made. This means, of course, that the search order variable s needs a prior, and
we assume that all possible search orders (for m cues there are m! possible search orders) are equally likely.

The following code gives the WinBUGS implementation of the graphical model in Figure 11.2. Imple-
menting the sampling of search orders is achieved in an interesting way. The simplest possible would be
to have a categorical variable that could take m! values, each corresponding to a search order. But doing
inference on this variable would hampered by the lack of structure in the relationships between the values.
If two search orders are similar (say they have the same order, except for two neighboring cues, whose orders
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Figure 11.2: Graphical model for TTB with unknown search order.

are flipped) it would help if they had similar (i.e., neighboring) categorical numbers. But it is obviously
impossible to map all the structure relationships between the orders onto the number line.

Instead, our approach uses separate, but carefully constrained, underlying categorical variables for each
of the cues, and their values on these variables are ranked to derive the cue order. For a domain with m cues,
the first cue can take values 1, . . . ,m+1, . . . , 2m+1, . . ., the second cue can values 2, . . . ,m+2, . . . , 2m+2, . . .,
and so on. This means that small changes in the underlying cue-specific categorical variables will lead to
small changes in the search order, and sampling works much better.

# Take The Best With Unknown Search Order

model {

# Observed Decisions

for (i in 1:nq) {

k[i] ~ dbern(theta[i,d1[i]])

}

# TTB Decision

for (i in 1:nq){

# Cue contributions to decision

for (j in 1:nc){

w[i,j] <- (c[p[i,1],j]-c[p[i,2],j])*pow(2,cvo[j]-1)

}

# TTB takes the first cue, or they are not different

# First object gives d1[i]=3, Second object gives d1[i]=1, Same gives d1[i]=2

dtmp[i] <- sum(w[i,1:nc])

d[i] <- -1*step(-dtmp[i])+step(dtmp[i])

d1[i] <- d[i]+2

# Goes with TTB decision with probability gamma, or guesses

theta[i,1] <- 1-gamma

theta[i,2] <- 0.5

theta[i,3] <- gamma

# Whether decision was correct

correct[i] <- equals(k[i],1)*equals(d1[i],3)
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+equals(k[i],0)*equals(d1[i],1)

+0.5*equals(d1[i],2)

}

# Proportion of correct decision, with hack to insure monitoring

sc <- sum(correct[1:nq])/nq+gamma-gamma

# Cue Search Order

for (i in 1:nc){

cvo[i] <- rank(cv[1:nc],i)

}

# Priors

gamma ~ dbeta(1,1)

for (i in 1:nc){

cv[i] ~ dcat(base[i,1:M])

}

}

The code TakeTheBest_2.m (Matlab) or TakeTheBest_2.R (R) uses the same data sets considered
earlier, and then calls WinBUGS to apply the graphical model from which search order can be inferred.
The Matlab/R code generates the base variables that give the priors for the underlying categorical variables
for each cue, so that they can only sample the constrained sequence of values required to define the search
orders.

Running the code will produce a simple analysis of the posterior for the search order, listing how many
different search orders were sampled, what those orders were, their estimated posterior mass (i.e., what
proportion of times each order was sampled), and the accuracy of each order, as measured by the sc

variable.

Exercises

1. Plot the posterior density of sc.

2. Change the WinBUGS script so that the theta variables are cut, and so the observed decisions no
longer cause any inference in the model. You will need to change the line giving the data distribution
to k[i] ∼ dbern(theta.cut[i,d1[i]]), and also insert lines something like theta.cut[i,1] <-

cut(theta[i,1]) for all three possibilities. Run this model and plot the posterior density of sc

again. What is the relationship between the two posterior densities you have produced? Explain the
different posteriors over search orders when theta is cut and not cut. Most importantly, what does
all this mean psychologically?
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chapter 12

CHILDREN’S DEVELOPMENT OF NUMBER CONCEPTS

This example involves two competing theories of how children develop concepts for number words. One
theory—known as the ‘knower level’ theory—asserts that children learn the meaning of the number words
in order. The claim is that children understanding the meaning of ‘one’ first, then ‘two’, then ‘three’, and
then (usually) ‘four’, at which point they work out the pattern, and understand the meaning of all counting
numbers. In the jargon of the theory, children start being ‘0-knowers’, progress to ‘1-knowers’ once they
understand ‘one’, though ‘2-knower’, ‘3-knower’ and (usually) ‘4-knower’ levels, until then eventually become
‘HN-knowers’ (for “Higher Number”).

The other theory—known as the ‘analog representation’ theory—assumes that children, as with animals,
have an innate analog representation system for numbers that they must learn to map onto the number words.
The idea is that this mapping works like other psychophysical mappings, so that it is approximately correct,
but with variability in performance that increases as the number being estimated grows larger.

Despite their quite different representational assumptions, both theories make similar predictions for
many standard developmental tasks and research questions. Both predict approximately accurate answers
to number-based questions with improvement as children age. There is, however, at least one important
developmental task—known as the ‘give-n’ task—where the two theories make different predictions. In a
give-n task, children are simply asked to give some number of objects (usually toys) to the experimental
(or an experimenter substitute, like a puppet). The behavioral data are just a set of question-answer pairs,
recording how many the child was asked to give and how many they actually gave.

The divergent predictions of the two theories on the give-n task relate to errors, particularly in terms of
over- versus under-estimation. The analog representation theory predicts that errors will be symmetrical,
because they arise from mis-estimation, and so it is just as likely a child asked to give two toys will incorrectly
give one as that they will give three. The knower level theory, on the other hand, predicts that errors will
usually be over-estimations, because children learn the number words in sequence. So, if a child understand
the number one (i.e., is a “1-knower”) they might mistakenly give three toys when asked for two, but they
will not give one toy (because they know what “one” means).

If this were all there were to the story, it would be easy to do an analysis of the raw behavioral data
to test the knower-level and analog representation theories, just by looking at the patterns of errors. Two
things (at least) make life more complicated. The first is that the knower-level predictions depend heavily
on whether a child is a 0-knower, 1-knower, and so on, (e.g., a 2-knower might well give three when asked
for four, but a 3- or 4- or HN-knower should not), so this needs to be inferred.

The second big complicating issue is that there are task-specific influences on behavior. It is empirically
quite likely a 0-knower, whatever they are asked for, will give one toy, or two toys, or a small handful of
toys, or the whole basket-full of them. So, if the basket of toys the child selects from has 15 toys in total,
answers like 1, 2, 3, and 15 are more likely than (say) 8, 10 or 12, but part of this is really just a task specific
quirk.

To understand the data, then, and especially to evaluate the two competing representations theories
using the data, we need a complete model of how children perform on the give-n task. That is, we need not
just a theory of how they represent the numbers, but also how they make decisions on the task.

One simple way of building such models is to assume there are three parts to the decision-making of
children in the give-n task.

• Initially, they have a ‘base-rate’ set of probabilities of giving each possible number of toys. This
base-rate corresponds to something like the number they would spontaneously give, if there were not
instructed to give a specific number.

• When the instruction is given, this acts as information to update the base-rate probabilities. How the
updating happens will depend critically on how the numbers are represented (i.e., whether children
use knower-level or analog representations), and the details of that representation (e.g., what their
knower level is, or how variable their estimation accuracy is).

109



12. Number Concepts

• Finally, the child will select a number to give based on the updated probabilities. At this point, they
will produce the actual behavior observed in the task, and recorded by the data.

Fleshing out this framework for both the knower level and analog representation theories lets us analyze
give-n data, and what it tells us about the theories.

12.1 Knower Level Model

π

π
′

gij

qij zi

v π ∼ Dirichlet(1, . . . , 1)

v ∼ Uniform(1, 1000)

zi ∼ Categorical(1

6
, . . . , 1

6
)

π′

ijk ∝











πk if q > z

v × πijk if qij ≤ zi and k = qij
1

v
× πijk if qij ≤ zi and k �= qij

gij ∼ Categorical(π′)

i children

j questions

Figure 12.1: Graphical model for behavior on the give-n task according to the knower level theory.

Figure 12.1 presents a graphical model for the knower level based account of how the give-n data are
generated. The data are the observed qij and gij which give the number asked for (the ‘question’) and the
answer (the number ‘given’) respectively, for the ith child on their jth question. The base-rate probabilities
are representing by the vector π, which is updated to π′, from which the number given is sampled. The
updating occurs using the number asked for, the knower level zi of the child, and an evidence value v that
measures the strength of the updating.

The logic of the updating can be explained using two cases. If the child is asked to give a number
they know about then the probability of giving that number increases by a factor of v, and the probability
of giving other numbers they know about but were not asked to give all decrease by the same factor v.
The relative probabilities of giving other numbers are not changed, because the child does not know about
them. So, for example, if a 3-knower is asked to give two, their probability of giving two increases, and
their probability of giving one or three decreases, relative to the base rate. But the numbers four and above
do not change in their relative probabilities, although they will in their absolute probabilities, because the
probabilities for one, two and three have changed (i.e., if four was twice as likely as five in the base-rate, it
still will be after updating, although both might be less likely in absolute terms).

The other case to consider is when the child is asked to give a number they do not know. Here, the
numbers they do know will be updated to be less probable by the factor v, but all of the other numbers
will retain the same relative probabilities to each other. So, for example, is a 3-knower is asked to give five,
they become much less likely to give one, two or three, but equally relatively likely to give four and above,
according to their base-rate.

The details of the definition of π
′ capture all of this logic, and it is worth thinking this through, to make

sure you understand. The following script implements this graphical model in WinBUGS. There is quite
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a bit going on here, and it is worth studying. Notice the way the conditional definition and normalization
of the piprime probabilities are managed. Notice also that there are posterior predictions being made for
each individual subject, as well as for each knower level as a group.

# Number Concept Using Knower Levels

model {

# Data

for (i in 1:S){

for (j in 1:Q[i]){

# Probability a z[i]-knower will give g[i,j] when asked for q[i,j]

# is a categorical draw from their distribution over the 1:N toys

g[i,j] ~ dcat(npiprime[z[i],q[i,j],1:N])

}

}

# Likelihood

for (i in 1:Z){

for (j in 1:N){

for (k in 1:N){

piprimetmp[i,j,k,1] <- pi[k]

piprimetmp[i,j,k,2] <- 1/v*pi[k]

piprimetmp[i,j,k,3] <- v*pi[k]

# Will be 1 if knower-level (i.e, i-1) is same or greater than answer

ind1[i,j,k] <- step((i-1)-k)

# Will be 1 for the possible answer that matches the question

ind2[i,j,k] <- equals(k,j)

# Will be 1 for 0-knowers

ind3[i,j,k] <- equals(i,1)

# Will be 1 for HN-knowers

ind4[i,j,k] <- equals(i,Z)

ind5[i,j,k] <- ind3[i,j,k]+ind4[i,j,k]*(2+ind2[i,j,k])

+(1-ind4[i,j,k])*(1-ind3[i,j,k])

*(ind1[i,j,k]+ind1[i,j,k]*ind2[i,j,k]+1)

piprime[i,j,k] <- piprimetmp[i,j,k,ind5[i,j,k]]

npiprime[i,j,k] <- piprime[i,j,k]/sum(piprime[i,j,1:N])

}

}

}

# Posterior Prediction For Knower Levels

for (i in 1:Z){

for (j in 1:N){

for (k in 1:N){

npiprime.cut[i,j,k] <- cut(npiprime[i,j,k])

}

ppz[i,j] ~ dcat(npiprime.cut[i,j,1:N])

}

}

# Posterior Prediction For Subjects

for (i in 1:S){

z.cut[i] <- cut(z[i])

for (j in 1:N){

pp[i,j] ~ dcat(npiprime.cut[z.cut[i],j,1:N])

}

}

# Baserate
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for (i in 1:N){

pitmp[i] ~ dunif(0,1)

pi[i] <- pitmp[i]/sum(pitmp[1:N])

pi.cut[i] <- cut(pi[i])

}

ppb ~ dcat(pi.cut[1:N])

# Priors

v ~ dunif(1,1000)

for (i in 1:S) {

z[i] ~ dcat(priorz[])

}

priorz[1] <- 1/6 # 0-knower

priorz[2] <- 1/6 # 1-knower

priorz[3] <- 1/6 # 2-knower

priorz[4] <- 1/6 # 3-knower

priorz[5] <- 1/6 # 4-knower

priorz[6] <- 1/6 # HN-knower

}

The code NumberConcept_1.m (Matlab) or NumberConcept_1.R (R) applies the model to data provided
by Barbara Sarnecka. This code produces several analyses. Figure 12.2 shows the base-rate that is inferred.
It shows an intuitively appealing result, giving high probability to small numbers of toys, as well as to the
whole basketful. It is important to understand this was a latent multi-dimensional variable that was inferred
from the data, and not something that was assumed to explain the data. This is a very powerful piece of
inference that highlights a big advantage of the Bayesian approach we are adopting. I think it would be
very hard to make this inference using ‘standard’ methods.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number

P
ro
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bi
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y

Figure 12.2: Posterior base rate for giving 1, . . . , 15 toys using the knower level model.

Figure 12.3 shows the posterior distribution over the six knower-level (0, 1-, 2-, 3-, 4- and HN-knowers)
for each subject, ordered from the smallest expected value to the largest. The noteworthy feature of this
result is that most of the subjects are classified with high certainty into a single knower level. There are
exceptions (e.g., subjects 78, 45, ...), but, for the most part, there is confidence in a single classification.
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Figure 12.3: Posterior over knower levels for all 82 subjects.

When inferring a discrete latent variable representing a class, highly-peaked posteriors like this are a good
sign that the model is a useful one. When models are badly mis-specified, Bayesian inference naturally does
‘model averaging’ blending over a mixture of possibilities to try and fit the data, but making interpretation
difficult.

Figure 12.4 shows the relationship between the posterior predictions of the model and the observed
behaviors for six children, chosen to span a range of knower levels and be among those children who answered
the most questions. Each panel correspond to a child, with the x-axis giving the question asked and the y-
axis giving the answer given. The size of the squares in each cell correspond to the posterior probability that
the child will give that many toys when asked that question. The overlayed crosses are the raw behavioral
data.

Figure 12.5 shows the same sort of analysis for the posterior predictive for each knower level. The
overlayed data now include every child inferred (via their MAP estimate1 and this refers to a point estimate
of the posterior distribution, namely the mode or highest point) to have that knower level.

1MAP stands for “maximum a posteriori”
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Figure 12.4: Posterior prediction for each of the knower levels, for each possible question and
answer combination, shown by squares with sizes proportion to the posterior mass. Overlayed are
the behavioral data according their inferred most likely knower level.

Exercises

1. Interpret the distinctive visual patterns of posterior prediction in Figure 12.5. If you can do this, I’d
say you understand the model, and knower level theory.

2. Think hard about the predictions of the knower level theory in the case of 4-knowers, and how this
generates the posterior predictions in Figure 12.5. You should see there are a few observed data that
violate the predictions. Assume you want to argue for the knower level theory. How can you explain
these data? (Hint: Look at the data for subject 72 in Figure 12.4, and their posterior over knower
levels Figure 12.3). If you can work all this through, I’d say you get Bayesian inference.

3. What do you think of the MAP estimate summary of the posterior uncertainty about knower levels?
What might be a better alternative in this case?
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Figure 12.5: Posterior prediction for six selected subjects according to the knower level model.
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12.2 Analog Representation Model

π

π
′

gij

qij σi

π ∼ Dirichlet(1, . . . , 1)

σi ∼ InvSqrtGamma(0.001, 0.001)

π′

ijk ∝ πk × exp

{

−
1

2

(

k−qij

qiσi

)

2
}

gij ∼ Categorical(π′)

i children

j questions

Figure 12.6: Graphical model for behavior on the give-n task according to the analog representation
theory.

Figure 12.6 presents a graphical model for the give-n task using the alternative analog representation
model. The same basic idea of a base-rate being updated by the questions still applies. Now, though, the
updating is done according to a Gaussian function. This Gaussian in centered on the number asked for, and
has a standard deviation that is proportional to the mean (i.e., bigger numbers are estimated less precisely).
The constant of proportionality relating the mean and standard deviation is σi for the ith subject, and is
called the “coefficient of variation” in the literature.

The following code implements this graphical model in WinBUGS. Notice how the Gaussian function is
sampled at discrete points corresponding to the possible behaviors, and then normalized.

% Number Concept Using Analog Representation

model {

# Data

for (i in 1:S){

for (j in 1:Q[i]){

# Probability g[i,j] when asked for q[i,j]

# is a categorical draw from their distribution over the 1:N toys

# which is proportional to Gaussian centered on q[i] with standard deviation

# given by coefficient of variation times the center

g[i,j] ~ dcat(npiprime[i,q[i,j],1:N])

}

}

# Likelihood

for (i in 1:S){

for (j in 1:N){

for (k in 1:N){

lik[i,j,k] <- 1/(sqrt(2*pic)*sigma[i]*j)*exp(-pow(k-j,2)/(2*pow(sigma[i]*j,2)))

piprime[i,j,k] <- lik[i,j,k]*pi[j]

npiprime[i,j,k] <- piprime[i,j,k]/sum(piprime[i,j,1:N])
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}

}

}

# Posterior Prediction

for (i in 1:S){

for (j in 1:N){

for (k in 1:N){

npiprime.cut[i,j,k] <- cut(npiprime[i,j,k])

}

pp[i,j] ~ dcat(npiprime.cut[i,j,1:N])

}

}

# Base Rate

for (i in 1:N){

pitmp[i] ~ dunif(0,1)

pi[i] <- pitmp[i]/sum(pitmp[1:N])

pi.cut[i] <- cut(pi[i])

}

ppb ~ dcat(pi.cut[1:N])

# Scalar Variability Coefficient

for (i in 1:S){

lambda[i] <- 1/pow(sigma[i],2)

sigma[i] ~ dunif(0,10)

}

# Constants

pic <- 3.1415

}

The code NumberConcept_2.m (Matlab) or NumberConcept_2.R (R) applies the model to the same
behavioral data as before, and produces some analyses. Figure 12.7 shows the base-rate that is inferred,
which is much less convincing than was found using the knower level theory model.

Finally, Figure 12.8 shows the relationship between the posterior predictions of the model and the
observed behaviors for the same six children considered in Figure 12.5. These children also span a range of
coefficients of variation, and we note that many children have estimates much larger than the 0.2-ish range
espoused by proponents of the theory (who typically do not consider the give-n task).

Exercises

1. Interpret the distinctive various patterns of posterior prediction in Figure 12.8. If you can do this, I’d
say you understand the model, and analog representation theory.

2. Why, if we expect σ ≈ 0.2 are there large coefficients of variation?

3. What would you say about the prediction for subject 79?
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Figure 12.7: Posterior base rate for giving 1, . . . , 15 toys using the analog representation model.
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Figure 12.8: Posterior prediction for six selected subjects according to the analog representation
model.
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chapter 13

THE SIMPLE MODEL OF MEMORY

Brown, Neath, and Chater (2007) proposed a temporal ratio model of memory called SIMPLE. The model
assumes memories are encoded with a temporal component, but that the representations are logarithmically
compressed, so that more distant memories are more similar. The model also assumes distinctiveness play
a central role in performance on memory tasks, and that interference rather than decay is responsible for
forgetting. And, perhaps most importantly, SIMPLE assumes the same memory processes operate at all
time scales, unlike theories and models that assume different short- and long-term memory mechanisms.

We will focus on the first application considered by Brown et al. (2007), which involves seminal immediate
free recall data reported by Murdock (1962). The data give the proportion of words correctly recalled
averaged across participants, for lists of 10, 15, and 20 words presented at a rate of 1 s per word, and lists
of 20, 30 and 40 words presented at a rate of 2 s per word.

Brown et al. (2007) make some reasonable assumptions about undocumented aspects of the task (e.g.,
the mean time of recall from the end of list presentation), to set the time, Ti between the learning and
retrieval of the ith item. With these times established, the application of the SIMPLE the free recall data
involves five stages, as conveniently described in Brown et al. (2007, Appendix).

First, the ith presented item, associated with time Ti, is represented in memory using logarithmic
compression, given by Mi = log Ti. Secondly, the similarity between each pair of items is calculated as
ηij = exp (−c |Mi −Mj |), where c is a parameter measuring the “distinctiveness” of memory. Thirdly, the
discriminability of each pair of items is calculated as dij = ηij/

∑

k ηik. Fourthly, the retrieval probability of
each pair of items is calculated as rij = 1/ (1 + exp (−s (dij − t))), where t is a threshold parameter and s is
a threshold noise parameter. Finally the probability the ith item in the presented sequence will be recalled
is calculated as θi = min (1,

∑

k rik).

13.1 Standard SIMPLE

These stages are implemented by the graphical model shown in Figure 13.1. The graphical model has nodes
corresponding to the observed times between learning and retrieval, Ti, and the observed number of correct
responses ki for the ith item and total trials n. The similarity (ηij), discriminability (dij), retrieval (rij)
and free recall probability (θi) nodes are deterministic, and simply link the times properties of the items to
their accuracy of recall according to the SIMPLE model and its three parameters.

In Figure 13.1 the times, responses and free recall probabilities apply per item, and so are enclosed
in a plate replicating over items. The similarity, discriminability and retrieval measures apply to pairs of
variables, and so involve an additional plate also replicating over items. We follow Brown et al. (2007) by
fitting the c, t, and s parameters independently for each condition. This means the entire graphical model
is also enclosed in a plate replicating over the x = 1, . . . , 6 conditions in the Murdock (1962) data.

The WinBUGS code to implement the graphical model is fairly straightforward. Notice that the posterior
predictive is calculated in some detail, leading up to pcpred, which is the posterior predicted accuracy.

# SIMPLE Model

model{

# Likelihood

for (d in 1:dsets){

for (i in 1:listlength[d]){

k[i,d] ~ dbin(theta[i,d],tr[d])

}

}

# Similarities, Discriminabilities, and Response Probabilities

for (d in 1:dsets){
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∑
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kix ∼ Binomial(θix, nx)

sx ∼ Uniform(0, 100)

cx ∼ Uniform(0, 100)

tx ∼ Uniform(0, 1)

Figure 13.1: Graphical model implementing the SIMPLE model of memory.

for (i in 1:listlength[d]){

for (j in 1:listlength[d]){

# Similarities

S[i,j,d] <- exp(-c[d]*abs(log(T[i,d])-log(T[j,d])))

# Discriminabilities

D[i,j,d] <- S[i,j,d]/sum(S[i,1:listlength[d],d])

# Response Probabilities

R[i,j,d] <- 1/(1+exp(-s[d]*(D[i,j,d]-t[d])));

}

# Free Recall Overall Response Probability

theta[i,d] <- min(1,sum(R[i,1:listlength[d],d]))

}

}

# Priors And Cuts For Posterior Predictive

for (d in 1:dsets){

c[d] ~ dunif(0,100)

s[d] ~ dunif(0,100)
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t[d] ~ dbeta(1,1)

c.cut[d] <- cut(c[d])

s.cut[d] <- cut(s[d])

t.cut[d] <- cut(t[d])

}

for (d in 1:dsets){

for (i in 1:listlength[d]){

kpred[i,d] ~ dbin(thetapred[i,d],tr[d])

pcpred[i,d] <- kpred[i,d]/tr[d]

}

}

for (d in 1:dsets){

for (i in 1:listlength[d]){

for (j in 1:listlength[d]){

Spred[i,j,d] <- exp(-c.cut[d]*abs(log(T[i,d])-log(T[j,d])))

Dpred[i,j,d] <- Spred[i,j,d]/sum(Spred[i,1:listlength[d],d])

Rpred[i,j,d] <- 1/(1+exp(-s.cut[d]*(Dpred[i,j,d]-t.cut[d])));

}

thetapred[i,d] <- min(1,sum(Rpred[i,1:listlength[d],d]))

}

}

}

The code Simple_1.m (Matlab) or Simple_1.R (R) involves some initial steps to get the data organized
before passing it to WinBUGS, and analysis in the form of graphs of the posterior predictions and joint
posterior space. Both of these graphs (and especially the joint posterior) have been tuned a bit for this specific
analysis, and so would need some more effort to remove the ‘magic numbers’ and be applied robustly to
other cases. But it might be worth the effort, because the joint posterior plot has a lot of promise, I think.

The posterior predictive analysis should look something like Figure 13.2, which shows the posterior
prediction for the six Murdock (1962) data sets. The solid lines show the probability the item in each serial
position was correctly recalled. A total of 20 samples from the posterior predictive are shown for each serial
position as gray points, making a gray area that spans the range in which the model expects the data to lie.

The posterior analysis should look something like Figure 13.3, which shows the joint posterior parameter
distribution as a three-dimensional plot, with 20 posterior samples for each condition shown by different
markers. Also shown, projected onto the planes are the pairwise joint distributions of each possible combina-
tion of parameters (marginalized over the other parameter in each case). Finally, the marginal distributions
for each parameter are shown along the three axes.

Figure 13.3 attempts to convey the detailed information about the distinctiveness, threshold, and thresh-
old noise parameters provided by the computational Bayesian approach. The point estimates of the original
analysis are now extended to include information about variability and co-variation. This additional in-
formation is important to understanding how parameters should be interpreted, and for suggesting model
development. For example, the lack of overlap of the three-dimensional points for the six conditions sug-
gests that there are important differences in model parameters for different item list lengths and presentation
rates. In particular, it seems unlikely that an alternative approach to fitting the six conditions using a single
discriminability level and threshold function will be adequate.

Another intuition, this time coming from the two-dimensional joint posteriors is that there is a trade-off
between the threshold and threshold noise parameters, since their joint distributions (shown by the points
in the bottom plane) show a high level of correlation for all of the conditions. This means that the data
in each condition are consistent with relatively high thresholds and relatively low levels of threshold noise,
or with relatively low thresholds and relatively high levels of threshold noise. This is probably not an ideal
state of affairs: generally parameters are more easily interpreted and theoretically compelling if they operate
independently of each other. In this way, the information in the joint parameter posterior suggests an area
in which the model might need further development or refinement.

As a final example of the information in the joint posterior, we note that the marginal distributions for
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Figure 13.2: Posterior prediction of SIMPLE model for the six conditions of the Murdock (1962)
immediate free recall data. The solid lines show the data, and the gray areas show 20 posterior
predictive samples for the item at each serial position. The conditions are labeled according to the
number of items and the rate of presentation, so that, for example, the ‘10-2’ condition had ten
items presented at 1 s per item.
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Figure 13.3: Joint posterior parameter space for the SIMPLE model for the six conditions of the
Murdock (1962) immediate free recall data.

the threshold parameter shown in Figure 13.3 seem to show a systematic relationship with item list length.
In particular, the threshold decreases as the item list length increases from 10 to 40, with overlap between
the two conditions with the most similar lengths (i.e., the ‘10-2’ and ‘15-2’ conditions, and the ‘20-2’ and
‘20-1’ conditions). This type of systematic relationship suggests that, rather than treating the threshold as
a free parameter, it can be modeled in terms of the known item list length. We now consider how this idea
can be implemented in a hierarchical extension to the SIMPLE model.

Exercises

Here is an extended but worthwhile exercise

1. Modify the graphical model so that the same parameter values are used to account for all of the data
sets. One could argue that, without some account of how c, t and s depend on properties of the task
(or some more general account of how they change), it is not very useful to allow them to change
freely as we and Brown et al. (2007) have done. You will also need to modify the Matlab/R code that
produces the graphs.
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Figure 13.4: Graphical model implementing a hierarchical extension to the SIMPLE model of
memory.

13.2 A Hierarchical Extension of SIMPLE

Our hierarchical Bayesian extension of SIMPLE is represented by the graphical model shown in Figure 13.4.
There are two important changes from the model that replicated the assumptions of Brown et al. (2007).
First, the distinctiveness (c) and threshold noise (s) parameters are now assumed to have the same value for
all experimental conditions. In Figure 13.4, their nodes are outside the plate replicated over conditions, and
they are no longer indexed by x. We do not believe this is a theoretically realistic assumption (indeed, as we
pointed out, the joint posterior in Figure 13.3 argues against it), but it makes for a good tutorial example.

It is the second change that captures this main point, and corresponds to the way the thresholds tx are
determined. Rather than being assumed to be independent, these threshold now depend on the item list
length, denoted Wx for the xth condition, via a linear regression function tx = a1Wx + a2 parameterized by
the coefficients a1 and a2. Consistent with the intuitions gained from Figure 13.3, we make the assumption
the linear relationship expresses a decrease in threshold as item list length increases, by using the prior
a1 ∼ Uniform

(

−1, 0
)

.
The goal of our hierarchical extensions is to move away from thinking of parameters as psychological

variables that vary independently for every possible immediate serial recall task. Rather, we now conceive
of the parameters as psychological variables that themselves now need explanation, and attempt to model
how they change in terms of more general parameters.
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This approach not only forces theorizing and modeling to tackle new basic questions about how serial
recall processes work, but also facilitates evaluation of the prediction and generalization capabilities of the
basic model. By making the threshold parameter depend on characteristics of the task (i.e., the number of
words in the list) in a systematic ways, and by treating the other parameters as invariant, our hierarchical
extension automatically allows SIMPLE to make predictions about other tasks.

The WinBUGS code to implement the hierarchical graphical model follows.

# Hierarchical SIMPLE Model

model{

# Likelihood

for (d in 1:dsets){

for (i in 1:listlength[d]){

k[i,d] ~ dbin(theta[i,d],tr[d])

}

}

# Similarities, Discriminabilities, and Response Probabilities

for (d in 1:dsets){

t[d] <- max(0,min(1,alpha[1]*W[d]+alpha[2]))

for (i in 1:listlength[d]){

for (j in 1:listlength[d]){

# Similarities

S[i,j,d] <- exp(-c*abs(log(T[i,d])-log(T[j,d])))

# Discriminabilities

D[i,j,d] <- S[i,j,d]/sum(S[i,1:listlength[d],d])

# Response Probabilities

R[i,j,d] <- 1/(1+exp(-s*(D[i,j,d]-t[d])));

}

# Free Recall Overall Response Probability

theta[i,d] <- min(1,sum(R[i,1:listlength[d],d]))

}

}

# Priors

c ~ dunif(0,100)

s ~ dunif(0,100)

alpha[1] ~ dunif(-1,0)

alpha[2] ~ dunif(0,1)

# Posterior Predictive

c.cut <- cut(c)

s.cut <- cut(s)

for (i in 1:2){

alpha.cut[i] <- cut(alpha[i])

}

for (d in 1:gsets){

for (i in 1:listlength[d]){

kpred[i,d] ~ dbin(thetapred[i,d],tr[d])

pcpred[i,d] <- kpred[i,d]/tr[d]

}

}

for (d in 1:gsets){

t.cut[d] <- max(0,min(1,alpha.cut[1]*W[d]+alpha[2]))

for (i in 1:listlength[d]){

for (j in 1:listlength[d]){

Spred[i,j,d] <- exp(-c.cut*abs(log(T[i,d])-log(T[j,d])))

Dpred[i,j,d] <- Spred[i,j,d]/sum(Spred[i,1:listlength[d],d])
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Figure 13.5: Posterior prediction of the hierarchical extension of the SIMPLE model for the six
conditions of the Murdock (1962) immediate free recall data, and in generalizing to three new
conditions. The solid lines show the data, and the gray areas show 20 posterior predictive samples
for the item at each serial position.

Rpred[i,j,d] <- 1/(1+exp(-s.cut*(Dpred[i,j,d]-t.cut[d])));

}

thetapred[i,d] <- min(1,sum(Rpred[i,1:listlength[d],d]))

}

}

}

The code Simple_2.m (Matlab) or Simple_2.R (R) applies the hierarchical model to the Murdock (1962)
conditions, and also to three other possible conditions, for which data are not available. These generalization
conditions all involve presentations rates of 1 s per item, but with 10, 25, and 50 items, corresponding to
both interpolations and extrapolations relative to the collected data.

The posterior predictive performance is shown in Figure 13.5. The top two rows show the Murdock
(1962) conditions, while the bottom row shows the predictions the model makes about the generalization
conditions.

The posterior analysis should look something like Figure 13.6, which shows the modeling inferences about
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Figure 13.6: Posteriors for the SIMPLE model parameters in its hierarchically extended form.

the distinctiveness, threshold noise and threshold parameters. For the first two of these, the inferences take
the form of single posterior distributions. For the threshold parameter, however, the posterior inference
is now about its functional relationship to item list length. The posterior distribution for this function
is represented in the right panel of Figure 13.6 by showing 50 posterior samples at each possible length
W = 1, . . . , 50. These posterior samples are found by taking joint posterior samples (a1, a2) and finding
t = a1W + a2 for all values of W .

Exercises

Here is another challenging but worthwhile exercise

1. Look back at the results for the original, non-hierarchical, analysis of SIMPLE. Find another avenue
towards doing a hierarchical extension, and implement it.
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Part III

Hypothesis Testing for Statistical
Models
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chapter 14

BAYESIAN HYPOTHESIS TESTING

Up to this point we have concerned ourselves with parameter estimation, implicitly taking the appropriate-
ness of the underlying model for granted. In much of social science, however, researchers entertain more
than just a single statistical model. In fact, the statistical models often represent competing theories or
hypotheses, and the focus of interest is on which substantive theory or hypothesis is more correct, more
plausible, and better supported by the data. For example, researchers might want to know whether the
improvement of performance with practice follows a power function or an exponential function. As another
example, we might want to know the extent to which your performance in our test (i.e., 9 correct answers
out of 10 questions) is consistent with the hypothesis that you were just guessing. This may involve a test
of M1 : θ = 0.5 versus M2 : θ 6= 0.5.

The fundamental and general Bayesian solution to the foregoing model selection of hypothesis testing
problems is as follows. For simplicity, assume that you contemplate two alternative accounts of the data,
M1 and M2, and that you seek to quantify model uncertainty in terms of probability. Consider first M1.
Bayes’ rule dictates how your prior probability of M1, p(M1), is updated through the observed data D to
give the posterior probability of M1, p(M1|D):

p(M1|D) =
p(M1)p(D|M1)

p(M1)p(D|M1) + p(M2)p(D|M2)
. (14.1)

In the same way, one can calculate the posterior probability of M2, p(M2|D). The ratio of these posterior
probabilities is given by

p(M1|D)

p(M2|D)
=
p(M1)

p(M2)

p(D|M1)

p(D|M2)
. (14.2)

This equation shows that the change from prior odds p(M1)/p(M2) to posterior odds p(M1|D)/p(M2|D)
is determined entirely by the ratio of the marginal likelihoods p(D|M1)/p(D|M2). This ratio is generally
known as the Bayes factor (Jeffreys, 1961), and the Bayes factor, or the log of it, is often interpreted as the
weight of evidence coming from the data (Good, 1985). A hypothesis test based on the Bayes factor prefers
the model under which the observed data are most likely (for details see Berger & Pericchi, 1996; Bernardo
& Smith, 1994, Chapter 6; Gill, 2002, Chapter 7; Klugkist, Laudy, & Hoijtink, 2005; Kass & Raftery, 1995;
MacKay, 2003; Myung & Pitt, 1997; O’Hagan, 1995).

Thus, when the Bayes factor for M1 versus M2 equals 2 (i.e., BF12 = 2), this means that the data are
twice as likely to have occurred under M1 than under model M2. When the prior odds are equal, such
that M1 and M2 are equally likely a priori, the Bayes factors can be converted to posterior probabilities:
p(M1|D) = BF12/(BF12 + 1). This means that BF12 = 2 translates to p(M1|D) = 2/3.

To illustrate, consider again our binomial example of 9 correct responses out of 10 questions, and the test
between two models for performance: guessing (i.e., M1 : θ = 0.5) versus not guessing (i.e., M2 : θ 6= 0.5).

From Equation 1.1, the marginal likelihood for M1, p(D|M1), is simply
(

10
9

) (

1
2

)10
. The marginal likelihood

for model M2 is more difficult to calculate, as θ is a free parameter. In general, the marginal likelihood is
obtained by integrating out the model parameters in accordance with the law of total probability:

p(D|M2) =

∫

p(D|θ,M2)p(θ|M2)dθ. (14.3)

This means that the marginal likelihood is computed by averaging the likelihood over the prior; conceptually,
the likelihood is evaluated for every possible parameter value, weighted with its prior plausibility, and added
to a summed total. When we again use the uniform distribution for θ as a prior, such that p(θ|M2) ∼
Beta(1, 1), then Equation 14.3 famously simplifies to p(D|M2) = 1/(n+ 1). Thus, in our binomial example,

BF12 =
(

10
9

) (

1
2

)10
(n + 1) ≈ 0.107. This means that the data are 1/0.107 ≈ 9.3 times more likely under

M2 than they are under M1. With unit prior odds, the posterior probability for M1 is 0.107/(0.107 + 1) ≈
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.10, which means that the complementary posterior probability for M2 is approximately .90. These are
probabilities assigned to hypotheses, and they are exactly what researchers want to know about.

Posterior model probabilities are not just necessary to quantify our degree of belief or preference for the
candidate models under consideration. They are also necessary for Bayesian model averaging (e.g., Draper,
1995; Hoeting, Madigan, Raftery, & Volinsky, 1999; Madigan & Raftery, 1994). For instance, in a regression
context we might have one model, M1, that predicts a certain post-surgery survival rate by gender, age,
weight, and history of smoking. A second model, M2, includes two additional predictors, namely body-mass
index and fitness. We compute posterior model probabilities and find that p(M1|D) = .6 and consequently
p(M2|D) = .4. For a given patient, M1 predicts a survival rate of 90%, and M2 predicts a survival rate
of 80%. What is our best prediction for our patient’s survival rate? It is tempting to base our prediction
solely on M1, which is after all the preferred model. However, this would ignore the uncertainty inherent
in the model selection procedure, and it would ignore the very real possibility that the best model is M2,
according to which the survival rate is 10% lower than it is for M1. The Bayesian solution is to weight the
two competing predictions with their associated posterior model probabilities, fully taking into account the
uncertainty in the model selection procedure. In our example, the model-averaged prediction for survival
rate would be .6 × 90% + .4 × 80% = 86%.

Additional Advantages of Bayesian Hypothesis Testing

We have seen how Bayes factors and posterior model probabilities describe the relative support or preference
for a set of candidate models, and how they can be used for model averaged predictions. Other advantages
of Bayesian hypothesis testing include the following (Wagenmakers, Lee, Lodewyckx, & Iverson, 2008; see
also S. J. Dennis, Lee, & Kinnell, 2008):

1. Coherence is guaranteed Suppose we have a set of three candidate models, M1, M2, and M3. As

p(D|M1)

p(D|M3)
=
p(D|M1)

p(D|M2)

p(D|M2)

p(D|M3)
, (14.4)

this means that BF13 = BF12 × BF23. For instance, when the data are five times as likely to occur
under M1 than under M2, and seven time as likely under M2 than under M3, it follows that the data
are 5 × 7 = 35 times as likely under M1 than under M3. No comparable result exists in classical
statistics.

2. Parsimony is automatically rewarded The main challenge of hypothesis testing or model selection
is to identify the model with the best predictive performance (e.g., Myung, Forster, & Browne, 2000;
Wagenmakers & Waldorp, 2006). However, it is not immediately obvious how this should be done;
complex models will generally provide a better fit to the observed data than simple models, and there-
fore one cannot simply prefer the model with the best “goodness-of-fit” – such a strategy would lead
to massive overfitting. Intuition suggest that this tendency for overfitting should be counteracted by
putting a premium on simplicity. This intuition is consistent with the law of parsimony or “Ockham’s
razor” which states that, when everything else is equal, simple models are to be preferred over complex
models (Jaynes, 2003, Chapter 20; Myung & Pitt, 1997).

Formal model selection methods try to quantify the tradeoff between goodness-of-fit and parsimony.
Many of these methods measure a model’s overall performance by the sum of two components, one
that measures descriptive accuracy and one that places a premium on parsimony. The latter com-
ponent is also known as the Ockham factor (MacKay, 2003, Chapter 28). For many model selection
methods, the crucial issue is how to determine the Ockham factor. One of the attractive features
of Bayesian hypothesis testing is that it automatically determines the model with the best predic-
tive performance—Bayesian hypothesis testing therefore incorporates what is known as an automatic
Ockham’s razor (Myung & Pitt, 1997).

To see why this is the case, consider that every statistical model makes a priori predictions. Complex
models have a relatively large parameter space, and are therefore able to make many more predictions
and cover many more eventualities than simple models. However, the drawback for complex models
is that they need to spread out their prior probability across their entire parameter space. In the
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limit, a model that predicts almost everything has to spread out its prior probability so thinly that
the occurrence of any particular event will not greatly add to that model’s credibility. As shown
by Equation 14.3, the marginal likelihood for a model M is calculated by averaging the likelihood
p(D|θ,M) over the prior p(θ|M). When the prior is very spread out, it will occupy a relatively large
part of the parameter space in which the likelihood is almost zero, and this greatly decreases the
average or marginal likelihood.

3. Evidence can be obtained in favor of the null hypothesis Bayesian hypothesis testing allows one
to obtain evidence in favor of the null hypothesis. Because theories and models often predict the
absence of a difference, it is vital for scientific progress to be able to quantify evidence in favor of
the null hypothesis (e.g., Rouder, Speckman, Sun, Morey, & Iverson, 2009). In the field of visual
word recognition, for instance, the entry-opening theory (Forster, Mohan, & Hector, 2003) predicts
that masked priming is absent for items that do not have a lexical representation; Another example
from that literature concerns the work by Bowers et al. (Bowers, Vigliocco, & Haan, 1998), who have
argued that priming effects are equally large for words that look the same in lower and upper case
(e.g., kiss/KISS) or that look different (e.g., edge/EDGE), a finding supportive of the hypothesis that
priming depends on abstract letter identities.

A final example comes from the field of recognition memory, where Dennis and Humphreys’ bind
cue decide model of episodic memory (BCDMEM) predicts the absence of a list-length effect and the
absence of a list-strength effect (S. Dennis & Humphreys, 2001). This radical prediction of a null
effect allows researchers to distinguish between context-noise and item-noise theories of inference in
memory (S. J. Dennis et al., 2008). In Bayesian statistics, the null hypothesis has no special status,
and evidence for it is quantified just as it is for any other hypothesis. In classical statistics, support
for informative predictions from null hypothesis can only be indirect.

4. Evidence may be monitored as it accumulates Bayesian hypothesis testing allows one to monitor
the evidence as the data come in (Berger & Berry, 1988). In contrast to frequentist inference, Bayesian
inference does not require special corrections for “optional stopping” (Wagenmakers, 2007).

Consider, for instance, a hypothetical experiment on the neural substrate of dissociative identity
disorder. In this experiment, the researcher Lisa has decided in advance to use functional magnetic
resonance imaging (fMRI) to test 30 patients and 30 normal controls. Lisa inspects the data after
15 participants in each group have been tested, and finds that the results convincingly demonstrate
the pattern she hoped to find. Unfortunately for Marge, she cannot stop the experiment and claim
a significant result, as she would be changing the sampling plan halfway through and be guilty of
“optional stopping”. She has to continue the experiment, wasting not just her time and money, but
also the time and efforts of the people who undergo needless testing.

In contrast, for Bayesian hypothesis testing there is nothing wrong with gathering more data, examin-
ing these data, and then deciding whether or not to stop collecting new data – no special corrections
are needed. As stated by Edwards et al. (Edwards, Lindman, & Savage, 1963), “(...) the rules gov-
erning when data collection stops are irrelevant to data interpretation. It is entirely appropriate to
collect data until a point has been proven or disproven, or until the data collector runs out of time,
money, or patience.” (Edwards et al., 1963, p. 193).

Challenges for Bayesian Hypothesis Testing

Bayesian hypothesis testing faces two main challenges, one conceptual and one computational. The concep-
tual challenge is that the Bayesian hypothesis test is acutely sensitive to the shape of the prior distributions
for the model parameters (e.g., Bartlett, 1957; Liu & Aitkin, in press). This distinguishes hypothesis testing
from parameter estimation, in which the data quickly overwhelm the prior; the accumulation of data forces
prior opinions that are very different to converge to posterior opinions that are very similar. For parameter
estimation then, the choice of a prior distribution is not really all that critical unless there are very few data.

In contrast, for Bayesian hypothesis testing the prior distributions are crucial and have a lasting impact.
This occurs because the marginal likelihood is an average taken with respect to the prior. Consider for
instance the prior for the mean µ of a Normal distribution with known variance. One might be tempted to
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use an “uninformative” prior, one that does not express much preference for one value of µ over the other.
One such vague prior could be a Normal distribution with mean zero and variance 10,000. But, from a
marginal likelihood perspective, this prior is consistent with almost any value of µ. When one hedges one’s
bets to such an extreme degree, the Bayes factor is likely to show a preference for a simple model (e.g., one
in which µ = 0), even when the data appear wildly inconsistent with it.

The main problem here is not that the Bayesian hypothesis test corrects for model complexity as man-
ifested in the prior distribution. This is the automatic Ockam’s razor that is an asset, not a liability, of
the Bayesian hypothesis test. Instead, the problem seems to be that researchers have only a vague idea of
the vagueness of their prior knowledge, or that researchers seek to use a prior that is “objective”, and uses
as little prior knowledge as possible. When the vagueness of the prior is arbitrary, so are the results from
the Bayesian hypothesis test. When the vagueness of the prior is purposefully large, the results from the
Bayesian hypothesis test tend to indicate a preference for the simple model, regardless of the data.

In order to increase the robustness of Bayesian hypothesis testing to the vagueness of the prior, several
procedures have been proposed, including the local Bayes factor (Smith & Spiegelhalter, 1980), the intrinsic
Bayes factor (Berger & Mortera, 1999; Berger & Pericchi, 1996), the fractional Bayes factor (O’Hagan,
1995), and the partial Bayes factor (O’Hagan, 1995; for a summary see Gill, 2002, Chapter 7). The idea
of the partial Bayes factor is to sacrifice a small part of the data to obtain a posterior that is robust to
the various priors one might entertain. The Bayes factor is then calculated by integrating the likelihood
over this posterior instead of over the original prior. Procedures such as these are still undergoing further
development and deserve more study.

The problem of vague priors is particularly evident for parameters that can take on values across the
entire real line, such the mean µ of a Normal distribution. We believe that in such cases, whenever possible,
the construction of a prior should be guided by the substantive knowledge in the domain of application. As
Dennis Lindley has pointed out repeatedly, µ is only a Greek letter, an abstraction that may obscure the
fact that it refers to something about which we have detailed prior knowledge. When µ stands for a person’s
weight, few rational people would assign µ an “uninformative” Normal prior distribution with mean zero
and variance 10,000. Another solution is to put priors not on the means, but on effect size (Jeffreys, 1961;
Rouder et al., 2009; Wetzels, Raaijmakers, Jakab, & Wagenmakers, in press); standard priors for effect size
include the Cauchy (i.e, a t-distribution with one degree of freedom) and the standard Normal.

The second challenge for Bayesian hypothesis testing is that the marginal likelihood and the Bayes
factor are often quite difficult to compute. Earlier, we saw that with a uniform prior on the binomial rate
parameter θ (i.e., p(θ|M) ∼ Beta(1, 1)), the marginal likelihood simplifies from

∫

p(D|θ,M)p(θ|M)dθ to
1/(1 + n). However, in all but a few simple models, such simplifications are impossible. In order to be
able to compute the marginal likelihood or the Bayes factor for more complex models, a series of different
computational methods has been developed. A recent summary lists as many as 15 different methods
(Gamerman & Lopes, 2006, Chapter 7).

For instance, one method computes the marginal likelihood through what is called the candidates’
formula (Besag, 1989) or the basic marginal likelihood identity (Chib, 1995; Chib & Jeliazkov, 2001). One
simply exchanges the roles of posterior and marginal likelihood to obtain

p(D) =
p(D|θ)p(θ)
p(θ|D)

, (14.5)

which holds for any value of θ. When the posterior is available analytically, one only needs to plug in a
single value of θ and obtain the marginal likelihood immediately. This method can however also be applied
when the posterior is only available through MCMC output, either from the Gibbs sampler (Chib, 1995) or
the Metropolis-Hastings algorithm (Chib & Jeliazkov, 2001).

Another method that computes the marginal likelihood is to repeatedly sample parameter values from
the prior, calculate the associated likelihoods, and then take the likelihood average. When the posterior is
highly peaked compared to the prior—as will happen with many data or with a medium-sized parameter
space—, it becomes necessary to employ more efficient sampling methods, with a concomitant increase in
computational complexity.

Finally, it is also possible to compute the Bayes factor directly, without first calculating the constituent
marginal likelihoods. The basic idea is to generalize the MCMC sampling routines for parameter estimation
to incorporate a “model indicator” variable. In the case of two competing models, the model indicator
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Figure 14.1: Prior and posterior distributions for binomial rate parameter θ, after observing 9
correct responses and 1 incorrect response. The mode of the posterior distribution for θ is 0.9,
equal to the maximum likelihood estimate, and the 95% confidence interval extends from 0.59 to
0.98. The height of the distributions at θ = 0.5 is indicated by a black dot; the ratio of these
heights quantifies the evidence for H0 : θ = .5 versus H1 : θ ∼ Beta(1, 1).

variable k, say, can take on two values—for instance, k = 1 when the sampler is in model M1, and k = 2
when the sampler is in model M2. The Bayes factor is then estimated by the relative frequency with which
k = 1 versus k = 2. This MCMC approach to model selection is called transdimensional MCMC (e.g.,
Sisson, 2005), an approach that encompasses both reversible jump MCMC (P. J. Green, 1995) and the
product space technique (Carlin & Chib, 1995).

Almost all of these computational methods suffer from the fact that they become less efficient and
more difficult to implement as the underlying models become more complex. We now turn to an alternative
method, whose implementation is extremely straightforward. The methods’ main limitation is that it applies
only to nested models, a limitation that also holds for p-values.

14.1 The Savage-Dickey Density Ratio Test

In the simplest classical hypothesis testing framework, one contemplates two models; the null hypothesis,
that fixes one of its parameters to a pre-specified value of substantive interest, say H0 : φ = φ0; and the
alternative hypothesis, in which that parameter is free to vary, say H1 : φ 6= φ0. Hence, the null hypothesis
is nested under the alternative hypothesis, that is, H0 can be obtained from H1 by setting φ equal to φ0.
Note that in the classical framework, H0 is generally a sharp null hypothesis, or a “point null”. That is, the
null hypothesis states that φ is exactly equal to φ0.

For example, in the binomial example from Figure 1.1 (shown again here as Figure 14.1) you answered
9 out of 10 questions correctly. Were you guessing or not? The classical and the Bayesian framework define
H0 : θ = .5 as the null hypothesis for chance performance. The alternative hypothesis under which H0 is
nested could be defined as H1 : θ 6= .5, or, more specifically, as H1 : θ ∼ Beta(1, 1), which states that θ is
free to vary from 0 to 1, and that it has a uniform prior distribution as shown in Figure 14.1.
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14. Bayesian Hypothesis Testing

For the binomial example, the Bayes factor forH0 versusH1 could be obtained by analytically integrating
out the model parameter θ. However, the Bayes factor may likewise be obtained by only considering H1,
and dividing the height of the posterior for θ by the height of the prior for θ, at the point of interest. This
surprising result was first published by Dickey and Lientz (1970), who attributed it to Leonard J. “Jimmie”
Savage. The result is now generally known as the Savage-Dickey density ratio (e.g., Dickey, 1971; Gamerman
& Lopes, 2006, pp. 72-74, pp. 79-80; Kass & Raftery, 1995, p. 780-781; O’Hagan & Forster, 2004, pp.
174-177; for extensions and generalizations see Chen, 2005; Verdinelli & Wasserman, 1995). Mathematically,
the Savage-Dickey density ratio says that

BF01 =
p(D|H0)

p(D|H1)
=
p(θ = .5|D,H1)

p(θ = .5|H1)
. (14.6)

A straightforward mathematical proof is presented in O’Hagan and Forster (2004, pp. 174-177).
In Figure 14.1, the two thick dots located at θ = .5 provide the required information. It is evident

from the figure that after observing 9 out of 10 correct responses, the height of the density at θ = .5
has decreased, so that one would expect these data to cast doubt on the null hypothesis and support the
alternative hypothesis. Specifically, the height of the prior distribution at θ = .5 equals 1, and the height
of the posterior distribution at θ = .5 equals 0.107. From Equation 14.6 the corresponding Bayes factor is
BF01 = 0.107/1 = 0.107, and this corresponds exactly to the Bayes factor that was calculated by integrating
out θ.

It is clear that the same procedure can be followed when the height of the posterior is not available
in closed form, but instead has to be approximated from the histogram of MCMC samples. Figure 14.2
shows the logspline estimates (Stone et al., 1997) for the prior and the posterior densities as obtained from
MCMC output. The estimated height of the prior and posterior distributions at θ = .5 equal 1.00 and 0.107,
respectively.

In most nested model comparisons, H0 and H1 have several free parameters in common. These parame-
ters are usually not of direct interest, and they are not the focus of the hypothesis test. Hence, the common
parameters are known as nuisance parameters. For instance, one might want to test whether or not the
mean of a Normal distribution is zero (i.e., H0 : µ = µ0 versus H1 : µ 6= µ0), whereas the variance σ2 is
common to both models and not of immediate interest.

In general then, the framework of nested models features a parameter vector θ = (φ, ψ), where φ denotes
the parameter of substantive interest that is subject to test, and ψ denotes the set of nuisance parameters.
The null hypothesis H0 posits that φ is constrained to some special value, i.e. φ = φ0. The alternative
hypothesis H1 assumes that φ is free to vary. Now consider H1, and let φ → φ0; this effectively means
that H1 reduces to H0—it is therefore reasonable to assume that p(ψ|φ → φ0,H1) = p(ψ|H0). In other
words, when φ→ φ0 the prior for the nuisance parameters under H1 should equal the prior for the nuisance
parameters under H0. When this condition holds, the nuisance parameters can be ignored, so that again

BF01 =
p(D|H0)

p(D|H1)
=
p(φ = φ0|D,H1)

p(φ = φ0|H1)
, (14.7)

which equals the ratio of the heights for the posterior and the prior distribution for φ at φ0. Thus, the
Savage-Dickey density ratio holds under relatively general conditions.

Equation 14.7 conveys several important messages:

1. Relevance of the prior for the parameter of interest The denominator of Equation 14.7 features
the height of the prior for φ at φ = φ0. This means that the choice of prior can greatly influence
the Bayes factor, a fact that is also illustrated by Figures 14.1 and 14.2. The choice of prior will
also influence the shape of the posterior, of course, but this influence quickly diminishes as the data
accumulate. This point underscores the conceptual challenge for the Bayes factors that was noted
earlier (e.g., Bartlett, 1957; Liu & Aitkin, in press). For example, consider again a test for a Normal
mean µ, with H0 : µ = 0 and H1 : µ 6= 0. Suppose the prior for µ is a uniform distribution that ranges
from −a to a, and suppose that the number of observations is reasonably large. In this situation, the
data will have overwhelmed the prior, so that the posterior for µ is relatively robust against changes
in a. In contrast, the height of the prior at µ = 0 varies directly with a: if a is doubled, the height of
the prior at µ = 0 becomes twice as small, and according to Equation 14.7 this would about double
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Figure 14.2: MCMC-based prior and posterior distributions for binomial rate parameter θ, after
observing 9 correct responses and 1 incorrect response. The thin solid lines indicate the fit of
a nonparametric logspline density estimator. Based on this density estimator, the mode of the
posterior distribution for θ is approximately 0.89, and the 95% confidence interval extends from
0.59 to 0.98, closely matching the analytical results from Figure 14.1.

the Bayes factor in favor of H0. In the limit, as a grows very large, the height of the prior at µ = 0
goes to zero, which means that the Bayes factor will go to infinity, indicating decisive support for the
null hypothesis.

2. Irrelevance of the prior for nuisance parameters In contrast to the prior for the parameter of in-
terest φ, Equation 14.7 indicates that the prior for the nuisance parameters ψ is not critical. Hence,
priors on the nuisance parameters can be vague or even improper (e.g., Hsiao, 1997, p. 659; Kass
& Raftery, 1995, p. 783; Kass & Vaidyanathan, 1992). Intuitively, the prior vagueness of nuisance
parameters is present in both models and cancels out in the computation of the Bayes factor (Rouder
et al., 2009).

3. Relative ease of computing the Bayes factor in nested models Equation 14.7 shows that in nested
models, under plausible assumptions on the prior structure for the nuisance parameters, computation
of the Bayes factor is relatively straightforward. All that is needed is an estimate of posterior and
prior ordinates under the alternative hypothesis H1. This computational shortcut is often much less
involved than the more generic solution, which involves integrating out nuisance parameters ψ for H0,
and parameters ψ and φ for H1, as follows:

BF01 =
p(D|H0)

p(D|H1)
=

∫

p(D|φ = φ0, ψ)p(φ = φ0, ψ)dψ
∫∫

p(D|ψ, φ)p(ψ, φ)dψdφ
. (14.8)

The next chapters use concrete examples to illustrate how statisticians and cognitive scientists can use
Bayesian hypothesis tests to their advantage.
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chapter 15

BAYESIAN T-TESTS

with Ruud Wetzels

Popular theories are difficult to overthrow. Consider, for instance, the following hypothetical sequence
of events. First, Dr. John proposes a seasonal memory model (SMM). The model is intuitively attractive
and quickly gains in popularity. Dr. Smith, however, remains unconvinced and decides to put one of SMMs
predictions to the test. Specifically, SMM predicts that the increase in recall performance due to the intake
of glucose is more pronounced in summer than in winter. Dr. Smith conducts the relevant experiment using
a within subjects design and finds the exact opposite, although the result is not significant. More specifically,
Dr. Smith finds that with n = 41 the t-value equals 0.79, which corresponds to a two-sided p-value of .44
(see Table 15.1).

Table 15.1: Increase in recall performance due to intake of glucose in summer and winter, t = 0.79,
p = .44 (NB: hypothetical example).

Season N Mean SD

Winter 41 0.11 0.15
Summer 41 0.07 0.23

Clearly, Dr. Smith’s data do not support SMMs prediction that the glucose-driven increase in perfor-
mance is larger in summer than in winter. Instead, the data seem to suggest that the null hypothesis is
plausible, and that no difference between summer and winter is evident. Dr. Smith submits his findings
to the Journal of Experimental Psychology: Learning, Memory, and the Seasons. Three months later, Dr.
Smith receives the reviews, and one of them is from Dr. John. This review includes the following comment:

“From a null result, we cannot conclude that no difference exists, merely that we cannot reject
the null hypothesis. Although some have argued that with enough data we can argue for the
null hypothesis, most agree that this is only a reasonable thing to do in the face of a sizeable
amount [sic] of data [which] has been collected over many experiments that control for all
concerns. These conditions are not met here. Thus, the empirical contribution here does not
enable readers to conclude very much, and so is quite weak (...).”1

Formally, Dr. John’s, first statement is completely correct: p-values cannot be used to quantify the
support in favor of the null hypothesis. Here we present a Bayesian t-test, inspired by the test proposed
by Rouder et al. (2009), that can be used to quantify such support. More information can be found on the
website of Ruud Wetzels, http://www.ruudwetzels.com .

15.1 A One-Sample t-Test

When we use the one-sample t-test, we assume that the data are Normally distributed with unknown mean
µ and unknown variance σ2. In the within-subjects experiment of Dr. Smith, the data consist of the
standardized difference scores. The null hypothesis states that the mean of these data is equal to zero, that
is, H0 : µ = 0. The alternative hypothesis states that the mean is not equal to zero, that is, H1 : µ 6= 0.

We follow Rouder et al. and use a Cauchy(0,1) prior for effect size δ. The Cauchy distribution is a
t-distribution with 1 degree of freedom; compared to the Normal distribution, the Cauchy distribution has
fatter tails (cf. Figure 15.1). The advantage of defining a prior on effect size (instead of on the mean)
is that it is very general; the same prior can be used across many experiments, dependent variables, and
measurement scales.

1 This quote is taken from an actual review.
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Figure 15.1: Comparison between the standard Normal distribution and the standard Cauchy
distribution. The Cauchy distribution has relatively fat tails.

For the standard deviation σ we use a half-Cauchy(0,1) (Gelman & Hill, 2007), that is, a Cauchy(0,1)
distribution that is defined only for positive numbers. This choice for σ is reasonably uninformative. The
graphical model for the one–sample t–test is shown in Figure 15.2.

In the graphical model, X represents the observed data, distributed according to a Normal distribution
with mean µX and a variance σ2

X . Effect size δ is defined as δ = µX/σX , and so µX is given by µX = δ×σX .
The null hypothesis puts all prior mass for δ on a single point, that is, H0 : δ = 0, whereas the alternative
hypothesis assumes that δ is Cauchy(0,1) distributed, H1 : δ ∼ Cauchy(0,1).

The following code implements the graphical model in WinBUGS.

model

{

# Data are Normally Distributed

for (i in 1:nsubj)

{

X[i] ~ dnorm(muX,lambdaX)

}

lambdaX <- pow(sigmaX,-2)

# Delta and sigmaX come from a Cauchy distribution,

# which is not predefined in WinBUGS. A common

# solution is to draw delta and sigmaX from

# from a Normal distribution with mean 0

# and precision given by a Chi Square

# distribution with 1 degree of freedom.

delta ~ dnorm(0,lambdaDelta)

lambdaDelta ~ dchisqr(1)
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Figure 15.2: Graphical model for the SD one–sample t–test. Cauchy(0,1)+ denotes the half–
Cauchy(0,1) defined for positive numbers only.

sigma ~ dnorm(0,lambdaChi)

lambdaChi ~ dchisqr(1)

# Sigma can only be positive (half-Cauchy)

sigmaX <- abs(sigma)

# delta = muX/sigmaX:

muX <- delta * sigmaX

}

The code tTest_1.m (Matlab) or tTest_1.R (R) calls WinBUGS to draw samples from the posterior for
effect size δ. Next, all that is required to compute the Bayes factor is the height of the prior and posterior
distributions for δ at δ = 0. The height of the prior distribution at δ = 0 can be immediately computed
from the Cauchy(0,1) distribution. The height of the posterior distribution at δ = 0 can be easily estimated
from the MCMC samples, for instance by applying a nonparametric density estimator (e.g., Stone et al.,
1997).

In R, this estimator is included in the polspline package. To install the polspline package, start R and
select the Install Package(s) option in the Packages menu. Once you chose your preferred CRAN mirror
(e.g., Netherlands (Amsterdam 2)), select polspline in the Packages window and click on OK. In Matlab,
you may try the nonparametric density estimators available in the free package developed by Zdravko Botev
(http://www.mathworks.com/matlabcentral/fileexchange/14034).

The code tTest_1.R also plots the prior and the posterior distributions for δ. Negative values of δ
indicate that the effect of glucose is larger in summer than in winter, as is predicted by SMM. The top
panel of Figure 15.3 shows the results for the Bayes factor for H0 : δ = 0 versus the unrestricted alternative
H1 : δ 6= 0, instantiated as δ ∼ Cauchy(0,1). This test shows that the data are about six times more likely
under H0 than under H1.

However, this was not the hypothesis that Dr. Smith set out to test. This hypothesis specifically stated
that δ should be negative. The middle panel of Figure 15.3 shows the results for the associated Bayesian t-
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test, that is, H0 : δ = 0 versus the order-restricted hypothesis H1 : δ < 0, instantiated as δ ∼ Cauchy(0,1)
−

,
a half-Cauchy(0,1) distribution that is defined only for negative numbers. In order to calculate the height of
the order-restricted posterior distribution at δ = 0, we focus solely on that part of the unrestricted posterior
for which δ < 0. After renormalizing, we obtain a truncated but proper posterior distribution that ranges
from δ = −∞ to δ = 0. Figure 15.3 shows both the half-Cauchy(0,1) prior (solid line) and the truncated
posterior (dashed line). The Savage-Dickey ratio at δ = 0 yields a Bayes factor of BF01 = 13.75. This
means that the data are almost 14 times more likely under H0 than under the order-restricted H1 that is
associated with SMM. When H0 and H1 are equally likely a priori, the posterior probability in favor of the
null hypothesis is about 13.75/14.75 ≈ .93, which is considered “positive evidence” for the null hypothesis
(Raftery, 1995; Wagenmakers, 2007).

For completeness, the bottom panel of Figure 15.3 shows the Bayesian t-test for the alternative order-
restriction. In this case, we seek to test H0 : δ = 0 versus H1 : δ > 0, instantiated as δ ∼ Cauchy(0, 1)+,
a half-Cauchy(0,1) distribution that is defined only for positive numbers. The Savage-Dickey density ratio
yields a Bayes factor of BF01 = 3.91, which indicates that the data are almost 4 times more likely under H0

than under H1.

Exercises

1. Here we assumed a half-Cauchy prior distribution on the variance sigmaX. Other choices are possible
and reasonable. Can you think of a few?

2. Do you think the different priors on choices on sigmaX will lead to substantially different conclusions?
Why or why not? Convince yourself by implementing a different prior and study the result.

3. We also assumed a Cauchy prior distribution on effect size delta. Other choices are possible and
reasonable. One such choice is the standard Normal distribution. Do you think this prior will lead
to substantially different conclusions? Why or why not? Convince yourself by implementing the
standard Normal prior and study the result.

4. In this example, it matters greatly whether H1 is unrestricted, order-restricted to negative values for
δ, or order-restricted to positive values for δ (cf. the different panels in Figure 15.3). Can you intuit
why this is perfectly reasonable? Can you think of a situation where the three versions of H1 yield
exactly the same Bayes factor?

15.2 A Two-Sample t-Test

The two–sample t–test is used to test whether the population means of two independent samples of obser-
vations are equal to each other or not. In experimental psychology, the two–sample t–test is often used for
between–subjects designs.

The input for the one-sample t-test were standardized difference scores; for the two-sample t-test, we
use rescaled data as input. Specifically, we rescale the data such that one group has mean 0 and standard
deviation 1. This scaling does not affect the test statistic. For the data from Dr. Smith, for instance, the
“summer mean” of 0.07 is subtracted from all observations, both in the winter condition and in the summer
condition. Next, all observations are divided by the “summer standard deviation”. The main advantage
of this rescaling procedure is that the prior distributions for the parameters hold regardless of the scale
of measurement: for our Bayesian t-test, it does not matter whether, say, response times are measured in
seconds or in milliseconds.

The graphical model for the two–sample t–test is shown in Figure 15.4. Nodes X and Y represent the
two groups of observed data. Both X and Y are distributed according to a Normal distribution with shared
variance σ2. The mean of X is given by µ + α/2, and the mean of Y is given by µ−α/2, which means that
α is the difference in the means.

Because δ = α/σ, α is given by α = δ × σ. As for the one–sample scenario, the null hypothesis puts all
prior mass for δ on a single point, that is, H0 : δ = 0, whereas the alternative hypothesis assumes that δ is
Cauchy(0,1) distributed, H1 : δ ∼ Cauchy(0,1).

The following code implements the graphical model in WinBUGS.
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Figure 15.3: The prior and posterior distributions of effect size δ, based on the data from Dr. Smith.
The top panel illustrates the unrestricted t-test, the middle panel illustrates the order-restricted
test associated with the SMM, and the bottom panel illustrates the t-test for the alternative order-
restriction. The dots mark the height of the prior and posterior distributions at δ=0.
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Figure 15.4: Graphical model for the SD two–sample t–test. Cauchy(0,1)+ denotes the half–
Cauchy(0,1) defined for positive numbers only.

model

{

for (i in 1:n1)

{

group1[i] ~ dnorm(muX,lambdaXY)

}

for (i in 1:n2)

{

group2[i] ~ dnorm(muY,lambdaXY)

}

lambdaXY <- pow(sigmaXY,-2)

delta ~ dnorm(0,lambdaDelta)

lambdaDelta ~ dchisqr(1)

sigma ~ dnorm(0,sigmaChi)

sigmaChi ~ dchisqr(1)

sigmaXY <- abs(sigma)

mu ~ dnorm(0,muChi)

muChi ~ dchisqr(1)

alpha <- delta*sigmaXY

muX <- mu + alpha*0.5

muY <- mu - alpha*0.5

}
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Exercises

1. Imagine that you would apply the two-sample test to the data from Dr. Smith, pretending that the
experiment was between-subjects instead of within-subjects. How do you think the results would
change?

2. Test your intuition by running the code tTest_2.R.

3. The two-sample t-test outlined above assumes that the two groups have equal variance. How would
you extend the present approach to deal with this complication?
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chapter 16

HYPOTHESIS TESTS INVOLVING BINOMIAL DISTRIBUTIONS

16.1 Equality of Proportions

In their article “After the promise: the STD consequences of adolescent virginity pledges”, Brückner and
Bearman (2005) analyzed a series of interviews conducted as part of the National Longitudinal Study of
Adolescent Health (Add Health). The focus of the article was on the sexual behavior of adolescents, aged
18-24, who have made a virginity pledge, that is, a public or written pledge to remain a virgin until marriage.
Scientific studies suggest that the sexual behavior of pledgers is not very different from that of nonpledgers—
except for the fact that pledgers are less likely to use condoms when they first have sex.

The Brückner and Bearman (2005) study presents a wealth of data, but here our focus is on a small
subset of the data: 424 out of 777 pledgers (≈ 54.6%) indicated that they had used a condom at first sex,
versus 5416 out of 9072 nonpledgers (≈ 59.7%). To what extent does a statistical analysis support the
assertion that pledgers are less likely than nonpledgers to use a condom at first sex?

A frequentist test for equality of proportions indicates that p ≈ .006, which tells us that when H0 is
true (i.e., the proportions of condom users are equal in the two groups), then the probability is about .006
that we would encounter a result at least as extreme as the one that was in fact observed. But this is not
the kind of information that researchers really care about; researchers want to know the extent to which the
data support the claim that pledgers are less likely than nonpledgers to use a condom at first sex.

Our Bayesian model for these data is simple and general. We assume that the number of condom users
(s1 = 424 and s2 = 5416) among the pledgers and the nonpledgers (n1 = 777 and n2 = 9072) is governed
by binomial rate parameters θ1 and θ2, respectively. Denote the difference between the two rate parameters
by δ, that is, δ = θ1 − θ2. Figure 16.1 shows this model in graphical model notation.

In our Bayesian model, we assume that the rate parameters θ1 and θ2 each have a uniform prior distri-
bution (i.e., p(θ(·)) ∼ Beta(1, 1)). These uniform prior distributions induce a triangular prior distribution

θ1

s1

n1

θ2

s2

n2

δ

s1 ∼ Binomial
(

θ1, n1

)

θ1 ∼ Uniform
(

0, 1
)

s2 ∼ Binomial
(

θ2, n2

)

θ2 ∼ Uniform
(

0, 1
)

δ = θ1 − θ2

H0 : δ = 0

H1 : δ 6= 0

H2 : δ < 0

Figure 16.1: Bayesian graphical model for the pledger data.
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for the difference parameter δ:

p(δ) =

{

1 + δ for δ ≤ 0,

1 − δ for δ > 0.
(16.1)

The null hypothesis states that the rates θ1 and θ2 are equal, and hence H0 : δ = 0. The unrestricted
alternative hypothesis states that the rates are free to vary, H1 : δ 6= 0, and the restricted alternative
hypothesis states that the rate is lower for the pledgers than for the nonpledgers, H2 : δ < 0. Below we
examine these alternative hypothesis in turn.

Unrestricted Analysis

The problem of testing H0 : δ = 0 versus H1 : δ 6= 0 is still relatively simple. The Bayes factor in support
for the null hypothesis (i.e., BF01 = p(D|H0)/p(D|H1)) is given for instance by:

BF01 =

(

n1

s1

)(

n2

s2

)

(

n1 + n2

s1 + s2

)

(n1 + 1)(n2 + 1)

n1 + n2 + 1
. (16.2)

For the pledger data, this yields BF01 ≈ 0.45, which means that the data are about 1/0.45 ≈ 2.22
times more likely under the alternative hypothesis than under the null hypothesis. Note that although
the Bayesian hypothesis test supports the alternative hypothesis, the result is much less convincing than a
p-value of .006 suggests.

To apply the Savage-Dickey test, we first draw samples from the posterior and the prior distributions
for δ. The following code implements the graphical model in WinBUGS.

model

{

# Uniform Prior on Rates:

theta1 ~ dbeta(1,1)

theta2 ~ dbeta(1,1)

# Binomial Distribution for Observed Counts:

s1 ~ dbin(theta1,n1)

s2 ~ dbin(theta2,n2)

# Difference between Rates:

delta <- theta1-theta2

# Priors

# Make "Dummy" Variables That Copy The Prior,

# But Are Never Updated By Data

theta1prior ~ dbeta(1,1)

theta2prior ~ dbeta(1,1)

deltaprior <- theta1prior-theta2prior

}

The code Pledgers_1.m (Matlab) or Pledgers_1.R (R) calls WinBUGS to draw samples from the
posterior and the prior for the rate difference δ. The left panel of Figure 16.2 shows the resulting histograms
on their entire range. In this panel, the thin solid line for the prior indicates the analytical distribution
given in Equation 16.1. For the posterior distribution, the thin solid line indicates a logspline nonparametric
density estimate (Stone et al., 1997).

The right panel of Figure 16.2 zooms in on the relevant region around δ = 0. The almost flat line is the
analytical distribution of the prior, and the sharply decreasing line is the logspline estimate for the posterior.

150



Equality of Proportions

 

 

D
en

si
ty

−1 −0.5 0 0.5 1

0

5

10

15

20

25

δ

Full Scale

 

D
en

si
ty

−1 −0.5 0 0.5 1

0

5

10

15

20

25

Posterior

Prior

Zoomed in

 
D

en
si

ty

−0.05 0 0.05

0

1

2

3

4

5

δ

Posterior

Prior

Figure 16.2: Prior and posterior distributions of the rate difference δ for the unrestricted analysis of
the pledger data. The left panel shows the distributions across their entire range (prior: histogram
and analytical result; posterior: histogram and logspline density estimate). The right panel zooms
in on the area that is relevant for the Savage-Dickey test of H0 : δ = 0 versus H1 : δ 6= 0 (prior:
analytical result; posterior: logspline density estimate). The dots indicate the height of the two
distributions at δ = 0.

The two dots mark the height of both densities at δ = 0. From a visual comparison of the height of the dots,
it is clear that the point δ = 0 is supported about twice as much under the prior as it is under the posterior.
That is, the data have decreased the support for δ = 0 by a factor of two. Application of the Savage-Dickey
procedure yields BF01 ≈ 0.47, which leads to the conclusion that the data are about 2.17 times more likely
under the alternative hypothesis than under the null. Thus, the result from the MCMC-based Savage-Dickey
test (i.e., BF10 = 2.17) and the analytical solution (i.e., BF10 = 2.22) are in reasonable agreement.

Finally, note that the conclusions from the Bayesian hypothesis test (i.e., roughly twice as much evidence
for H1 as for H0) are more conservative than those that follow from Bayesian parameter estimation; the
Bayesian 95% confidence interval for the posterior of δ is (−0.09,−0.01) and does not include 0. The reason
for the discrepancy is that the Bayesian hypothesis test punishes H1 for assigning prior mass to values of
δ that yield very low likelihoods (i.e., the automatic Ockham’s razor discussed previously, see Berger &
Delampady, 1987 for a discussion).

Exercises

1. In the current analysis, we put independent priors on θ1 and θ2. Do you think this is plausible? How
would you change the model to take into account the possible dependence? How would this affect the
outcome of the Bayesian test?

Order-Restricted Analysis

Many substantive psychological questions can be formulated as order-restrictions (e.g., Hoijtink, Klugkist,
& Boelen, 2008). Here we focus on a test of H0 : δ = 0 versus H2 : δ < 0, an order-restricted alternative
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hypothesis that states that the rate of condom use is lower for the pledgers than for the nonpledgers.
In the Bayesian framework, order-restrictions can be implemented in several ways (e.g., O’Hagan &

Forster, 2004, pp. 70-71). For instance, order-restrictions can be enforced before MCMC sampling, by
appropriately constraining the prior distributions, or they can be implemented after the MCMC sampling,
by retaining only those MCMC samples that obey the order-restriction.

The left panel of Figure 16.3 shows the histograms for the posterior and prior distributions for δ under
the restricted model H2 : δ < 0. These histograms were obtained by selecting from the previous unrestricted
analysis only those MCMC samples that obey the order-restriction. For the prior, the thin solid line indicates
the analytical distribution, and for the posterior it indicates the order-restricted logspline estimate.

Note that for the prior, the effect of the order-restriction is to double the mass on δ = 0, from a value of
1 to a value of 2. In contrast, the order-restriction does not much affect the posterior, as most of its mass
was already smaller than 0. The right panel of Figure 16.3 zooms in on the relevant area around δ = 0 and
shows the effect of the order-restriction on the Bayesian hypothesis test. Again, the almost flat line is the
analytical distribution of the order-restricted prior, and the associated dot indicates its height at δ = 0. The
sharply decreasing line is the logspline estimate for the order-restricted posterior, and the associated solid
dot indicates the logspline estimate of the height of the posterior based on the subset of MCMC samples that
obey the order-restriction. The open dot immediately below indicates the height of the posterior estimated
from an alternative method, one that is based on renormalizing the order-restricted posterior (i.e., dividing
the height of the unrestricted posterior at δ = 0 by the area of the unrestricted posterior that lies to the left
of δ = 0). Both methods are illustrated in the code Pledgers_2.R (R).

A visual comparison of the height of the prior and posterior at δ = 0 confirms that the order-restriction
has increased the evidence in favor of the alternative hypothesis. Specifically, the logspline estimate yields
BF02 ≈ 0.26 (i.e., BF20 ≈ 3.78), and the estimate based on renormalizing the posterior yields BF02 ≈ 0.23
(i.e., BF20 ≈ 4.34). Thus, both methods lead to the conclusion that there is roughly four times as much
evidence for H2 as for H0.

The foregoing may lead one to conclude that the effect of order-restrictions are similar in the Bayesian
and the frequentist framework; in the Bayesian framework, the order-restriction increased the evidence
against H0 roughly by a factor of two, and in the frequentist framework, a one-sided p-value provides twice
as much evidence against H0 as a two-sided p-value. However, this correspondence only holds because the
posterior for δ is largely consistent with the order-restriction, as the next exercise confirms.

Exercises

1. For the pledger data, consider an order-restricted test of H0 : δ = 0 versus H3 : δ > 0. What do you
think the result will be? Check your intuition by adjusting the code Pledgers_2.R to carry out the
required test.

16.2 A Hierarchical Bayesian One-Sample t-Test

In their article “Priming in implicit memory tasks: Prior study causes enhanced discriminability, not only
bias”, Zeelenberg, Wagenmakers, and Raaijmakers (2002) reported three experiments in two-alternative
forced-choice perceptual identification. In the test phase of each experiment, a stimulus (e.g., a picture of a
clothes pin) is briefly presented and masked. Immediately after the mask the participant is confronted with
two choice options—the target (i.e., the picture of the clothes pin) and a similar foil alternative (e.g., the
picture of a stapler; see Figure 16.4 for an example); the participant’s goal is to identify the target.

Prior to the test phase, the Zeelenberg et al. experiments featured a study phase, in which participants
studied a subset of the choice alternatives that would also be presented in the later test phase. Two
conditions were critical: the “study-neither” condition, in which neither choice alternative was studied, and
the “study-both” condition, in which both choice alternatives were studied.

In the first two experiments reported by Zeelenberg et al., participants choose the target stimulus more
often in the study-both condition than in the study-neither condition. This both-primed benefit suggests
that prior study leads to enhanced discriminability, not just a bias to prefer the studied alternative (e.g.,
Ratcliff & McKoon, 1997).
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Figure 16.3: Prior and posterior distributions of the rate difference δ for the order-restricted
analysis of the pledger data. The left panel shows the distributions across their entire range (prior:
histogram and analytical result; posterior: histogram and logspline density estimate). The right
panel zooms in on the area that is relevant for the Savage-Dickey test ofH0 : δ = 0 versusH2 : δ < 0
(prior: analytical result; posterior: logspline density estimate). The dots indicate the height of the
two distributions at δ = 0.

Figure 16.4: Example pair of similar pictures used in Experiment 3 from Zeelenberg et al. (2002).
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Here we focus on statistical inference for the Experiment 3 from Zeelenberg et al. (2002). In the study
phase of this experiment, all 74 participants were presented with 21 pairs of similar pictures (e.g., the
clothes pin/stapler example shown in Figure 16.4). In the test phase, all participants had to identify briefly
presented target pictures among a set of two alternatives. The test phase was composed of 42 pairs of similar
pictures, 21 of which had been presented in the study phase.

In order to assess the evidence in favor of the both-primed benefit, the authors carried out a standard
analysis and computed a one-sample t-test:

“Mean percentage of correctly identified pictures was calculated for each participant. When
neither the target nor the foil had been studied, 71.5% of the pictures were correctly identified.
When both the target and the foil had been studied, 74.7% of the pictures were correctly
identified. The difference between the study-both and study-neither conditions was significant,
t(73) = 2.19, p < .05.”

Our Bayesian test of the both-primed benefit proceeds as follows. We start by assuming that for
participant i the number of correct choices is binomially distributed with parameter θi. Unfortunately, θi is
defined on the rate scale, which ranges from 0 to 1. This is an awkward scale for modeling additive effects,
as a change from .55 to .65 is not the same as a change from .85 to .95. Hence, we do not model θi, but
instead choose to model φi, the probit transformation of θi.

The probit transform is the inverse cumulative distribution function of the standard Normal distribution,
so that, for instance, a rate of θi = 0.5 maps onto a probit rate of φi = 0, and a rate of θi = 0.975 maps
onto a probit rate of φi = 1.96 (see Figure 7.2). In contrast to the rate scale, the probit scale covers the
entire real line, and lends itself easily to hierarchical modeling.

For each participant i, the both-primed benefit αi is given by the difference between performance in the
study-both and study-neither condition, αi = φSB,i − φSN,i. Our model incorporates two random effects;
first, each participant’s baseline level of performance φSN,i is assumed to be drawn from a group-level Normal
distribution with mean µφ and standard deviation σφ. Second, each participant’s both-primed benefit is
assumed to be drawn from a group-level Normal distribution with mean µα and standard deviation σα. Note
that such Normal distributions are easily defined on the probit scale, but not on the rate scale. Figure 16.5
shows the model in graphical form. Because each participant contributes to both the study-neither and
the study-both conditions, the design is “within-subjects” and the subject plate therefore encloses both
conditions.

For the parameters that are not subject to statistical test (i.e., µφ, σφ, and σα) we specified uninformative
priors. The prior for the group mean of the study-neither condition, µφ, is a truncated standard Normal (i.e.,
greater than zero only on the positive real line), which on the rate scale translates to a uniform distribution
from 0.5 to 1. For σφ and σα, we chose priors that are uniform from 0 to 10.

Finally, and critically, our model incorporates a parameter δ that quantifies effect size, δ = µα/σα.
Effect size is a dimensionless quantity, and this makes it relatively easy to define a principled prior (cf.
the earlier chapter on Bayesian t-tests). Reasonable default choices for priors on effect size include the
Cauchy distribution (i.e., a t distribution with one degree of freedom) and the standard Normal distribution
(e.g., Gönen, Johnson, Lu, & Westfall, 2005; Rouder et al., 2009). The latter prior is known as the “unit
information prior”, as it carries as much information as a single observation (Kass & Wasserman, 1995).
The standard Normal distribution is the prior for effect size that we will use in this example and the next.

With the statistical model in place, we can now turn to hypothesis testing. The null hypothesis states
that there is no both-primed benefit, and hence the effect size is zero: H0 : δ = 0. The alternative, order-
restricted hypothesis states that there is a both-primed benefit, and hence H1 : δ > 0. This test is, in fact,
a hierarchical extension of the Bayesian one-sample t-test discussed in the previous chapter.

The following code implements the graphical model in WinBUGS.

model

{

for(i in 1:74) # 74 Participants

{

# Binomial Distributions for Observed Counts:

KSN[i] ~ dbin(thetaSN[i],NSN[i])

KSB[i] ~ dbin(thetaSB[i],NSB[i])
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µφ σφ

δ

µα σα

φSN,i

θSN,i

KSN,i

NSN,i
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NSB,i

i = 1, . . . , 74

KSN,i ∼ Binomial
(

θSN,i, NSN,i

)

θSN,i = Φ
(

φSN,i

)

φSN,i ∼ Normal
(

µφ, σ
2
φ

)

KSB,i ∼ Binomial
(

θSB,i, NSB,i

)

θSB,i = Φ
(

φSB,i

)

φSB,i = φSN,i + αi

αi ∼ Normal
(

µα, σ
2
α

)

µφ ∼ Normal(0,+∞)

(

0, 1
)

σφ ∼ Uniform
(

0, 10
)

µα = δ × σα

σα ∼ Uniform
(

0, 10
)

H0 : δ = 0

H1 : δ > 0

Figure 16.5: Bayesian graphical model for the Zeelenberg data. In a within-subjects design, 74 par-
ticipants performed a two-alternative forced-choice perceptual identification task, in both “study-
neither” (SN) and “study-both” (SB) conditions.

# Transformation to Parameters on the Probit Scale:

thetaSN[i] <- phi(phiSN[i])

thetaSB[i] <- phi(phiSB[i])

# Individual Parameters that Quantify Performance in

# the Study-Neither Condition Come From a Group-Level Distribution:

phiSN[i] ~ dnorm(muphi,tauphi)

# NB. tauphi is the precision, defined as 1/variance

# On the Probit Scale, Priming Effects Are Additive:

phiSB[i] <- phiSN[i]+alpha[i]

# alpha[i] is the priming effect for participant i

# Individual Priming Effects Come From a Group-Level Distribution:
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alpha[i] ~ dnorm(mualpha,taualpha)

# NB. taualpha is the precision, defined as 1/variance

}

# Group-Level Priors for the Study-Neither Condition:

muphi ~ dnorm(0,1)I(0,)

# NB1. The I(0,) command ensures that all samples for muphi are > 0

# NB2. This prior for muphi corresponds to a uniform prior the rate scale,

# ranging from 0.5 to 1.

# Uninformative Prior on the Group-Level Standard Deviation:

sigmaphi ~ dunif(0,10)

# Transformation from Standard Deviation to Precision:

tauphi <- pow(sigmaphi,-2)

# Priors for the Group-Level Priming Effect (cf. Rouder et al., PBR):

mualpha <- delta * sigmaalpha

# Uninformative Prior for sigmaalpha:

sigmaalpha ~ dunif(0,10)

# Transformation from Standard Deviation to Precision:

taualpha <- pow(sigmaalpha,-2)

# The "Unit Information Prior" on Effect Size delta (cf. Rouder et al., PBR):

delta ~ dnorm(0,1)I(0,)

# NB. The I(0,) incorporates the order-restriction that allows only

# positive values for delta

}

We implemented our Bayesian hierarchical t-test by means of the Savage-Dickey procedure. The code
Zeelenberg.m (Matlab) or Zeelenberg.R (R) calls WinBUGS to draw samples from the posterior and the
prior for the rate difference δ, and Figure 16.6 visualizes the results—for the prior on effect size δ, the
thin solid line indicates the Normal distribution that has been truncated and renormalized to take into
account the order restriction that δ > 0. For the posterior order-restricted distribution on effect size δ,
the thin solid line indicates the logspline nonparametric density estimate, and the thick solid line indicates
the histogram of MCMC samples. As in the previous example, the two dots mark the height of prior and
posterior densities at δ = 0. From a visual comparison of the height of the dots, it is clear that the point
δ = 0 is supported about four times as much under the prior as it is under the posterior. That is, the
data have decreased the support for δ = 0 by a factor of four. Application of the Savage-Dickey test (i.e.,
Equation 14.7) yields BF01 ≈ 0.22, which leads to the conclusion that the data are about 4.49 times more
likely under the alternative hypothesis than under the null hypothesis.

Thus, the data support the assertion that there is a both-primed benefit, but the extent of this support
is somewhat weaker than is suggested by the p-value.

Exercises

1. The Zeelenberg data can also be analyzed using the Bayesian t-test discussed in the previous chapter.
Think of a few reasons why this might not be such a good idea. Then, despite your reservations,
apply the Bayesian t-test anyway. Do the results differ? How? Why?

16.3 A Hierarchical Bayesian Two-Sample t-Test

In their article “How specific are executive functioning deficits in Attention Deficit Hyperactivity Disorder
and autism?”, Geurts, Verté, Oosterlaan, Roeyers, and Sergeant (2004) studied the performance of children
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Figure 16.6: Prior and posterior distribution of the effect size δ for the hierarchical, order-restricted
analysis of the Zeelenberg data. For the prior, the thin line gives the analytical result; for the
posterior, the thick line gives the histogram and the thin line gives the logspline density estimate.
The dots indicate the height of the two distributions at δ = 0.

with ADHD and autism on a range of cognitive tasks. Here we focus on a small subset of the data and
consider the question whether children that develop typically (i.e., “normal controls”) outperform children
with ADHD on the Wisconsin Card Sorting Test (WCST). The WCST requires that participants learn, by
trial and error, to sort cards according to an implicit rule. The complication is that, over the course of
the experiment, the sorting rule sometimes changes. This means that in order to avoid too many mistakes,
participants have to suppress the tendency to perseverate and quickly discover and adopt the new rule.
Because of these task demands, performance on the WCST is thought to quantify cognitive flexibility or set
shifting ability.

The experiment of interest contains data from 26 normal controls and 52 children with ADHD. Each
child performed the WCST, and the measure of interest is the number of correctly sorted cards relative
to the total number of sorting opportunities. The WCST provides a maximum of 128 cards to sort, but,
depending on a child’s performance, this number could also be lower. Overall, the group of normal controls
sorted the cards correctly on 65.4% of the cases, and the group of ADHD children sorted the cards correctly
on 66.9% of the cases. A between-subjects (i.e., two-sample) frequentist t-test on the proportion of correctly
sorted cards does not allow one to reject the null hypothesis, t(40.2) = 0.37, p = .72. But this statistic
does not quantify the evidence in favor of the null hypothesis. Another problem with this frequentist t-test
is that it ignores the fact that trials are nested in participants—a design that, as in the previous example,
calls for a hierarchical/multi-level/random effects analysis.

Our hierarchical model is specified as follows. We assume that for child i in the group of normal controls,
the number of correctly sorted cards KNC,i (out of NNC,i opportunities) is binomially distributed with rate
parameter θNC,i. As in the previous example, this rate parameter is then transformed to the probit scale,
which yields the corresponding parameter φNC,i. The comparable assumptions are made for child j in the
group of ADHD children, resulting in the associated parameter φAD,j .

Next, our model incorporates random effects; for both the normal controls and the group of ADHD
children, the probitized rates of correct responding (i.e., φNC,· and φAD,·) are assumed to be drawn from
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Figure 16.7: Bayesian graphical model for the Geurts data. In a between-subjects design, 26 typi-
cally developing children (i.e, “normal controls”, NC) and 52 children with ADHD (AD) performed
the Wisconsin Card Sorting Test.

group-level Normal distributions. Denoting the grand mean by µ, and the group difference in means by α,
the group-level Normal distribution for the normal controls is defined as N(µ + α/2, σ2) and that for the
ADHD children as N(µ−α/2, σ2), where σ denotes the standard deviation for the group-level distribution.

Figure 16.7 shows the model in graphical form. As in Figure 16.5, the hierarchical structure of the
model is accommodated by plate notation, enclosing with square boundaries subsets of the graph that have
independent replications. Because every child participants in only one of the two conditions, the design is
“between-subjects” and the square boundaries enclose each condition separately.

For the parameters that are not subject to statistical test (i.e., µ and σ) we specified uninformative
priors. The prior for the grant mean µ is a standard Normal, which on the rate scale translates to a uniform
distribution from 0 to 1 (cf. Rouder & Lu, 2005, p. 588). For σ, we chose a prior that is uniform from 0
to 10. As in the previous example, the key aspect of our model is a parameter δ that quantifies effect size,
δ = α/σ. We again use the “unit information” standard normal prior on δ, completing the specification of
the model.

Hypothesis testing now proceeds as before. The null hypothesis states that normal controls and ADHD
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children perform the same on the WCST, and hence the effect size is zero: H0 : δ = 0. The unrestricted
alternative hypothesis states that there is a difference in performance, and hence H1 : δ 6= 0. Lastly,
the order-restricted hypothesis states that normal controls perform better than ADHD children, such that
H2 : δ > 0. These tests are hierarchical extensions of the Bayesian one-sample t-test; as in the previous
example, the difference is that our hierarchical t-tests are defined on the level of individual parameters
instead of raw data. Below we examine the unrestricted analysis (i.e., H0 versus H1) and the restricted
analysis (i.e., H0 versus H2) in turn.

Unrestricted Analysis

We implemented our Bayesian hierarchical two-sample t-test by means of the Savage-Dickey procedure. The
following code implements the graphical model in WinBUGS.

model

{

for(i in 1:26) # 26 Normal Control Participants

{

# Binomial Distributions for Observed Counts:

KNC[i] ~ dbin(thetaNC[i],NNC[i])

# Transformation to Parameters on the Probit Scale:

thetaNC[i] <- phi(phiNC[i])

# Individual Parameters Come From a Group-Level Distribution:

phiNC[i] ~ dnorm(muNC,tau)

# NB. tau is the precision, defined as 1/variance

}

for(j in 1:52) # 52 ADHD Participants

{

KAD[j] ~ dbin(thetaAD[j],NAD[j])

thetaAD[j] <- phi(phiAD[j])

phiAD[j] ~ dnorm(muAD,tau)

}

muNC <- mu + (.5*alpha)

muAD <- mu - (.5*alpha)

# NB. mu is the grand mean, alpha is the effect (i.e., the group difference)

# Group-Level Priors:

mu ~ dnorm(0,1)

# NB. This prior for mu corresponds to a uniform prior the rate scale,

# ranging from 0 to 1.

# Uninformative Prior on the Group-Level Standard Deviation:

sigma ~ dunif(0,10)

# Transformation from Standard Deviation to Precision:

tau <- pow(sigma,-2)

alpha <- delta * sigma

# NB. This allows one to put a prior on effect size delta (cf. Rouder et al., PBR)

# The "Unit Information Prior" on Effect Size delta (cf. Rouder et al., PBR):

delta ~ dnorm(0,1)

}

The code Geurts_1.m (Matlab) or Geurts_1.R (R) calls WinBUGS to draw samples from the posterior
and the prior for the rate difference δ, and the left panel of Figure 16.8 visualizes the result. The ADHD
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Figure 16.8: Prior and posterior distribution of the effect size δ for the hierarchical analysis of the
Geurts data (left panel: unrestricted analysis; right panel: order-restricted analysis) For the prior,
the thin line gives the analytical result; for the posterior, the thick line gives the histogram and the
thin line gives the logspline density estimate. The dots indicate the height of the two distributions
at δ = 0.

children performed slightly better than the normal controls, and this is reflected in a posterior distribution
for δ which is slightly asymmetrical around zero, assigning more mass to negative than to positive values of
δ. The Bayesian 95% confidence interval for δ is (−0.54, 0.42).

The left panel of Figure 16.8 also shows that the data have made the value δ = 0 more likely than it
was before (i.e., at δ = 0, the posterior is higher than the prior). Specifically, the ratio of the heights yields
BF01 = 3.96, which indicates that the data are about four times more likely under H0 than they are under
H1. Thus, the data support the claim that normal controls and ADHD children perform equally well on the
WCST over the claim that these groups perform differently.

Order-Restricted Analysis

The order-restricted hypothesis states that normal controls outperform children with ADHD on the WCST
(i.e., H2 : δ > 0). This hypothesis may be entertained because it is plausible a priori ; However, the data
show that, if anything, the reverse is true: the mean percentage of correct card selections was 1.5% higher
for the group of ADHD children than for the normal controls. What can we expect when we test H0 : δ = 0
versus H2 : δ > 0?

First, note that the posterior for δ is not far from being symmetrical around zero. If it were completely
symmetrical, the height of both the prior and the posterior is multiplied by 2, so that their ratio stays the
same. Second, the the posterior for δ is not quite symmetrical around zero, and assigns slightly more mass
to values that are inconsistent with H2. This will slightly increase the support for H0 over H2. These two
considerations lead us to expect that the evidence in favor of H0 over H2 (i.e., BF02) will be slightly larger
than that of H0 over H1 (i.e., BF01 = 3.96)

The code Geurts_2.m (Matlab) or Geurts_2.R (R) calls WinBUGS to draw samples from the posterior
and the prior for the rate difference δ, and the right panel of Figure 16.8 visualizes the result. A quantitative
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comparison of the height of the prior and posterior at δ = 0 confirms our expectation that the order-
restriction slightly increases the evidence in favor of H0. Specifically, the logspline estimate yields BF02 =
4.94. Thus, under H0 the data are about five times more likely than they are under the order-restricted
alternative, a result that is slightly more convincing than the one obtained when H0 is pitted against the
unrestricted alternative. In sum, the data support the assertion that normal controls and children with
ADHD perform similarly on the WCST, even though the evidence is not overwhelming.

Exercises

1. For the unrestricted test (H0 : δ = 0 versus H2 : δ 6= 0), what is the maximum support in favor of
H0 that you could possibly observe, given the present number of subjects, and given that the average
rate of correct card sorts is 65%?

2. What is the maximum support for the restricted test (i.e., H0 : δ = 0 versus H2 : δ > 0)?
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chapter 17

GETTING STARTED WITH WBDEV

with Ruud Wetzels

17.1 What is WBDev?

For some psychological modeling applications, it is highly desirable to define one’s own functions and dis-
tributions. In particular, user-defined functions and distributions greatly facilitate the use of psychological
process models such as the Attention Learning Covering map (ALCOVE; Kruschke, 1992), the Generalized
Context Model for category learning (GCM; Nosofsky, 1986), the Expectancy-Valence model for decision-
making (Busemeyer & Stout, 2002), the SIMPLE model of memory (Brown et al., 2007), or the Ratcliff
diffusion model of response times (Ratcliff, 1978).

The ability to implement these user–defined functions and distributions can be achieved through the
use of the WinBUGS Development Interface (WBDev; Lunn, 2003), an add–on program that allows the
user to hand–code functions and distributions in Component Pascal (e.g., http://en.wikipedia.org/

w/index.php?title=Component+Pascal). The use of WBDev brings several advantages. For instance,
complicated WBDev components lead to faster computation than their counterparts programmed in straight
WinBUGS code. Moreover, some models will only work properly when implemented in WBDev. Another
advantage of WBDev is that it compartmentalizes the code, resulting in scripts that are easier to understand,
communicate, adjust, and debug. A final advantage of WBDev is that it allows the user to program functions
and distributions that are simply not available in WinBUGS, but may be central components of psychological
models (Donkin, Averell, Brown, & Heathcote, in press; Vandekerckhove, Tuerlinckx, & Lee, in press). In
this chapter, we will demonstrate how to implement a new distribution in WBDev, using the shifted Wald
distribution (Heathcote, 2004; Schwarz, 2001) as an example.

17.2 Installing WBDev

Before you can begin hard–coding your own functions and distributions, you need to download and install
two programs; WBDev and BlackBox.1 To make sure that all programs function properly, they have to be
installed in the order given below.

1. Installing WinBUGS Development Interface (WBDev)

Download WBDev from http://www.winbugs-development.org.uk/. Unzip the executable (i.e.,
WBDev.exe) in your WinBUGS directory ./Program Files/WinBUGS14. Then start WinBUGS, open
the“wbdev01_09_04.txt” file and follow the instructions at the top of the file. During the process, WBDev
will create its own directory /WinBUGS14/WBDev.

2. Installing BlackBox Component Builder

BlackBox is a development environment for programs written in Component Pascal and this includes Win-
BUGS. BlackBox can be downloaded from http://www.oberon.ch/blackbox.html. At the time of writing,
the latest version is 1.5. Install BlackBox in the default directory: ./Program Files/BlackBox Component

Builder 1.5. Go to the WinBUGS directory and select all files (press “Ctrl+A”) and copy them (press
“Ctrl+C”). Next, open the BlackBox directory and paste the copied files in there (press “Ctrl+V”). Select
“ Yes to all” if asked about replacing files. Once this is done, you will be able to open BlackBox and run
WinBUGS from inside BlackBox. This completes the installation of the software, and you can start to write
our own functions and distributions.

1At the time of writing, all programs are available without charge.
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17.3 Using WBDev: An Example Using the Shifted Wald
Distribution

Statistical distributions are invaluable in psychological research. For example, in the simple rate problem
discussed in Chapter 3, we used the binomial distribution to model our data. WinBUGS comes equipped
with an array of predefined distributions, but it does not include some distributions that are potentially
useful for psychological modeling. Using WBDev, researchers can augment WinBUGS to include these
desired distributions, such as the shifted Wald distribution.

The Shifted Wald Distribution

Many psychological models use response times (RTs) to infer latent psychological properties and processes
(Luce, 1986). One common distribution used to model RTs is the inverse Gaussian or Wald distribution
(Wald, 1947). This distribution represents the density of the first passage times of a Wiener diffusion process
toward a single absorbing boundary, as shown in Figure 17.1, using three parameters.

a

Ter

v

Figure 17.1: A diffusion process with one boundary. The shifted Wald parameter a reflects the
separation between the starting point of the diffusion process and the absorbing barrier, v reflects
the drift rate of the diffusion process and Ter is a positive–valued parameter that shifts the entire
distribution.

The parameter v reflects the drift rate of the diffusion process. The parameter a reflects the separation
between the starting point of the diffusion process and the absorbing barrier. The third parameter, Ter,
is a positive–valued parameter that shifts the entire distribution. The probability density function for this
shifted Wald distribution is given by:

f(t|v, a, Ter) =
a

√

2π(t− Ter)3
exp

{

− [a− v(t− Ter)]
2

2(t− Ter)

}

, (17.1)

which is unimodal and positively skewed. Because of these qualitative properties, it is a good candidate for
fitting empirical RT distributions. As an illustration, Figure 17.2 shows changes in the shape of the shifted
Wald distribution as a result of changes in the shifted Wald parameters v, a, and Ter.
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Figure 17.2: Changes in the shape of the shifted Wald distribution as a result of changes in the pa-
rameters v, a and Ter. Each panel shows the shifted Wald distribution with different combinations
of parameters.

The shifted Wald parameters have a clear psychological interpretation (e.g., Heathcote, 2004; Luce, 1986;
Schwarz, 2001, 2002). Participants are assumed to accumulate noisy information until a predefined threshold
amount is reached and a response is initiated. Drift rate v quantifies task difficulty or subject ability,
response criterion a quantifies response caution, and the shift parameter Ter quantifies the time needed for
non-decision processes (Matzke & Wagenmakers, in press). Experimental paradigms in psychology for which
it is likely that there is only a single absorbing boundary include saccadic eye movement tasks with few
errors (Carpenter & Williams, 1995), go/no–go tasks (Gomez, Ratcliff, & Perea, 2007) or simple reaction
time tasks (Luce, 1986, pp. 51–57).

The WBDev Script

The WBDev script for implementing the shifted Wald distribution is available in the ShiftedWald.txt file.
In this section, we show only some crucial parts of the WBDev script. The numbers (*X*) correspond to
the numbers in the ShiftedWald.txt WBDev script.

(*1*) MODULE WBDevShiftedWald;

The name of the module is typed here. We want to name our module ShiftedWald. The name of the
module (so the part after MODULE WBDev...) has to start with a capital letter.

(*2*) drift = 0; bound = 1; shift = 2;

The parameters of the distribution, which, in this case are the drift rate v, response caution a and
shift Ter.

(*3*) log2Pi: REAL;

fact-: WBDevUnivariate.Factory;

Here global variables can be declared. A global variable is loaded only once, but the value of the
variable is usually needed many times.

(*4*) args := "sss";

We have to declare what type of arguments are the input of the distribution. In this case these are
the three scalar parameters of the shifted Wald distribution.

(*5*) isDiscrete := FALSE;

canIntegrate := FALSE;

The first line describes whether samples from the distribution are discrete or continuous. When the
distribution is discrete, isDiscrete should be set to “TRUE”. When the distribution is continuous,
it should be set to “FALSE”. For the shifted–Wald distribution isDiscrete is “FALSE”.
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The second line defines whether the cumulative distribution is to be provided. If so, canInteg- rate

should be set to “TRUE”. If this is set to true, an algorithm should be provided at (*11*). We set
canIntegrate to “FALSE” because we did not implement the cumulative distribution.

(*6*) lower := Ter;

upper := INF;

This part of the code should define the natural bounds of the distribution. In our case, we take Ter

as a lower bound and INF (meaning +∞) as an upper bound.

(*7*) x := t-Ter;

value:= -0.5*log2Pi + Math.Ln(a) - 1.5*Math.Ln(x) - ((a-v*x)*(a-v*x))/(2*x);

As the name implies, this is the part where the full log likelihood of the distribution is defined.

(*8*) LogFullLikelihood(node, value);

Sometimes WinBUGS can ignore the normalizing constants. When that is the case, WinBUGS calls
LogPropLikelihood(.). In our example, we refer back to the full log likelihood function.

(*9*) LogFullLikelihood(node, value);

Occasionally, WinBUGS can make use of the Logprior(.) procedure, which is proportional to the
real log–prior function. In other words, this procedure omits the additive constants on the log scale.
In our example, we just refer back to the full log likelihood function.

(*10*) Here the cumulative distribution can be defined in case canIntegrate at (*7*) had been set to
TRUE. Because we have set canIntegrate to FALSE, we do not define anything in this section.

(*11*) The DrawSample(.) procedure returns a pseudo–random number from the new distribution. We
do not use this function, because we do not need to draw values from the new distribution. You would
have to do this when you have missing values.

(*12*) END WBDevShiftedWald.

The last thing that needs to be done is to make sure that the name of the module at the end is the
same as the name at the top of the file. The last line has to end with a period.

Open BlackBox, and copy the content of the ShiftedWald.txt file to a new file. You need to compile
the function by pressing Ctrl+K. Syntax errors cause WBDev to return an error message. Save this file as
ShiftedWald.odc and copy it into the appropriate BlackBox directory, .../BlackBox Component Builder

1.5/WBdev/Mod.
We are, however, not entirely ready yo use the shifted Wald distribution yet. WBDev needs to know that

there exists a distribution called ShiftedWald; WBDev also needs to know what the input looks like (i.e.,
how many inputs are there, what order are they presented, and are they scalars or vectors?) To accomplish
this, open the distribution file distributions.odc in the directory .../BlackBox Component Builder

1.5/WBdev/Rsrc. Add the line: s ∼ "ShiftedWald"(s,s,s) "WBDevShiftedWald.Install" and then
save it. The next time you start BlackBox, the program will know that there exists a distribution called
ShiftedWald, and that the inputs are three scalars (single numbers).

Application of the Shifted Wald Distribution

We will illustrate the application of the shifted Wald distribution using a real dataset from a lexical decision
task (Wagenmakers, Ratcliff, Gomez, & McKoon, 2008). Nineteen participants had to quickly decide whether
a visually presented letter string was a word (e.g., table) or a nonword (e.g., drapa). The graphical model
representation for this problem is shown in Figure 17.3.

The following code implements the graphical model in WinBUGS.

model {

# The shifted Wald parameters are drawn from their prior distributions

v ~ dunif(0, 10)

a ~ dunif(0, 10)
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rti

v a Ter v ∼ Uniform(0, 10)

a ∼ Uniform(0, 10)

Ter ∼ Uniform(0, 1)

rti ∼ ShiftedWald(v, a, Ter)

i trials

Figure 17.3: Graphical model for the shifted Wald analysis.

Ter ~ dunif(0, 1)

# The data are shifted Wald distributed

for (i in 1:nrt) {

rt[i] ~ ShiftedWald(v,a,Ter)

}

}

Figure 17.4: The MCMC chains of the marginal posteriors of all three individual shifted Wald
parameters, v, a and Ter.

169



17. Getting Started with WBDev

Figure 17.5: The posterior distributions of the three shifted Wald parameters v, a and Ter. The
dashed gray lines indicate the modes of the posterior distributions at v = 5.57, a = 1.09 and
Ter = .33. The 95% confidence intervals for v, a and Ter extend from 4.12 to 8.00, from .80 to 3.52
and from .09 to .36, respectively.

The priors for v and a are uniform distributions that range from 0 to 10 (i.e., v ∼ dunif(0,10) and a ∼
dunif(0,10)). The prior for Ter is a uniform distribution that ranges from 0 to 1 (i.e., Ter ∼ dunif(0,1).
With the priors in place, we can use our ShiftedWald function to estimate the posterior distributions for the
three model parameters v, a and Ter (i.e., rt[i] ∼ ShiftedWald(v,a,Ter)).

The code ShiftedWald_1.m (Matlab, requires the Statistics Toolbox) or ShiftedWald_1.R (R) loads
the RTs of correct “word” responses of the first participant, and then calls WinBUGS to fit the RTs to the
shifted Wald distribution. Note that bugs.dir in the Matlab code and bugsdir in the R code must be set
to the location of your copy of BlackBox and not to the location of the WinBUGS software.

After you run the code, WinBUGS should show MCMC chains similar to those shown in Figure 17.4.
The chains do not look like fat hairy caterpillars. They seem to have a lot of freedom to move around the
parameter space, so we cannot be certain that the chains have converged properly. To assess convergence
more formally, we ran three chains using different starting points for each chain. Next, we calculated Rhat
to check whether the chains have converged to the same stationary distribution. For each parameter, Rhat
is smaller than 1.1, so we can tentatively assume that the chains have converged.

Figure 17.5 shows the posterior distributions of the three shifted Wald parameters, v, a and Ter. One
thing that stands out is that the posterior distributions of the shifted Wald parameters are very spread out
across the parameter space. The 95% confidence intervals for v, a and Ter extend from 4.12 to 8.00, from
.80 to 3.52 and from .09 to .36, respectively. It seems that data from only one participant are not enough
to yield very accurate estimates of the shifted Wald parameters. In the following section we show how our
estimates will improve when we use a hierarchical model and analyze all participants simultaneously.

Application of the Shifted Wald Distribution: A Hierarchical Extension

In an experimental setting, the problem of few data per participant can be addressed by hierarchical modeling
(Farrell & Ludwig, 2008; Gelman & Hill, 2007; Rouder, Sun, Speckman, Lu, & Zhou, 2003; Shiffrin, Lee,
Kim, & Wagenmakers, 2008). In our shifted Wald example, each subject is assumed to generate their data
according to the shifted Wald distribution, but with different parameter values. We extend the individual
analysis and assume that the parameters for each subject are chosen from a normal distribution. This means
that all individual participants are assumed to have their shifted Wald parameters drawn from the same
group distribution, allowing all the data provided by all the participants to be used for inferring parameter
values, without making the unrealistic assumption that participants are identical copies of each other. The
graphical model representation for this problem is shown in Figure 17.6

The model file that implements the hierarchical shifted Wald analysis is shown below.

model {

# prior distributions for group means:
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rtij

vi ai Teri

vg Svg
ag Sag

Terg
STerg

trial j
subject i

vg ∼ Uniform
(

0, 10
)

Svg
∼ Uniform

(

0, 5
)

ag ∼ Uniform
(

0, 10
)

Sag
∼ Uniform

(

0, 5
)

Terg
∼ Uniform

(

0, 1
)

STerg
∼ Uniform

(

0, 1
)

vi ∼ Gaussian
(

vg,
1

S2
vg

)

ai ∼ Gaussian
(

ag,
1

S2
ag

)

Teri
∼ Gaussian

(

Terg
, 1

S2

T erg

)

rtij ∼ shiftedWald
(

vi, ai, Teri

)

Figure 17.6: Graphical model for the hierarchical shifted Wald analysis.

vg ~ dunif(0, 10)

ag ~ dunif(0, 10)

Terg ~ dunif(0, 1)

# prior distributions for group standard deviations:

sdvg ~ dunif(0,5)

sdag ~ dunif(0,5)

sdTerg ~ dbeta(1,1)

#transformation from group standard deviations to group precisions

#(i.e., 1/var, which is what WinBUGS expects

#as input to the dnorm distribution):

lambdavg <- pow(sdvg,-2)

lambdaag <- pow(sdag,-2)

lambdaTerg <- pow(sdTerg,-2)

# Data Come From a Shifted Wald

for (i in 1:ns) { #subject loop

#individual parameters drawn from group level

#normals censored to be positive using the

#I(0,) command:

vi[i] ~ dnorm(vg, lambdavg)I(0,)

ai[i] ~ dnorm(ag, lambdaag)I(0,)

Teri[i] ~ dnorm(Terg,lambdaTerg)I(0,)

#The data are shifted Wald distributed

for (j in 1:nrt[i]) {

rt[i,j] ~ ShiftedWald(vi[i],ai[i],Teri[i])

}

171



17. Getting Started with WBDev

}

}

The hierarchical analysis of the reaction time data proceeds as follows. The prior of the group means is a
uniform distribution, ranging from 0 to 10 (i.e., vg ∼ dunif(0,10) and ag ∼ dunif(0,10)) or from 0 to 1
(i.e., Terg ∼ dunif(0,1)). The standard deviations are drawn from a uniform distribution ranging from 0
to 5 (i.e., sdvg ∼ dunif(0,5) and sdag ∼ dunif(0,5)) or from 0 to 1 (i.e., sdTerg ∼ dunif(0,1)).
Next, the standard deviations have to be transformed to precisions (i.e., lambdavg <- pow(sdvg,-2),
lambdaag <- pow(sdag, -2) and lambdaTerg <- pow(sdTerg,-2)). Then, the individual parameters vi,
ai and Teri are drawn from normal distributions with the corresponding group means and group preci-
sions (i.e., vi[i] ∼ dnorm(vg,lambdavg)I(0,), ai[i] ∼ dnorm(ag, lambdaag)I(0,) and Teri[i] ∼
dnorm(Terg, lambdaTerg)I(0,)). For each individual, the data are distributed according to a shifted
Wald distribution with their own individual parameters.

The code ShiftedWald_2.m (Matlab, requires the Statistics Toolbox) or ShiftedWald_2.R (R) loads
the RTs of correct “word” responses of the nineteen participants, and then calls WinBUGS to fit the RTs
to the shifted Wald distribution. We first focus on the group mean parameters vg, ag and Terg

. Figure 17.7
shows the MCMC chains for the three shifted Wald parameters. To check for convergence, we ran three
chains, with all three having a different starting position, and then calculated Rhat. The chains appear to
have converged, an impression that is supported by Rhat values close to 1 (Rhat for Terg, ag and vg is
approximately 1.).

Figure 17.7: Three chains, consisting of 9000 MCMC draws each, from the posterior distributions
of the three “group–level” shifted Wald parameters, vg, ag and Terg .

Figure 17.8 shows the posterior distributions of the shifted Wald group–mean parameters. The dis-
tributions indicate that there is relatively little uncertainty about the parameter values. The posterior
distributions of the group–mean parameters are concentrated around their modes vg = 4.27, ag = .97 and
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Figure 17.8: The posterior distribution of the three “group–level” shifted Wald parameters vg, ag

and Terg . The dashed gray lines indicate the modes of the posterior distributions at vg = 4.27,
ag = .97 and Terg = .36. The 95% confidence intervals for vg, ag and Terg extend from 3.80 to 4.70,
from .85 to 1.10 and from .34 to .38, respectively.

Terg
= .36. The 95% confidence intervals for vg, ag and Terg

extend from 3.80 to 4.70, from .85 to 1.10 and
from .34 to .38, respectively.

It is informative to consider the influence of the hierarchical extension on the individual estimates for
the shifted Wald parameters. Specifically, we can examine the MCMC chains for the same subject that we
analyzed in the individual shifted Wald analysis, but now in the hierarchical setting.

Figure 17.9: The MCMC chains of the marginal posteriors of all three individual shifted Wald
parameters, v, a and Ter, analyzed using a hierarchical model.
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Figure 17.10: The posterior distribution of the three individual shifted Wald parameters vi, ai

and Teri
from the hierarchical analysis (solid lines) and the individual analysis (dotted lines). The

dashed gray lines indicate the modes of the posterior distributions from the hierarchical analysis at
vi[1] = 4.27, ai[1] = .97 and Teri

[1] = .36. The 95% confidence intervals in the hierarchical model
for vi[1], ai[1] and Teri

[1] extend from 3.86 to 5.49, from 0.75 to 1.24 and from .31 to .37,respectively.

After you run the ShiftedWald_2.m (Matlab) or ShiftedWald_2.R (R) script for the hierarchical anal-
ysis of the shifted Wald example, WinBUGS should show three MCMC chains similar to the ones shown in
Figure 17.9. The chains are better behaved than the chains from the individual analysis (Figure 17.4). The
hierarchical extension leads to a practical improvement, through faster convergence for the computational
MCMC estimation process. However, the hierarchical extension also leads to a theoretical improvement
because compared to the individual analysis, the chains appear much less diffuse. This shows that the
hierarchical model leads to a better understanding of the model parameters.

To underscore this point, Figure 17.10 shows the posterior distributions of the individual shifted Wald
parameters, for both the hierarchical analysis and the individual analysis. It is clear that the posterior
distributions of the shifted Wald parameters are less spread out in the hierarchical analysis than in the
individual analysis. Also, the parameter estimates from the hierarchical analysis are slightly different than
those from the individual analysis. More precisely, they seem to have moved towards their common group
mean. This effect is called shrinkage, and is a standard and important property of hierarchical models
(Gelman, Carlin, Stern, & Rubin, 2004).

In sum, the WBDev implementation of the shifted Wald distribution enables researchers to use Win-
BUGS to infer shifted Wald parameters from reaction time data. Not only does WinBUGS allow straight-
forward analyses on individual data, it also makes it easy to add hierarchical structure to the model. This
can greatly improve the quality of the posterior estimates, and is often a very sensible and informative way
of analyzing data.

17.4 Online Help and Useful URLs

Further information on WBDev, including various examples of WBDev scripts, is available at http://

www.ruudwetzels.com/index.php?src=WBDev.
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