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I describe subtle calculus ideas that are essential for thermodynamics, but are typically not
encountered by students in calculus or prior physics classes. I argue that these previously
unencountered subtleties are a substantial cause of the difficulty that many students encounter in
learning thermodynamics and that thermodynamics can be taught more effectively by introducing
the subtleties within an environment with which students are familiar rather than insisting that
students learn them at the same time that they encounter new physics concepts such as entropy and
thermodynamic potentials. I show how Legendre transforms can be used to illustrate the important
calculus concepts and the nature of thermodynamics calculations. An added advantage of this
approach is that it provides a coherent picture of the thermodynamic potentials. ©2004 American

Association of Physics Teachers.
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I. INTRODUCTION

Thermodynamics uses simple mathematics, consistin
nothing more advanced than partial derivatives and differ
tials. Given this simple foundation, it is remarkable ho
many accomplished students find its mathematics bewil
ing.

I discuss in Sec. II several calculus subtleties that cont
ute to this bewilderment. In Sec. III, I show how instructo
can address the problem by briefly demonstrating the sub
ties that are important for thermodynamics in the symbo
world in which students are used to working rather than
troducing the subtleties in an environment where stude
must simultaneously learn new physics concepts~such as
entropy and thermodynamic potentials!. In addition to illus-
trating the essential calculus concepts, this approach can
sist students to construct a coherent mathematical pictur
thermodynamics in general and of thermodynamic potent
in particular.

My approach functions as a short mathematical introd
tion akin to the way vectors are introduced and reviewed
as many as four courses during an undergraduate stud
career. However, in contrast to the introduction and review
vectors, little, if any, class time is lost to physics with th
investment. It is brief, but more importantly, a simple chan
of symbols yields the various thermodynamic potentials a
Maxwell relations.

II. SOME CHALLENGES POSED BY
THERMODYNAMICS

A. Calculus subtleties

Thermodynamics involves the use of partial derivativ
and differentials which is complicated by the following co
siderations.

~1! Independent variables~in the formal mathematica
sense! are physically~and therefore mathematically! related
through an equation of state. In mechanics and electri
and magnetism, the Cartesian variablesx, y, andz, for ex-
ample, are physically as well as mathematically independ
we can choose anyx, y, and z triplet. In contrast, for an
ideal gas, a change in the volumeV will, in general, produce
a change in the pressureP.
753 Am. J. Phys.72 ~6!, June 2004 http://aapt.org/ajp
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~2! The proper independent variables are not always ob
ous ~particularly to students!. Furthermore, the independen
variables change from application to application. In contra
in mechanics and electricity and magnetism, the spatial v
ables and time are almost always the independent variab
We would not in normal circumstances consider, for e
ample, writingx as a function of the electric fieldE.

To deal with these considerations, physicists spec
the independent variables by subscripts when they w
partial derivatives in thermodynamics. For example,
expression,1

S ]E

]SD
V

, ~1!

tells us that the independent variables areV andS, and that
V is held constant. This information could be convey
equally well by writing]E(S,V)/]S.2

Note how strange the standard thermodynamics nota
appears to a student who has previously had calculus,
chanics, and electricity and magnetism. To use the nota
(] f /]x)y in calculus orEx5(]V/]x)y,z in electricity and
magnetism would be redundant and nonsensical. The stu
would justifiably be puzzled if a text introduced this not
tion. Yet many thermal physics texts introduce this subsc
notation with nothing but a short sentence which repeats
typical definition of a partial derivative found in calculu
textbooks where subscripts were unnecessary~see, for ex-
ample, Ref. 3!. Students are left to discover on their ow
why physicists, who value notational parsimony, have ad
apparently unneeded symbols.

While I am concerned primarily with equipping studen
to use and understand standard thermodynamics notatio
is useful for physics professors to be aware that the mea
of partial derivatives’ subscripts in thermodynamics may d
fer from the meaning of such subscripts~on occasions when
they do appear! in calculus classes. It is increasingly com
mon in mathematics and in calculus textbooks to use
subscript to specify the value~s! of independent variables a
which the derivative is evaluated.4 For example,
(] f 1 /]x)x0 ,y0

implies that the derivative is taken atx5x0

andy5y0 .
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B. Revealing the coherence and beauty of
thermodynamics

In addition to cultivating an appreciation for and an abil
to apply the necessary mathematical subtleties, the ther
dynamics professor faces the challenge of unveiling
beauty and coherence of thermodynamics.

One element of this challenge involves the thermodyna
potentials. They sometimes seem to appear in a textboo
if they have fallen from the sky as random and unrela
drops of rain.5 For example, Kittel and Kroemer’s textboo
introduces the Helmholtz free energyF abruptly, saying that
it ‘‘plays the part in thermal physics at constant temperat
that the energyE plays in ordinary mechanical process
... .’’ 6 How many students can articulate the role ene
plays? A similar sentence introduces enthalpy,7 and a briefer
comment introduces the Gibbs free energy.8

Schroeder’s textbook improves on Ref. 3 by introduci
F, G, and H at the same time.~Kittel introducesG 194
pages after discussingF, and introducesH in the chapter
succeeding the introduction ofG.) His textbook also gives a
physical interpretation for each variable. For example, foF
he writes that ‘‘This is the total energy needed to create
system, minus the heat you can get for free from an envir
ment at temperatureT ... . ThusF is the energy that come
out as work if you’re creating the system out of nothing.
if you annihilate the system, the energy that comes ou
work is F, because you have to dump some heat, equa
TS, into the environment in order to get rid of the system
entropy. Theavailable, or ‘‘free,’’ energy is F ’’ ~italics in
original!.9 By introducingF, G, andH together, Schroede
shows that the thermodynamic potentials have similar ch
acteristics. Nevertheless, I think that this introduction can
further improved.

Although a physical explanation ofF may seem useful to
students, it is arguably more important to help students p
F within a cognitive framework and cultivate the style
thought that will allow students to more effectively useF
and develop a coherent picture of thermodynamics. Furt
more, the physical explanation Schroeder provides seem
invite the questions, ‘‘Why should I be interested in the to
energy needed to create the system, minus the heat you
get for free from an environment at temperatureT?’’ and
‘‘How does the total energy needed to create the syst
minus the heat you can get for free from an environmen
temperatureT relate to the total energy~the energy plus the
work needed! to create a system out of nothing in an en
ronment with constant pressureP?’’ ~Schroeder’s definition
of enthalpy!.10 Do the definitions help students understa
why physicists invented the Helmholtz free energy and
thalpy? Are they related to how the variables are used? In
opinion, the answer to both questions is no. The ques
understand the thermodynamic potentials inevitably lead
to mathematics.

The thermodynamic potentials are related mathematic
by Legendre transforms. They are useful because our kn
edge of mathematics allows us to calculate useful phys
quantities such as the work done on the system at cons
temperature~equal toDF), the energy added by heating
isobaric processes (DH), and the wealth of information ob
tained from the four Maxwell relations. Because mathem
ics unifies the thermodynamic potentials and a knowledg
the appropriate mathematics makes them useful, explic
754 Am. J. Phys., Vol. 72, No. 6, June 2004
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and clearly introducing this simple but elegant mathema
should help students appreciate the beauty and coheren
thermodynamics.

III. ILLUSTRATING THERMODYNAMICS’
METHODS WITHIN STUDENTS’ SYMBOLIC
ENVIRONMENT

Students typically have worked many problems with fun
tions of two independent variables@for example, f (x,y)],
including problems involving partial derivatives. They als
are likely to be familiar with differentials involving two vari
ables such as

d f15g dx1h dy, ~2!

which is formally identical to the fundamental thermod
namic identitydE5TdS2PdV.11 Most students would rec
ognize that the independent variables off 1 arex andy, that

g5
] f 1

]x
, ~3a!

h5
] f 1

]y
, ~3b!

and would easily grasp the Maxwell relation]g/]y
5 ]h/]x.

In the cases that concern us,g andh are not constants, bu
are functions ofx andy. Unfortunately, students will likely
not have encountered this case in the usual problems in
culus textbooks or elsewhere~one welcome exception is Re
12!. Consequently, they are unlikely to recognize that

~1! holding ‘‘all other independent variables’’ constant whe
taking a partial derivative is not equivalent to holdin
‘‘all other variables’’ constant. Students are unlikely
have calculated a partial derivative in problems whe
‘‘all other independent’’ and ‘‘all other’’ variables are no
synonymous;13

~2! the value off 1 can be determined by specifying the va
ues ofg andh rather thanx andy ~for example, as when
the values ofP andT can determineE rather thanS and
V);

~3! three related functions can be created that have diffe
independent variables~as whenF, H, andG are created
from E and the fundamental thermodynamic identity!.

A. Legendre transforms

Students must grasp these concepts to successfully
form thermodynamic calculations. A simple way to highlig
the concepts and to give students a framework in which
think through thermodynamics calculations in subsequ
work is to introduce Legendre transforms off (x,y).18 I have
found that it is useful to show the abstractf (x,y) formalism
followed by a simple thermodynamics calculation. The fi
illustrates the mathematical subtleties in a context wh
they can be recognized. The second shows why this pro
dure is useful.

To be concrete, consider the function

f 25 f 12gx, ~4!

where Eq.~2! definesd f1 gives

d f25d f12g dx2x dg ~5a!
754Joel W. Cannon
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52x dg1h dy. ~5b!

Students would naturally understand from Eq.~4! that f 2 is a
function ofx andy because it is composed of the productgx
added to a function ofx andy. In fact, any two variables can
be used as independent variables for the quantity represe
by f 2 , but based on Eq.~5b!, we conveniently think off 2 as
a function of the independent variablesg and y. Further-
more, in standard thermodynamic fashion, Eq.~5b! implies
that

x52
] f 2

]g
, ~6a!

h5
] f 2

]y
, ~6b!

]x

]y
52

]h

]g
. ~6c!

These simple steps illustrate the existence of a new rel
function with different independent variables~and provide
the opportunity to review differentials and independent va
ables!. More importantly, we have the opportunity to illus
trate why we choose to subscript our partial derivatives
thermodynamics, and the importance of being aware of
dependent variables in differentiation. In particular, by us
Eqs. ~2! and ~5b! students can now expressh in terms of a
seemingly identical partial derivative of two different fun
tions:

h5
] f 2

]y
5

] f 1

]y
. ~7!

Equation ~7! is precisely the situation that forces the su
scripts~or some other notation! on us. A naive response@one
that many students would probably make, despite Eq.~4!#
would be to think incorrectly that the functionsf 1 and f 2 are
identical. At this point, the instructor can lead the studen
recognize from Eqs.~2! and~5b! that what is different are the
two functions’ independent variables~the situation is nonsen
sical if they do not recognize it!, or equivalently, what is held
constant during differentiation. Thus, this situation illustra
why thermodynamics-style notation, which specifies wha
held constant during differentiation, is useful:

h5S ] f 2

]y D
g

5S ] f 1

]y D
x

. ~8!

At this point, students have observed in a simple cont
how to obtain the equivalent of the Helmholtz free ener
that a partial derivative no longer means holding ‘‘all’’ oth
variables constant, that at least one related function can
created from a differential of two independent variables, a
why thermodynamics practitioners choose to subscript t
partial derivatives. What remains is to show the equivale
of the other thermodynamic potentials, how they are rela
and why this mathematical formalism is useful.

It is simple to introduce~or have students determine fo
those who prefer active approaches! the other Legendre
transforms and their differentials:

f 35 f 12hy, ~9!

f 45 f 22hy5 f 12gx2hy, ~10!

d f35gdx2ydh, ~11!
755 Am. J. Phys., Vol. 72, No. 6, June 2004
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d f452xdg2ydh. ~12!

The functionsf 3 and f 4 are conveniently thought of as func
tions ofx andh andg andh, respectively. With some guide
reflection ~or experimentation!, students will find that it is
not possible to obtain any other similar functions.

We now have four related functions that have four diffe
ent sets of independent variables. Each of the variablesg, x,
h, and y can be determined by differentiation from two o
the four functions, and there are four Maxwell relations
lating these four variables,

S ]g

]yD
x

5S ]h

]xD
y

, ~13a!

S ]x

]yD
g

52S ]h

]gD
y

, ~13b!

S ]g

]hD
x

52S ]y

]xD
h

, ~13c!

S ]x

]hD
g

5S ]y

]gD
h

. ~13d!

An ancillary benefit of teaching physics is the opportun
to appreciate and reveal elegant mathematics. The deve
ment we have just completed is an example. Having d
nothing difficult, most students find it quite surprising th
the mere structure of the differential with two independe
variables@Eq. ~2!# implies a host of useful mathematical re
lations. It includes the four constraints given by the Maxw
relations between the variablesg, h, x, andy, and 8 ways~2
each! to determine these variables@e.g., h5(] f 2 /]y)g #.
These simple mathematical implications are the basis for
ability to make thermodynamic calculations. Understand
and appreciating these relations~as students should now b
able to do! should assist them as they shift fromx, y, and f
to quantities such as the entropy and the Helmholtz
Gibbs free energies.

B. Reconnecting to thermodynamics

Because Eq.~2! is equivalent to the fundamental therm
dynamic identity, a change of variables gives the basic th
modynamic equations and Maxwell relations:x→S, g→T,
y→V, h→2P, f 1→E, f 2→F, f 3→H, and f 4→G. Impor-
tantly, E, F, G, andH and the associated differential rela
tions now have a simple transparent mathematical fra
work that unifies them, providing a context in which studen
can fit the thermodynamic potentials as they are reintrodu
and used during the semester.

In a typical thermal physics course students encoun
many examples of why this exercise is useful, particularly
the instructor reconnects to and reinforces the mathema
foundation just described. However the introduction to th
modynamic thinking and the mathematics of thermodyna
ics I have outlined will likely be most effective if severa
brief examples are provided. Some concepts worth emp
sizing include the freedom to choose and to use conven
independent variables, the Maxwell relations, and the use
ness of the thermodynamic potentials in different situatio
755Joel W. Cannon
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Calculating the relation betweenT andV during an adia-
batic expansion of an ideal gas can illustrate the first t
concepts. In brief, we take advantage of constant entropy
chooseV andT as independent variables,

dS505S ]S

]TD
V

dT1S ]S

]VD
T

dV, ~14!

use the Maxwell relation from the Helmholtz free ener
differential

S ]S

]VD
T

5S ]P

]T D
V

5
Nk

V
, ~15!

and the definition ofCV to obtain

1

T
CVdT1

Nk

V
dV50. ~16!

Equation~16! yields the familiar constantTVg21 ~whereg
5CP /CV) for adiabatic expansion.

Students can obtain an initial glimpse into the thermo
namic potentials’ usefulness by leading them to recogn
that each has two independent variables. Thus for any
cess in which one variable is held constant, there will be t
thermodynamic potentials that depend on only one varia
a useful property that can be exploited. For example, i
quasistatic isothermal process, the change in the Helmh
free energy equals the work done on the system bec
dF52SdT2Pdv52PdV. In a quasistatic isobaric pro
cess the change in enthalpy equals the energy added by
ing (dH5TdS1VdP5TdS). A knowledge ofDF andDH
thus gives access to important physical quantities.

IV. A RELATED CONCEPTUAL PROBLEM

Because of the freedom to choose independent variab
the distinction between a physical variable and the funct
that represents it also can be a conceptual problem
students.19 For example, it is sometimes emphasized that
natural independent variables of the energyE areS andV,
meaning that the function that relates changes inE ~the fun-
damental thermodynamic identity! has independent variable
S andV. This language can be a problem if students are
helped to separate the concept of a physical quantity~in this
case energy!, which can be determined in multiple way
from the mathematical function that describes it. Soon a
learning thatE’s independent variables areS andV, a stu-
dent will see an equation showing that for an ideal mo
atomic gas,E is a function ofT alone:E(T)53/2NkT. Ob-
viously, in this equationE is not formally a function ofS and
V. Although simple to well-trained and experienced profe
sors, this distinction can be troubling to students. Perha
more precise and therefore preferable choice of words i
say that the independent variables of the fundamental t
modynamic identity that describes changes inE areS andV.

V. SUMMARY

I have illustrated how the subtleties of calculus importa
to thermodynamics can be introduced by performing L
endre transforms. I argue that doing so builds a more s
and more coherent understanding of the mathematics th
essential to thermodynamics calculations.20
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2g1(N1 ,U1)#/DU1 . For example, if g(x,y)53x4y, then (]g/]x)y
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~Brooks/Cole, Pacific Grove, CA, 1999!, 4th ed., p. 931.
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11Reference 3, p. 68. I have replaced Kittel’st, s, andU with T, S, andE.
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12Reference 4, Thomas and Finney, p. 862, features a section on ‘‘Pa
Derivatives with Constrained Variables.’’

13In a survey of commonly used calculus textbooks~Refs. 14–17!. I found
no problems involving partial derivatives where ‘‘all other independen
and ‘‘all other’’ variables were not equivalent.

14James Stewart,Calculus~Brooks/Cole, Pacific Grove, CA, 1999!, 4th ed.,
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Ashley H. Carter,Classical and Statistical Thermodynamics~Prentice–
Hall, Upper Saddle River, NJ, 2001!, p. 130. Ralph Baierlein,Thermal
Physics~Cambridge U. P., Cambridge, 1999!, p. 225.

19I have heard Professor Robert J. Hardy of the University of Nebra
express similar concerns.

20A copy of a class handout that implements this procedure can be obta
by writing to the author.
A FLASH AT FERMILAB

Alongside the great machine of physics, the physicists move in daily routines like priests
repeating rituals of transubstantiation. If physics may be pictured as a single corpus of belief—as
one work with no author and thousands of successive editors—then the bright flash at the accel-
erator target is perhaps the best symbol, the summary in a single action, of the whole achievement
of physics.

Philip J. Hilts, Scientific Temperaments~Simon and Schuster, Inc., 1982!. Reprinted inThe World Treasury of Physics,
Astronomy, and Mathematics~Little, Brown and Company, Boston, MA, 1991!, p. 700.
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COMMENT ON ‘‘CONNECTING
THERMODYNAMICS TO
STUDENTS’ CALCULUS,’’ BY
JOEL W. CANNON †AM. J. PHYS.
72 „6…, 753–757 „2004…‡

In a recent paper@‘‘Connecting thermo-
dynamics to students’ calculus,’’ Am. J
Phys. 72 ~6!, 753–757 ~2004!#, Joel W.
Cannon makes some very good poin
about the usefulness of introducing Le
endre transforms to students in order
clarify the difference between the function
and the independent variables in a syste
when calculating partial derivatives. I offe
here an example with which students a
usually very familiar, that is, the electrica
power, P, of a resistor with resistanceR
when the potential difference across the t
minals isV and the current isI. Recall that
P5IV5I 2R5V2/R. Depending on the
variables held constant, that is, dependi
on which variables are independent, part
derivatives yield different results
(]P/]I )V5V, whereas (]P/]I )R52IR
52V. Similarly, (]P/]R) I5I 2, while
(]P/]R)V52V2 has the opposite sign
Derivatives provide the answer to questio
such as ‘‘Does the power go up or down,
the resistance is increased?’’ These resu
show that the answer is not unique if a
conditions are not explicitly stated~for ex-
ample, constant current or constant vo
age?!, or, in other words, if it is not clari-
fied which are the independent variables

Athanassios A. Tsekoura
Laboratory of Physical Chemistry

Department of Chemistry
National and Kapodistrian

University of Athens
Panepistimiopolis, Athens, GR-1577

Greece
thanost@cc.uoa.gr

PARALLEL UNIVERSES IN
THE STATISTICS LITERATURE

York et al. recently considered straight
line regression when random errors a
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present in both the dependent and indepe
dent variables;1 moreover, these errors ma
be correlated with each other. They com
pared the least-squares and maximum lik
lihood approaches for estimating the r
gression parameters and their standa
errors, and found that the two approach
are equivalent when the least-squares a
proach uses properly adjusted data.

In the mathematical statistics communi
there is a great deal of literature on regre
sion with errors in both the dependent an
independent variables, including genera
zations such as nonlinear curve fits, mu
tiple predictor variables, and non-norm
errors. In statistics, models of this type a
calledmeasurement error modelsor errors-
in-variables models. For linear models of
this type, the definitive monograph is b
Fuller;2 a more recent~and perhaps more
accessible! monograph is by Cheng an
Van Ness.3 Nonlinear models are discusse
by Carroll et al.4 This literature seems to
inhabit a ‘‘parallel universe’’ in that Ref. 1
and the papers they cite make no referen
to these books, andvice versa. However,
the two parallel sets of literature cite com
mon origins, including the work of Adcock
in the 1870s and that of Deming, a phys
cist turned statistician who wrote about th
problem in the 1930s and 40s.

It might appear that the two parallel un
verses have diverged in terms of the pro
lems they address, but there is a strong p
sibility that at least subtle connections exi
between them. Such connections are pro
ably obscured by what looks~at first
glance! to be an excessively baroque the
retical apparatus that has emerged in t
mathematical statistics literature. This bar
queness is due to the statisticians’ goal
systematically addressing a vast array
general data analysis problems far beyo
those that typically arise in the physical sc
ences. It does not help that Refs. 2–4 a
addressed to professional statisticia
rather than experimental scientists.
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One can find comparisons of leas
squares and maximum likelihood tech
niques in the mathematical statistics liter
ture. For instance, in discussing
methodology calledmodified least squares,
Ref. 3 states that ‘‘The beauty of modifie
least squares is that it is a unified approac
however, it does not introduce any new e
timators that were not already availab
from maximum likelihood or the method o
moments’’ ~p. 89!. The modified least
squares approach is unified in that it can
applied to several different statistical mod
els using various assumptions for the natu
of the errors. Unfortunately, as a nonexpe
I have been unable to determine the re
tion between this approach and that of Re
1. I surmise that, with effort, the specifi
problem of Ref. 1 could be formulated in
the framework of mathematical statistics.

The authors of Ref. 1 deserve muc
praise for providing a direct, succinct solu
tion to their problem which has not ap
peared elsewhere in its current form. Pe
haps physicists with similar data analys
problems also will find the literature in
mathematical statistics worthy of furthe
exploration.
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