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Abstract. The theory of critical phenomena in systems at equilibrium is reviewed 
at an introductory level with special emphasis on the values of the critical point 
exponents a, p, y ,  . . ., and their interrelations. The experimental observations are 
surveyed and the analogies between different physical systems-fluids, magnets, 
superfluids, binary alloys, etc.-are developed phenomenologically. An exact 
theoretical basis for the analogies follows from the equivalence between classical 
and quantal ‘ lattice gases ’ and the Ising and Heisenberg-Ising magnetic models. 
General rigorous inequalities for critical exponents at and below T, are derived. 
The nature and validity of the ‘classical’ (phenomenological and mean field) 
theories are discussed, their predictions being contrasted with the exact results for 
plane Ising models, which are summarized concisely. Pad6 approximant and ratio 
techniques applied to appropriate series expansions lead to precise critical-point 
estimates for the three-dimensional Heisenberg and Ising models (tables of data 
are presented). With this background a critique is presented of recent theoretical 
ideas : namely, the ‘ droplet ’ picture of the critical point and the ‘ homogeneity’ 
and ‘scaling’ hypotheses. These lead to a ‘law of corresponding states’ near a 
critical point and to relations between the various exponents which suggest that 
perhaps only two or three exponents might be algebraically independent for any 
system . 

1. Introduction 
1.1. Phases and critical points 

Change of phase-the boiling of water, the melting of iron-is one of the most 
striking aspects of the macroscopic physical world. In  many cases the various 
phases of matter seem quite dissimilar and separate, and transitions between them 
are abrupt and unheralded. Kevertheless, by varying the temperature or other 
thermodynamic parameters, two distinct phases can frequently be made more and 
more similar in their properties until, ultimately, at a certain critical point, all 
differences vanish. Beyond this point only one homogeneous equilibrium phase can 
exist and all changes are continuous and smooth. The  most familiar example of 
such a critical point is (i) that which terminates the coexistence curve of a liquid 
and its vapour at a characteristic temperature, pressure and density, T,, p ,  and p,. 
Other examples are as follows : the critical point of phase separation in (ii) a binary 
fluid mixture or (iii) a binary metallic alloy, which marks the temperature above 
which (or sometimes below which) the components mix homogeneously in all 
proportions; (iv) the Curie point or critical point of a ferromagnetic crystal at which 
the spontaneous magnetization, and hence the difference between two differently 
oriented magnetic domains, goes continuously to zero; (v) the Nt5el point at which 
the alternating spin order of an antiferromagnet goes to zero so that two counter- 
phase domains become indistinguishable; (vi) the ordering temperature T, of a 
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homogeneous binary crystal such as beta-brass (Cu-Zn), above which the two 
species have no preference for one or the other crystal sublattice, but below which 
one sublattice is predominantly occupied by one species; (vii) the lambda point of 
liquid helium 4 below which there exist macroscopically distinct rkgimes of super- 
fluid flow but above which superfluidity vanishes; (viii) the critical point of a 
metallic superconductor below which the electrical resistance vanishes and various 
permanent currents may flow but above which dissipation always occurs. 

More formally those transitions in which one or more first derivatives of the 
relevant thermodynamic potentials change discontinuously as a function of their 
variables may be calledfirst-order transitions. For a fluid it is appropriate to con- 
sider the Gibbs free energy G as a function of p and T ;  the specific volume 
‘U = ( 2 G / i ? ~ ) ~ ,  and the entropy S = - (2G/2T), are discontinuous across the vapour 
pressure curve. In  a ferromagnet the equilibrium magnetization M = - (2F/i?H),, 
where F is the Helmholtz free energy and H the magnetic field, changes abruptly 
as the field passes through zero when T is less than T,. 

On the other hand, transitions in which the first derivatives of the thermo- 
dynamic potential remain continuous while only higher-order derivatives such as the 
compressibility, the specific heat or the susceptibility are divergent or change 
discontinuously at the transition point may conveniently be termed continuous 
transitions.? It is for such transitions that we use the term ‘ critical point ’. It might 
be argued that the word ‘ point’ may not always be appropriate unless one considers 
the variation of only a single thermodynamic parameter. Thus the transition from 
antiferromagnetic to paramagnetic phases as a function of temperature probably 
remains continuous for a range of magnetic fields about zero, and the lambda line 
of liquid helium is a line of continuous transition points over its whole length. 
Although this distinction will often be an important one in the discussion of 
particular systems (see below) the theoretical and experimental questions remain 
much the same for all critical points. I n  particular a dominant characteristic is the 
large increase of the microscopic fluctuations in the vicinity of a critical point which 
herald the approaching transition. Fluctuations of density, energy, magnetization, 
etc., can reach effectively macroscopic magnitudes and, correspondingly, the 
related second thermodynamic derivatives (specific heats, susceptibilities, etc., as 
mentioned above) and the intensities for the scattering of waves off the system 
become very large or even tend to infinity at certain wavelengths. 

Consequently a problem of central interest in the study of critical phenomena, 
both experimentally and theoretically, is the determination of the asymptotic laws 
governing the approach to a critical point. Some of these, notably the ‘one-third’ 
power law for the vanishing of the density discontinuity p,, - p G  between coexisting 
liquid and gas as a function of T, - T ,  strikingly demonstrated in figure 1, have a 
fairly long history; others, such as the logarithmic divergence of the specific heat 
C;, of helium at the lambda point and the near-logarithmic divergence of C, for 
argon at its critical point, are more recent discoveries. Theories competent to make 

t The original classification of transitions, due to Ehrenfest, which essentially recognized 
only discontinuities in thermodynamic derivatives, rather than divergencies, is inappropriate 
in the light of present theoretical and experimental knowledge. I t  seems best, therefore, to 
discard terminology such as ‘second order’ or ‘third order’ which is often confusing or 
uninformative. 
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significant predictions about critical-point behaviour have, however, developed 
mainly in the past decade or two and have been a focal point of activity in the last 
few years. 

The  purpose of this article is to review at an introductory level the theory of 
critical phenomena as it stands today. While the limitations of space (and of the 
author’s competence) do not allow the presentation of full details or the discussion 
of all theoretical aspects (in particular dynamic phenomena will not be discussed 
except briefly in the concluding section), it is hoped that the main features will be 
clearly outlined so that both the strengths and weaknesses of the present position 
will be evident. 

2Ap (mq cm-’I 

Figure 1. Plot of the cube root of AT = Tc - T against I p  = ~ L - P G  for CO, demonstrating 
the validity of the ‘one-third’ law to high accuracy over three decades in temperature. 
(After Lorentzen 1965.) 

The  layout of the article is as follows. The underlying philosophy and some 
statistical-mechanical and mathematical background are sketched in the remainder 
of this section. Section 2 contains an introductory survey of the experimental 
situation, mainly in regard to fluids and magnetic systems ; this serves to establish 
the definitions of the various critical exponents a ,  /3, y ,  . . ., and leads to the pheno- 
menological development of the close analogies between different physical systems. 
(The definitions and values of the critical exponents are collected in a fold-out 
table at the end of the article for easy reference.) Rigorous inequalities which the 
critical-point exponents must satisfy are proved in 3 3. The  phenomenological 
analogies find a firm theoretical foundation in the equivalence of classical-lattice 
gases and Ising-model ferromagnets and of quantal-lattice gases and anisotropic 
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Heisenberg-Ising ferromagnets as shown in $4. The basic ‘classical’ approaches 
to the theory of critical points are reviewed briefly, and their validity discussed, 
in $ 5 .  The deficiencies of the classical theories are now evident, particularly by 
comparison with the exact results for plane Ising models which are reviewed in $ 6. 
The  use of series expansions to obtain numerical information about critical points 
when exact theories have not been discovered is discussed in $ 7  ; the results for the 
Ising and Heisenberg models found from the series using the Pad4 approximant 
and ratio techniques are surveyed in $ 8. (Fairly extensive tables of critical data are 
presented.) We return to the problem of our general theoretical understanding 
in $ 9  and review the various relations and ‘laws’ which have been derived from the 
‘droplet’ picture of the critical point and from various ‘homogeneity’ and ‘scaling’ 
hypotheses. The  article is summarized in the concluding section, and, with a view 
to future developments, various special aspects are mentioned and some of the 
problems confronting the theory of non-equilibrium critical phenomena are sketched. 
A reader familiar with the subject but interested in recent developments might wish 
to read only $96.2, 6.3, 8, 9 and 10. 

Although our exposition is self-contained, greater emphasis on the experimental 
situation would have been appropriate were it not for a companion article by 
Heller (1967) which presents a critique of the wide range of pertinent experimental 
data and techniques. 

1.2. The task of theory 
Before embarking on an exposition of the theory of critical phenomena it is 

appropriate to ask what the main aim of theory should be. This is sometimes held 
(implicitly or explicitly) to be the calculation of the observable properties of a 
system from first principles using the full microscopic quantum-mechanical 
description of the constituent electrons, protons and neutrons. Such a calculation, 
however, even if feasible for a many-particle system which undergoes a phase 
transition need not and, in all probability, would not increase one’s understanding 
of the observed behaviour of the system. Rather, the aim of the theory of a complex 
phenomenon should be to elucidate which general features of the Hamiltonian of 
the system lead to the most characteristic and typical observed properties. Initially 
one should aim at a broad qualitative understanding, successively refining one’s 
quantitative grasp of the problem when it becomes clear that the main features have 
been found. 

T o  achieve these ends the study of ‘model systems’ has been increasingly 
rewarding. The  ideal model should provide as realistic a description as possible of 
those features of a physical system believed to be important for the phenomena 
under study but, at the same time, should be tractable mathematically. Without 
this second characteristic, theoretical discussion frequently adds little more to one’s 
understanding than that gained directly from experiments. Conversely one should 
always attempt to refine a model in order to test how far its defects as a true micro- 
scopic description affect the conclusions drawn.? 

The recent history of the study of critical phenomena has, in the main, followed 
the course of simplifying the physical models while improving and strengthening 

The philosophy advanced here has been vividly expounded by Frenkel (1946 a, quoted 
by Tamm 1962). 
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the mathematical techniques to the stage where, at last, fairly accurate theoretical 
treatments can be given for models which, while gross oversimplifications of reality 
in many respects, do certainly embody a number of the vital features of the particles 
and interactions leading to phase transitions and critical points. The first part of 
this article will be devoted to sketching some of these models and to exploring the 
analogies between different physical systems that can be drawn on the basis of their 
mathematical structure. 

Given a model one must choose the theoretical approach. We shall concentrate 
attention on physical systems in thermodynamic equilibrium (or, sometimes, 
suffering infinitesimal departures from equilibrium). The  appropriate method is 
then that of statistical mechanics, classical or quantum-mechanical according to the 
dictates of the model. We stress here that if the real system is not in true equili- 
brium but is in some non-equilibrium or, perhaps, semi-metastable state, normal 
statistical mechanics is not appropriate and one must think again. Conversely, in 
performing experiments to check equilibrium theories care must be taken to 
maintain equilibrium. This may not always be easy since time constants can become 
very long (of the order of days) even in quite simple systems when near their critical 
points, and first-order transitions are often intimately associated with hysteresis and 
unstable or metastable states. 

1.3. Basis in statistical mechanics 

volume V (  Q) the fundamental relation of classical statistical mechanics is 
For a system of N identical particles of niass m confined in a domain R of 

(1 .3.1)  Q(T,  N ,  a) = - J dr, . . . dr, exp ( -PU~,,) 

where P = l /k ,  T and U,- = UALT(rl, . . . , r,,,) is the total potential energy. From this 
expression for the configurational partition function the connection with thermo- 
dynamics is established by 

!1, 1 
N !  a 

1 
N k , T  N F” - - In {Q( T ,  N ,  a)} - dln A (1.3.2) 

where Fy,  the total Helmholtz free energy, is regarded as a function of T and of the 
specific volume 

1 V(sL) 
P N  

v = - = -  

and where d is the dimensionality and 

(1.3 -3) 

(1 .3 .4 )  

h being Planck’s constant. 
partition function 

Alternatiuely, one may form the grand canonical 

(1 .3.5)  
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where, in d dimensions, the activity z is related to the chemical potential p by 

and then derive thermodynamic properties from 

In {Z( T ,  z ,  Q)} .  P 1 
kB T V(Q> 
- = x ~ (  T ,  Z )  = __ 

For quantum-mechanical systenis one must, of course, replace (1.3.1) by 

Z( T ;  N, Q) = A-dS Q( T ; AT, Q) = Tr,{exp ( - ,B.xv,n)} 

621 

(1.3.6) 

(1.3.7) 

(1.3.8) 

where is the total Hamiltonian operator for N particles in the domain R and 
the trace is taken with a set of states complete in Q (and of appropriate symmetry). 

Now it is easy to see that the (intensive) thermodynamic properties computed 
from these formulae will depend (i) on the size or volume V(Q)  of the system, 
(ii) for a given size, on the shape of the domain Q, and (iii) for given Q, on which 
ensemble, canonical or grand canonical, is employed. Furthermore, for no system 
of finite volume in any ensemble can a sharp (or true) phase transition or critical 
point occur.? 

It is now generally appreciated that the paradoxes posed by these observations 
disappear if one always considers the 'thermodynamic' (or 'bulk') limit in which 
the volume of the system becomes infinite. The  canonical free energy per particle 
and the grand canonical pressure are defined by 

with N/V(  Q) -> p = 1/71, and 

(1.3.9) 

(1.3.10) 

In  this limit all thermodynamic properties may be computed in either ensemble 
with the same results and these satisfy the standard thermodynamic stability 
criteria (e.g. positivity of the isothermal compressibility K ,  and of the specific 
heat at constant volume Cv). The sequence of domains used in constructing the 
limit may have widely varying shapes (subject, essentially, only to the requirement 
that the fraction of the total volume which lies close to  the surface of Q vanishes in 
the limit). Rigorous proofs of these theorems for all densities, pressures and 
(non-zero) temperatures and for both classical and quantum-mechanical systems 
have been given recently by Ruelle (1963 a, b) and Fisher (1964 a, b, c) (see also 
Griffiths (1964 a, 1965 a) for a discussion of spin systems and the microcanonical 
ensemble). The  most important conditions used in the existing proofs are that the 
interaction potentials have a sufficiently repulsive core (to prevent collapse) and do 
not decay too slowly at infinity. For pure pair-interaction potentials it is sufficient 

This is simply because the integrand in (1.3.1) is a bounded analytic function of ,B and the 
domain of integration is finite. Similarly the trace in (1.3.8) is merely the absolutely convergent 
sum of simple exponentials in ,B > 0. 
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that 

and 

(1.3.1 1) 

(1.3.12) 

where C, C‘, E and E’ are positive constants. (For more general and complete 
statements see the references cited.) 

Unfortunately these conditions exclude systems with long-range dipole-dipole 
or Coulomb interactions. I n  these cases the theoretical definition and uniqueness 
of the thermodynamic potentials, and hence of any phase transition, is still some- 
thing of an open question. (The problem of a residual shape dependence obviously 
arises in ferromagnetic systems where it is customary to make a ‘demagnetization’ 
correction to remove the main effects of the dipolar forces.) 

Taking the thermodynamic limit also allows the free energy or pressure to 
‘grow’ mathematical singularities (non-analytic points) so that in the limit a system 
can exhibit a perfectly sharp phase transition and a well-defined critical point. For 
this reason we shall always presuppose the thermodynamic limit. Considerable 
illumination of the mathematical mechanism by which such singularities might 
develop has been gained in a fundamental analysis by Yang and Lee (1952a). 
They introduced tlv zeros of the grand canonical function in the complex x plane 
and thereby opened a fascinating chapter in the study of phase transitions which is 
likely to develop further as mathematical techniques improve. As yet, however, it 
had led to no conclusions regarding critical phenomena and so we shall not discuss it. 
(For recent introductions see Uhlenbeck and Ford (1963) and, including an exten- 
sion to the complex temperature plane, Fisher (1965 a, $9 12, 13).) 

While theoretically it is satisfying that a unique prescription for calculating 
thermodynamic properties can be given, it remains true that all systems studied in a 
laboratory are finite in size. The standard answer to this objection is that one 
studies macroscopic systems with NE 1020-1024 particles and that fluctuations in 
bulk properties are of relative order N-”~E  10-10-10-12 and so are undetectable in 
most direct experimental measurements. This argument, however, must be 
re-examined near a critical point since it assumes that specific heats, susceptibilities, 
compressibilities, etc., are bounded? and this is not generally true at a critical point. 
Indeed, one knows from Onsager’s work on the plane Ising model (see below) that 
the height of the specific-heat peak of a finite system may grow as slowly as In N so 
that accurate experiments could conceivably detect the finiteness of even quite 
large systems. More general theoretical arguments advanced recently suggest that 
one may typically see departures from ideal limiting behaviour at temperature 
deviations from T, given roughly by A T / ~ w N - ~ ’ ~  (see Domb 1965 a, b, c, and 
Ferdinand and Fisher 1967 ). However, present-day experiments are probably 
limited close to T, by inhomogeneities, gravitational fields and other interfering 
factors, rather than by finite size. I n  favourable cases, such as illustrated in figure 1, 

1 The argument also neglects surface and boundary terms which are of relative order 
N-’/3 and so are larger than the fluctuations. In principle, however, one can distinguish such 
krms (away from a critical point) by studying systems of varying size and shape. 
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from three to six decades of change in AT (or other variables) may be accessible to 
experiment, and comparison with calculations based on the thermodynamic limit 
are certainly quite appropriate. Nevertheless, in pressing data close to a critical 
point the ultimate limiting factors must be borne in mind and further research will 
doubtless be conducted on this question. 

1.4. Critical-point exponents 
Since much of our discussion will concern the way in which various physical 

quantities (specific heats, susceptibilities, peak scattering intensities, etc.) diverge 
to infinity or converge to zero as the temperature or other variable approaches its 
critical-point value, it is appropriate to present a few mathematical definitions 
which enable critical behaviour to be characterized numerically. Speaking loosely, 
we may say a positive (or non-negative) functionf(x) varies as xh when x approaches 
zero from above, or we may write 

f ( x ) - x A  as x+0+.  (1.4,l)  

More precisely this will mean that 

(1.4.2) 

Of course the existence of the exponent h does not mean that f(x) is siniply 
proportional to xh. One must always expect correction terms of higher order. In  
what might be termed the simple case one may hope that these will be of the form 

f ( x )  = Axh( l+ax+ ...) (x-+O+) (1.4.3) 

where A is the amplitude of the singularity (using ‘singularity’ in a physical sense), 
while a is the amplitude of the leading correction term. I n  practice (1.4.3) frequently 
seems to apply and in such cases, as we shall discuss below, it is not difficult to 
estimate h (and A )  from numerical data onf(2). In  particular cases, however, the 
correction term may be large (on the appropriate dimensionless scale) or might be of 
a more singular form, such as 1 + axY4 for example, so that the leading asymptotic 
behaviour is less easily resolved. 

In  the non-simple case, however, complexities such as 

f(x) = AIlnxIPxh(l+axY+ ...} 

f ( x )  = A I In\ In xl@xA{l+ a(lnx)-V+ ...} (v > 0 )  (1.4.4) 

might arise without contradict,ion of (1.4.1) or (1.4.2). If this occurs it may be very 
difficult, if not virtually irn possible, to estimate the leading exponent X from 
numerical data unless more or less detailed knowledge about the higher-order 
terms is available. (Indeed, in practice, a logarithmic factor will ‘look like’ a small 
algebraic power of degree Ahill - 0.2 to - 0.1 for typical ranges of x.) 

The special value h = 0 merits a further remark. It is rather natural to associate 
this with the simple case of a pure logarithmic divergence, namely 

f ( x )  = A l n x + B +  ... (1.4.5) 
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as may be seen by taking the limit p+O in 

A 
P 

f ( x )  = - ( x P - l ) + B .  (1.4.6) 

In  practice (1.4.5) does quite often seem appropriate. Clearly, however, this is not 
the only possibility and, in particular, if f ( x )  approaches a constant at x = 0 then A, 
as defined by (1.4.2), is always zero, for example in (1.4.6) Xr 0 for all p > 0. In  such 
circumstances it may be desirable to extend the definition of A to apply to the 
‘singular part’ of f ( x ) .  This may be done by the following device, which can be 
tested on the example (1.4.6). Firstly, we find the smallest integer k such that 
f ( k ) ( x )  = d k f / d x k  diverges to infinity as x- tO+. t  We then define the exponent A, 
for the singular part of f ( x )  as 

(1.4.7) 

Because of the differentiations required in this definition it is clear that the accurate 
determination of A, from numerical data will normally be quite hard. 

Finally, as a complement to (1.4.7), we note that f (x) N xh rigorously implies that 

(1.4.8) 

We have, perhaps, laboured over-heavily on these simple mathematical points, 
but they have not always been recognized very clearly or kept in mind in the analysis 
of experimental data or in the discussion of theoretical proposals. 

2. Survey of phenomena and analogies 
In  the introduction ( 5  1.1) we listed some seven distinct types of physical 

system which exhibit critical phenomena. The realization of the close theoretical 
analogies between these, at first sight, contrasting systems has played an important 
part in the development of a general and coherent viewpoint. For reasons of space, 
however, we cannot study all these interrelations in the detail they deserve. Rather, 
we shall focus attention chiefly on two groups of critical phenomena, namely those 
occurring at the critical point for condensation of a simple fluid and those occurring 
in a ferromagnet at its Curie point. In  this section we shall review the analogies 
from a mainly phenomenological and ad hoc viewpoint, returning later to a deeper 
study of their theoretical significance. Part A is devoted to simple fluid systems, 
part B to magnetic systems and part C to binary systems, superfluids, etc. 

A. Fluid systems 
2.1. Gas-liquid critical point 

From below the critical temperature TA the critical point of a fluid is characterized 
most directly by the vanishing of the difference between the densities of gas and 

t If k does not exist, i.e. is infinite, thenf(x) might be termed non-singular at x = 0. The 
example f ( x )  = exp (- l/x), which is by no means purely academic, shows that this does not 
mean that f ( x )  is mathematically an analytical function at x = 0, although for ‘experimental 
purposes’ this may be effectively true. 
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liquid coexisting at a chemical potential p.,(T) and pressure ~ ~ ( 3 " ) .  In  accordance 
with 0 1.4, we define the exponent ,8 by? 

f I , - P G N ( z - T ) P  ( T + 7 L - ) *  (2.1.1) 

The  evidence of figure 1 for CO, suggests ,BE Q. An analysis of the data for xenon 
(Weinberger and Schneider 1952, Fisher 1964 b) indicated 

,B = 0.345 5 0.015 N 112.9. 

Most simple gases obey a law of corresponding states quite well and this value of /3 
is quite general: (Guggenheim 1945). This suggests that the values of the critical 
exponents do not depend sensitively on the details of the intermolecular interactions. 

From above, the critical point is most readily characterized by the divergence 
of the isothermal compressibility 

On the critical isochore p -- pc this divergence may be described by 
I I 

(T+T,+) .  KT (c- T)Y 

(2.1.2) 

(2.1.3) 

(The maximum of K ,  on an isotherm most probably diverges similarly with tem- 
perature.) For a general review of the experimental evidence on the values of the 
critical exponents we refer to Heller's (1967) article. Here we draw attention only 
to Habgood and Schneider's (1954) data on xenon from which one may conclude 
y > 1.1, and, rather uncertainly, y 2: 1.2-1.3 (see Fisher 1964 b). Below T, one may 
measure the compressibility of gas or liquid at the condensation (or boiling) point 
and define, correspondingly, two further exponents yG' and yL'. Most theories 
predict Y,' = yL' = y' and, indeed, very little evidence suggesting a difference 
between yG' and yL' has been advanced. Consequently we shall usually drop the 
distinction between gas and liquid sides. One might, similarly, distinguish expo- 
nents & and Po for pTA - pc and po - PG, but the law of rectilinear diameter, namely 

(2.1.4) 

which is quite well obeyed experimentally near T, indicates PG = PL = P. 
Since KT becomes infinite at the critical point, the critical (9 ,  p)  isotherm should 

become horizontal at p = pc. T o  describe its shape we may define an exponent 6 by 

(2.1.5) 

where again one could (and, in principle, should) distinguish a 6, and 6,. From a 
theoretical standpoint the chemical potential is in some ways more fundamental 
than the pressure but the thermodynamic relation 

P - P c  s g n b  - Pc> I P - Pc l6 

(2.1.6) 

t No confusion should arise, in practice, with ,B = l / k g T .  
$ Close analysis generally indicates 19 slightly exceeding +. On present evidence one seems 

justified in discarding Rice's (1950) suggestion that fluid-coexistence curves have a 'flat top '. 
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shows their behaviour is similar. In  particular at T = T,  we have 

P - P c  = P c ( P  - PA‘ 

An analysis of a number of simple gases by Widom and Rice (1955) indicated 
8-4.210.2.  It has recently been suggested that more complete data close to p c  
might lead to the somewhat higher value 6 N 5 (Larsen and Levelt Sengers 1965) but 
at present there is no very strong evidence for this (see Heller 1967). 

Finally, the specific heats at constant volume C, of various gases, most notably 
argon and nitrogen, have been found to increase rapidly near T,, apparently diverg- 
ing to infinity in a roughly logarithmic manner (Bagatskii e t  al. 1962, Voronel’ 
et al. 1963, 1964, 1966, Fisher 1964 c, 3Cloldover and Little 1965). We may write 

C,(p = pc, T)-(T-T,)-“ (T>T,)  

w(T- T)-&’ ( T <  T,) (2.1.7) 

where, below Ti, C, refers to the overall two-phase specific heat at constant total 
volume (and particle number). For argon and nitrogen below T, one can conclude 
that a’ probably exceeds zero by no more than 0.1 (but see $3.3); above T, the data 
are less clear cut (see, for example, Fisher 1964 c), although a is always much 
smaller than y and might well be zero. 

I t  is appropriate here to note the thermodynamic relations 

and 

(2.1.8) 

(2.1.9) 

(2.1.10) 

from which one can see that the adiabatic compressibility K, diverges with exponent 
a or 01’ while C, diverges like K,. Measurements of the velocity of sound 

(2.1 * 11) 

yield values of Ks and hence estimates for 01 and a’ (see Sette (1966) and, especially, 
Chase et al. (1964), Chase and Williamson (1966)). 

There have been some experimental indicationst that the true (or limiting) 
critical exponents may differ for gases such as 3He and 4He which are of low 
molecular weight so that de Boer’s dimensionless quantum parameter 

(2.1.1 2) 

is relatively large. (Here h is Planck’s constant, and m, E and (J measure the molecular 
mass, potential-well depth and collision diameter.) Although recent experiments on 

t For details see Sherman (1965), Edwards (1965), Chase and Zimmerman (1965) and, for 
some discussion, Sherman and Hammel (1965) and Fisher (1966 a, b, c). For quantal critical- 
point behaviour with ‘infinite-range’ forces see $5.4 and Burke e t  al. (1966). 
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4He (Roach and Douglas  1966) yield P z 0 . 3 5 ,  so casting doubt on the previous 
suggestions, it is certainly true, as can be seen from figure 2, that the normalized 
amplitude of the singularity in pL - pG changes significantly with A*. 

Figure 2. Plots of R3,= { ( p L - p G ) / 2 p c } 3  against T/Tc for: A, 3He; B, 4He; C, parahydrogen; 
and D, the classical limit = 0 approximated by xenon. (From Fisher 1966 a.) 

2.2. Critical scattering 
When radiation, for example light, x rays or neutrons, of incident wave vector 

k, is scattered quasi-elastically off an ideal (i.e. low-density) gas one observes a 
scattering intensity I,,( k) which depends only on the properties of individual isolated 
molecules or atoms. (The wave vector k, or reduced ‘momentum transfer’, is 
defined in terms of the wave vector k’ of the scattered radiation by k = k’- k,. 
For three-dimensional systems one has 

4n 
h k = Ikj = -sin@ 

where 0 is the scattering angle and h the wavelength.) As the density increases, 
however, the observed scattering intensity I(k) deviates from I,(k) and, in particular, 
near the critical point the reduced scattering intensity 

(2.2.1) 

becomes very large, especially at low angles (small k). This is the phenomenon of 
‘ critical opalescence’. 

Because q(k) becomes large it is customary experimentally (and convenient 
theoretically) to plot the reciprocal intensity (or 2-l) against k 2  (spherical symmetry 

4 1  
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in k space is observed in the critical region). Some results from Thomas and 
Schmidt's (1963) x-ray studies on argon are shown in figure 3. Away from the 
critical point such plots are roughly linear and it appears that one may write 

(2.2.2) 

which is of ' Lorentzian form' if the terms higher than first order in k2 are neglected. 

x IO6 
6'' ( rad ' )  

Figure 3. Critical scattering from argon: a plot of reciprocal scattering intensity against .Q2 

(0 is the scattering angle) for various temperatures on an isobar close to critical ( p  rp,). 
A, T,+2 O K ,  5V; B, T,+1 O K ,  4V; C ,  T,+0.45 O K ,  3V; D, Tc+0.25 O K ,  2V; 
E, Tc+0.05 O K ,  V .  (From Thomas and Schmidt 1963.) 

If (2.2.2) is valid for small K (its theoretical justification will be discussed in 3 2.3) 
the parameter K~ = K ~ ( P ,  T )  may be defined more formally by 

(2.2.3) 

which shows that 1 / ~ ~  = A is a characteristic state-dependent length for the system. 
It also appears generally that the (extrapolated) zero-angle scattering intensity 

q(0)  will diverge ut the critical point (see below for the theoretical reason). To 
describe the critical-point scattering we thus introduce an exponent 7 by 

(2.2.4) 
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If one could always neglect the higher-order terms in (2.2.2) one would conclude 
that 7 = 0. However, this is not justified in general, although experimental evidence 
(which is at present rather inadequate) does suggest that 7 is quite small (say < 0.2) 
and is certainly non-negative (see Heller 1967, Fisher 1964 b). 

It follows from (2.2.3), from the divergence of t (0)  at the critical point, and from 
(2.2.4) that K,+O as the critical point is approached so that the characteristic length 
A becomes infinite. We may accordingly introduce an exponent vl, for the behaviour 
on the critical isochore, by 

(2.2.5) 

with similar definitions of v ~ , ~ ’  and v ~ , ~ ‘  for p = pL and pa respectively below T,. 
Existing experimental evidence on the values of these exponents is again rather 
meagre, especially below T,, but one may conclude that v1 lies in the range 0-55 
to 0.70. 

However, it is well 
known that scattering experiments are essentially direct measurements of the 
microscopic fluctuations and correlations. I t  is therefore appropriate at this stage 
to present the relevant general theory (which is not special to critical phenomena) 
so as to reveal more clearly the significance of the exponents 7 and v. This is done 
in $2.3 which might, however, be omitted on a first reading, although it will be 
referred to later. 

The  foregoing discussion is purely phenomenological. 

2.3. Fluid correlations and jluctuations 
The  pair density or distribution function p2(rl, r2)  for a particle system measures 

the joint probability of finding two particles in volume elements dr, and dr, (see, 
for example, de Boer 1949). In  a large uniform system (i.e. with no spatially varying 
external potentials) p, will be a function only of r = r1,2 = r , - r l ,  except near the 
walls. This is true even if two phases are present since the denser phase, say, is 
equally likely to occupy any part of the total domain. In  a single phase, however, 
the fluctuations at macroscopically distant points should be independent so that the 
distribution functions for large separations should factorize, i.e. 

p2(r) + p 2  = v2 as Y + ccj (one phase). (2.3.1) 

Evidently it is useful to define the net pair correlation .function by 

G(r) = g2(r)- 1 = z?p,(r)- 1 (2.3.2) 

where g2(r) is the ‘radial distribution function’. In  a one-phase region 

G(r)+O as r + m  (2.3.3) 

and one may define the Fourier transform 

a(k)  = Iexp( ik . r )G(r )dr .  (2.3.4) 

This will be finite at k = 0 provided the correlations decay sufficiently rapidly for 
G(r) to be integrable ; otherwise a (k )  will diverge as k + 0. 
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Now, in terms of 6(k), the reduced scattering intensity is given simply by 

I 
-- = ?(k) = 1 +pQ(k). 
Ill 

(2.3.5) 

This expression is valid under the following assumptions : 
(i) The  first Born approximation is valid so that only single scattering occurs. 

If the scattering is too intense, multiple scattering will be present and must be 
corrected for experimentally or theoretically. 

(ii) The scattering takes place ' quasi-elastically ' so that the energy exchanged 
between the radiation and the system (which by conservation of energy and 
momentum cannot vanish identically if scattering occurs) is small compared with 
the energy of the incident radiation. Equivalently the frequency of the radiation 
must be high compared with the natural frequencies of the molecular motions. 
When this condition is not fulfilled, the scattered radiation is, in general, shifted 
in frequency and, correspondingly, one must also consider the time dependence of 
the correlation functions. This is often the case for neutron scattering as discussed 
by Van Hove (1954 a) but in this article we shall not have space to consider such 
time and frequency dependence (see $10 and Heller 1967, 3 5) .  

The zero-angle scattering g(0) is evidently related to a ( 0 )  and hence to the 
integral of G(r)  over all space. This in turn is related to the compressibility by the 
jluctuation theorem 

(2.3.6) 
T 

which is a fairly general consequence of statistical 
these observations yields the important relation 

mechanics.? Combination of 

(2.3.7) 

must diverge in just the same This implies that the zero-angle scattering intensity 
way as the compressibility when the critical point is approached (e.g. urith exponent 
y for p = p,, T >  T,) and so justifies the previous phenomenological conclusion. (It 
might, however, be mentioned that (2.3.7) has not so far been checked experi- 
mentally with any accuracy.) 

The  divergence of JG(r) dr at the critical point implies a slow decay of G,(r) at 
infinity. Indeed, Fourier inversion of the relation (2.2.4), which defined the 
exponent v, yields, in d dimensions, 

1 

(2.3.8) 

which can be viewed as an alternative, more theoretical, definition of 7 .  
One may similarly find a more direct definition of the characteristic length 

parameter il = 1 , ' ~ ~  and hence of the corresponding exponent vl. Formal expansion 

t The fluctuation relation (2.3.6) can be established formally in the grand canonical 
ensemble quite easily, although there are difficulties in the canonical ensemble. hTothing 
approaching a rigorous proof for the thermodynamic limit has yet been given but, at least for 
sufficiently short-range interactions, there seems no reason to doubt its general validity. 
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of exp( ik . r )  in powers of k in (2.3.4) and comparison of (2.3.5) with (2.2.2) yields 
the identification 

(2.3.9) 

where c is a constant. (When G(r) is spherically symmetric or is appropriately 
averaged c = (cos* 0) which has the value 4 for d = 3.) Evidently A is a root 
mean square or ejfectice range of correlation. From (2.3.8) one sees that K~ + 0 at the 
critical point (assuming 7 2 0), hence justifying the definition (2.2.5) of vl. 

Of course the existence of A depends on the finiteness of the second moment 
J”r2 G(r) d r  away from the critical-point and two-phase region. For short-range 
forces this is to be expected quite generallyt (although it might be in doubt if long- 
range forces play a significant role). Indeed, the general theoretical expectation for a 
one-phase system not at a critical point is that the asymptotic correlations will 
decay with an exponential envelope:, i.e. 

I G(r) I - e-Kr ( r j c o )  (2.3.10) 

where K = ~ ( p ,  T )  may be termed the true (or exponential) inaerse range of the 
correlation.§ From (2.3.8) it follows that K also vanishes at the critical point and we 
may define corresponding exponents, for example 

“ ( p  = pc, T)w(T-T)V (T+T,+).  (2.3.11) 

I t  is natural to expect that near the critical point there is essentially only one 
important temperature-dependent length which approaches infinity. If this is so, 
K N lc1 and we have 

1, = V I .  (2.3.12) 

Indeed, if one neglects the O(k4) terms in the denominator of (2.2.2) and performs 
the Fourier inversion one finds, for fixed K~ > 0,  

(2.3.13) 

which, for d = 3, is the famous result of Ornstein and Zernike (Zernike 1916) which 
leads to the complete identification of K and K~ near T,. In  fact, however, the 
question of the uniqueness of the correlation range near the critical point is quite 
profound and we shall return to it. Xevertheless for the present, and most of this 
article, we shall accept the identity (2.3.12) and use the exponent v for both K and K ~ .  

(One must note that even if K and K~ do become proportional close to T, they will 
still differ appreciably outside the critical region.) 

t In the region of low density it is a consequence of existing proofs of the convergence of the 
virial and activity expansions (Ruelle 1963 b, 1964 a, b, Penrose 1963, Ginibre 1965). 

$ For forces of strictly finite range this again can be proved in the region of known con- 
vergence of the virial series (Ruelle 1964 a ,  b). 

8 By the general theory of the Fourier integral the parameter K may be defined analytically 
as the imaginary part of the singularities of G(ke) ,  where e is a unit vector, which lie nearest to 
the real axis in the complex K plane. 
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Finally, in discussing the general theory of the correlation functions, the 
behaviour in the two-phase region should be mentioned (see, for example, Fisher 
1965 b). If p G < p < p L ,  the independence and macroscopic extent of the two 
phases implies that 

From this it is clear that the existence of two distinct phases can be detected from 
the pair correlation function which no longer vanishes at infinity but rather 
approaches 

(2.3.15) 

where = +(pL + pa). Evidently the density discontinuity pL - pG cannot be found 
from this ‘long-range order’ at one value of p (unless, say, p, is known). Note 
that the non-zero limiting value Gtot(m) implies that the Fourier transform Q(k) 
will have a delta-function singularity at the origin of k space. 

B. Magnetic systems 
2.4. Ferromagnets 

In  the previous sections we characterized the phenomenological behaviour of 
fluids at their critical points in terms of a number of exponents, principally a, CL‘, 
p, y ,  y’, 6, 7, v and d .  For convenience these definitions are summarized in a 
fold-out table at the end of this article. We turn now to magnetic systems and give 
analogous definitions of critical exponents. 

Let us consider firstly ferromagnets which are characterized by the existence of 
a spontaneous magnetization 

Mo(T)  = lim M(H, 5“) 
H+O+ 

(2.4.1) 

below the Curie temperature T,, where H will always denote the ‘true’ or ‘internal 
field’ acting on the system (i,e, the ‘applied field’ corrected for demagnetization). 
As H passes through zero the equilibrium magnetization will change discontinuously 
to -M,(T).? Above T,  in the ‘paramagnetic region’ the magnetization varies 
continuously as II changes sign. At all temperatures there is no transition or 
sharp anomaly in any non-zero field. 

This behaviour is quite analogous to that of a fluid if changes of M and H are 
identified with changes of p and p respectively. Figure 4 illustrates the consequent 
analogy between the phase diagrams of fluid and ferromagnet. In  accordance with 
(2.1.1) we thus define the magnetic exponent 

M,(T)+-T,)P. (2.4.2) 

We shall always assume, as normal, that magnetic systems are invariant under H + - H. 
In all ferromagnets two or more ‘easy directions’ for the magnetization vector MO are favoured 
to at least some extent. I t  is convenient to take the z axis along one of these directions and, 
unless otherwise specified, M and H will be supposed parallel to this axis. 

by 
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How is this analogy borne out by experiment ? Again we refer to Heller (1967) 
for a critical discussion of the evidence, but we shall list some results which illustrate 
the surprising degree to which the analogy seems to hold. From experiments on the 
insulating ferromagnets EuS and CrBr, Heller and Benedek (1965) and Senturia 
and Benedek (1966) have concluded that ,8 2: 0.330 and 0.365 0.015 respectively, 
although the data go only to within 0-7 to 174 of T,. These values are just in the 
range found for fluid critical points.? 

T 

. . . . .  . .  . . . . . .  . H =  0 

S l i  

H= -M 

0 Jc 
7- 

Figure 4. Comparison of ( a )  the ( p ,  T )  phase diagram of a simple fluid, with (b)  the ( H ,  T )  
diagram for a simple ferromagnet. The  dotted lines above Tc represent the critical 
isochore (p  = p,) and critical isomomental ( M  = 0), respectively. The  arrows suggest 
the predominant spin configurations in the different regions of the phase diagram. 

Above T, the isothermal susceptibility in zero field 

(2.4.3) 

diverges as T, is approached. The  analogy indicates that we should characterize 
t Experiments on Ni, a metallic conductor, tend to indicate a slightly higher value, around 

0.4. Indeed Dash et al. (1966) have suggested that the limiting value of ,G close to Tc might 
be 0.5, rather as suggested for quantal gases ($2.1). However, the interpretation of their 
(resonance) data is not clear-cut and Noakes and Arrott (1967), on the basis of direct measure- 
ments in the same region, have concluded that ,G = 0.36 i 0.04 which is probably more reliable. 
Even for the dilute ferromagnetic alloy Fe2.65Pd8,.35 Craig et al. (1965) found definite evidence 
f o r p ~ 0 . 3 5 .  
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this behaviour as 
xrp N ( T -  T , ) - y  ( T  + T,  + ). (2.4.4) 

Symmetry with respect to H below T, means we need only define a single exponent 
y‘ for the divergence of the initial susceptibility by 

(2.4.5) 

(rather than distinguish yG’ and yL’). Experimentally, values for y around 1.35 N Q 
have been determined for Ni, Fe, Gd, YtFeO, and various alloys and copper salts? 
which compare with the fluid values of 1.2 to 1.3 (92.1). 

The analogous definition for the critical magnetic isotherm is clearly 

H-sgn{M}[ MIS ( T  = T,), (2.4.6) 

The  first analysis of a ferromagnet, namely nickel, gave 6 = 4-2 & 0.1 (Kouvel and 
Fisher 1964), in surprisingly close agreement with Widom and Rice’s (1955) 
analysis for simple fluids. Graham (1965) has also reported 6 N 4 for gadolinium. 
More recently, from a study of nickel at somewhat lower fields, Noakes and Arrott 
(1967) have tentatively concluded 6 = 4.66 k 0.34.1 

For specific heats the analogous definitions are 

Cjy,,( T )  N ( T  - T,)-“ ( T  > TL) (2.4.7) 
~ ( c -  T)-”‘ ( T <  T,). (2.4.8) 

(It might be asked why the analogous specific heat is not C,, since 

‘A4 = const.’-‘p = const.’ ? 

In fact above T, H = 0 implies M = = 0, while below T, the ‘ two-phase ’ M = 0 
specific heat also corresponds to H = 0 since only then can two oppositely mag- 
netized domains coexist in the same specimen to yield a total zero magnetization.) 

Experimentally, ferromagnetic specific heats do exhibit lambda anomalies at 
T, (see figure 5). So far few materials have been studied closely. Some of the 
best data are for EuO (Teaney 1966) which exhibits a very roughly logarithmic 
anomaly. For reasons that are not clear, however, this is significantly rounded 
over a range ATIT,-. 3 x 

2.5. Magnetic scattering 
Magnetic scattering can be observed by using neutrons which interact with the 

electron spin density. The basic theory has been expounded by Van Hove (1945 h). 
As in all scattering from a regular periodic crystal the total intensity &(k) will 
be periodic in k space and one must distinguish between (i) coherent scattering 
(or Bragg) peaks due to stationary long-range periodic order and (ii) incoherent 

t See Miedema e t  aZ. (1963), Kouvel and Fisher (1964), Noakes and Arrott (1964), Arajs 
and Colvin (1964), Arajs (1965), Graham (1965), Gorodetsky et al. (1966) and Noakes et al. 
(1965) who found y = 1.333 i 0.015 for iron. I t  should also be remarked that a lower value 
~ ~ 1 . 2 5  has been reported for CO by Colvin and Arajs (1965) and a higher value ~ ~ 1 . 6  for 
CrO, by Kouvel and Rodbell (1967 a, b). 

For CrO, Kouvel and Rodbell (1967 a, b) find 6 N 5.75 which is probably associated with 
the atypical value of y (but see figure 18 in § 9, below). 
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or diffuse scattering due to fluctuations. Ideally the coherent peak intensities are 
proportional to delta functions M2 S(k - K), where M is the overall magnetization 
density and K is a reciprocal lattice vector, but in practice they have a definite width 
due to instrumental factors and to the finite, albeit macroscopic, size of magnetic and 
crystalline domains, etc. Evidently in zero field below T, we shall have 

IC,,(O, T )  - MO2( T )  - (T, - TIZP (2.5.1) 

which gives an alternative way of measuring the exponent ,8. Above T, the coherent 
peak is absent in zero field. 

r ( O K )  

Figure 5 .  Specific heat of EuO and EuS showing the magnetic lambda anomaly superimposed 
on the lattice contributions to the specific heat. (From Teaney 1966.) 

For a ferromagnet in the critical region the diffuse scattering I(k) also peaks 
around k = 0 (and corresponding points in reciprocal space).t The zero-angle 
( K  + 0) scattering intensity apparently diverges at the critical point and one may 
write, as for a fluid, 

(k + 0). (2.5.2) 

.Present experimental evidence, notably on iron (Jacrot et aZ. 1962, Passel et al. 
1965), indicates only 0.2 > q 2 0. 

By fitting to the Lorentzian scattering curve (2.14) for small K 2  one may, as in 
the fluid case, define an inverse range parameter K ~ (  T )  which measures the slope of 
l/I(k, T )  against k2 as k+O. This again vanishes at the critical point; in zero field 
M = MO = 0) we may write 

~ 1 (  T )  N ( T -  T,)’ ( T +  T, + ) (2.5.3) 

with a similar definition of v’ below T,. (We no longer distinguish a v1 from v.) 
From the cited experiments on iron one finds v1: 0.67. 

difficult experimentally to distinguish the two components unambiguously. 

1 
I C P )  - 

t Below T, the diffuse scattering is superimposed on the Bragg peak and near Tc it can be 
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The microscopic theoretical interpretation is simplified if we assume that the 
electronic spins are sufficiently well localized on lattice sites that they may be 
described by a set of spin vectors Sr. This is open to question for conducting 
ferromagnets but should be a good approximation for magnetic insulators. Of the 
net spin-pair correlation functions 

one may usually concentrate attention on the longitudinal (with respect to the easy 
axis) correlation function w-1 = r#z(r)* ( 2 . 5 . 5 )  

In  a non-zero field, or in a single domain, all these correlation functions vanish as 
r + CO since (Soa Sra) factorizes asymptotically as the fluctuations become inde- 
pendent. The  fluctuation relation for the longitudinal susceptibility then states 

-- X T  I +  myr) X,ideal - 
r # O  

where 

(2.5.6) 

(2.5.7) 

in which it is assumed that each spin interacts with the field via a term in the 
Hamiltonian -gPB Ha S, which commutes with the total Hamiltonian. The  relation 
(2.5.6) is easily derived formally by differentiating the expression for the free energy 
of a (finite) magnetic system twice with respect to H, (and recalling that operators 
may be cyclically permuted under a trace). 

The  longitudinal quasi-elastic scattering intensity can, in Bornap proximation, 
be written 

- f(k) = 1 + f ( k )  m- (2.5.S) 

where Io(k) is the form factor for non-interacting spins and where the Fourier 
transform is 

f (k )  = 2 exp ( ik.  r) I?(r). 
r#O 

(2.5.9) 

In  the interpretation of experimental data it must be remembered that the 
transverse spin fluctuations will generally also give rise to some scattering so that 
(2.5.5) may not be directly applicable.? 

I t  is worth remarking that if one introduces a spatially varying field 

H,(r) = 2{H: exp ( ik.  r)) (2.5.10) 

one finds (on neglecting certain, in general non-zero, commutators that are probably 
unimportant near T,) that f(k) can also be interpreted as a wave-number dependent 
susceptibility measuring the magnetic response to the varying field. 

t For a completely isotropic magnet in zero field the transverse scattering intensity will be 
the same as the longitudinal intensity. 
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From (2.5.8) and (2.5.6) we see that the zero-angle scattering intensity is essenti- 
ally proportional to the isothermal susceptibility and so 

I ( 0 ) - X T N ( T - z p  ( H =  O,T>T,). (2.5.11) 

The  experiments of Passel et al. (1965) on iron do serve to check this (see also 
Bally et al. 1967). At the critical point the correlations must decay slowly and 
comparing (2.5.8) and (2.5.2) yields (in d dimensions) 

1 
I’,(r) - (Soz S;) N - yd--2+?l 

(2.5.12) 

by analogy with (2.3.8). Similarly, by expanding the Fourier transforms, K~ may be 
expressed directly in terms of the second moment of I’(r): 

K ~ - ~  = cp1(0) y2 F(r) 
r 

(2.5.13) 

with c an appropriate constant. Finally, one may anticipate that, provided dipolar 
and other long-range interactions are not significant, r ( r )  will decay as e-Kr where 
K is the ‘true’ inverse range of correlation. By the arguments given in the fluid case 
one expects that neay the critical point (but not elsewhere) K will become propor- 
tional to K~ and hence in zero field will also vanish with exponents v and v‘ above and 
below T, respectively. 

The  definitions of the magnetic critical-point exponents are also summarized in 
the fold-out table at the end of the article. 

2.6. Antiferromagnets 
In  a simple uniaxial antiferromagnet below its critical (or Nkel) temperature in 

small or zero fields the spins on alternate lattice sites point predominantly parallel 
and antiparallel to the easy axis (the ‘ c  axis’). This is readily detected in neutron 
scattering by the appearance of a coherent ‘superlattice’ peak centred, not at k = 0 
as for a ferromagnet, but at a wave vector k = k, appropriate to the larger magnetic 
unit cell implied by the alternating order. The  intensity of this coherent peak is 
proportional to the square of what may be termed the spontaneous sublattice 
magnetization MO‘( T ) .  

The sublattice magnetization may be defined theoretically either via scattering 
theory from the long-range spin correlations as 

liml (SO~Sr”)I = ((So>’)2 cc (Mo’)2 
r+w 

(2.6.1) 

or by introducing a ‘staggered magnetic field’ 

H(r) = H‘exp(ik,.r) 

= +H’ 

= -H’ for r on the second sublattice. (2.6.2) 

Such a field (which probably cannot be generated experimentally) will produce an 
alternating magnetization 

M’(r ,  H’ ,  T )  = M’(H’, T )  exp (ik,. r). (2.6.3) 

for r on one sublattice 
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Above T, this magnetization will 
staggered magnetization 

MO’( T 

vanish as H‘+O but below T, a spontaneous 

= lim M’(H’, T )  
H’+O + 

(2.6.4) 

will remain. Evidently one may also define a corresponding staggered suscepti- 
bility xTt. 

By analogy with a ferromagnet we now expect 

(2.6.5) 

and in terms of the diffuse scattering peak centred at k = k, (rather than at k = 0) 

0 0 ,  T)-XT+(T)-(T-T,)-r ( T >  T,) (2.6.6) 

with a similar definition of y’abelow T,. By considering the diffuse scattering as a 
function of small Ik-k,12 we may clearly define the range parameter K~ and the 

H= 00 

t t  t 

Figure 6. Schematic phase diagram of an anisotropic antiferromagnet. A finite staggered field 
destroys the transition but a uniform field does not. The broken lines indicate that the 
nature of the transition(s) may change at sufficiently high fields and sufficiently low 
temperatures, but note that the antiferromagnetic phase is completely enclosed by 
transition lines. 

exponents 7, v and v’ as previously. Precisely the same definitions (2.4.7) and (2.4.8) 
for the specific-heat exponents apply as for a ferromagnet. However, the exponent 
6 is essentially unmeasurable since one would need to apply a real jinite staggered 
field at T = T,. 

In  the case of a ferromagnet a finite external field destroys the transition (see 
figure 3) essentially because the coexistence of oppositely magnetized domains 
becomes infinitely improbable thermodynamically. Equally an antiferromagnet in a 
jinite staggered field would not have a (sharp or true) transition. In  practice, how- 
ever, one can only observe an antiferromagnet in a uniform (parallel) field. This in 
turn corresponds to a ferromagnet in a staggered field which would act quite 
similarly on oppositely magnetized domains and so would have little tendency to 
destroy their coexistence. Thus the ferromagnetic transition should remain sharp 
for at least a range of staggered fields. By analogy we must expect, and it is con- 
firmed by experiment (e.g. Schelling and Friedberg 1967), that the antiferromagnetic 
transition will remain sharp in a finite uniform field, the critical point being drawn 
out into a ‘criticd line’ (or ‘lambda line’) (see figure 6). Correspondingly the 
initial ( H  = 0) susceptibility xT of an antiferromagnet does not exhibit a divergence 
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0 

at T,, (However, aXT/aT generally becomes large at T, and displays an anomaly 
closely mirroring the specific heat.t) 

Experimental confirmation of the analogy of antiferromagnets to ferromagnets 
and hence to fluids is good. Most striking are the classic nuclear magnetic resonance 
experiments of Heller and Benedek (1962) on the sublattice magnetization of the 
antiferromagnetic crystal MnF,. They approached T, to within a few parts in lo5 
and concluded that p = 0.335 rt_ 0.003.$ Furthermore, specific-heat measurements on 
MnF, (Teaney 1965) which approached T, to 1 part in lo4 revealed an anomaly 
closely matching that in argon (see figure 7). Heat-capacity measurements on other 

. I  
1 1 

I r -  r,l ( O K )  

Io-2 lo-' I IO 

antiferromagnets (notable examples are those of Skalyo and Friedberg (1964) on 
CoC1,.6H,O) yield very similar results, although an ill-understood rounding is often 
observed close to To (as mentioned for EuO, see also Teaney (1966)). Cooper and 
Nathans (1966) have studied neutron scattering from KMnF, with the conclusions 
that y N 1-33, v 2: 0.67 and 7 N 0, which closely resemble the results for iron (see also 
experiments by Okazaki et aZ. (1965) and Tuberfield et a2. (1965) on MnF,). 

C.  Other systems 
2.7. Binary jluids and alloys 

In  this section we briefly sketch some of the analogies and experimental results 
for binary fluid and alloy systems which undergo (i) phase separation (when AA and 
BB contacts are favoured energetically over AB contacts) or (ii) ordering (when AB 

t For a theoretical discussion indicating that XT,anti should rather generally have a singular 
part with exponents 1 -a for T >  Tc and 1 -a' for T <  To see Fisher (1962, 1965 a). A striking 
experimental confirmation has been presented by Wolf and Wyatt (1964). 

$ See Heller (1966, 1967) for details and for a critical discussion. 
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contacts are most favourable). In  case (i) the mole fraction of, say, the A component 
xI is analogous to the density in a one-component fluid system. Below T, (and some- 
times aboce a lower critical point) the mixture will separate into an A-rich and a 
B-rich phase. 

Clearly the exponent ,B should now describe how the concentration differences 
xA(i) - x ~ ( ~ ~ )  or xB(ii) - xB(i) between the two phases vanish with T,  - T.  Indeed, 
most binary fluid separation curves are well described by a p close to + as analogy 
would suggest (see Rowlinson 1959). One should refer in particular to excellent 
measurements by Thompson and Rice (1964) who went to within 1 part in 106 of 
To for CC1,+ C,F,, and found p = 0.33 k 0.02. 

The significance of the other exponents can be found by realizing that com- 
position changes (at constant pressure) correspond to density changes in a pure 
fluid. As regards 01 and a‘ there are some data showing that C,,%(T) displays an 
anomaly but these are not very precise (see Rowlinson 1966). The exponents y and 
6 are not very accessible experimentally since they require accurate measurements 
of the Gibbs free energy or chemical potentials. Although many light- and x-ray- 
scattering studies have been performed on binary solutions (usually of small organic 
molecules, for a review see Brumberger (1966)) results are not yet very clear-cut. 
It appears probable that y > 1.1 and it should be mentioned that Chu and Kao 
(1965) and Brady et al. (1966) have found definite evidence that qzO.1 (see Heller 
1967, $5.1). 

Case (ii) of an ordering crystalline binary alloy such as beta-brass (2: 50% CuZn) 
is most directly analogous to an antiferromagnet since the phase transition is 
signalled by the appearance below T, of a coherent superlattice scattering line at 
k = k,. This corresponds to a long-range preferential occupancy of one sublattice 
by one species while the other species preferentially occupies the second equivalent 
interlacing sublattice. The intensity of the coherent peak at k, is proportional to 
the square of the disparity of occupation between the sublattices and is hence 
analogous to MO’( T ) ,  the sublattice magnetization of an antiferromagnet. (For a 
review of the basic theory see Munster (1966).) 

As regards experimental data we note that the existence of a marked lambda 
anomaly in the specific heat of beta-brass has been well known for some time (see, 
for example, Nix and Shockley 1938). More recently Als-Xielsen and Dietrich 
(1967) have made accurate neutron-scattering measurements from which they 
conclude that /3 = 0,305 i 0.010, y = 1.25 & 0.02 and v = 0.647 F 0.022. As we 
shall see later when we discuss numerical results for the Ising model, the value of /3 
is significant not only because it is quite close to JJ (as now expected) but also because 
it is definitely slightly lower than +. 

2.8. Super$uid helium 
The ( p ,  T )  phase diagram of 4He is shown schematically in figure 8. Unlike the 

liquid or gas phase, the superfluid phase is entirely enclosed by transition lines. 
This is like an antiferromagnetic phase in the ( H ,  T )  plane (see figure 6). While the 
transitions to gas and crystal are first order, the transition across the ‘lambda line’ 
between the normal-fluid and superfluid phases is apparently continuous along its 
whole length and so may be compared to the antiferromagnetic (H ,  T )  transition 
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line (at least in sufficiently small fields). Furthermore, the specific heat C, for 
helium, which is analogous to C, for an antiferromagnet, displays a closely log- 
arithmic anomaly. (From (2.1.9) one sees that KT and/or C, must have a similar 
behaviour; the anomaly in KT has been detected by Grilly (1966).) The  logarithmic 
nature of the specific-heat singularity is particularly striking on the vapour-pressure 
line (see figure 8) where the measurements of Fairbank et al. (1957) (see also Fairbank 
and Kellers 1966) accurately fit the simple formulae 

= A - l n  1-- +B- ( T G T , )  ( $1 (2.8.1) 

over more than four decades of ATIT, with A- = A+ but B- > B+. Evidently one 
can, by analogy, define specific-heat exponents and conclude that E = 01’ = 0 with an 
accuracy probably better than to F 0.03. 

P Liquid 

Super f Iuid 

0 r, c r 
Figure 8. Phase diagram of 4He (not to scale) illustrating the ‘enclosed’ nature of the super- 

fluid state: h denotes the lambda line, c the gas-liquid critical point, and cr the vapour- 
pressure line. 

It is not, however, clear how to define exponents y,  y’ and 6 since there seems 
to be no appropriate ‘external field’. Again the situation is analogous to an anti- 
ferromagnet where the required ‘staggered magnetic field’ is not physically 
realizable. Scattering experiments on helium are also not helpful since neither for 
k = 0 nor any other value is a critical scattering peak associated with the transiti0n.t 
This indicates, as is well known, that the ‘ordering’ in the superfluid state is 
intrinsically different from that in systems discussed previously. 

Penrose (1951) and Penrose and Onsager (1956) (see also Yang 1962) suggested 
that the long-range order characterizing a superfluid is in the off-diagonal part of 
the quantum-mechanical one-body density matrix pl(r, r’) (or singlet correlation 
function) rather than in a two-particle or two-spin correlation function. In  a 

t Attention should be drawn, however, to a recent suggestion by Hohenberg and Platzman 
(1966) indicating that high-energy inelastic neutron scattering might yield a direct measure of 
no as defined in equation (2.8.3). 
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second quantized formulation we havet 

and then I y!, 1, the modulus of the ‘ order parameter’, may be defined1 by 

lim pl(r-r’) = n o  = [ $ [ z  
lr-r’l+m 

(2.8.3) 

which should be compared with the definition (2.6.1) of the antiferromagnetic 
sublattice magnetization IW,’. The parameter no is usually termed the ‘density of the 
condensate’ by analogy with condensation in an ideal Bose-Einstein fluid. 

Evidently the exponent p should now be defined by 

h4w2 = I$(T)I-(T-To)fl (2.8 -4) 
but, unfortunately, no way of observing n, or / $ I  has yet been demonstrated.$ One 
can, however, observe the superfluid density p,( T ) .  Although this is really a hydro- 
dynamical property it is not implausible that near To it might vary roughly as no. 
(Proportionality of p s  to no is asserted in the simpler phenomenological theories of 
superfluidity but this has been seriously questioned by Josephson (1966).) At any 
rate it should be mentioned that recent observations by Clow and Reppy (1966) and 
Tyson and Douglass (1966) have shown that 

(2.8.5) 
with 5 = 0.666 F 0.010. This is surprisingly close to the value 2p = 8 that the naive 
analogies with magnetic systems would suggest. 

We shall return to magnetic analogies for helium in discussing model systems 
(94.3) where the nature of the appropriate ‘external field’ will be seen. 

2.9. Superconductors, ferroelectrics, etc. 
Among other systems exhibiting critical points which we shall not consider in 

any detail are superconductors, ferroelectrics and antiferroelectrics. The  values of 
the observed critical exponents for these systems seem to indicate that they are not 
so closely analogous to fluids and magnets. In  particular the specific heat of a super- 
conductor under normal experimental resolution displays, not a lambda-type 
anomaly, but only a finite (and slightly rounded) discontinuity a t  T, (Cochran 1962). 
This difference of behaviour is probably due to the overwhelming importance of 

t In terms of the N-body Schrodinger wave functions @x,w,(rl, ..., ra) for the level Ex,,, 
normalized in a domain Q the singlet density matrix is defined grand canonically by 

pI ( r ,  r’; z,  T ;  = Z‘ N ~ A T , ~  l;irz ...j,r, ~ > - , ~ * ( r ,  r2, ..., rx) @Al,m(r’,  r2, .. ., rA-) 
AV,m 

where the grand canonical weight function is 

in which E is the grand canonical partition function. 
$ The order parameter is generally complex and hence also has a phase 4 which plays a 

significant role in the theory. We shall not discuss this except to point out that spiral spin 
orderings in metamagnets equally require the introduction of a phase. 

See footnote to p. 641. 
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Fermi statistics for electrons in metals as evidenced by the large (of order lo3 to lo4) 
ratio of the Fermi temperature TF ( =  EF/kB) to the critical temperature. It is pos- 
sible that if the specific heat of a superconductor could be measured on a scale 
h T / T , ~ 1 0 - ~ ~ ,  then a more or less logarithmic anomaly would again be observed 
(Thouless 1960). 

The  specific heats of a number of ferroelectric crystals are known to exhibit 
pronounced lambda anomalies although present data are not very precise (see, for 
example, Grindlay 1965 a, b). However, the exponents y and y’ for the initial 
electric susceptibility seem to be close to unity (rather than greater than 1.2 as for 
other systems). Recent measurements have been made by Craig (1966) and, with 
greater precision for triglycine sulphate, by Gonzalo (1966) who found 

y = y f  = 1-00 i: 0.05. 

For the spontaneous polarization Po( T )  Gonzalo found /3 = 0.51 F 0.05. However, 
for the hydrogen-bonded ferroelectric potassium dihydrogen phosphate d(Po)2/dT 
seems divergent at To (von Arx and Bantle 1943), which implies that ,/3 < 4. For this 
class of ferroelectrics the critical phenomena, in particular the specific-heat anomaly, 
are confined to a narrow region around T, (ATIT, N 2%) which prevents one deter- 
mining /3 from the existing data more precisely than, say, /3 = 0.4 & 0.1. The  
narrow ‘critical region’ is somewhat analogous to that expected theoretically for a 
superconductor in that one can similarly divine two significant energy parameters of 
contrasting magnitudes (see, for example, Uehling 1963). Although there are a 
variety of different physical mechanisms which give rise to ferroelectricity (Jona 
and Shirane 1962, Uehling 1963) it is possible that the very-long-range nature of the 
Coulomb forces, which is presumably relevant in all cases, may be the reason why 
these transitions apparently have a critical-point behaviour markedly different from 
those discussed previously. 

In  this connection it is interesting to note, as pointed out by Egelstaff and Ring 
(1967), that the coexistence curves for the gas-liquid critical points of the alkali 
metals are apparently characterized by ,/3 N 0.42-0.45, although existing data do not 
go very close to T,. Here again longer-range and specifically Coulomb forces 
probably play an important role. 

3. Exponent inequalities 
In  the previous section we defined the basic critical-point exponents a,  a’, /3, . . . 

for a number of systems. Apart from results for the two-dimensional Ising model 
(9 6) and in the limit of infinitely weak, infinitely long-ranged forces ( 4  5.4) there are 
essentially no rigorous results for the values of the exponents or for relations 
between them. Recently, however, it was discovered? that certain quite general 
inequalities can be proved between the exponents U‘,  p, y f  (below T,) and 6 .  Because 
these results are rigorous and of wide application (although of course they leave 
much to be desired) we present them fairly carefully before discussing more 
specific theories or models. 

7 On the grounds of a model calculation Essam and Fisher (1963) (see 4 9.1) suggested the 
Shortly afterwards Rushbrooke (1963) showed this validity of the equality ol’+2/3+y’ = 2. 

could be proved thermodynamically as an inequality with > replacing = . 
42 
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3.1, Stability and convexity 
Let us consider a particle system. Standard thermodynamic arguments (see, 

for example, Guggenheim 1950) based on the minimization of the Helmholtz free 
energy F( T ,  U )  establish the stability relations 

and 

(3.1.1) 

(3.1.2) 

As mentioned in Q 1.3 these also follow rigorously from the statistical mechanics of 
the canonical ensemble where one can prove (Ruelle 1963 a, Fisher 1964 a) the 
rather more general convexity relations 

F [ & ( T , + T , ) , U ]  > & F ( T , , v ) + & F ( T , , v )  (3.1.3) 
and 

F[T,  +(z'1+ 4 1  Q P ( T ,  v1) + 3F(T, .2) (3.1.4) 

which have an obvious graphical interpretation. 
If for a magnetic system one assumes that the magnetization (density) M is a 

'good' thermodynamic variable and considers the corresponding free energy 
A( T ,  M )  one equally concludes 

and 

(3.1.5) 

(3.1.6) 

A precisely analogous rigorous statistical-mechanical proof of (3.1.5) and the corre- 
sponding convexity relation can be given provided (i) the magnetization (as an 
operator) commutes with the total Hamiltonian. Similarly a proof of (3.1.6) and 
(3.1.5) can be given (independent of (i)) provided (ii) the magnetic field H enters 
only linearly into the Hamiltonian 2 (Griffiths 1964 and private communication). 
This condition means strictly that any diamagnetic terms in 2 (proportional to 
H 2 )  must be ignored. Despite these restrictions we expect (3.1.5) to be of rather 
general validity. (We assume throughout, of course, that true equilibrium is 
always established.) 

3.2. Inequality foy a', p and y' 

thermodynamic proofs of the inequality (Rushbrooke 1963) 
Using the stability-convexity relations of the last section we shall first give 

a' + 2p+ y' 2 2 (3.2.1) 

for a ferromagnet and of the corresponding analogy for a fluid (Fisher 1964 b). For 
this purpose it is convenient (and more rigorous) to  redefine the exponent /3 by 

(3 2.2) 
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which, using the general exponent definition (1.4.2), rigorously implies the original 
definition (2.4.2) (see equation (1.4.8)). 

Now by standard thermodynamic manipulations one has 

and 

Combination of these with the definitions (3.1.5) and (3.1.6) yields 

(3.2.3) 

(3.2.4) 

(3 2 . 5 )  

which is the magnetic analogue of the well-known relation between C, and C,. For 
T <  T,  consider now the limit H-tO. By the definition of a ferromagnet we have 

and we may assume 

(ii) 

(3 -2.6) 

(3.2.7) 

‘This last condition is not obviously correct since x T ( H )  might diverge as H-tO as it 
does for certain models (such as the Berlin-Kac (1952) spherical model and the 
system of non-interacting spin waves in an isotropic d = 3 ferromagnet, in both of 
which cases x,(H)-H-l/z as H-tO). However, y’ is only defined if xT does exist 
a t H = O .  

Combination of these observations and the inequality (3.1.5) yields finally 

(3.2.8) 

On taking logarithms, dividing by -1111 T, - TI and using the general exponent 
definition (1.4.2) one obtains 

a’ 2 2(1- p)  - y’ (3.2.9) 

which is equivalent to (32.1). (If y’ does not exist one finds only a ’ 2 0  which is 
trivial.) 

For a fluid the argument is a little more complicated (Fisher 1964 b) since in the 
two-phase region (p  = pc, T < T,) the total entropy is a sum of the entropies for the 
two phases whose proportions, in general, change as the temperature is altered at 
constant total volume. 

In  terms of the mole fractions 

and 

PL Po-PG 
XL = - ( I  PO PL-PG 

XG = 1 - X L  

(3.2.1 0) 
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of coexisting phases at the critical density one finds (Fisher 1964 b) 

C&( T )  = XL C,L + XG C,G 

(3.2.11) 

where CvL, KTL and CVG, KTG are the constant-volume specific heats and 
isothermal compressibilities of the liquid and gas phases respectively in the limit 
that the coexistence curve p = p g (  T )  is approached from the respective single 
phases. We now assume 

(iii) O<xL(T,) = lim x L ( T )  = l -xG(T , )< l .  (3.2.12) 

This implies PL = pG and would be assured by the law of the rectilinear diameter 
(2.1.4). Weaker or slightly different assumptions are possible, leading to effectively 
the same conclusions (see Griffiths 1965 c). Using (3.1.5) to drop the first two terms 
in (3.2.11) and dropping one or another of the last two leads to inequalities analogous 
to (3.2.8). If we take logarithms and the limit T-+ T, as before we obtain finally 

01’ + 2/3 + min {yL’, yG’} 3 2. (3.2.13) 
As one illustration of the practical utility of this inequality we note that from 

< 0.36 and 01’ < 0.1, which seem to be implied by the experimental data on pure 
fluids (9 2.1), one can conclude 

yL’, yG’ > 1.17. (3.2.14) 
This is valuable since KTL and KTG are both hard to measure accurately. If 
p = 0.345 and the specific heat below T, is logarithmic one would have 

yL’,yG‘> 1-31, (3.2.15) 

T-+T,- 

3.3. Inequality f o r  6 and use of conzexity 
Griffiths (1965 b) has derived the important inequality 

01‘+/3(1+ 6) 3 2 (3.3.1) 
by direct use of the convexity properties of the free energy. We shall present an 
extension of his argument which also yields an alternative derivation of the first 
inequality (3.2.1). More recently Rushbrooke (1965) has given a thermodynamic 
derivation of this inequality for 6 .  

Let us consider the free energy A( T ,  M )  of a ferromagnet. Below T, the field 
H = (aAjaM), vanishes identically for M less than the spontaneous magnetization 
M,(T), and so 

A( T ,  M )  = A( T ,  0 )  = A,( T )  (3.3.2) 
(We suppose M >  0 here and below.) If we assume the existence of the initial 
susceptibility xT (see previous section, condition (ii) ) we further have 

M < &lo( T ) .  

A ( T , M )  = A ( T ,  O ) + ~ X ~ - ~ { M - M , ( T ) ) ~ { ~  +o(M-MO)} for J!I>M,(T). 

Now let us suppose 
(3.3.3) 

MI=Mo(T,)>n/r,=Mo(T,). (3.3.4) 

< T,  6 T, so that 
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(We assume MO( T )  is monotonic decreasing sufficiently close to T,,) The convexity 
of A( T ,  M )  in T means that the graph of A against T for fixed M always lies on or 
below any tangent (which in turn has a slope (aAjaT), = -5’). A tangent at 
(T, ,  Ml)  thus yields 

A(&, MI) 6 4 T , ,  M2) - (T,  - T,) 5’(T,, Ml)  (3.3.5) 

while a tangent at (T,, M,) yields 

4% M2) G A(&, M2) - (T ,  - T,) 5‘(T,, MA. (3.3.6) 

From (3.3.2) and (3.3.3) we have 

and 
4% Ml) = 4% M,) = Ao(T,) 

5’(T,, Ml) = 5‘o(T , )  S(T,,LW) = 5 ’ O ( T , )  (3.3.7) 

where the zero subscripts denote M = H = 0. Substituting and adding the two 
inequalities yields the basic inequality 

4 T , ,  Ml) - 4 T , ,  MJ (3.3.8) (G- T,) {5’o(T , )  - 5 ’ O ( T , ) } .  

We now divide by (T,- T,)2 and rearrange using (3.3.3) to obtain 

(3.3.9) 

On taking the limit T,-+ T,  = T < To we rediscover the thermodynamic inequality 
(3.2.8) except for an additional factor 3 on the right-hand side. From this the 
original inequality for a’, p and y’ follows as before. 

T o  derive (3.3.1) from (3.3.8) we put T,  = T ,  MI = M o ( T )  and let T,+ T, so that 
M2 -+ 0. Then for the free energy on the critical isotherm one finds 

~ ( T , , ~ ~ o ) - A c G ( T 2 -  T){5’,-5‘o(T)}. (3.3.10) 

Now integration of the definitions of a’ and 6 shows by (1.4.8) that the right-hand 
side varies as (T, - T)l+l-”’ while the left-hand side varies as N (T, - T)P(l18). 
Accordingly (3.3.10) implies the new exponent relation (3.3.1). 

An application of this inequality to the data for fluids (52.1) is a little dis- 
quieting. (The proof for the fluid case (see Griffiths 1965 c) is somewhat more 
involved because of the lack of symmetry.) The  upper limits ,8 < 0-36 and 6 < 4.4 
yield 

a’ 2 2 - 0.36 x 5.4 = 0.05 (3 -3.1 1) 

which is not inconsistent with the specific-heat data although it rules out a simple 
logarithmic divergence. However, the central values p = 0.345 and 6 = 4.2 yield 

a‘ 2 0.20 (3.3.12) 

which seems to contradict present interpretations of experiment quite violently 
(Voronel’ et al. 1963, 1964, 1966) although it remains possible that the true specific 
heats close to Tc are in fact sharper than suspected. The  resolution of this dis- 
crepancy is an important experimental problem. 
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For a fluid the condensation or vapour-pressure line pn( T )  may (and probably 
does) have a singularity of the form 

+(To- T)-"* (T - t  K - ) .  (3.3.13) dT 

Griffiths (1965 b, c) has shown generally that such a singularity is restricted by 

ol"-ol'Qp. (3.3.14) 

This is probably rather a weak inequality since the small amount of evidence 
available suggests o l * ~ o l ' .  We may also note that since the specific heat must be 
integrable we have a'< 1 so that from (3.2.1) and (3.3.1) we can conclude generally 

y '>1-2,8 and l + S > l / p .  (3.3.1 5) 

By making some quite plausible but more special and less fundamental assump- 
tions, Griffiths (1965 c) has derived a variety of further inequalities involving, in 
particular, the variation of the entropy on the critical isotherm and of the field and 
magnetization on the critical isentrope (S = S,) (see also Liberman 1966). 

4. Models and analogies 
Before taking up the discussion of theoretical arguments that lead to explicit 

numerical values for the critical exponents and amplitudes we shall review the 
definitions and general properties of those theoretical models which are most useful 
in the study of critical phenomena.? This will lead to a more precise and clear 
theoretical understanding of the analogies between the various systems which we 
have developed phenomenologically in the previous sections. 

4.1. Lattice gases 
T o  understand the critical behaviour of a fluid including possible quantum 

effects one must study a quantum-mechanical model. The  standard gas-liquid 
model is, of course, the continuum gas of identical point particles interacting with 
pairwise potentials $(r) and obeying quantum mechanics with appropriate statistics. 
With suitable $(r) this model is quite realistic (although the existence of internal 
molecular structure and three- or more-body potentials must not be forgotten 
altogether), but it is quite intractable as regards critical behaviour except in the 
unrealistic case of infinitely weak, infinitely long-range forces (see $5.4). By 
adopting classical mechanics the mathematics simplifies and the model should still 
be good for the heavier gases, for example xenon, krypton and argon. Although 
appreciable progress on the classical gas problem has been made in recent years, 
mainly based on virial expansions or integral equations which are most accurate at 
low density (see, for example, Rowlinson 1965), no significant results regarding the 
behaviour of the critical specific heat, isotherm or compressibility have been 
achieved, nor do such results yet seem in sight. 

t Space prevents us from considering a number of worthwhile models, in particular the 
spherical model (Berlin and Kac 1952, Joyce 1966), already alluded to, and Stillinger and 
Helfand's (1 964) binary fluid model with Gaussian Mayer-function interactions. 
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A more powerful simplification is achieved by the lattice gas model? in which all 
position vectors r are restricted to the sites of a regular space lattice 9. If vo is the 
cell volume then, in the definition of partition functions etc., integrals over the 
continuum are simply replaced by sums over the lattice, i.e. 

(4,l.l) 

T o  formulate the classical lattice gas model it is convenient to introduce occupation 
variables 

t ,  = 1 if site r is occupied 

= 0 if site r is vacant. (4.1.2) 
(We always assume, in accord with (1.3.12), that # ( O )  = +cc so that double occupa- 
tion of a site is forbidden.) From the usual definitions (1.3.1) and (1.3.5) it is then 
not difficult to see that the grand partition function of the system is 

where /3 = l / k ,  T and 

p = k, Tln(zv,) = p - k B  Tln  - a 
(4.1.3) 

(4.1.4) 

and where the second and third sums run over all sites r and pairs of sites (r,r’) 
of 2. The  first sum represents the sum over all configurations for all values of N.  
(For brevity we shall often label the lattice sites: i , j  = 1 ,2 ,  . . ., N9.) Externally 
varying fields may be included by allowing x to depend on r (and taking ln(zrao) 
inside the corresponding summation). 

As apparently first noted by Matsubara and Matsuda (1956, 1957), one may 
also construct a quantum-mechanical lattice gas in essentially the same way. Since 
the many-body wave functions QA,-(r1, ..., r-v) are now defined only at discrete 
lattice points, differential operators must be converted into their finite-difference 
analogues. Thus to represent the kinetic energy we need 

..., ri, ...)+-C( a,( ..., ri+S, ...)- 2d ..., ri, ...)} (4.1.5) 

where d is the dimensionality, S runs through the q nearest-neighbour lattice vectors 
of a site, and the lattice spacing is a = 1 S 1.3 

The specification of this model and its implications were first set out clearly by Yang and 
Lee (1952 b) although the appreciation of its existence, and equivalence to the Ising model 
(see below), can be traced back much further via hole theories of liquids and Bragg and 
Williams’ studies of binary alloys. I t  is worth noting that instead of imagining the particles 
confined to lattice sites one may suppose that they move continuously in a space divided into 
‘cells ’, but that their interactions are determined solely by which particular cells are occupied. 

1 It should be noted that N9 must not here be confused with N ,  the number of particles 
in some configuration of the ‘gas’ on 9. 

5 Evidently this finite-difference approximation is good only ,when CD does not vary too 
rapidly on the scale a .  I t  will lead to artificial results a t  sufficiently high kinetic energies and hence 
at very high temperatures. At high temperatures, however, one has less need for a quantum- 
mechanical model. 

qa2 s 
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T o  develop the theory and take account of the statistics it is most convenient 
(but not essential) to employ a second-quantized formulation. Thus for Bose 
statistics we introduce a set (one for each site) of commuting creation and destruc- 
tion operators 

art = o? +t(r), a, = ZI:~~’Z +(r) (4.1.6) 
and a corresponding density or number operator 

n r = a t a  r r = oo~(r) -  (4.1.7) 
The exclusion of double occupancy now allows one to specify the anticommutation 
relation 

art a, + a, art = 1 (4.1.8) 
in place of the normal Bose commutation rule. (Operators for different sites 
commute.) This in turn ensures that the eigenvalues of n, are only 0 or 1 so that 
in a diagonal representation we have n, t,. 

The grand canonical partition function is then given by 

E( T,  x) = T r  {exp ( - PZ,)} (4.1.9) 
where the total second-quantized Hamiltonian may be written 

with the modified chemical potential 
- R z  d 

ma 
/E = p - 7 .  (4.1.1 1) 

Evidently, the last term in (4.1.10) derives from the kinetic energy and does not 
commute with the first two terms. As before one may include external fields 
(‘ diagonal fields ’) by setting p --f p(r). 

For theoretical purposes (see Bogoliubov 1960, Hohenberg and Martin 1965) 
it is also useful to add to non-classical ‘off-diagonal fields’ of the form 

h = - ~101’2  2 (vr* a, + v, a:) 
r 

(4.1.12) 

even though these cannot apparently be realized physically. Indeed these fields turn 
out to be just the appropriate external fields needed to detect the off-diagonal 
superfluid order discussed in $2.5. Thus in the case of a uniform off-diagonal 
field one finds 

(4.1.13) 

One can then define the superfluid order parameter I t,b I in the alternative fashion 
(4.1.14) 

in close analogy with the antiferromagnetic and ferromagnetic cases (equations 
(2.6.4), (2.4.1)). In  any finite quantal system this off-diagonal expectation value 
must, of course, vanish identically when v* = v = 0 (just as a finite ferromagnet 
can have no true spontaneous magnetization). Following the ideas of Penrose and 
Onsager (1956), however, we expect that a non-zero value of the limit (4.1.14) for an 
infinite system will correctly characterize superfluid order. 
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4.2. Ising-Heisenberg model and equivalences 
We have already referred to the theoretical simplification gained by assuming 

that the spins in a magnetic system are localized on lattice sites. This will be 
realistic for insulating magnetic materials but for metallic ferromagnets, like iron 
and nickel, the magnetic carriers are, at least to some extent, free. At present, 
however, significant mathematical progress on the critical behaviour of non- 
localized magnetic models is lacking. In  magnetic systems with critical tempera- 
tures exceeding, say, 20 O K  the direct electromagnetic dipolar interactions are 
relatively small terms in the magnetic Hamiltonian and may probably be neglected 
in first approximation.? When this is so the Ising-Heisenberg Hamiltonian 

A? = - 2 ( J , ,  (r - r') S," S , "  + J,(r - r') (S," S , "  + Srg Sr,y)) -gPu C S r .  Hr 
r,r' r 

(4.2.1) 

should be a reasonable representation of reality. (Zr is the external field on the 
site r, while g is the gyromagnetic ratio and PB the Bohr magneton.) 

Note that ferromagnetic coupling corresponds to positive J while negative J 
means an antiferromagnetic coupling. The  pure isotropic Heisenberg Hamiltonian 
corresponds to exchange interactions satisfying 1 (r) = JJr) = J(r). Most real 
materials have some magnetic anisotropy which (in simple uniaxial cases) would 
usually correspond to I I > I JL I so that in zero field the spins order ' parallel' to the 
z axis. The  extreme anisotropic limit JL(r) = 0 corresponds to the Ising model. 
For parallel fields H = (0, O,H,) all operators in 2 then commute and the system 
effectively obeys classical mechanics. Another classical case, the infinite spin limit, 
is obtained by writing 

(4.2.2) 

and letting S+co. The  operators s, then commute and indeed reduce just to 
classical unit vectors. (Trace operations become integrations over the solid angles.) 

We shall now establish the mathematical equivalences between lattice gas 
models and Ising-Heisenberg magnets with spin 4. For simplicity consider firstly 
the classical lattice gas and an Ising magnet in a uniform parallel field. For the 
latter it is convenient to introduce the scalar variables$ 

s, = 2s: = & 1 

m = 4 g P B  

(since S = 3). If we write 
(4.2.3) 

(4.2.4) 

for the magnetic moment per spin, the partition function for a lattice 9 becomes 

Now the relation 
t ,  = &( 1 - sr) (4.2.6) 

i Owing to their long range, it is not certain that residual dipolar interactions might not 

$ In the literature of the S = + Ising model these have been denoted urz, U=, pr, etc., and +J,, 
still play a role close to Tc as has been suggested by Kadanoff et al. (1967). 

is usually denoted J .  
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associates (by common convention) an ‘up’ spin on site r with a vacant site of the 
lattice gas ($2.2) and a ‘down’ or ‘overturned’ spin with an occupied site. Sub- 
stitution of (4.2.6) in the expression (4.1.3) for the lattice gas grand canonical 
partition function and comparison with (4.2.5) lead at once to the following identifi- 
cations between the two models : 

+(I) SE - 2Jl, (r) (4.2.7) 

p - p , , ~  -2mH, 
where 

with 

From the definitions of the thermodynamic potentials we then have 

(4.2.8) 

(4.2.9) 

(4.2.10) 

(4.2.1 1) 

where F is the magnetic free energy per spin and 4( T,  H )  = M/Mmax is the reduced 
magnetization per spin. Finally by the usual thermodynamic formulae or by taking 
expectation values in (4.2.6) we have 

(4.2.12) 

Further equivalences for specific heats, compressibilities, correlation functions, etc. 
are displayed in table 1. 

These equivalences provide a precise expression for the magnet] fluid analogies. 
Equation (4.2.12) is the expected correspondence between magnetization and density 
changes. On the other hand, one might have expected the magnetic field to corre- 
spond directly to the pressure rather than to the chemical potential as is indicated by 
(4.2.8). This distinction, however, is unimportant close to the critical point as 
explained by equation (2.1.6). We may now check in particular that all the critical 
exponents have precisely the same values for Ising ferromagnet and classical lattice gas. 
In  as far as these two models are realistic our conclusion shows why the close 
correspondence of exponent values observed experimentally should have been 
expected. (Indeed this was, historically, the main course of events.) 

A few other features of the correspondence should be pointed out. For a simple 
Ising ferromagnet with J(r) 2 0 (all r) the only transition occurs in zero field (Yang 
and Lee 1952 b) and the phase diagram is as in figure 4. The phase diagram for 
the corresponding lattice gas of attracting particles which have a ‘hard-core’ inter- 
action diameter of only one site follows from (4.2.11). (There is, of course, no 
crystalline phase.) From (4.2.12) we then see that the law of rectilinear diameter 
(2.1.4) holds identically with slope a = 0 and 

For real gases these results are artificial since pc/pmas N fr and a # 0. They would, 
furthermore, not be reproduced by lattice gases with more realistic (but less tract- 
able) repulsive interactions extending over one or more lattice spacings. Similarly 
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from (4.2.11) one finds CY* = 01' (see equation (3.3.13)) which might be typical but 
(4.2.9) implies that d2p, /dTz  can have no anomaly which is probably also artificial 
(Yang and Yang 1964, Barieau 1966). 

Table 1. Further equivalences between a lattice gas and an Ising magnet 
(see also equations (4.2.6) to (4.2.12) ) 

Lattice gas Ising magnet 

configurational entropy density 
pz,o SCOnflg s entropy per spin 

(a)  

isothermal compressibility isothermal susceptibility 
4a0 pz KT =XT/m2 ( b )  

configurational specific heats 
T o I H 2  pao CT9"fl@ = c-71 = CH - __ 
XT 

thermal pressure coefficient 

pair correlation functions 

( J l )  
($0  s*> - <so)2 = pzs0 G(r) = pvo{g,(r) - 1) = -__ - 
<so2) - < S O Y  

at pc = p, T >  T, at H = 0, T >  T, 

&G(r) =(so s,) = f(r) (i ) 

If in place of the association (4.2.6) of a 'down' spin with a particle and an (up '  
spin with a 'hole' we interpret ' down' spins as one species of particle, say A, and 
'up '  spins as a second, B, species, we obtain a lattice model of a dense binary fluid 
or alloy. It is clear that by constructing the corresponding grand partition function 
we shall again be able to prove a mathematical equivalence to the Ising magnet. 
Apart from the equivalence 

- 251, (r) = +*dr) - B{+**(r) +. +BB(r)) (4.2.14) 
for the interaction potentials we shall not give any details. Suffice it to say that the 
expected analogies are again confirmed and corresponding critical exponents are 
found to be identical. In  parallel with (4.2.13) the critical composition for only 
single-site repulsions is 50 : 50, i.e. xLq,, = x ~ , ~  = 

The simplest Ising model of an antiferromagnet is obtained by taking 
Jll(r) = - l J ,  1 whenever r = 6 is a nearest-neighbour vector, but J,,(r) = 0 other- 
wise. If the lattice is of alternating structure so that it can be decomposed into two 
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interlacing sublattices, long-range antiferromagnetic order is possible and will 
appear below T,. In  zero field the mathematical problem for such an antiferro- 
magnetic model is precisely equivalent to that for the corresponding ferromagnet 
(J,l = I Ill I ) since in (4.2.5) one may change the sign of all the spin variables s, on one 
sublattice without altering the partition function (as the spins are dummy variables). 
Consequently the antiferromagnetic specific heat in zero field will exhibit precisely 
the same behaviour, with exponents a and a’, as the ferromagnetic CH=O. Further- 
more, spontaneous sublattice magnetization MO‘( T )  will be identical with the ferro- 
magnetic nil,,( T )  while for the spin-pair correlations we have simply 

( $ 0  Sr),nti = exp (ih * r) (so fr)ferro.  (4.2.15) 

The uniform ferromagnetic field H evidently becomes HI,  the alternating staggered 
field (2.6.2) for the antiferromagnet (and generally Fourier space is shifted by a 
translation k,,). This all confirms our previous antiferromagnetic to ferromagnetic 
analogies in a finite or zero staggered field and shows that, within the applicability 
of the Ising model, all the exponents for antiferromagnets should be identical with 
those for ferromagnets. 

The  simple Ising antiferromagnet corresponds to a lattice gas with first- 
neighbour repulsions which at low temperatures forms a regular ‘crystal’ over a 
range of pressures or chemical potentials (corresponding to the continuance of the 
antiferromagnetic transition into a finite field (figure 6) ). Alternatively, if one again 
interprets ‘up ’  and ‘down’ spins as different atomic species one has a not unrealistic 
model of an ordering metallic binary alloy (in which AB contacts are favoured). 
Again without going into details one can see how the mathematical equivalence will 
go through with all exponents corresponding precisely in value. One should note, 
however, that the Ising model in zero field again describes only the 50 : 50 or 
simple AB alloy. Different compositions correspond to non-zero magnetizations 
and fields which might be large enough to change the nature of the transition 
(see figure 6).1 

4.3. Quantal JEuid-magnet analogies 
Having explored the connection between classical lattice gases and k ing  (and 

hence extremely anisotropic) magnets let us investigate the magnetic analogy for 
quantal lattice gases. Consider as before the Bose system with the second-quantized 
Hamiltonian (4.1.10) expressed in terms of the modified creation and destruction 
operators a,+ and a,. In  terms of the Pauli operators 

ax = 2S“, 5 u  = 2S”, 0 2  = 2 s ”  (4.3.1) 

which satisfy the standard spin-commutation relations, we find that the identifica- 
tionsf 

a, = $(u,”+iu,”) 

art = +(a,” - iu,”) 
(4.3.2) 

t Experimentally typical A,B alloys appear to exhibit straightforward first-order transitions 

$ We associate U+ with a and U- with a: rather than vice versa, in order to retain the 
(see the general review by Guttman (1956) ). 

convention that a ‘down’ spin denotes the presence of a particle. 
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yield precisely the required commutation relations (4.1.8) for the a, and a,+. Further, 
the density operator is given by 

n, = .,+a, = fr(1 -d) (4.3.3) 

which is just the quantal form of the classical gas-magnet relation (4.2.6). Taking 
expectation values yields the same density-magnetization equivalence (4.2.12) as 
previously. 

However, the Hamiltonian (4.1 . lo)  with the off-diagonal fields (4.1.12) becomes 

flz = &( p - j i g )  c a,Z - c (v,5 U,X + vru U,") 
r r 

where 

(4.3.5) 

v, = vrX+iv,u (4.3.6) 

and where [r,r'] denotes that the sum runs only over nearest-neighbour bonds 
r' = r + S. Comparison with (4.2.1) now shows that the quantal lattice gas corre- 
sponds precisely to the general Heisenberg-Ising magnet. 

The  potential energy or 'diagonal interaction' +(r) is related to the parallel 
exchange coupling Jll(r) by (4.2.7) just as for the classical case. Similarly the 
chemical potential (rather than the pressure) is again related to the parallel magnetic 
field by (4.2.8) but with pg replaced by p,. 

The kinetic energy, or ' off-diagonal interaction', however, becomes the trans- 
verse magnetic coupling (between nearest neighbours only) with the equivalence 

-- - J  = JJS) .  E a  d 
mqa2- (4.3.7) 

This appears naturally as a ferromagnetic, i.e. attractive, interaction. (On an alter- 
nating lattice, however, ,the partition function for vx = vu = 0 is unchanged if JL 
is taken with negative sign, as can be seen by making the canonical transformation 
ac-+ U*, UX -+ - uZ, uu-+ - uu on the sites of one sublattice.) Similarly the unrealizable 
off-diagonal fields v, introduced in (4.1.12) become simply transverse magnetic fields 
since 

vr5 = mH,( r) 
vrY = mH,(r). 

(4.3.8) 

Our model can now display quite a richness of behaviour. If we confine attention 
only to nearest-neighbour interactions we may anticipate some of the possibilities 
as follows: 

(i) Dominant parallel ferromagnetic coupling. For J,l > 0 the dimensionless 
parameter 

(4.3.9) 
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is proportional to the square of de Boer's quantal parameter A* (see (2.1.12)). When 
it is small we expect simple ferromagnetic (or in the fluid, condensation) behaviour 
with the phase diagrams of figure 4. The  spontaneous magnetization will always be 
parallel to the x axis corresponding, as before, to a density difference p L - p G .  
However, the exponents a,  /I, etc., for both magnet and fluid might possibly be 
modified by quantal effects (Yang and Yang 1964, Fisher 1966 a). 

(ii) Isotropic ferromagnet. The limiting case Jl, = .II > 0 of a completely isotropic 
Heisenberg ferromagnet corresponds to a very strongly quantal gas with, according 
to (4.3.9), A* 21 6-9. (We identify the collision diameter as approximately equal to 
the nearest-neighbour lattice distance a.) Since the largest experimental value of 
the de Boer parameter is A*-3.08 (for 3He), this model probably does not have 
direct application to any real fluids. The  phase diagram, however, should be 
unchanged, the only new feature being that the spontaneous magnetization below 
T, need not point only along the x axis but might also have components in the x and y 
directions. Before interpreting such a transverse spontaneous magnetization in 
terms of the quantal fluid we shall indicate for what other coupling parameter values 
it should arise. 

(iii) Dominant transverse coupling. When JL > Jl, > 0 we have a ferromagnet in 
which, clearly, the spontaneous magnetization vector MO in zero parallel field 
( H ,  = 0) will lie wholly in the xy plane. (This model has been particularly studied by 
Whitlock and Zilsel (1963) and Zilsel (1965).) Imposition of a parallel field H, will 
now be rather analogous to the antiferromagnetic situation. Since H is perpen- 
dicular to the spontaneous magnetization MO it will act similarly on all domains 
and hence will not destroy the transition immediately. For large H,, however, the 
total magnetization vector will tend to swing around towards the x axis until the 
transverse components vanish and the paramagnetic phase is restored. The  phase 
diagrams should probably, therefore, be as in figure 9 with a definite lambda line 
of continuous transition points. 

(iv) Dominant parallel antiferromagnetic coupling. If - Jll = I J ,  1 > I JL I we have 
magnetically a model for the common system of a uniaxial antiferromagnet.? 
Below T, in zero or small parallel fields the situation is just as for the highly aniso- 
tropic (Ising-like) antiferromagnet with the phase diagram of figure 6. As H, 
increases, however, the antiferromagnetic ordering with a sublattice magnetization 
parallel to the x axis becomes less favourable until, when mH, is of order I Jll I - 1  JI. I, 
it becomes thermodynamically preferable for the spins to re-order with a transverse 
spontaneous magnetization (or sublattice magnetization if JL < 0).$ Consequently 
in a sufficiently large finite field a new phase appears and we effectively recapture 

f As explained above for the quantal gas on a 'loose-packed' or alternating lattice we may 
suppose that JL is either negative or positive as convenient. Conceptually it is simpler to suppose 
JL> 0 so that the transverse interactions are always ferromagnetic. For real magnetic systems, 
however, JI is normally negative. 

The plausibility of this spin-flop ' transition, predicted many years ago by NCel, can be 
seen simply by considering the energetics of two classical spins (representing the two 
sublattices) coupled by &' = Jll Slz SZz + J,(S1' S," + Sly S,"). This simple picture, and its 
generalization to finite temperatures (Gorter and van Peski-Tinbergen 1956), suggests that the 
transition should be first order whereas the final high-field transition to the paramagnetic state 
should still be continuous (actually 'second order'). Neither of these conclusions should be 
regarded as really established theoretically or experimentally. 
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the behaviour of case (iii), Thus the overall phase diagram should have the form 
shown in figure 10 (a). 

T o  interpret the quantal-gas analogue we note that the ‘ diagonal ’ interactions 
are all repulsive ($ > 0). Let us consider firstly the regular antiferromagnetically 
ordered phase where the spins point predominantly parallel or antiparallel to the 
x axis. As in the pure Ising case this must correspond to a ‘crystal’ with long-range 
‘diagonal’ or density ordering. In  the ‘spin-flop’ phase, however, there is no 

H = o o  
t t t  

A 

P 

1 1 __- rk  ~ ). 

r 0 

Figure 9. Schematic phase diagram (a)  of a ferromagnet with dominant transverse coupling 
(JL >J,,  > 0) in a parallel field H,, and ( b )  of the corresponding quantal lattice gas. The 
broken lines indicate where the transition might become first order. 

diagonal or crystalline ordering so we must have a true fluid. If we define the 
transrerse spontaneous magnetization by analogy with (2.4.1) and (2.6.4), by letting 
the transverse field H, approach zero with fixed direction, we conclude via the 
equivalence (4.3.2) that the expectation value (a,) cc (+(r)) is non-vanishing. By 
the discussion of $4.1 this is just the criterion for the existence of superfluid or 
off-diagonal order. Thus the spin-flopped state of an antiferromagnet corresponds 
to a superfluid. The  phase diagram of the model as a quantal-particle system should 
thus be like figure 10 (b) .  

If we apply this model to helium 4, the only known atomic or molecular super- 
fluid?, we see that the lambda line (figure 8) is analogous to a magnetic-transition 
line to an ordered (antiferromagnetic) state. Thus we confirm our expectation that 
the specific heat of helium at constant chemical potential, and hence C,, should be 

f Our models are not applicable to ‘ electron-pair superfluids ’, i.e. superconductors, 
because they take no account of the dominant role played by the Fermi statistics of electrons 
as pointed out in 0 2.9. 
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characterized by exponents 01 and a‘ similar to the magnetic case. The  other 
exponents ,f3, y ,  y’,  6, v ,  v’ and 7 can evidently be defined in terms of the effects of the 
off-diagonal fields and the behaviour of the one-particle density matrix by analogy 
with the magnetic case, although they remain inaccessible to direct experiment.? 

Crystal 

Liquid 

Figure 10. Schematic phase diagram for (a) a uniaxial antiferromagnet and ( b )  the analogous 
quantal lattice gas (only the low-pressure part of the phase diagram is shown). 

I t  should be mentioned, however, that it is by no means certain that the values 
of the magnetic exponents on the transition to the spin-flopped state will be the 
same as in the E-I = 0 transition to the longitudinal antiferromagnetic state. How- 
ever, the general physical similarity of the two magnetic states (x, y and z directions 
being fundamentally the same) does suggest that the values might not change. (At 
any rate, as already observed, the experimental lambda anomaly in helium seems 
very like that in antiferromagnets in zero field.) 

5. Phenomenological and mean field theories 
In  this section we shall review briefly the ‘classical’$ theories of critical pheno- 

mena (van der Waals’ theory, Weiss’ molecular-field theory, Landau’s theory, etc.) 
and discuss their validity. The  invariable classical predictions for the critical 
exponents are listed in the appropriate column of the fold-out table. They follow 
most readily from the phenomenological approach which we outline first. Here the 

t A magnetic analogy for the superfluid density ps(T),  the critical-point exponent 5 of 
which is observable (# 2.8), may also be found. Its behaviour, however, is not obviously 
related to the other magnetic properties. 

1 We use ‘ classical ’ in its dictionary meaning, namely, ‘ often referred to, standard ’. 
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crucial (and incorrect) assumption is that the relevant thermodynamic potentials 
may be expanded in Taylor series about the critical point. This is the reason that 
all the predicted exponents are multiples of &. Alternatively, the classical predic- 
tions follow from a very large class of more specific but approximate theoretical 
treatments in which the crucial assumption is that the fluctuating forces acting on a 
single element of the system may be replaced by an egectively constant ‘mean field’ 
due to the rest of the system. I t  is the total or partial neglect of these local fluctua- 
tions or correlations (sometimes by way of a ‘superposition’ or ‘decoupling’ 
approximation) that yields the characteristic classical answers. 

That the classical predictions are wrong experimentally for most systems is 
clear by comparison with the experimental evidence surveyed in $ 2  (see also 
Heller 1967). Most striking is the discrepancy between the prediction ,B = & and 
the observed values of ,B 2 Q. Nevertheless, we should still review these approaches 
because they are theoretically valid in certain limits and because they yield a simple 
coherent picture often useful in a first discussion of a critical point. 

5.1. Phenomenological approach for  thermodynamic functions 
The phenomenological derivation of the equation of state of a fluid or ferro- 

magnet near the critical point is fairly well known (see, for example, Fowler and 
Guggenheim 1939, Rowlinson 1959, Fisher 1964 b, 1965 a). The  essential steps are: 

(i) Choose as primary thermodynamic variables T and p or M ,  respectively, 
since these latter variables are ‘known’ to become discontinuous below T, as a 
function of p or H ,  and consider the appropriate thermodynamic potential (free 
energy). 

(ii) Expand this free energy in powers of p - pc or M at fixed T with coefficients, 
say, a,( T ) .  This procedure should be generally valid above T, but is dubious at and 
below T,. 

(iii) Expand the coefficients a,( T )  in powers of T - T, with the assumption that 
appropriate leading coefficients anm vanish to yield an infinite compressibility or 
susceptibility at T,.t There is, of course, no justification for this step, especially 
below T, where it leads to ‘metastable’ and ‘unstable’ states. 

(iv) Appeal to a ‘minimization of the free energy’ or a corresponding Maxwell 
‘equal-area’ construction to remove the ‘metastable’ and ‘unstable’ (KT ,  xT < 0) 
parts of the isotherms below T, and so generate the required discontinuous phase 
transition. This last step is also open to objection since the rigorous convexity and 
stability results discussed in 5 3 show that unstable or even metastable isotherms can 
necer be found in a rigorous equilibrium calculation. Thus the free-energy mini- 
mization and Maxwell procedures cannot really be justified in the form used.$ 

It is a little less obvious how one should approach a phase transition when none 
of the thermodynamic variables themselves display discontinuities, as for instance 
in the case of an antiferromagnet or a superfluid. The  crucial first step, following 
Landau (see, for example, Landau and Lifshitz 1958), is now the introduction of an 

f By assuming that more coefficients anln vanish than the minimum needed to ‘create’ a 
critical point, other exponent values are predicted by these are generally farther from reality. 

An interesting discussion of the Maxwell rule and its relation to analyticity assumptions 
has been given by Griffiths (1967). 

43 



660 M .  E. Fisher 

‘order parameter’. This is supposed to be a (potential) thermodynamic variable 
which has, however, the ‘equilibrium value’ zero above the transition but can take 
two (or sometimes more) equivalent but non-zero equilibrium values in the ‘ordered 
state’ below the transition. 

Since the procedure is less familiar we illustrate the approach by discussing an 
antiferromagnet, Evidently we should take the staggered magnetization M’ as the 
order parameter. (However, the thermodynamic properties could be discussed even 
if the true physical nature of the order parameter were unknown.) We may then 
consider the free energy F (  T ,  H ;  M’).? Now for step (ii) expand F i n  powers of M‘ 
to obtain 

F ( T , H ;  M ’ )  = f 0 ( T , H ) + f Z ( T , H ) M ’ Z + f ~ ( ~ , H ) M f 4 +  ... . (5.1.1) 

Odd powers will vanish by symmetry but the first power must be absent in any 
case by the assumption that 

Meq’( T ,  H )  = 0 for T 2 T,(H) (5.1.2) 

since this equilibrium value is to be found by minimizing F(M’) ,  that is by equating 
to zero the ‘field’ conjugate to the order parameter, namely 

-- - H’ = 2f2(T,H)M’+4f4(T,H)M’3+ ... . (5.1.3) 

This is, of course, just the staggered magnetic field. T o  ensure that F(M’)  has a 
single minimum fi and f4 should be positive above T,. A double minimum and 
hence a non-zero Meq‘ will develop if f z (  T ,  H )  changes sign which must thus happen 
at the transition temperature T = T,(H). 

Hence at step (iii) on expanding f .  and f4 in powers of T -  T,(H) we find, to 
leading order, 

(5.1.4) 

aMf 

f z (  T ,  H )  = fZ,dH) ( T  - T,(H))  + . . . 
. f d T ,  H )  = f4,O(H) + . . . . (5.1.5) 

Substitution in (5.1.3) at T = T, already yields the classical ‘law’ 6 = 3 for the 
critical isotherm (i.e. H’ cc M ’ 3 ) .  

The final minimization of F(M’)  below T, then leads, via (5.1.3), to the equili- 
brium values 

(5.1.6) (Meq’(T,H))2 = 1 b { T , ( H ) -  T } +  ... ( T <  T,). 
2 f 4 , o  

This relation is evidently the classical ,G’ = 4 law (compare with (2.6.5)). 
The  inverse staggered susceptibility follows from 

(5.1.7) 2H’ 
{xi( T ,  H))- l  = aM’ = 2fz(H) + 12f4(H) M f z  + . . . 

so that by (5.1.4) and (5.1.6) 

X+ N *fz,l-’ { T - T,(H)}-l ( T  3 Tc) 

= &-’ { T,(H) - T1-l ( T < T,) (5.1.8) 

f One could equally consider the thermodynamic potential A(T, M ;  M’ )  but since the 
field H is usually under direct experimental control our choice is more convenient. 
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which establish the classical laws y = y’ = 1 (compare with (2.6.6)). (It should be 
noted that the amplitude above T, is twice that below.) 

T o  find the specific heat we calculate the free energy by substituting (5.1.4) to 
(5.1.6) in (5.1.1)) which gives 

F ( T , H ) = f o ( T , H )  (T2 T,(H)) 

= f , ( T , H ) - -  1 f 2 I 2  A { T , ( H ) - T } 2 + . . *  ( T g T , ( H ) ) .  (5.1.9) 

A double differentiation with respect to T (assuming f o (  T , H )  is non-singular) shows 
that C, has a simple discontinuity at the critical point with C,(T,-) > C,(T, +) 
corresponding to 01 = 01’ = 0. 

By differentiating (5.1.9) with respect to the field one may also calculate the 
normal magnetic susceptibility xT = (aMjaH),. As T increases through T, this is 
found to decrease discontinuously like CH, but by an amount proportional to 
(aT,/8H)2. For small fields one may assume, in the general spirit, that 

4 f 4 , o  

T,(H) = T,O-cHZ+ ... . (5.1.10) 

The  zero-field (initial) susceptibility then merely has a cusp at T,, so that the 
derivative (axT/aT)H=O now mirrors the specific heat but with a discontinuity 
proportional to c = - ( d 2  T, /dH2)  (see the comment and footnote in $2.6). 

The  reader may draw the corresponding conclusions for other systems by using 
the analogies that have been developed. 

5.2. Phenomenological approach for  correlation functions 
We illustrate the phenomenological theory of the correlation functions by 

sketching the original Ornstein-Zernike (1914, 1918, 1926) treatment of critical 
opalescence in a fluid. Let us recall the basic relation (2.3.5) for the reduced 
scattering intensity and rewrite it as 

(5.2.1) 

where c(k) is the Fourier transform of the so-called direct correlation function C(r) .  
The direct correlation function is defined only through (5.2.1) or through the 
equivalent convolution-integral equation obtained by cross multiplying and Fourier 
inverting (see, for example, Fisher 1964 b). At low and moderate densities the 
virial expansion shows that C ( r )  is roughly proportional to the Mayer factor 

(5.2.2) 

and hence is of short range (when the pair potential $ ( Y )  is short ranged). Indeed, 
from the expansion one can see generally that C(r) is always shorter ranged than 
G ( r )  (Fisher 1964 b). 

One now argues that C ( r )  should remain of short range even at the transition 
point, although one cannot, any longer, really expect the virial series to converge 
since G(r )  certainly becomes long ranged and KT diverges. Nevertheless if, 
equivalently, one assumes that e(k)  may always be expanded in powers of k 2  and that 
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for small K one may neglect terms of order k4, one may rewrite (5.2.1) as 

(5.2.3) 

and 
K , , ~ ( T )  = (1 - p C ( 0 ) } ~ , - ~ .  

(32.4) 

(5.2.5) 

The  conclusion (5.1.3) is to be compared with the general result (2.2.2) which should 
be valid away from the transition. 

Letting k approach zero and using the fluctuation relation (2.3.7) now indicates 
that 

(5,. 2.6) 

so that from the exponent definitions (2.2.5), (2.3.10) to (2.3.12) and (2.1.3) one 
derives the classical relation 

2v = y (5.2.7) 

and, similarly, y’ = 2v’ below T,. The classical predictions y = y’ = 1 then yield 
v = v ’ = l  2 ’  

From (5.2.6) K~ vanishes at the critical point so that 

(5.2.8) 

which by the definition (2.2.6) implies 7 = 0. This result has uncomfortable 
implications in two dimensions since inversion of (5.2.8) indicates that G,(r) should 
vary as l n r  for large Y which is clearly unacceptable (Stillinger and Frisch 1961). 
This difficulty does not arise for d = 3, where by (2.3.8) 7 = 0 implies Gc(r)- l , ~ ,  
but none the less it suggests that the conclusion should not be trusted. 

Many alternative versions of these arguments have been presented (see Fisher 
1964 b). Frequently it is assumed that a local free energy may be constructed which 
involves terms proportional to the square of the local density gradient (or, generally, 
of the local order-parameter gradient) (see Fisher 1964 b, Kadanoff et al. 1967). 
This assumption is equivalent to making a Fourier expansion in powers of k* and 
should be satisfactory away from the transition. Classically, however, it is supposed 
to remain true up to and at the transition. An interesting and quite different 
approach based on truncating the hyper-netted integral equation for the correlation 
functions has been proposed by Green (1960). This avoids the difficulty 7 = 0 for 
d = 2, but nevertheless leads to results that are not generally correct (Stillinger and 
Frisch 1961, Fisher 1964 b). 

The  experimental evidence concerning the non-validity of the Ornstein- 
Zernike approach is not yet overwhelming, especially if one only retains 7 = 0 and 
the relation (5.2.7) but allows the possibility y ,  y’f 1. However, the exact theoretical 
results for the two-dimensional Ising model and precise numerical estimates for the 
three-dimensional model (see $9 6.2 and 8.1) definitely establish that the classical 
conclusions are generally untenable. Specifically one finds that rl( T ) ,  as defined 
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by (5.2.4), diverges at the critical point so that C(r) also becomes of ‘long range’ 
(even though j”C(r) dr necessarily remains finite). 

Finally we point out a rather common fallacious argument based on the mean 
field and phenomenological expressions for the correlation functions which lead to 
the conclusion that the specific heats should diverge with exponents 01 = 01‘ = + (see 
Fisher 1966 b). One merely observes that the internal energy may, in principle, be 
calculated by multiplying G(r) (or r(r), etc.) by the appropriate pair interaction 
potential and integrating. The  specific heat should then follow by differentiating 
with respect to  T.  The  error is that only values of G(r) for small r contribute to the 
energy integral (the potentials being short ranged) whereas, at best, the pheno- 
menological expressions are expected to be valid only for large Y .  This obvious point 
is easily overlooked, however, if the calculations are performed entirely in Fourier 
space. 

5 . 3 .  -Wean field theory 
’The idea of a mean field (or a ‘molecular’ field) is most familiar in the study of 

magnetism where it was first introduced by Pierre Weiss in 1907 (see, for example, 
Kittel 1956). For this reason we prefer to illustrate the approach by deriving 
van der Waals’ equation of state for a fluid. (For a systematic study of mean field 
theory in a variety of applications see Brout (1965); for specifically magnetic 
applications see Smart (1966).) 

Let us consider a classical system of particles interacting with a pair potential 
+(r) which may be decomposed into two parts: (i) a strongly repulsive part 
+a(r) > 0, characterized by a core radius a ,  and (ii) a relatively weak attractive part 
+b(r) 6 0, of range b. By decomposing the total potential energy UAIT = UN(a) + Ux(b)  
in a corresponding way, the configurational partition function may be written 

Jexp ( - PU,-) dRV [exp ( - PUA\-(“)) dR-y 
Q( T,  iV) -- (5.3.1) 

/ex, ( - PU,- + dRS 

(5.3.2) 

where (Iu( T ,  N )  is the partition function for a comparison system of particles inter- 
acting only with the repulsive potential +Jr). (As usual the angular brackets 
denote the canonical average in the original system.) T o  evaluate (exp (PUA7(b))) 
approximately we argue that in most configurations UlhT(b) may be replaced by its 
mean value, thereby neglecting fluctuations in the total energy. This mean value 
can be written 

(5.3.3) 

where pO(r) = pg2(r) (see (2.3.2)) represents the average of the fluctuating local 
density in the neighbourhood of a particle fixed at  the origin. If the influence of this 
particle on its environment is neglected we have simply pO(r) = p and the potential 
at 0 is just the average value in the fluid. Using this ‘mean field’ approximation 
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yields, say, 

( ~ ~ ~ ( b ) )  1: +nip/+,(r) dr = - +n7,4 $1. (5.3.4) 

From (5.3.2) the free energy per particle is then given approximately by 

F(T,P) = F a V , P ) - 4 I $ I P  (5.3.5) 

where the subscript a again denotes the properties of the comparison system with 
only repulsive interactions. The  corresponding equation of state is 

P = Pa(T, P> - 9 I $I P2‘ (5.3.6) 

Of course the calculation of the properties of the comparison system is very 
difficult even if 4a(r) is assumed to be just an infinite hard-core potential. The  
general behaviour of pa( T ,  p)  at low and high densities can, however, be readily 
seen and is well represented by the expressiont 

(5.3.7) 

which is, in fact, exact for a one-dimensional system of hard rods. (One might 
remark that this part of the problem is trivial for a lattice gas with single-site hard 
cores, or for a magnetic system.) 

With this approximation (5.3.6) becomes precisely the well-known van der 
Waals equation of state. Below a temperature 

k B T ,  = &Pnl,xI$I (5.3.8) 

the isotherms are found to become non-monotonic (and equivalently the free energy 
ceases to be convex in ZI = l / p ) ,  On applying Maxwell’s equal-area prescription or 
minimizing the free energy just as in $5.1, a first-order transition is generated. Of 
course, as in the phenomenological treatment, the appearance of the ‘metastable ’ 
and ‘unstable’ van der Waals ‘loops’ is really a sign that our approximations for the 
partition function have broken down. In  the absence of other justifications, there are 
few grounds, especially in the critical region, for trusting the ‘repair’ afforded by 
Maxwell’s construction. 

Without further detailed calculation it is clear from the phenomenological 
treatment that (barring accidentally vanishing coefficients due to some special 
property of pa( T ,  p)  ) all the classical critical behaviour and exponent values will be 
reproduced by (5.3.6) combined with (5.3.7) or with any other similar approximate 
(or exact) expression. 

5.4. Validity of classical theories 
There is no way of gauging the validity of the phenomenological approach other 

than by comparison with exact calculations, since its assumption of a Taylor-series 
expansion at the critical point is of a purely mathematical rather than of a physical 

t The  approximation (5 .3 .7)  overlooks a possible ‘melting ’ transition which, however, 
can probably only occur at densities well above those relevant in the critical region implied by 
(5.3.6). Conversely, allowance for this transition leads to a fairly satisfactory description of the 
triple point of a simple fluid (Longuet-Higgins and Widom 1964). 
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nature. Conversely, in the mean field approach it is quite clear that the main 
approximation is the neglect of the local fluctuations and correlations. Indeed, 
within mean field theory one may go on to estimate the fluctuations, for example by 
introducing external fields and computing, by the same methods, the incremental 
free energy associated with the induced density inhomogeneities (see, for example, 
Kadanoff et al. 1967). One then, of course, finds that the fluctuations are very large 
in the region of the predicted critical point. Thus mean field theory has a self- 
imposed limitation which implies that it should be accurate only outside some 
' critical region '. 

T o  estimate the size of this critical region we shall examine the fluctuations in the 
number of particles within a volume V,  of radius the interaction range b. It is 
plausible that if the relative fluctuation 

AN 
e = -  

( N ) b  
(5.4.1) 

in the number of particles interacting with some chosen particle is small, the 
replacement of po(r) in (5.3.3) by its meanvalue p will be accurate. This immediately 
suggests that when the range of interaction b is large mean field theory should be 
more reliable. 

With large b in mind we may, for purposes of estimation, use standard fluctua- 
tion theory (e.g. Landau and Lifshitz 1958, 9 111) to calculate AN. This gives 

where 
Nb % Pmax 

(5.4.2) 

(5.4.3) 

is the maximum number of particles that can be accommodated within the inter- 
action volume V,. This may be estimated by considering the packing of spheres of 
radius a in a large sphere of radius b. One concludes 

d 
N, N (5.4.4) 

where the parameter X is of order unity (and uniformly bounded for all d ;  see 
Rogers (1964)). Now when p = po mean field theory yields 

(5.4.5) 

where C is of order unity. Finally we note that p,/pm,, always has the value + for 
the continuum van der Waals equation and & for a lattice gas. (The former value is 
also typical of real fluids.) Combining these estimates indicates that the size of the 
non-classical critical region is? 

(5.4.6) 

where c is of order unity. 

t A criterion of this sort, although somewhat differently expressed, seems first to have been 
advanced by Brout (1960). 
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In  the limit b/a+ CO, in which the range of the attractive forces becomes infinite, 
this non-classical region apparently shrinks to zero suggesting that mean field 
theory becomes exact. We have to note, however, that in order to keep T, (and the 
ground-state energy per particle) finite as b + CO the potential 4b(r) must be ‘ scaled’, 
say in the form 

(5.4.7) 

so that Jz q&(r) d r  remains constant. Evidently the potential then becomes 
‘infinitely weak’ as well as ‘infinitely long ranged’. 

While such potentials are clearly unrealistic it is interesting to note that our 
surmise regarding the limiting validity of mean field theory can be proved rigorously. 
This was first done by Baker (1961 a, 1962) who considered a one-dimensional 
Ising spin system in zero field with w ( x )  = e-%. Kac et al. (1963) analysed explicitly 
a one-dimensional classical-continuum gas of hard cores at general density but also 
with an exponential w(x) .  They showed that van der Waals’ equation with Maxwell’s 
rule becomes rigorously correct when the limit b-tco is taken after the thermo- 
dynamic limit. Lebowitz and Penrose (1966) discussed a general classical gas in 
d dimensions and proved under wide conditions on the (constant) potential +Jr) 
that the equation of state becomes of the form (5.3.6) together with Maxwell’s rule, 
when the same double limit is taken. (If b+co before the thermodynamic limit all 
properties reduce to those of the comparison system a.) Finally Lieb (1966) has 
extended Lebowitz and Penrose’s theorem to quantum-mechanical systems. 

It is important to realize that these theorems do not imply that the critical 
exponents approach their classical values when b+m. On the contrary one should 
rather expect that the exponents, being always defined by the behaviour within the 
critical, albeit shrinking, region, do not change at all when the range increases, all 
other parameters remaining fixed. Confirmation of this expectation is provided, to 
anticipate $ 8  (see table 1 l), by explicit numerical studies of the Ising model (Domb 
and Dalton 1966). 

From (5.4.6) we see that the critical region should also shrink to zero if the 
range b remains finite (but greater than a/h) while the dimensionality d becomes 
infinite. Although the conclusion that the mean field predictions should also become 
correct as d+co is supported by a number of other lines of argument (e.g. Brout 
1960) it has not yet been proved rigorously. One convincing piece of evidence we 
may cite, however, is the formal expansion for the critical temperature of the 
nearest-neighbour Ising model on the hyper-cubic lattices (of co-ordination number 
q = 2d) found by Fisher and Gaunt (1964), namely 

-21~(2d) -4 -  133%(2d)-j- ... . (5.4.8) 

The expansion apparently has an asymptotic character and if truncated at the 
smallest term yields quite accurate values of T,(d) even for d = 2 and 3 (see $36 
and 7). 

In  the case of increasing d it seems very likely that the critical exponents do all 
approach their classical values. Thus, by methods to be discussed in 3 7, Fisher and 
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Gaunt concluded from their own and previous numerical work on the Ising model 
that? 

y(d)2:  1.75 ( d  = 2), 1.25 (d  = 3), 1.094 ( d  = 4), 1.038 (d  = 5) (5.4.9) 
and 

~ ( d )  = 0 for d > 4  (5.4.10) 

(although for the singular part of the specific heat (see 3 1.4) they estimated 

Despite the insight afforded by the discovery of the validity of the classical 
theories when d or b approaches infinity it remains true that Kature provides US 

only with systems of fixed low dimensionality interacting with forces of finite 
strength and (for the most part) finite range. We thus turn to the more detailed 
and accurate study of the model systems described in $4 .  

a,(4) N - 0.17, 01,(5) N - 0.4). 

6. Analytic theory of the Ising model 
In  this section we review the analytic theory of the Ising model in as far as it is 

relevant to critical-point behaviour. This  theory is restricted almost entirely to 
two-dimensional systems but reveals unequivocally the theoretical shortcomings of 
the phenomenological and approximate classical approaches. The  exact results also 
point to the type of behaviour to be expected for three-dimensional and other more 
realistic models and serve as stringent testing grounds for the methods based on 
exact series expansions which will be described in the following section. 

We shall not here discuss the detailed mathematical techniques used to ‘solve’ 
the two-dimensional Ising model; in the first place these are still rather elaborate 
but, secondly, they cast little, if any, light on the origins of the particular types of 
critical behaviour eventually revealed. For details of the many different mathe- 
matical techniques and devices used the reader should consult the reviews by 
Newel1 and Montroll (1953), Domb (1960), Dykhne and Rumer (1962), Montroll 
(1964), and the books by Green and Hurst (1964) and Mattis (1965) as well as the 
following original papers (and others to be cited below): Kramers and Wannier 
(1941), Onsager (1944), Kaufman (1949) and Yang (1952) for the algebraic/matrix 
method; Kac and Ward (1952), Potts and Ward (1955), Sherman (1960) and 
Burgoyne (1963) for the combinatorial/determinantal approach; Hurst and Green 
(1960), Green (1962), Kasteleyn (1963), Montroll et al. (1963) and Fisher (1966 c) 
for the Pfaffian/dimer methods; and Schultz et al. (1964) and Kadanoff (1966 a) 
for the fermion-operator approaches. 

6.1. Exact  thermodynamic results 
Unless specified otherwise we shall in this section always have in mind the 

S = 4 Ising model with only nearest-neighbour interactions. 
As is well known the one-dimensional Ising model is easily soluble by a matrix 

method (Ising 1925, see, for example, Domb 1960) for all H and T.  I t  exhibits no 
phase transitions except that the point H = T = 0 is non-analytic and may be 

7 It seems not unlikely in view of certain theoretical arguments that y(6), and even y(5), 
should already take the values unity. The  small excesses y - 1 estimated by Fisher and Gaunt 
may be beyond the available accuracy for d 3 5 .  
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interpreted as a type of critical point (with T, = 0) since, for example, the range of 
correlation becomes infinite there. 

Conversely, the two-dimensional ferromagnetic Ising model exhibits a phase 
transition in zero field (and only in zero field (Yang and Lee 1952 a, b)). The 
transition point for the square lattice ‘was first located by Kramers and Wannier 
(1941) who found, in terms of the naturally arising variable? 

v = tanh __ = tanh __ (tBJT) (k:T) 
that 

71, = J 2 -  1. 

(6.1.1) 

(6.1.2) 

They used a symmetry property of the partition function with respect to high and 
low temperatures. Onsager showed this reflected the planarity$ of the square 
lattice so that the argument cannot be generalized to any three-dimensional lattice 
(see Wannier 1945). 

The first really crucial step was Onsager’s (1944) exact calculation of the 
partition function of the plane square lattice in xero field with two interaction 
parameters : J, for horizontal and J, for vertical bonds. From the explicit expression 

- sinh 2K, cos 9, - sinh 2K, cos 8,) (6.1.3) 

for the limiting free energy per spin, where 

(6.1.4) 

it is easily seen that there is a singularity at a critical temperature determined by 

(6.1.5) 

which is equivalent to (6.1.2) when J, = J, = J = $ J l , ,  At this point the argument of 
the logarithm in (6.1.3) vanishes quadratically with T ,  whence it follows that, as 

F ( T )  = F,+a(T-T,)+b(T-T,)21nI T-T,I+ ... (6.1.6) 

where a and 6 are constants (depending on Jz/J,). The appearance of the logarithmic 
factor in the second-order term proves that, contrary to the classical treatments, the 
zero-field free energy has no Taylor-series expansion about T = T,. This conclusion 
is quite inescapable and it would be unreasonable to expect more complex and 
realistic models to be simpler in this respect. 

t It should be noted that for consistency with the Ising-model literature we write J J ,  = J 
here and below. 

$ A planar lattice may be drawn in the plane with no crossing bonds (or ‘lines’). The 
analytical significance of planarity is particularly evident in the ‘dimer’ solution of the Ising 
model; see Kasteleyn (1963) and Fisher (1966 c.) 

T+T,+,  
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Differentiation of (6.1.6) shows that the internal energy varies as 

U ( T )  = U,+Ak,(T,-T)ln (6.1.7) 

and so has a vertical tangent at T = T,. It also follows that the specific heat exhibits 
a symmetric logarithmically infinite singularity of the form 

-A,+O((T-T,)lnI T-T,I)  (6.1.8) 

so that 
ci = cif = O(1og) (Isingd = 2). (6.1.9) 

This is in marked contrast to the classical prediction of a finite, discontinuous and, 
hence, asymmetric anomaly (see figure 11 which indicates as well the erroneous 

0 
- TIT, 

Figure 11. Exact specific heat of the plane square Ising model (full curve) compared with 
Bethe’s approximation (dotted curve) and the Kramers-Wannier and Kikuchi approxi- 
mation (broken curve). (After Domb 1960.) 

critical temperatures predicted by two moderately sophisticated but approximate 
theories). The  exact result also contrasts with the asymmetric, although near- 
logarithmic, experimental data. 

From (6.1.5) one finds that kBT,/Jv+O when J,/J,+O, although even for the 
highly anisotropic case J,/J, = 1 j l O O  the critical temperature drops only to about 
half the value for J, = J,. The  results (6.1.6) to (6.1.9) remain quite unchanged for 
all non-zero J, and J,. However, the ‘critical region’ in which the higher-order 
terms are relatively small, shrinks as T, decreases (AT/%-  l/(ln (Jv/Jz)}) and, in 
particular, the specific-heat amplitude A drops fairly rapidly. 

Nevertheless, the important theoretical point is that the nature of the singularity 
is independent of Jz,J, provided that the lattice remains truly two dimensional 
(i.e. neither J, not J, vanishes). Precisely the same independence is found when the 
exact solutions for other lattices are examined. These have been obtained for the 
following planar lattices (q denotes the co-ordination number) : triangular, q = 6 
(Houtappel 1950, Temperley 1950, Wannier 1950); honeycomb, q = 3 (Houtappel 
1950); kagomC, q = 4 (Syozi 1951, Kano and Naya 1954, Naya 1954); various more 
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general lattices (Utiyama 1951, Syozi 1955, Green and Hurst 1964, Vaks et  al. 1966), 
including cases where a fraction of the spins are Ising spins with S > * or even more 
general systems (Fisher 1959). (Kasteleyn (1963) has shown how any regular or 
irregular planar Ising lattice may be ‘solved’.) 

The  critical temperatures and amplitudes for the different lattices vary some- 
what (typically by a few per cent) even when expressed in reduced form, as can be 
seen from table 2 where numerical values are listed for a number of parameters of 
the standard Ising lattices.? (Note in particular that the square and kagomC lattices 
have diffeerent critical temperatures although their co-ordination numbers are the 
same.) The  logarithmic nature of the specific heat anomaly, however, is totally 
insensitive to the lattice structure (provided it remains two dimensional).: 

I t  should be noted that in table 2 the lattice-gas critical ratio satisfies 

(6.1.10) 

The  antiferromagnetic entropy in the limit T+ 0 is denoted by S,,,,(O). 
Historically the next significant thermodynamic result was the expression 

MO( T )  = (1 - (sinh 2K, sinh 2K,)-2)’;8 (6.1.1 1) 

for the spontaneous magnetization of the plane square lattice (Onsager 1949, Yang 
1952, Chang 1952, Montroll et al. 1963). From this we immediately have 

,8 = 4 (Isingd = 2) (6.1.12) 

(and, as for the specific heats, with 

With this result and that for the specific heat we may apply the rigorous 

in sharp disagreement with the classical value 
experimental observations on three-dimensional systems). 

inequalities (3.2.1) and (3.3.1) to reach the conclusion 

and 
y’ 2 1% (Ising d = 2) 

8 2 1 5  ( I s ingd=2) .  

(6.1.13) 

(6.1.14) 

Theoretical arguments given below show that the equality holds in (6.1.13) and 
numerical studies described later suggest strongly that (6.1.14) is also ‘best possible’. 
In any event the large deviations from the classical predictions cannot be doubted. 

The exact expression for MO has been extended to most of the other planar 
lattices mentioned, in all cases yielding5 

(6.1.15) 

+ The data for the three-dimensional lattices in this and the following tables are obtained 
from the series-expansion methods as will be explained in the next section. 

$ This statement does not, as yet, rigorously include lattices with further-neighbour inter- 
actions (and hence crossing bonds). Numerical evidence to be reviewed later ($8.1), however, 
suggests that the singularity should again be unchanged, provided the interactions remain of 
finite range. 

S See Potts (1952), Naya (1954), Fisher (1959), Syozi and Xakano (1955), Syozi and Naya 
(1960), Green (1962), Stephenson (1964) and Vaks et al. (1966). Only the penultimate two 
references contain full derivations of the result for the triangular lattice from which most of the 
other results follow by ingenious but straightforward transformations. 
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Values for the amplitude B again vary slightly from lattice to lattice as can be seen 
in table 2. 

Onsager (1944) also calculated the interfacial free energy (or ‘surface tension’) 
of the square lattice for an interface parallel to the lattice axes. His result has 
recently been extended to a diagonal interface by techniques that also yield the 
boundary (or wall) free energy (Ferdinand and Fisher 1967). The  interesting 
critical behaviour of these quantities is beyond the scope of this article although 
reference should be made to the related conjectures of Widom (1965 a, see also $9). 

Table 3. Critical parameters of the Ising model: perpendicular and anti- 
ferromagnetic susceptibilities 

Lattice’ h. sq. t. S.C. b.c.c. 
4 3 4 6 6 8 

Perpendicular susceptibilities (see equation (6.1.1 6)) 
(4J/m2) X L C  1.1 54701 1.136951 1.120253 

Tmaxl Tc 1.1 04.. . 1.08872 ... 1.077 ... 
(4J/m2) Ximax 1.2126.. . 1.183144 1.15976 

x.L 0.4840.. . 0.4701715 

Antiferromagnetic susceptibilities (see equation (7.2.1 8) ) 
tc = @BTc/m2) xc 0.1214 0.1570 - 0.3397 0.3692 

0.2398 0.2768 - 0.4519 0.4651 
X+ 5 0.33 5 0.32 - 0.11 0.1 1 

(4J/m2) x c  

X -  N 0.25 N 0.23 - 0.30 0.31 
%ax/ Tc 1,6877 1,5371 - 1,0981 1.0653 

(qJ/m2) xrnax 0.41628 0.42957 - 0.46444 0.47310 

t h., honeycomb; sq., square; t., triangular; s.c., simple cubic; b.c.c., body-centred cubic. 

The only other bulk thermodynamic property so far calculated generally for 
planar lattices is the peYpendicuZm or transverse susceptibility xL( T )  in zero field 
(Fisher 1963 a, Stephenson 1964). Close to T, this behaves like the energy, i.e. as 

(6.1.16) 

where x,, and X ,  are tabulated in table 3. Above T, a plot of xI. passes through a 
rounded maximum with the parameters listed in table 3. (Classical theory predicts 
only a sharp finite peak at  T = T,.) 

No exact expressions for the partition function of any two-dimensional lattices 
in a j n i t e  magnetic field have been found except for a rather special class of anti- 
ferromagnetic ‘superexchange’ Ising models (Fisher 1960). In  these models the 
magnetic spins ‘decorate’ the bonds of a normal Ising lattice and are coupled 
together antiferromagnetically via ‘ non-magnetic ’ spins on the lattice nodes which 
are supposed not to interact with the field. The  free energy can be calculated 
explicitly for all H and T (in terms of the free energy of the underlying planar 
lattice in XeYo field) and one finds a phase diagram like figure 6 except that the 
transition line Ht( T )  remains continuous (i.e. lambda like) right down to  T = 0. 
The  specific heat in a field still has the form (6.1.8) and so does the parallel suscepti- 
bility x(H, T ) .  In  zero field, however, the antiferromagnetic parallel susceptibility 
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behaves like xL in the critical region (although it falls to zero rather than to 
~ ~ ( 0 )  = m2/qJ as T-tO). Theoretical arguments and numerical studies (see later) 
indicate that this behaviour is most probably also correct for the antiferromagnetic 
susceptibilities of the standard Ising lattices. 

6.2. Exact results f o r  the correlations 
The true range of correlation K of the Ising model can be expressed in terms of 

the ratio of the eigenvalues of the largest and second-largest modulus of the 
appropriate transition matrix.? From Onsager’s (1944) calculation we thus find 
for the propagation of correlation along the x axis above T, 

(6.2.1) 

Table 4. Critical parameters of the Ising model: correlations1 
Lattices sq. t. S.C. b,c.c. f.c.c. 

Q 4 6 6 8 12 

F f  2: Flf 

D 
fi+ -f + 

1.762747 
0.688 
03703380 
1.00530 
1.07499 
0.57959 
2,5974 
0.350 
0,02940 
0.108 

1.902854 
0.74 
0.66865 
0.99703 
1*18100 
0.54962 
2.8503 
0.311 
0.02940 
0.108 

2.0888 
0.12 
0,320 
1.026 
3.87 
0.46448 
4.441 8 
0,491 
0.084 
0.20 

2.243 5 
0.18 
0.26 
1.03 
4.1 
0.44761 
4.7733 
0.467 
0.073 
0.1 5 

2.3024 
0.23 
0.25 
0.98 
4.3 
0,44027 
4.9292 
0.457 
0.065 
0.12 

$. For definitions see equations (6.2.2), (6.2.5)-(6.2.7) and (8.1.14) to (8.1.18) 
0 sq., square; t., triangular; s.c,, simple cubic; b.c.c., body-centred cubic; f.c.c., face- 

centred cubic. 

From Kaufman’s (1949) complete diagonalization of the transition matrix one 
obtains below T, precisely minus twice the expression (6.2.1). Near T, we hence find 

(6.2.2) 

for T > T,, and a similar expression for T < T,, where 

v = v’ = 1 (Isingd = 2) (6.2.3) 

and F -  = BF- and f are tabulated in table 4. An explicit result is also available for 
the diagonal-lattice direction (and for the triangular lattice, see Fisher and Burford 
(1967) and Kadanoff (1966 a)). The  behaviour near T, is just like (6.2.2) with, more- 
over, the same amplitude. Indeed it is almost certain that K becomes quite indepen- 
dent of direction as T, is approached (Onsager 1944, Kadanoff 1966 a). The  exact 
values (6.2.3) again disagree with the classical expectation v = V ’  = h. 

This follows from the matrix expressions for the correlation functions (Ashkin and Lamb 
1943, Kaufman and Onsager 1949, Domb 1960) but for an explicit derivation see Fisher and 
Burford (1967). 
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Kaufman and Onsager (1949) have shown how to calculate the spin-correlation 
function r(r, T )  = (sos,) of the square lattice explicitly in terms of determinants 
of order Y / U  (see also Potts and Ward 1955, Montroll e t  al. 1963). Near T, the 
behaviour of F(r, T )  for all r is just like that of the energy (6.1.7). It should indeed 
be noted that, quite generally, 

(6.2.4) 

However, the critical values of r(r) and the amplitudes of the singular term depend 
on r. (Fisher and Burford (1967) list some other explicit numerical values.) 
Precisely similar results have been obtained for the correlation functions of the 
triangular, honeycomb and other lattices (Stephenson 1964, Kano 1966, Vaks et aE. 
1966). 

For the square lattice at the critical point Onsager (see Kaufman and Onsager 
1949, footnote 7, Stephenson 1964) obtained an explicit product formula for the 
diagonal correlations at arbitrary distance. Analysis of his expression yields 

(6.2.5) 

where D is given numerically in table 4 (Fisher 1959, Fisher and Burford 1967). 
Wu (1966) has found a precisely similar result for the critical decay along an axis ; in 
particular the amplitude D is unchanged, indicating complete cylindrical sym- 
metry. Wu’s analysis extends immediately, using Stephenson’s (1964) work, to 
give a similar result for the triangular-lattice correlations along an axis (see also 
S‘aks et al. 1966). 

Fourier transformation of (6.2.5) yields 

(6.2.6) 

7 = $ (Isingd = 2) (6.2.7) 
in contrast to the classical value 7 = 0 (see (2.2.4), (2.5.2), (5.2.8)). Values of fi are 
given in table 4. 

Wu (1966) and Kadanoff (1966 a ) t  have independently examined the decay of 
correlation away from the critical point. ForJixed T above T, they find 

(B+ a’”) exp ( - KY) F(r, T )  N J - - - -  ( Y + C c ,  T >  T,) (6.2.8) 

where the power of Y is in agreement with the classical Ornstein-Zernike prediction 
(2.3.13) for d = 2. This is not surprising since we are now away from the critical 
point and the forces of interaction are of short range. For fixed T below T, the 
result is somewhat different, namely 

(B-  a2)  exp ( - K Y )  

r2 r(r, T ) N  (y--fm, T <  T,) (6.2.9) 

i Attention should also be drawn to work by Ryazanov (1966), although some of his results 
seem to be incorrect. Cheng and Wu (1967) have discussed angular dependence of the decay 
in some detail. McCoy and Wu (1967) have calculated the decay of correlation for an Ising 
model in the imaginary magnetic field H = irkgT12m. 
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where K,  of course, takes the appropriate value for T < T,. The  appearance of the 
inverse square of Y is not in accordance with classical ideas even though we are 
again away from the critical point. Indeed this result seems to mean that, for 
reasons not yet understood, the decay of correlations is affected in a profound way 
bv the existence of long-range order or, equivalently, by the potential or actual 
coexistence of oppositely magnetized domains. 

Stephenson (1966) has similarly investigated the net four-spin correlation 
function 

r(4)(S>r,r+S) = (s0s6srsr+8)-<s0sb) (srSr+a) (6.2.10) 

for large r, with the results 

B a2 exp ( - 2 ~ r )  q4)(ti, r, r + S) 2i A -  ( Y + o 3 ,  T >  T,) 
Y2 

(6.2.11) 

- exp ( - K Y )  (Y +- T < T,) (6.2.12) 
Y2 

(6.2.13) D a* I ‘ (4 )c (S ,r , r+S)N+ (r-tm, T = T,) 

where D(4) = ( 2 1 ~ )  B(4) .  Kadanoff et al. (1967) have reported similar calculations by 
Hecht (1967) has made similar calculations but also finds 

while at the critical point 

Y 

r(3) (S?  r, = ($os6 sr> - sS> (sr> 

B ( 3 )  a* exp ( -  KY) 
Y 2  

N - (?,+-a, T <  T).  (6.2.14) 

Above Tc this correlation function must vanish identically in zero field. 

6.3. Scaliiig of correlations and relation for y ,  v and 7 
Finally the exact correlation calculations have revealed that 1 /IC is essentially the 

only important correlation length near T,. Specifically Kadanoff (1966 a, b) has 
justified? the result 

(6.3.1) 

for T- t  T, f , r+cc but KY arbitrary, finite, which represents a ‘scaling property’ of 
the correlations near T,. From (6.2.8) and (6.2.9) we see that 

(6.3.2) 

as x becomes large. A form such as (6.3.1) was originally surmised by Fisher (1959, 
1964 b) and leads, as we shall now show, to an important relation between y ,  v and 7) 

and between y’, v’ and 7 .  
T o  give the argument in general form applicable to any system exhibiting a 

critical point (Fisher 1964 b) let us suppose, in accordance with the definitions of 7 ,  

t The details of the calculation are, unfortunately, not yet quite as complete as for the other 
results described. Kadanoff e t  al. (1967) report similar scaling formulae obtained by Hecht 
(1967) for r4(6, r, r + 6) and r,3)(6, r) corresponding to (6.2.10) to (6.2.14). 

44 
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that the appropriate pair correlation function satisfies 

(6.3.3) 

for T+.T,+, r-+o3, K r  arbitrary, where D+(x-+O) = D#O and D+(x) decays 
sufficiently fast for large x.y From the fluctuation relation (2.5.6) (or its appropriate 
analogue) we have 

(6.3.4) 

As T+ To and K -+ 0 the divergence of xT comes entirely from large values of r so 
that the lower limit on the sum may be replaced by some fixed R 9 U .  In  the same 
limit the summand varies increasingly slowly with Y and may thus be converted with 
vanishing relative error to an integral on x = KY over the interval x,, = KR to CO 

which becomes 0 to 00. If S,Xd-l is the surface of a d sphere of radius X we thus 
obtain 

(6.3.5) 

The integral is merely a constant so on substituting for the temperature dependence 
of K from (2.3.11) or (6.2.2) we have 

We conclude immediately that 
( 2 - q ) v  = y. 

(6.3.6) 

(6.3.7) 

The  same arguments below T, clearly yield 

(2 - 7) v’ = y’. (6.3.8) 

These replace the classical relations (5.2.7) of generalized Ornstein-Zernike theory 
to which they reduce when q = 0. 

Using the values (6.2.3) and (6.2.7) for the planar Ising models establishes 

y = y’ = (Isingd = 2) (6.3.9) 

which should be compared with (6.1.12). 
In  the same way it is easy to prove from (6.3.1) that the effective inverse cor- 

relation range K ~ (  5“) defined through the second moment of r(r) (equation (2.5.13)) 
is exactly proportional to K ( T )  near T, so that v l = v  and vl’=v’ as anticipated 
in S 2 - 3 4  Similarly the scaling expressions corresponding to (6.2.11) to (6.2.13) 
(Kadanoff et al. 1967) lead via the appropriate fluctuation relation, which expresses 
the zero-field specific heat as a sum over to the correct logarithmic divergence 
(6.1.8). (The difference from the fallacious argument sketched at the end of $5.2 
should be noted.) 

an exponential decay of D(x). 

existence of the second moment. 

t Actually we only assume thefiniteness of xT for T >  Tc (see ( 6 . 3 . 5 )  ) but may actually expect 

3 We must now assume also that D ( x )  vanishes at infinity sufficiently fast to ensure the 
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In  summary the exact theory for the two-dimensional Ising model gives the 
values of 01, a’, /3, y, y’, v = vl, v‘ = vl’ and 7, and a strong inequality for 6. The  
appropriate values are listed in the fold-out table at the end of the article. In  all 
cases the classical critical-point predictions are found to be incorrect. T o  obtain any 
sensible comparison with experiment, however, one must turn to three-dimensional 
models for which the only really rigorous result is the existence of a transition (see 
Griffiths 1964 b, 1967). 

7. Use of exact series expansions 
I n  default of exact solutions less rigorous methods must be used to obtain 

information. ‘ Single-shot ’ approximation methods, however suggestive and 
seemingly accurate, are intrinsically unsatisfactory since they imply no systematic 
way of estimating the nature or magnitude of the errors. Techniques of successive 
approximation, on the other hand, enable reliable conclusions to be drawn by 
extrapolation provided the convergence is (i) regular and (ii) reasonably rapid. One 
can test for these properties by trying the methods on analogous exactly soluble 
problems. Of the many approximate methods developed for the Ising and 
Heisenberg models relatively few lead to systematic successive-approximation 
schemes and, of those that do, most appear to converge slowly or irregularly and, 
in particular, non-uniformly in the critical region. By far the most successful 
schemes of calculation have been based on exact power-series expansions for the 
free energy. This approach was pioneered by Domb (1949) and has been developed 
and extended by Domb, Sykes, Fisher and collaborators and by Baker, Rushbrooke 
and others. It has led to remarkably precise estimates of the critical exponents and 
amplitudes for both two- and three-dimensional Ising models (see the data already 
displayed in tables 2 to 4) and has also been applied successfully to the Heisenberg 
and other model systems. At the same time it has led, by comparison with closely 
related mathematical problems, to some insight into the underlying combinatoric 
origins of critical-point behaviour. 

By confining attention to these methods we do not mean to dismiss out of hand 
all other approximation methods. A number of these give a useful degree of 
physical insight and some of them may well lead to more powerful theoretical 
developments. At present, however, none seems competitive with the series- 
expansion techniques for discussing the critical behaviour of the simple Ising and 
Heisenberg models (and indeed many go little further than the straightforward 
mean field and phenomenological approaches). 

The  layout of this section is as follows. In  the first part we describe briefly the 
series expansions available and their character. The  analysis of the series by the 
ratio method is described in the second part, while Pad6 approximants and their 
applications are discussed in the third part. The  numerical results so far obtained 
for the Ising and Heisenberg models are surveyed in 8 8. 

7.1. Derivation of expansions 
Given a bounded Hamiltonian such as the general spin Ising-Heisenberg 

Hamiltonian, a formal high-temperature expansion in powers of 1/T may always be 
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constructed by expanding the Boltzmann factor exp ( - X / k B  T )  and taking the 
trace term by term. It is to be anticipated that for sufficiently short-range inter- 
actions one will be able to prove rigorously that the resulting series expansion for 
the free energy, 

F ( T )  = 5 f,(k,T)-” (7.1.1) 

converges absolutely for sufficiently high T.  Although this has not been accomplished 
yet, such convergence has been proved for the not dissimilar case of the fugacity 
and density (or virial) expansions.? 

We shall not review the extensive mathematical techniques that have been 
developed to derive such expansions correctly and to high order (as proves 
essential).$ We shall, however, point out some of their significant features. Firstly, 
because of the assumed pairwise interactions the expansion coefficients can be 
represented diagrammatically in terms of linear graphs 3Gn of n lines and ‘U ( < 2n) 
vertices. Specifically the nth coefficient in the expansion (7.1.1) of the free energy on 
a lattice 2?\- of N vertices has the form 

n=O 

fn = c w(37Jn) x(  yun ; X Y )  (7.1.2) 

where the graph weight factor w depends only on the graph gun and the general 
properties of the Hamiltonian (spin, exchange parameters, etc.), while x(  9?,,%; Kv) 
is an occurrence factor or ‘lattice constant’ (Domb and Sykes 1957 a, Domb 1960, 
Fisher 1965 a, b, c, Sykes et al. 1966) determined by the number of ways of 
embedding gGn in the lattice 8, according to appropriate rules. 

For the general Ising-Heisenberg model one must, in a direct approach, con- 
sider graphs with multiple (or repeated) lines, and the calculation of the weights is 
difficult. For the nearest-neighbour S = 8 Ising model, however, one can avoid 
multiple lines by expanding in terms of the variable ‘U = tanh(J/kBT) since this 
‘ linearizes ’ the basic bond Boltzmann factor via the identity 

2’ 

exp (Ks, s,+&) cosh K (  1 +us, s,+&. (7.1.3) 

The corresponding weights are then just unity for every allowed graph, and one is 
left only with the combinatorial problem of determining the lattice constants. 

T o  illustrate this explicitly we quote the basic expansion for the S = 8 Ising 
correlation function F(r) in zero field. One finds 

53 

r(r, T )  = C un q,(r) (r # 0) 
n=l  

(7.1.4) 

Groeneveld (1962), Penrose (1963), Ruelle (1963 b, 1964 a, b), Lebowitz and Penrose 
(1964), Ginibre (1965). 

$ For a review of the methods used in constructing series expansions see Domb (1960), 
and, more briefly, Fisher (1965 a) and Domb (1965 b). For some more detailed accounts and 
recent developments see Sykes (1961), Sykes et al. (1965), Sykes e t  al. (1966), Rushbrooke and 
Wood (1958, 1963), Rushbrooke (1964), Domb and Wood (1964), Baker e t  al. (1964) 
and Strieb e t  al. (1963). Simplifications for the S = 03 Heisenberg model are discussed by 
Stanley and Kaplan (1966 a, b), Wood and Rushbrooke (1966), Joyce and Bowers (1966) and 
Joyce (1967). 
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where q,(r) = qn(r ; 0 )  is the coefficient of N o  in 

qn(r; N )  = number of distinct graphs of n lines in a lattice Ziv 
( N  > nd) with periodic boundary conditions, in which 
(i) no more than one line lies on each lattice bond, (ii) an 
odd number of lines (1,3,5, . . .) meet at the sites 0 and r 
and (iii) an even number of lines meet at all other lattice 
sites. (7.1.5) 

As illustrated in figure 12 the required graphical configurations consist of a self- 
avoiding chain of 1 lines from the origin to site r, together with one or more 
‘separated polygons’ of n-Z lines (which may cross or touch at vertices, although 
no common lines are allowed). 

Figure 12. Typical graphical configuration of a chain and ‘polygons’ contributing (in high 
order) to the expansion of T(r ,  T )  in powers of U .  

Note by (2.5.6) the susceptibility has an expansion 

(7.1.6) 

in terms of the total number of self-avoiding chains and polygons. The  known 
coefficients a, for the square and simple cubic lattices are listed in table 5 .  By 
(6.2.4) the coefficients of the energy expansion are proportional to qn(6) and so 
correspond, on insertion of the ‘missing’ line from 0 to 6, only to closed walks or 
polygons. 

?Numerically the coefficient q,(r) is dominated by C,(r), the number of n-line 
self-avoiding chains or ‘walks’. This can be checked in table 5 where the total 
number of self-avoiding walks 

c, = c Cn(r) (7.1.7) 

is also listed for comparison with a,. The numbers cn and the distributions C,(r) 
arise in other statistical problems and are particularly relevant to the theory of 
‘excluded volume’ in polymers (see, for example, Flory 1953). As a consequence 
their properties have been studied extensively by direct enumeration (e.g. Fisher 
and Sykes 1959, Fisher and Hiley 1961, Martin 1962, Domb et al. 1965), by Monte 
Carlo techniques (extending to n = 800) (e.g. Wall et al. 1954, 1955, 1957, Wall and 
Erpenbeck 1959) and by rigorous analysis (e.g. Hammersley 1957, 1961, Kesten 

r 
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1963, 1964). One knows, for instance, that the sum (or generating function) 
m 

n=l 
V(r; w) = C wn Cn(r) (7.1.8) 

which is analogous to r(r, T), converges absolutely up to a ‘critical’ value 
w = w, = liml cnI-1/n, for which quite close rigorous bounds are available (Fisher 
and Sykes 1959). Furthermore, 

m 
C ( w ) =  l+E%?(r,w)= 1+ Ec,wn  (7.1.9) 

which corresponds to the susceptibility, diverges at least as sharply as a simple pole 
but not unboundedly faster when w- tw,  (Kesten 1963). 

r n=l 

Table 5. Expansion coefficients a,, for the Ising-model susceptibility (S = $) 
and the corresponding number c, of self-avoiding walks 

Square lattice Simple cubic lattice 
n a n  Cn an Cn 

1 4 4 6 6 
2 12 12 30 30 
3 36 36 150 150 
4 100 100 726 726 
5 276 284 3510 3534 

6 740 780 16710 16926 
7 1972 2172 79494 81390 
8 5172 5916 375174 387966 
9 13492 16268 1769686 1853886 

10 34876 44100 8306862 8809878 

11 89764 120292 38975286 41934150 
12 229628 324932 198842742 
13 585508 881500 943 9745 10 
14 1486308 2374444 4468911678 
15 3763460 6416596 21175146054 

16 9497380 17245332 100117875366 

Results taken from Sykes and Fisher (1962) and Sykes (1961, 1963). 

The  Ising model evidently differs from this excluded-volume problem only by 
the presence of the separated polygons. The  consequent close analogies between 
the underlying combinatorics gives one some insight into the ‘causes’ of the critical 
behaviour and, for example, its dependence on dimensionality, the excluded volume 
being relatively much smaller for higher d.  Equally the self-avoiding walk data 
provide a further testing ground for extrapolation methods. 

In  addition to the high-temperature expansions of the free energy one may also 
derive high-field expansions in powers of the variable 

(7.1.10) 

which enters on ‘overturning’ a spin from the fully aligned state. These expansions 
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have the character of Mayer activity expansions (indeed by (4.2.8) the variable y is 
proportional to the activity z of the corresponding lattice gas). Thus convergence is 
assured for sufficiently small y by extension of the continuum proofs of Ruelle 
(1963 b), Penrose (1963) and Ginibre (1965). 

For the k ing  model the corresponding coefficients B,(T) are simply poly- 
nomials of degree q2 in the variable 

(7.1.11) 

For S = 3 they have been calculated by Sykes et al. (1965) up to I = 13 for the 
honeycomb, square and diamond lattices, and up to 1 = 11, 9, 8 and 6 for the simple 
cubic, body-centred cubic, triangular and face-centred cubic lattices respectively. 
For ferromagnetic (but not antiferromagnetic) interactions one may set y = 1 
(i.e. H, = 0) and rearrange to obtain a zero-field low-temperature expansion in 
powers of x. Convergence may justifiably be assumed for sufficiently small T 
although it has not yet been proved (except, of course, for the free energy and 
spontaneous magnetization of the planar Ising models). As an example of these 
series the spontaneous magnetization of the face-centred cubic lattice is given by 

MO( T )  = 1 - 2 ~ "  - 24%'' + 2 6 ~ ' ~  + 0 + 0 - 4 8 ~ ~ '  - 2 5 2 ~ ~ '  + 7 2 0 ~ ~ ~  - 4 3 8 ~ ~ ~  
- 192x3'- 9 8 4 ~ ~ 0 -  1008~4'+ 12 9 2 4 ~ ~ ~ -  19 5 3 6 ~ ~ ~ +  3 0 6 2 ~ ~ ' -  8 2 8 0 ~ ~ '  
+ 26 694x5'+ 153 5 3 6 ~ ~ ~  - 507 9 4 8 P  + 406 0 5 6 ~ ~ '  - 79 5 3 2 ~ ~ '  
+ 729 912x6'+ 631 6 0 8 ~ ~ ~  - 9 279 3 7 6 ~ ~ ~  + . . . . (7.1 . 1 2) 

For the Heisenberg model, on the other hand, the B,(T) have a complicated 
functional form and they have not been evaluated explicitly for any I >  3 (Dyson 
1956, Katsura 1965, Wortis 1965). Furthermore, in the isotropic case one cannot 
obtain the low-temperature zero-field behaviour (spin-wave expansion) by a simple 
rearrangement. Indeed it is likely that the spin-wave expansion is only asymptotic 
and contains no information on the critical-point behaviour (Dyson 1956). 

7.2. Ratio method 
The  radius of convergence yo of a power series 

00 

F(x)  = c a,zn 
TL=O 

(7.2.1) 

is determined by the singularity (non-analytic point) xo of F ( z )  which lies nearest to 
the origin in the complex x plane; specifically 

(7.2.2) 

(There may, of course, be a number of singularities of equal modulus.) Generally 
the 'physical domain' of x will be the positive real axis and we may then divide 
series expansions into two classes : 

(i) The  dominant or strongest singularity on the circle of convergence lies on the 
positive real axis at x = x, = yo; this will, in general, be identified as the critical 
point. 
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(ii) The  point x = Y, on the real positive axis is non-singular or is dominated by 
other singularities on the circle of convergence. (The  dominant singularity 
x, = ro exp (io,) has the most negative exponent As in the sense of (1.4.7) with x + 0 + 
corresponding to  r = I x I --f yo  - with arg (x) = O , . )  

If the coefficients a, are all positive, as they seem to be for the high-temperature 
susceptibility expansions (see table 5), the function must belong to class (i). For 
this class of function the asymptotic behaviour of the coefficients a,  as n + m  
determines directly the nature (and position) of the critical-point singularity. For 
class (ii) functions, which we shall consider later, the leading asymptotic behaviour 
describes only non-physical singularities. This seems to be the situation for (7.1.2), 
the expansion of MO( T )  for the face-centred cubic lattice, and for most other low- 
temperature expansions in three dimensions. 

T o  demonstrate the connection between the asymptotic behaviour of the 
coefficients and the singularity at z,  suppose? 

(7.2.3) 

where r ( x )  is the gamma function. This, at first sight arbitrary, assumption is 
actually surprisingly general since by Appell's comparison theorem (see Dienes 
1957) we can conclude for g > - 1 and real x that 

as 
F ( z )  = A( 1 - p~)-(O+l) { 1 + O( 1 - p ~ ) }  

(7.2.4) 

I n  other words, the parameter g determines directly the exponent of divergence at 
the singularity 2, = l/p. 

The  converse problem of determining the complete asymptotic form of a, given 
the singularities of F ( x )  is, in full generality, rather subtle (see Dienes 1957, chap. 
XIV). However, one can see that more distant singularities xj contribute to the 
expression for a, factors like 1 + 0{(zc/xj)"} which become negligible exponentially 
fast. However, other (weaker) singularities on the circle of convergence lead to 
more slowly decaying oscillating factors typically of the form 1 + B r h  exp ( in@) 
with h > 0. Conversely (7.2.4) remains valid for the singular part of F ( x )  even when 
g 6 - 1. (For g = - 1, - 2, - 3, . . . a factor In (1 - px) arises.) 

Given the practical problem of estimating the critical point x, = l ip  and its 
exponent, say, y = 1 +g, it is natural, as first stressed by Domb and Sykes (1957 b), 
to consider the ratios 

a, (7.2.5) 

(7.2.6) 

so that the ratios should vary linearly with l / n .  Figure 13 shows a plot of pn 
against 1 / n  for the susceptibility expansions of the triangular and face-centred 

t The notation a ,  rp, means lim (a,/p,) = 1. 
n+ m 
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cubic Ising lattices. Even for small n the behaviour is quite linear and, assuming 
this continues to large n, one may estimate the limiting ratio p, and hence the 
‘critical point’, by linear extrapolation to l / n  = 0. This is conveniently effected by 
calculating the sequences of estimatest 

Pn’ = BN. + €1 Pn - (a + E - 2) Pn-2) (7.2.7) 

where choice of different values of the (small) ‘shift’ E gives a range of sequences 
and allows for the effects of the higher order, l /n2, in terms in (7.2.6). 

. F r o m  e x a c t  7; 

0.6 I , I , I 1 I I l l 1  
2 4 6 8 1012 03 

n 

Figure 13. Successive ratios of the coefficients a, of the susceptibility expansions of the 
triangular (A) and face-centred cubic (B) lattices. 

From the twelve expansion coefficients available for the triangular lattice we 
find the sequences 

pn‘(< = 0) = 3*753,3*741,3*740,3*7395,3*7381,3*7369, ... 
pn‘ ( E  = 3) = 3*716,3*714,3*719,3*7228,3.7245,3*7257, ... . 

From these one would probably estimate, say, p = l/c0 = 3.731 0.002, where the 
uncertainty indicates the apparent consistency of the procedure. (Note the last few 
mean values of the two sequences.) This result may be checked against the exact 

t Alternate ratios, rather than successive ratios, are used since they often lead to somewhat 
smoother sequences. In particular they are needed for ‘ loose-packed ’ lattices of alternating 
structure because of a regular oscillation of the ratios (see figure 14). 
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value l /v ,  = 2+J3  = 3.7320 ... (e.g. Houtappel 1950). Evidently the estimate is 
correct to within 3 parts in lo4 and, furthermore, the anticipated error is of the 
correct magnitude. 

The same procedure may be tried on the self-avoiding walks c,, as shown in 
figure 14 for the square lattice (table 5). Apart from the regular alternation 
(characteristic of ' loose-packed ' lattices and indicative of another, ' antiferro- 
magnetic' singularity of C(x)  on the circle of convergence) the variation of pn is 

n 
3 4 5 7 IO 20 00 
I I I , , , I 1 I / l / ~ I l l I ~  

2.2 

0.4 0.3 0.2 0. I 0 
I in 

Figure 14. Ratios pn = C,/C,-~ for walks on the square lattice illustrating similarity to behaviour 
of susceptibility coefficients : A, with only reversals and squares disallowed (analogous 
to some classical approximations) ; B, with no self-intersections (standard self-avoiding 
walks) ; C, with no self-intersections or nearest-neighbour contacts. (From Fisher and 
Hiley 1961.) 

again quite linear. Estimation of the limiting ratio from eighteen terms leads to 
p = l i m I ~ , I l / ~ ~ 2 . 6 3 9 0  (Hiley and Sykes 1961). This in turn can be checked 
against Monte Carlo studies by Wall and Erpenbeck (1959) who sampled walks with 
up to  n2: 800 steps and found p = 2.6395 & 0.0015. The differences are again only 
a couple of parts in l o 4  which suggests that the observed linearity holds at least up 
to n of the order of a thousand. 

With this validation of the procedure (similar results are found for all planar 
Ising lattices) one feels confident in applying the method to the three-dimensional 
lattices where, if anything, convergence to limiting asymptotic behaviour seems 
faster. Thus from the analysis of the simple cubic susceptibility series presented in 
table 6 one concludes (see also the refined methods described below) 

l/v,  = 4.5840 0.0015. (7.2.8) 
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Corresponding estimates of the critical temperature for this and other lattices are 
listed in table 2. 

Table 6. Estimation of the critical temperature of the simple cubic Ising 
model from the susceptibility seriesf- 

n pn'(E = 0 )  

6 4,6021 
7 4.5637 
8 4.5961 
9 4.5759 

10 4.5918 
11 4.5793 

estimate 

3 ( ~ n ' +  ~ n - 1 ' )  ~ n "  (g' = 0,250) B(pn* + pn-1") 

4.5944 4.5703 45874 
4.5829 4,5932 4.5817 
4.5799 4.5765 4,5849 
4.5860 4.5895 4.5830 
4.5838 4.5795 4,5845 
4.5855 4.5877 4.5836 
p = l/v, = 4.5840+0*0015 

t See equations (7.2.7) and (7.2.12). 

Given the exact value of p or a good estimate of p' one may estimate the slope 
of the l / n  plot, and hence the critical exponent, from the sequences 

g, = yTL-  1 = (n+ E )  -- 1 e 1 (7.2.9) 

where, as before, the selection of a few values of E reveals the trends more reliably. 

Table 7. Estimation of the exponent y for the square and simple cubic 
latticest 

Square 
y n  ( E  = 7 n  

9 1.7652 1.7496 
10 1.7425 1.7539 
11 1.7602 1.7514 
12 1.7452 1.7527 
13 1,7583 1.7517 
14 1,7464 1,7523 
15 1.7568 1,7516 
16 1,7475 1.7521 

i See equations (7.2.9) and (7.2.10). 

Simple cubic 
f l  yn ( 6  = 0)  7 n  
5 1.2735 1.2484 
6 1,2313 1.2524 
7 1.2646 1.2480 
8 1,2365 1.2506 
9 1.2611 1,2488 

10 1.2399 1.2505 
11 1,2590 1.2495 

Table 7 lists the corresponding estimates of y for the square lattice using E = 8 and 
also the successive means 

r, = 1 + Hgn +g,-d (7.2.10) 

which converge even more rapidly. From this evidence one would estimate, say, 
y = 1.751 I 0.003 which corresponds closely with the exact result y = g found 
in $6.3. 

In  table 7 the same method is also applied to the simple cubic lattice using the 
estimate (7.2.8). The  means 7, suggest strongly that y = 1.250 I 0.001, but allow- 
ance for the uncertainties in the critical point increases the error limits here to 
about I 0.005. The behaviour of the estimates for the body-centred cubic, face- 
centred cubic and diamond lattices is equally regular and numerically closely 
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similar (Domb and Sykes 1957 b, 1961, Essam and Sykes 1963). One is tempted to 
conjecture that the exact value for the three-dimensional Ising model is simply 

y = 19 ( Is ingd= 3). (7.2.11) 
Even if this result is not exact it appears to be accurate to within 4% and certainly 
provides an excellent representation of the form of the susceptibility coefficients. 

An estimate g' of the slope can, even if approximate, be used to construct a 
useful alternative sequence of critical-point estimates, namely 

(7.2.12) 

which is often rather regular (Domb and Sykes 1961). Similarly one may estimate 
the amplitude A of the singularity (assuming this exists, i.e. that there is no con- 
fluent weaker, but diverging, singularity such as a factor In (1 - pz) ) from 

(7.2.13) 

Finally, in terms of the first N 'known' coefficients, one may evaluate the expansion 
approximately by writing 

with 

(7.2.14) 

(7.2.15) 

Of course one should only expect this expression for F ( z )  to be accurate when z 
is on or near the positive real axis and I X I  < x, = l/p. 

In  certain cases, however, when g >  - 1, it has proved possible to 'divide out '  
the dominant singularity of F ( z )  by writing 

to 

G(x) = C b,zn = F ( z )  (1 - p , ~ ) l + g  (7.2.16) 
n=O 

or 

( P 4 n  (7.2.17) H ( z ) =  c h , x n = l n ( X  a , z n ) - ( l + g ) C  ~ 

to 

n=O n=O n=l 

and to analyse afresh the resulting coefficients b,, or h,. Thus Sykes and Fisher 
(1962) found for the susceptibility expansions of the honeycomb, square, simple 
cubic and body-centred cubic Ising lattices that the coefficients h, alternated 
regularly in sign, indicating that the dominant singularity was now on the negative 
z' axis at the antiferromagnetic critical point v, = - I w c l .  On analysing the asymptotic 
forms they concluded that 

(7.2.18) 

as I a I --f I ZI, I e . The parameters E,, X +  and X -  are given in table 3 .  This behaviour 
is the same as that found rigorously in two dimensions for the superexchange model 
and for xL (see 86.2). It has also been confirmed by an independent theoretical 
argument based on the fluctuation relation and the exact behaviour of the correlation 
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functions (Fisher 1959, 1962). In  three dimensions, however, it is possible that the 
true singularity is somewhat sharper than (1 - x) In (1 - x) although this will have 
little effect numerically. 

We defer further discussion of the applications of the ratio method until we 
have described the Pad6 approximant technique which is also applicable to expan- 
sions of class (ii) where the critical singularity does not dominate. Some general 
remarks on the ratio method should, however, be made here. 

Firstly, it is clear that the use of sufficiently large values of n renders the ratio 
method quite insensitive to transformations of the series coefficients such as induced 
by F(z)+kzjF(z)+l(z) ,  where k is a constant, j is a small positive or negative 
integer and Z(x) is a low-order polynomial. However, other singularities of F ( z )  
very close to z, or confluent non-algebraic diverging singularities, such as logarithmic 
factors, may slow convergence or lead to misleadingly high initial estimates of the 
exponent. Thus one should not automatically expect the very smooth behaviour 
found for the susceptibility series. In  particular, weak singularities like logarithmic 
divergencies (g  E - l), which characterize specific heat and similar ' polygon-only ' 
series, generally yield more slowly convergent and less regular sequences of esti- 
mates, since the coefficients are numerically smaller and the residual singularities 
are relatively stronger. Nevertheless, once the graphical configurations contributing 
to the coefficients are sufficiently numerous to 'sample' the lattice structure fairly 
extensively (which for lattices with simple structure usually means n > 10-15) most 
class (i) expansions have been found to settle down and the ratio method then 
yields increasingly reliable information on the critical singularity. 

7.3. Pad& approxinaants 
The ratio method is clearly useless for a series of class (ii) like (7.1.2) in which 

both the magnitudes and signs of the coefficients are quite irregular. Baker (1961 b), 
however, showed that Pad6 approximants could be successfully applied to analytic- 
ally continue such expansions beyond the circle of convergence, determined by 
complex or negative non-physical singularities, and up to the physical (critical- 
point) singularity on the real axis. An interesting, but less successful, precursor of 
the Pad6 approximant technique is Park's (1956) method (see Essam and Fisher 
1963). One may also mention at this point the recently proposed scheme of 
Alexanian and Wortman (1966) which may prove useful in some circumstances. 

An [L, MI Pad6 approximantt is a ratio of two polynomials of degree L and M ,  

(7.3.1) 

in which the L + M +  1 coefficients p,,p,, ..., pL,  ql, ..., qm are chosen so that the 
coefficients of a,(L, M )  in the expansion of [L, MI in powers of z agree with the 
coefficients a,, a,, a2, . . . of F ( z )  up to order L+ M = N ,  i.e. so that 

F ( z )  = [L, M ]  + O(XN+1) (7.3.2) 

T o  calculate the pi and qi explicitly from the a, one simply equates coefficients of 

t Most authors write [M,  L] where M is the degree of the denominator and L of the 
numerator but we prefer to adhere to normal alphabetical conventions. 

( L  + M = N ) .  
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zm in (7.3.2), solves the resulting set of M linear equations? for q1 to qM and sub- 
stitutes into the explicit linear relation for p ,  to p,. I t  may be mentioned that Pad6 
approximants are equivalent to a certain class of continued fractions from which one 
finds an alternative iterative method for computing the approximants [ M +  1, M I ,  
I = 1,2 ,3 ,  ... (Wall 1948). 

Whereas the domain and nature of convergence of power series are well under- 
stood rigorous knowledge of the convergence of Pad6 approximants to the function 
F(z )  is not complete. Normally the domain of convergence is much larger than the 
circle of convergence of the corresponding power series. In  particular if F ( z )  has 
m poles within its circle of meromorphyz the approximants [L, MI with M 3 m 
converge uniformly inside the circle, as L-tm except near the poles. More 
generally it seems to be true that at least a sub-sequence of the diagonal [ M ,  M I ,  or 
near-diagonal [ M +  I ,  MI approximants converge to the function F(x)  everywhere 
in the complex plane as M-too, except at the singularities of F ( x )  and on certain 
cuts needed to make F(x)  single valued5 (see Baker et al. 1961, Chisholm 1966, and 
the review by Baker 1965). These cuts are generated by the approximants and their 
location cannot always be predicted. 

T o  illustrate the power of the diagonal approximants we note that their con- 
vergence is invariant under the Euler transformation 

bw 
1 +cw 

x=- (7.3 9 3) 

which is often used to hasten power-series convergence. Furthermore, when F ( x )  
is given by a series of Stieltjes (Wall 1948), i.e. can be written formally as 

(7.3.4) 

where + ( U )  is monotonic non-decreasing, the [M,  MI and [ M -  1, MI approximants 
form upper and lower bounds to F ( z )  for real positive x. Increasing M improves the 
bounds, which thus converge monotonically. Baker (1964, 1965) has shown how a 
function, whose real part has a known lower bound in some region of the complex 
plane and whose imaginary part satisfies a certain condition, can always be con- 
verted into a series of Stieltjes. Unfortunately this type of information is seldom 
available and it may be dangerous to assume it without good evidence. 

As a practical matter convergence of Pad6 approximants is extremely rapid inside 
the circle of meromorphy but slow near branch cuts, especially when the dis- 
continuity across the cut is not small. (The Pad6 approximants simulate the dis- 
continuity by a linear sequence of alternating poles and zeros.) Furthermore, the 
convergence is frequently somewhat irregular, and increasing the order of the 
approxiinants may lead to the improvement of the approximation near some 
distant singularity at the cost of some loss of accuracy closer to the origin (unlike a 

t If the determinant vanishes an approximant of the order sought does not exist. In 
practice the determinant is often rather small and precautions may be needed to solve the 
resulting ' ill-conditioned ' equations with sufficient accuracy. 

$ The circle of meromorphy is the largest circle containing only poles, or multiple poles, 
of F(z).  

$ Convergence is, of course, to be expected only inside any natural boundaries of F(z) .  
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power series). Similarly ‘tears’, i.e. spurious poles with small but non-zero 
residues, may suddenly appear in approximants of high order in a region near the 
origin where F ( x )  is regular and ‘nearby’ approximants are convergent and well 
behaved. The  reason for this and similar phenomena is not yet understood. 
Despite these drawbacks the Pad6 approximants are of great utility as we shall now 
illustrate. 

Table 8. Estimation of critical points and susceptibility exponents from the 
poles and residues of the [M,  MI Pad6 approximants to the high-tempera- 

ture susceptibility series 
Square 

M (Vclest  Yest 

3 0.4093 1.626 
4 0.4164 1,797 
5 0.41 21 1,682 
6 0.41412 1.746 
7 0.41 421 06 1,7496 

0*4142135... exact 
values 1,7500 

Simple cubic 
M (Vc)est Yest 

2 0.2151 1.205 
3 0,2189 1.281 
4 0.21 81 5 1.2505 
5 0.21818 1,2518 

0.21815 1.250 ratio 
estimates 

After Baker (1961 b). 

With a critical point in mind, let us firstly suppose, essentially as before, that 
the function F has an algebraic branch point at x = x, with 

F(z )  = (x, - z)-’ z,’ G(x) (7.3.5) 

where G(z) is regular at x = x,. Then the logarithmic derivative 

D(z)  = C dn xn = In F ( z )  
n=O dz 

-- - (-‘I f d l n G ( z )  
x-x, dx (7.3.6) 

has only a simple pole at x = x, so that the Pad6 approximants for D ( x )  should con- 
verge much more rapidly than for F(z ) .  Convergence will still be good if G(x) has 
some confluent residual singularity at x = x, provided y is not too small in relation 
to the exponent of the residual singularity. For a logarithmic or near-logarithmic 
singularity, however, this device breaks down since the residual singularity is 
normally of comparable (even if only moderate) strength. In  favourable cases, 
however, we may estimate x, by calculating the appropriate poles of the approxi- 
mants to D(x) .  Furthermore, the corresponding residues will provide estimates 
for the exponent y. 

Table 8 illustrates the application of this procedure to the high-temperature 
susceptibility series of the square and simple cubic Ising lattices. Using fifteen 
terms the close agreement of the last few estimates with the exact critical point of the 
square lattice is quite amazing. The  estimates of are also excellent. In  three 
dimensions, with only eleven terms, convergence appears to be equally rapid. 
Agreement with the ratio estimates is well within the expected errors and the 
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conclusion y = l a  is confirmed closely. Results for the body-centred cubic and 
face-centred cubic lattices are quite comparable. 

Given an exact value or good estimate of x, a better method of estimating the 
exponent should be to evaluate at x = x, Pad6 approximants to the series for t  

d 
dx y*(x)  = (x-z,)-lnF(x) = y + o ( z - x o )  ( x - + x , - ) .  (7.3.7) 

Again this method should work well if any residual confluent singularities are weak, 
but the behaviour of y * ( x )  for x < x, can still yield useful information even when the 
residual singularities are not negligible. 

For the square lattice the last four estimates obtained using this procedure are 
Y E  1.728, 1.7516, 1.7499, 1.7498, while for the honeycomb, where twenty-four 
terms are available, the last four estimates are Y E  1.7503, 1.75019, 1.75019, 1.75009. 
In  three dimensions one finds for the simple cubic lattice, using (7.2.8) for E , ,  

y~ 1.22, 1.30, 1.2502, 1,2507, 1,2505 (simple cubic) 

with similar numerical results for the body-centred cubic and face-centred cubic 
lattices even though the series for xT are shorter. 

Given accurate estimates of 2, and y one can evaluate the function itself most 
accurately by dividing out the singularity and calculating direct approximants to 
G(z)  in (7.3.5). (One may also form approximants to {F(x)}l’? which should 
converge fairly rapidly near z,.) 

Turning now to series of class (ii) let us, following Baker (1961 b), apply the 
method to the Ising-model spontaneous-magnetization expansions. Firstly, one 
should note that in estimating the critical point x, from the vanishing of MO( T )  
via (7.3.6) one obtains the same critical temperature to better than 1 part in lo3, as 
found from the high-temperature susceptibility expansions. This is important 
evidence of the uniqueness (and correctness) of the Ising-model critical points for 
d = 3 and of the fact that MO( T )  does vanish continuously as in two dimensions. 
Accepting this, and using the high-temperature estimates of the critical point, one 
obtains the sequence of estimates for the exponent p displayed in table 9. Despite 
the slightly erratic convergence, probably indicative of a confluent but weaker 
singularity, one may conclude with confidence2 

0.305 <p<O.315 (Isingd = 3). (7.3.8) 

It is fairly natural to conjecture (Essam and Fisher 1963) that 

,B = = 0.31250 (Isingd = 3). (7.3.9) 

Again, even if not exact, this value is probably correct to within + 1 yo or - 274. 
t I t  should be noted that this function and its analogues can also be employed with advan- 

tage in the ratio method (Essam and Sykes 1963), in other theoretical contexts (Domb and Hiley 
1962) and especially in the analysis of experimental data (see Kouvel and Fisher (1964) and 
figure 17 below). 

$ Originally Baker (1961 b) found p 20.30 but Essam and Fisher (1963) re-examined the 
problem using longer series with the conclusion 0.303 <,/3 6 0.3 18. A few further terms have 
since been derived and are included in table 9 (see Gaunt 1966, Ph.D. Thesis, University of 
London, Baker and Gaunt 1967). The range (7.3.8) is also supported by the diamond-lattice 
series which are of class (i) so that ratio techniques may be used (Essam and Sykes 1963). 
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After all the effort expended in obtaining the result (7.3.8) it is gratifying to 
discover that it lies so close to the experimental values P - O . 3 3  for fluids and 
magnets, discussed in 9 2. It seems certain, however, that the small deviation from 
these experimental values, A,k? 2: 0.02, is significant. Conversely Als-Nielsen and 
Dietrich’s (1967) estimate, ,k? = 0.305 0.010 for beta-brass (see 3 2.7), is sur- 
prisingly close to the Ising value, as is their result y = 1.25 * 0.02. Evidently the 
Ising model can provide an excellent description of the ordering of a binary metallic 
alloy even though it is not completely accurate for a fluid or ferromagnet. 

Table 9. Estimation of the spontaneous magnetization exponent p by 
evaluation of Pad6 approximants to p*( T )  at the critical point 

Simple cubic 
M P e s t  t 
4 0.304 0.301 
5 0.304 0.303 
6 0.278 0.302 
7 0,314 0.307 
8 0.314 0.301 
9 0.3 10 

Body-centred cubic 

6 0,303 0.285 
7 0.308 0.305 
8 0.307 0.310 
9 0.316 0.340 

10 0.316 0.316 
11 0.315 0.324 
12 0.313 0.313 
13 0.314 0.314 

M P e s t  i 
Face-centred cubic 

M P e s t  t 
9 0.307 0.307 

10 0,309 0.308 
11 0.306 0.308 
12 0.306 0.306 
13 0.306 0.306 
14 0.373 0.305 
15 0.309 0.306 
16 0,315 

Results from Essam and Fisher (1963) and Gaunt (1966, Ph.D. Thesis, University of 
London). 

The  two columns refer to diagonal and next-to-diagonal sequences. 

8. Survey of numerical results 
In  this section we review briefly the results so far found for the Ising and 

Heisenberg models by application of the ratio and Pad6 approximant techniques. 
The resulting critical exponent values are collected in the fold-out table at the end of 
the article while the various other critical-point amplitudes, etc., are presented in 
tables 2 to 4 and further tables in this section. As explained in 9 7 the uncertainty 
limits quoted below are in no sense rigorous bounds; they represent, however, the 
maximum ranges consistent with the observed regularity of the extrapolations. 

8.1. Ising model 

below the spin 9 model is implied. 

8.1.1. Specijic heats. As mentioned above, the specific-heat series lead to rather 
irregular and slowly converging critical-point estimates. (On loose-packed lattices 
the high T series are also very short since odd-order terms vanish.) The  first study 
by Domb and Sykes (1957 c) yielded only 

O<a<O.25 (Isingd = 3). (8.1.1) 

Although the face-centred cubic lattice, in particular, suggested 01 N 0.2, the series 
could be fitted consistently with logarithmic singularities and this has been assumed 

We consider in turn various features of the model. Except where discussed 

45 
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in calculating the critical energies and amplitudes in table 2 (Sykes and Fisher 1962, 
see also Baker 1963, Fisher 1964 c). The  estimates will change only in the last one 
or two decimal places; however, if -In 1 1 - (T/T,)  I is replaced by 

(8.1.2) 

with small a >  0 (see (1.18)). Recently Sykes et al. (196’7) have extended the series 
for the face-centred cubic lattice and from this one can conclude 

01 = 0.125 k 0.015 N (Ising face-centred cubic) (8.1.3) 
which is no doubt applicable to the other three-dimensional lattices also. 

Below T, a logarithmic or even milder singularity again appeared plausible 
(Sykes and Fisher 1962, Raker 1963, Essam and Sykes 1963, Fisher 1964 c, Gaunt 
and Essam 1965) but a careful investigation by Baker and Gaunt (1967) in the light 
of the rigorous inequalities ( 5  3) indicates 

a‘ = 0.0662::;,6: N &- (Ising d = 3). (8.1.4) 
Xumerically the d = 3 specific heat curves display just the asymmetry character- 

istic of real systems as is evident from the comparison with the argon data (Bagatskii 
et al. 1962) shown in figure 15. Indeed, above T, the quantitative agreement for 
appropriate normalization is rather close. Below T,, however, the almost constant 
difference of about 1.0 k, indicates a significant defect of the simple lattice gas 
model, perhaps associated with the trivial ‘one-site’ hard cores. It should also be 
noted from figure 15 that the asymptotic behaviour above I: (and to a lesser extent 
below c) only dominates rather close to T, (say, ATIT, < 3 x The values of 
critical energies and entropies for d = 3 also accord fairly closely with appropriate 
experiments; see especially the review by Domb and Miedema (1964). 

8.1.2. Magnetization. We have discussed the study of the magnetization series in 
$7.2 and pointed out the close quantitative agreement with experimental data on 
beta-brass. For completeness here we restate only the result 

p ‘V 0.3 123:@ T Fg. (8.1.5) 
Amplitudes were estimated by Essam and Fisher (1963) and Baker and Gaunt 
(1967) (see table 2). 

8.1.3. Ferromagnetic susceptibilities. From the combined evidence of the ratio and 
Pad6 approximant studies already reviewed one may conclude that 

y = 1.250 i: 0.003 (Isingd = 3) (8.1.6) 
which, as pointed out, agrees closely with the observations on beta-brass. The  
amplitudes C+ in 

(8.1.7) 

can be estimated very precisely (Sykes and Fisher 1962, Baker 1961 a, b) and are 
given in table 2. The  estimates of Fisher and Gaunt (1964) of the critical points and 
values of y (and a,) for hypercubical lattices of dimensions 1 , 5 ,  .. . have already been 
mentioned in $ 5.4 (see equations (5.4.9) and (5.4.10)). 
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The low-temperature susceptibilities were first studied by Essam and Fisher 
(1963) who found the behaviour of the Pad6 approximants to y' rather erratic for 
d = 3 and so could only conclude that 1.23 6 y' 6 1.32. The  advent of longer series 
has hardly changed this situation but bearing in mind the rigorous inequalities ($3) 
and the evidence for E ' ,  /3 and 6 (see below) one can now conclude (Baker and 
Gaunt 1967) 

?' = 1.310~0.030~ 0,050-  1." 1 6 '  (8.1.8) 

I 
I 

I I I 1 1 1 1 1  I I l l 1 1 1 1  

0.0 I 0 03 0 1  0.3 I 3 IO 
0 

I I- r / c  1 P / o )  
Figure 15. Logarithmic plot of the reduced configurational specific heat of argon (circles and 

curve A) compared with Ising-model predictions: B, above T, assuming LY = 0 (log) 
(full curve, face-centred cubic); C, above T, assuming 01 = 0.20 (face-centred cubic); 
D, below T, for the face-centred cubic lattice assuming a' - 0 ;  E, below T, for the simple 
cubic lattice (Fisher 1964 a, b, c). Note that the latest estimates indicate a: 20.125 and 
a' -0.066. 

In  fact it seems quite likely, although more evidence is still desirable, that the 
symmetry y' = y found in two dimensions does not apply in three dimensions. 
This turns out to be an important conclusion. 

The  low-temperature amplitudes C- listed in table 2 were calculated on the 
assumption ~ ' ~ 1 . 2 5  but they change little by using (8.8) (see Baker and Gaunt 
1967). The ratio C-/C-2: 5 for d = 3 contrasts with the classical value of 2 and the 
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Ising d = 2 value of about 37, but seems to correspond better with experiment 
(e.g. Als-Nielsen and Dietrich 1967). 

8.1.4. Antiferromagnetic susceptibilities. These have been studied carefully for 
H = 0 by Sykes and Fisher (1962) using ratio methods and by Marshall and Gammel 
(unpublished) using Pad4 approximants. The  conclusions were summarized in 
$7.2, especially equation (7.2.18). Xumerical values are given in table 3. (The 
transoerse susceptibilities of the three-dimensional lattices have not yet been studied.) 
The  phase-transition line in the ( H ,  T )  plane has been estimated for antiferro- 
magnetic square, simple cubic and body-centred cubic lattices by Bienenstock 
(1966) and Rienenstock and Lewis (1967). 

8.1.5. Cyitical isotherm. The  critical isotherm has been examined by Gaunt et al. 
(1964) using the ‘activity’ series in powers of y (equation (7.1.8)) and ratio and 
approximant techniques. For the planar lattices they concluded that 

(8.1.9) 
which, in view of the rigorous inequality (6.1.14), strongly indicates that 6 = 15 is 
exact. In  three dimensions they found 

6 = 15.00 i. 0.08 N 15 (Isingd = 2) 

6 = 5.20k 0.15 (Isingd = 3). (8.1.10) 
The  integer value 5, which might be reconciled with some generalized phenomeno- 
logical or Taylor-series approach, seems definitely excluded. (However, in a recent 
re-analysis using a somewhat different, and so far less fully tested, approach Gaunt 
(1967) has suggested that 6 = 5 might be correct.) As seen in $ 2  the value 6-5.2 
is some 20% to 30% higher than indicated experimentally by present data on 
fluids and ferromagnets although these data do not extend as close to the critical 
point as may be necessary. As yet the corresponding amplitudes for H(T,)  against 
M are not available. 

8.1.6. Correlations and scattering. For T >  T, the scattering and correlations have 
been considered in detail by Fisher and Burford (1967) (see also Fisher 1964 b, 
1966 b). Firstly, they showed for d = 2 and 3 that the series for the effective range 
parameter K~ and for the true correlation range K were closely related and hence that 
the critical behaviour of K and K~ is the same, i.e. v1 = v. Further, the corresponding 
amplitudes F -  and Fl+ (see (6.2.2) ) are almost indistinguishable numerically. From 
the series for ( K ~  a)2 and KU they checked their procedures by rederiving the rigorous 
result v = 1 (d  = 2) and then estimated 

(8.1.1 1) 
for the simple cubic, body-centred cubic and face-centred cubic lattices. This 
result is again close to the value v = 0.647 F 0.022 observed by Als-Nielsen and 
Dietrich (1967) for beta-brass. 

The  behaviour of the higher correlation moments indicated, as known for d = 2, 
that K - ~  is essentially the only correlation length ; thus using the relation (2 - 7) Y = y 
($ 6.3) and (8.1.6) they concluded that 

7 = 0 . 0 5 6 & 0 . 0 0 8 ~ ~ &  (Is ingd= 3). (8.1.12) 
This was confirmed, although with lower accuracy, by direct estimates of the critical 

v = 0,6430 k 0.0025 21 I$- (Ising d = 3) 
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correlations I’,(r) for the simple cubic lattice. (The corresponding amplitudes, 
defined as in (6.2.5), are listed in table 4.) 

They found that the overall behaviour of the scattering intensity above 5’; was 
very well approximated by 

with 

a “ - ” ( ( ~ ~ a ) ~ + q 5 ~ a ~ K ~ ( k ) } ” 2  ?(k, T )  N (;) -(- 
1 K~ a)2 + $az K2(k)  

- q = $  ( d = 2 )  
7 ( d =  3) 

where the slowly varying length rl( T )  satisfies 

:= k),{l--~($-l)+...] (T+T,+). 

The variable 

(8.1.13) 

(8.1.14) 
(8.1.15) 

(8.1.16) 

a 2 K 2 ( k )  = 2 d i l  q - l z  exp(ik.r)) - (ka)2 (8.1.17) \ - r=s I- 

# = 1 + $ ~ 4 ~ (  T )  

allows for the influence of lattice structure at larger values of ka. Finally 
(8.1 .IS) 

where $( T )  is a slowly varying function, vanishing rapidly at high temperatures and 
with magnitude, at T = T,, 0.03 for d = 2 and 0.06 to 0.09 for d = 3 (see table 4 for 
precise values of q5, 4, (r l /a) ,  and c). An Ornstein-Zernike plot 2-l against (ka)* for 
the simple cubic lattice is shown in figure 16 (compare with figure 3). The  inter- 
section of the isotherms for different T means that 2(k, T )  at fixed k# 0 exhibits a 
maximum at a temperature above T ,  contrary to previous expectations. For small 
ka this maximum is quite close to T, and may thus be difficult to detect experi- 
mentally. The recent neutron scattering experiments of Bally et al. (1967), however, 
do not display such a maximum. 

Comparable calculations have not yet been performed below T, but if we accept 
the estimates (8.1.2) and (8.1.8) and the relation (2-7)v’ = y’ ($6.3) we may 
conclude 

v’ = 0*6751,0:!:; N $; # v. (8.1.1 9) 
We repeat, however, that this has not been tested by direct calculation. 

8.1.7. Higher $eld derivatives. Essam and Fishcr (1963) suggested that it would be 
of theoretical interest to study the H = 0 critical behaviour of higher derivatives of 
the free energy with respect to field (or, in a fluid, with respect to pressure) although 
these quantities are not readily accessible to experiment. Below T, we may define the 
sequence of ‘ gap ’ exponents A2’, A3‘, . . . as follows 

(&)o = xT N (T, - T)P-.I1?’, A,‘ = /3 + y’ (8.1.20) 

(8.1.21) 
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Above T, where only even derivatives are non-vanishing for H = 0 we can similarly 
define ' double gaps' 2A,, 2h,, . . . by 

(8.1.23) 

Figure 16. Inverse scattering intensity of the simple cubic lattice against for temperatures 
near critical. The numbers on the curves give the values of T/T,. The crossing of the 
isotherms which implies that z(k, T) exhibits a maximum for T >  T, when k f 0 should 
be noted. (From Fisher and Burford 1967.) 

The  theoretical significance of these exponents will be seen in the next section but 
we may remark here that according to classical theories 

A 16 ' = ASj = 18 (8.1.25) a l l j ,  lz (classical theory). 

For the square lattice Essam and Fisher foundt 

A8' = 1.87 f 0.05 2: 18 (square) (8.1.26) 

but no other estimates have so far been made below T,. Above T, Domb and Hunter 
(1965 and private communication) have made more extensive calculations with the 

f There is a misprint of 3 for 3% in their paper. 
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results 

and 

(The  quoted uncertainties are only preliminary.) 

8.1.8. Higher spin. For general S only six or seven terms of the high temperature 
series are available at present (Domb and Sykes 1962) so that extrapolation is 
necessarily less certain. However, by comparing the behaviour of the susceptibility 
coefficients of the face-centred cubic lattice for general S with those for S = 4 
Domb and Sykes (1962) concluded that y did not change with S (to within, say, 
& 0.02). However, the specific heat singularity seemed to grow sharper with 

increasing S and they suggested tentatively that 01- 0.25 ( S  = 1) and 01= 0.33 
(S = a). Appreciably longer series are needed to confirm these estimates, however, 
and it is quite likely that they are too high and that does not change. Nevertheless, 
fairly accurate estimates of critical temperatures, energies, etc., may be made and 
these are displayed in table 10. 

A , e A , e A , e  1.87f0.042: 1% (Isingd = 2) (8.1.27) 

A4 N As N A, N 1.56 f 0.03 N 1& (8.1.28) (Ising d = 3). 

Table 10. Critical parameters of the face-centred cubic Ising lattice for 
general spin 
S=l 2 S = l  s = 2  s=cc 

kn T,/$qJ,, S(S+ 1) 0.816 0.85 1 0.864 0.874 

( s m  - S c ) / k B  0,102 0.116 0,123 0,131 

(U, - U,) IkB Tc 0,463 0.721 0.990 1.541 

S c l k B  0.591 0,983 1.486 io 

I uc I I k B  Tc 0.150 0.160 0,167 0.175 

From Domb and Miedema (1964). 

8.1.9. Further-neighbour interactions. Domb and Dalton (1966, see also Dalton 1965, 
Ph. D.  Thesis, University of London, 1966) have calculated high-temperature 
expansions for the ( equivalent-neighbour ’ model in which equal interactions with 
further-neighbour shells Y = 2,3, ... are introduced. From the leading six to  eight 
terms they were able to conclude that y does not change with increasing range of inter- 
action although the ‘critical region’, in which a plot of 1/x2, against T i s  appreciably 
curved, shrinks when Y increases as anticipated in 3 5.4. Since this conclusion is of 
theoretical importance a sample ratio analysis demonstrating the constancy of y is 
displayed in table 11. I n  the limit of large total co-ordination number q, Domb and 
Dalton (1966) found for all three-dimensional lattices 

where T,(co) denotes the classical mean field critical point, and 

(8.1.29) 

(8.1.30) 

These are of the form suggested by the discussion of 3 5.4 and by various approxi- 
mate theories, in particular by (high-density ’ expansions (Brout 1959, 1960, 1965, 
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Horwitz and Callen 1961, Stinchcombe et al. 1963), but the coefficients differ 
significantly. ( In  two dimensions the different asymptotic form A/q" with 0 < E < 1 
is anticipated.) For moderate values of q the formulae (8.1.29) and (8.1.30) are more 
accurate numerically if the coefficients are reduced by some 10% to 20%. 

Table 11. Analysis of the susceptibility expansion for the simple cubic 
lattice with equal first- and second-neighbour interactions demonstrating 

the unchanged value of y 

CLn' CLn Y n  Y n  
E = :  E = l  E = &  E = l  n 

3 15.5294 15.1765 1.2433 1.2781 
4 15.5399 15.3777 1.2440 1.2712 
5 15,5177 15.4204 1.2443 1.2665 
6 15.5145 15.4502 1.2446 1,2634 
7 15.5150 15.4694 1.2450 1.2613 

estimate p = k,T,/J y = 1.247t0.012 
~15.510rk0.015 N l t  

Series coefficients from Domb and Dalton (1967). Notation as in equations (7.2.7) and 
(7.2.9). 

8.1.10. Long-range interactions. The independence of y of the range of interaction 
is not to be expected for inverse power potentials of the form with small U. 
Joyce (1966, see also Domb et al. 1965) has tested this surmise by studying the 
susceptibility expansion to fifth order for an S = 4 Ising model in two dimensions 
with U = 1 (i.e. J ( r )  N l /r3) .  He finds the exponent is reduced from the finite-range 
value 14 to 

(8.1.3 1) 

Such long-range (totally attractive) interactions are not, however, directly relevant 
to experiment and it seems likely (e.g. by analogy with the spherical model (Joyce 
1966) that for U > 2 the thermodynamic exponents will already take their character- 
istic finite-range values. (The decay of correlation, however, will no longer be 
exponential in a model with, for example, l / r6  potentials.) 

y = 1.13 & 0.01 (Isingd = 2, long range U = 1). 

8.2. Heisenberg model 
8.2.1. One and two dimensions. It should firstly be pointed out that Mermin and 
Wagner (1966) have recently proved rigorously that the two-dimensional (and one- 
dimensional) isotropic Heisenberg ferromagnet cannot display a spontaneous 
magnetization if the interactions are of finite range. Specifically, by exploiting a 
generalized Schwarz inequality due to  Bogoliubov (1962) they prove that as H-tO 

IM(H, T)I~BT-'izIlnIH11-'/2 ( d  = 2) (8.2.1) 

<BT-z'31H11'3 ( d  = 1) (8.2.2) 

where B is a constant, so that M always vanishes with H .  Their arguments apply 
for all S, including S = CO, and likewise rule out a sublattice magnetization in the 
isotropic antiferromagnet or a transaerse magnetization in the Ising-Heisenberg 
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model with axial symmetry (i.e. 1, = I,, = JL). (Similarly the existence of off- 
diagonal long-range order in the sense (4.1.14) can be proved impossible for a Bose 
continuum or lattice system at non-zero temperature in one or two dimensions 
(Hohenberg 1967).) 

Although these results have long been expected on heuristic grounds they must 
not be taken as excluding the existence of some special sort of phase transition in 
which, for example, xT = CO for H = 0 and T <  T, even though M,,=O. The 
possibility of such a transition in the two-dimensional Heisenberg model has 
recently been raised by Stanley and Kaplan (1966 a, b, 1967) who point out that the 
leading six terms of the high-temperature susceptibility expansions are not incon- 
sistent with the divergence of xT at a finite, and indeed moderately high, tempera- 
ture (see also Rushbrooke and Wood (1955, 1958), but for some contrary evidence 
Marshall et al. (1963)). We shall not discuss this interesting problem here, except 
to say that the use of short-series expansions to investigate the rather subtle existence 
question must be regarded with special caution since it would be reasonable to 
expect a non-uniformity of convergence in the isotropic limit in view of Mermin 
and Wagner’s analysis. In  the remainder of this section we consider only three- 
dimensional systems. 

8.2.2. Ferromagnets. For general spin only six terms of the high-temperature 
susceptibility expansions and five terms of the specific-heat expansions have been 
calculated (Rushbrooke and Wood 1958). The  behaviour of the coefficients is much 
less regular than for the Ising model especially for low-spin values. However, 
moderately accurate estimates of critical temperatures, energies and entropies can 
be given (Rushbrooke and Wood 1958, Domb and Sykes 1957c, 1962). These 
parameters are listed for the face-centred cubic lattice in table 12. When properly 

Table 12. Critical parameters for the Heisenberg-model face-centred cubic 
lattice for various spin values ( J , ,  = J,L) 

s=: S = l  s = 2  s = m  

kBTc/+qJll s(s+ 1) 0.679 0.747 0.774 0.798 
s c / k B  0.473 0.810 1,305 CO 

( S m  - S c ) / k B  0,220 0.289 0.304 0.322 
I uc I /kB Tc 0.439 0.449 0.459 0.474 

From Domb (1965 c ) .  

normalized they generally vary almost linearly with 1/S(S+ 1). The  specific heat 
has a larger ‘tail ’ above T, than for the Ising model but the singularity seems weaker 
with 

a N 0 (Heisenberg d = 3) (8.2.3) 
and C, might well be finite at T,. However, longer series are needed to confirm 
this point. 

For S = CO the series are smoother and, as first pointed out by Domb and 
Sykes (1962), one can conclude 

y = 1.32-1.37~$ (Heisenbergd = 3, S = CO) (8.2.4) 
with reasonable confidence. This result has been confirmed by Marshall et al. 
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(1963) using Pad& approximants and more accurate estimates may be expected from 
the longer series being calculated at present for S = 03 (Stanley and Kaplan 
1966 a, b, Wood and Rushbrooke 1966, Joyce and Bowers 1966, Joyce 1967).f. 

The  value (8.2.4) is significant, firstly because it is quite distinct from the Ising- 
model result (see §9.1), and secondly because it is in much better accord with 
experiments on real ferromagnets (32.4). This is illustrated in figure 17 which 
shows the variation of the effective exponent y*((T)  (equation (7.3.7)) found by 
Kouvel and Fisher (1964) who analysed the classic experiments of Weiss and 
Forrer (1926). 

1.35- 
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1.25,- 

- 1  L - -  -1- 

623 640’ 66$T,.,,680 700 
__ 1 - p ~  L --_Ip 

I 00 I 04 I 08 1‘12- 
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Figure 17. Plot of the effective exponent y K ( T )  for nickel leading to the conclusion 
y = 1.35 k 0.02 (Kouvel and Fisher 1964). The  broken lines are from the Pad6 approxi- 
mants of Marshall et al. (1963) for the nearest-neighbour Heisenberg model. 

With only six terms of the expansion of xr available it seemed likely that the 
value might apply for all spin values (although some indications of higher 
values could be seen and the terms for S = 4 were particularly irregular). Recently, 
however, new techniques have been used to derive up to ten terms for spin 4 (Domb 
and Wood 1964, 1965, Rushbrooke 1964, Wood 1965, Baker et al. 1966 a). On 
analysis by Pad6 or ratio methods these yield 

(8.2.5) y = 1.43 I 0 . 0 4 ~ ~ , &  (Heisenberg d = 3, S = 4) 
which is significantly higher than for spin cc (Baker et al. 1966 a).: This interesting 
and unexpected result has so far received no theoretical interpretation. -At present 
it is also not clear whether for intermediate spin values y should take one or other of 
the extreme values 1.33 or 1.43, or should pass through a sequence of intermediate 
values.§ From the practical numerical viewpoint, however, it should be remembered 
that even S = 1 is ‘over half-way’ to S = 03 since, as mentioned, most parameters 
vary fairly linearly with 1/S(S+ 1). Thus  values of y >  1.33 might only become 
apparent graphically in an ‘inner critical region’ close to T,. 

t These tend to support the higher range near 1.37. 
$. In  view of these results the estimate in table 12 for T, with S = fr should be reduced from 

§ This last conclusion tends to follow naturally from short-series expansions (Stanley and 
0.679 to 0.669, and the other estimates should also be altered although by smaller factors. 

Kaplan 1967) since each coefficient is just a polynomial in {S(S+l)}-I. 
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8.2.3. Higher jield dericatices. Baker et al .  (1966 b) also studied the higher-field 
derivatives and for the exponents defined in (8.24) found 

A4 = 1.81 0.04 A, = 1.83 2 0.08 

A, = 1.80&0*15 (Heisenbergd = 3, S = 8). (8.2.6) 

As for the Ising model, these suggest a constant value, but close to 1-81 rather 
than 1.56. 

8.2.4. Correlations. Fisher and Burford (see Fisher 1966 b, Burford 1966, Ph.D. 
Thesis, University of London) have obtained expansions for the second correlation 
moment for general spin to sixth order. For infinite spin they estimate 

(8.2.7) v = 0.692 F 0.012 (Heisenberg d = 3, ,S = a) 
and hence, using y 31 t, they conclude 

7 = 0.075 5 0.035 (8.2.8) 

which seems to be significantly higher than for the Ising model. For lower spin the 
short series available do not permit very accurate extrapolation, but even allowing 
for the change of y discovered for spin 4 it appears that the values of q do not change 
appreciably (although the estimates for v change in accordance with (2-7)” = y) .  

8.2.5. Antiferromagnets. For S = cc the antiferromagnetic critical temperature of 
an alternating lattice with nearest-neighbour interactions must be the same as for 
the corresponding ferromagnet (Iferro = I Janti I ) just as for the general Ising model. 
For finite spin, however, this symmetry is lost and by studying the staggered 
susceptibility xTt Rushbrooke and Wood (1963) showed, in fact, that 

(8 -2.9) 

The  value of y seems not to have been estimated for the staggered susceptibilities 
although for S = cc we must by symmetry still have YE$). General arguments 
referred to before (Fisher 1962) indicate that the antiferromagnetic susceptibility 
should have a mild singularity at Tanti with a peak, possibly infinite, in 2xll/2T. 
Some inkling of this can be seen in the susceptibility series (Marshall et al .  1963, 
Domb et al. 1965, Baker et al. 1966 a) but although this weak singularity should 
eventually? dominate the convergence for S<cc (since Toanti exceeds cferro) it is 
heavily masked in the lower terms by the strong ferromagnetic divergence. 

8.2.6. Further-neighbour interactions etc. High-temperature expansions for inter- 
actions extending to second- and third-neighbour shells have been obtained by 
Wojtowicz and Joseph (1964), Wojtowicz (1964), Dalton and Wood (1965), Pirnie 
and Wood (1965), Dalton (1965, Ph.D. Thesis, University of London, 1966), Domb 
and Dalton (1966), and lead to estimates of critical temperatures, energies and 
entropies, and expressions analogous to (8.1.29) and (8.1.30). Present series, how- 
ever, seem to be too short to yield really useful information on the constancy (or 

t One may estimate that an alternation of the signs sets in after about 80 terms (Domb et  al. 
1965). 
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otherwise) of the critical exponents. Wojtowicz (1967) has also obtained series for 
Heisenberg ferrimagnets in which the two sublattices have different spin values. 
Joseph (1965) has introduced biquadratic spin terms. 

8.2.7. Intermediate Ising-Heisenberg model. In  view of the difference 

it is of great interest to determine how y varies with JL/Jl, for the intermediate 
anisotropic Ising-Heisenberg model. Perhaps the most natural conjecture is 

- J L  

J l ,  
- yHeis for - = 1 (8.2.10) 

(see, for example, Fisher 1966 a). Some definite evidence for this has been advanced 
recently by Dalton and Wood (1967) who have obtained five terms of the S = 4 
high-temperature expansions, but the problem merits further attention, particularly 
because of its significance for quantal lattice gases. 

8.2.8. Temperatures below T,. At present there is no reliable information on the 
values of the Heisenberg model exponents below T,  or on the critical-isotherm 
exponent 8, although results may eventually be obtained from the high-field 
(activity) expansions. On the basis of various conjectured relations between the 
exponents discussed in the next section, however, one may speculate that 
0.3 < p < 0.4 (see table 13 below) which is not implausible. I t  may also be mentioned 
that Callen and Callen (1965, 1966) have observed that an exponent /3 = 4 in the 
simple expression (6.15) fits the predictions of certain truncated cluster expansion 
(and Green function) theories quite well numerically in the region below 0 .9c .  
Of course the true exponent /3 is defined for T close to, and approaching, T,. 
nievertheless, these results might be quite suggestive if they were reproduced and 
extended towards T, in higher-order truncations. Unfortunately this does not seem 
to happen. 

9. Theory of exponents 
In  this section we outline and attempt to assess a number of recently developed 

theoretical ideas which aim at throwing light on the values of the critical singularities 
and, more particularly, on deriving relations between them.? Indeed the central 
question that might be posed is: how many independent critical exponents does a 
physical system have? The  most optimistic answer, suggested by some of the 
approaches to be described, is ' only two '-essentially, one for the temperature 
variation and one for the field (or pressure, etc.) variation. In  the light of present 
knowledge, however, none of the various theories is fully convincing but we may 
hope they point the way forward to a deeper understanding of the numerical results 
so far found experimentally and theoretically. 

+ This section follows fairly closely a recent lecture (Fisher 1967). 
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9.1. Droplet or cluster model 
In  this section we describe a theory of the critical region based on the droplet 

(or ' physical-cluster ') picture of condensation in a low-density gas. The under- 
lying ideas go back to Frenkel (1939), Band (1939) and Bijl (1938, Doctoral Dis- 
sertation, University of Leiden) (see also Fierz 1951 and de Boer 1952) but only 
recently has it been pointed out that they can be extended to describe the critical 
point (Essam and Fisher 1963, Fisher 1965 a, c).? We shall present the arguments 
for the fluid case but for an anisotropic ferromagnet they may be translated easily 
into magnetic terms (see Fisher 1967). 

The  basic idea is that in a gas of particles interacting with repulsive cores and 
short-range attractive forces, the typical configuration at low densities and tempera- 
tures will consist of essentially isolated clusters of one, two, three or more particles. 
A sufficiently large cluster is just a small droplet of the liquid phase at the same 
temperature. These droplets will be in dynamic equilibrium and the relative 
proportions of differently sized droplets will change with temperature and pressure 
(or activity). Condensation in this picture corresponds to the growth of a macro- 
scopic droplet of the liquid. 

T o  formulate these ideas mathematically let us, in first approximation, neglect 
the excluded volume between droplets (but not between particles within a droplet). 
The  grand partition function is then given approximately by 

InE(T,x ,R)  = Cqlxz 
1=1 

(9.1.1) 

where ql = qE( T ;  R) is the configurational partition function for a single cluster of 
Z particles in the domain R (see, for example, de Boer 1952). At low temperatures, 
where the gas is always at low density, this will be an excellent approximation. The 
principal results of the theory are not altered by taking account of the excluded 
volume to first order (or rigorously, in certain one-dimensional models (Fisher 
1965 c), but to assess the effects of this approximation in general, especially near the 
critical point, seems very difficult. 

Now the centre of mass of a cluster is free to move through the volume so that ql 
is proportional to  V(sZ). T h e  energy of a cluster in some fixed configuration con- 
tains (i) a bulk term - ZE, where E, is the binding energy per particle in the dense 
fluid (more generally we should take E, as a free energy per particle), and (ii) a sur- 
face term + ws where s is the surface area (or perimeter for d = 2) of the cluster and 
w is a surface energy arising through loss of binding energy by particles near the 
surface.$ 

Now we may expect that the most probable or mean surface S of a cluster of 
size I will vary as 

S ( 1 )  N a, 1" (I-+ CO) (9.1.2) 
with, necessarily for d 2, 

O < a < l .  (9.1.3) 

Indeed at sufficiently low temperatures a typical cluster will be rather globular in 

j However, attention should also be drawn to the interesting early papers by Mayer and 
Streeter (1939) and Rice (1947). 

The  definitions of Eo, U! and s can be made quite precise by considering a hard-core plus 
attractive square-well pair potential, or a lattice gas with nearest-neighbour interactions only. 
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shape so that the surface should be characterized by an exponent 
.I 

= $ for d = 3 .  (9.1.4) 

We may now write approximately 

4dQ T )  2: VWg(8) exp (&%) exp (-PwJ) (9.1.5) 
where the combinatorial factor g(S) is proportional to the number (or, more correctly, 
volume in d(1- 1)-dimensional configuration space) of configurations of 1 identical 
particles with fixed centre of mass and surface 8. For a simple lattice gas in two 
dimensions g(Z) would be the number of polygons of perimeter d (and area I ) .  By 
a study of this and related combinatorial questions (see the excluded-volume 
problem discussed in §7.1), one can conclude that g(S) will have the form 

(9.1.6) 

where go and X are constants and the new exponent T satisfies riuk 2. Although the 
value of X can be understood readily, especially for lattice gases (note k,lnh = w 
is the limiting entropy per unit of cluster surface), it  is difficult to predict the 
exponent T (in contrast with our intuitive feelings about the surface exponent U). 

Its  presence and positive value, however, follow fundamentally because the surface 
of a cluster is ‘closed’.f. 

If we combine these results and introduce the variable 

3’ = z exp ( P o )  (9.1.7) 

to  measure the activity, and the variable 

(9.1.8) 

to measure the temperature, we finally find for the pressure of an infinite system 

(9.1.9) 

provided the series converges. 
It is easy to see that the series always converges for 

y < y r  = 1. (9.1 . lo)  

For a one-dimensional system (U = T = 0) the pressure diverges when y - f  1 and 
there is no phase transition. When U > 0, however, the pressure and all its derivatives 
with respect to T and x converge a t  y = y g  provided T is below the ‘critical 
temperature ’ 

W T = -  
W 

(9.1.11) 

t Thus  for example, on a lattice of co-ordination number q the number of open Z-step 
random walks is qz but  the number of closed walks (returning to the origin) varies as Aqz/Z1’2d 
when Z + x. For one-dimensional clusters, however, we have U = 0 and 7 = 0. 
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at which the ‘microscopic’ surface tension ( w  - w T )  in (9.1 .S )  vanishes. Thus  y ,  = 1 
is identified as the condensation point.? Despite the existence of all the derivatives, 
y = y g  is a mathematical singularity (of essential type) so that the system ‘knows’ 
it is due to become unstable and condense into a macroscopic cluster. We shall not, 
however, discuss this aspect of the problem further here despite its interest (see 
Katsura 1963, Andreev 1964, Fisher 1965 c, Langer 1967). 

If one is prepared to trust the model qualitatively at higher temperatures (which 
are certainly outside the range of any obvious validity) one can also calculate the 
critical exponents. (One might, however, expect the exponents 5 and T to be 
‘ renormalized ’ by the droplet-droplet interactions.) Thus  the variation with 
temperature of the kth activity derivative of the pressure at condensation is deter- 
mined by the series 

(9.1.12) 

It is not difficult to see, for example by approximating the sum by an integral, that 
the singular part of this function when T+ T, (x-+x,, = 1) has an exponent 
- (k + 1 - T)/.. From this we find2 

7 - 2  P=- (k =; 1) 

yf = q (k = 3) 

(9.1.13) 

(9.1.14) 

(9.1.15) 

and generally, for the ‘gap’ exponents defined in equations (8.1.19) to (8.1.21) we 
discover the constant value 

(9.1.16) 
1 Akf = A‘ = - all 1. 

Similarly by setting x = x, = 1 in (9.1.9) we find that the critical isotherm is specified 

U 

1 a=---- 
7-2.  (9.1.17) 

Evidently all the critical exponents are determined by just the two exponents 
and T .  Thus  between any three critical exponents there will be a relation. I n  particular 
one finds 

asf + 2p + yf = 2 (9.1.18) 
and 

a , ’+P(l+ 6) = 2. (9.1.19) 
The  close similarity of these two relations to the rigorous inequalities proved in 

t For y >yo the series (9.1.9) diverges and the pressure becomes that for the liquid phase. 
T o  describe this phase properly one should also consider ‘bubbles ’ and ‘ cracks ’ in the liquid 
but this has not yet been done. Consequently our results will not display the usual near 
symmetry between liquid and gas. 

? We assume implicitly that ~ > 2  so that p>O. This  is also needed to ensure 6 > 0 ;  see 
equation (9.1.17). 
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$ 3  should be noted but it should also be observed that a,’, for the singular part of 
the specific heat, appears in place of a’. Elimination of as’ yields 

y’ A’ 8 = 1 + - = -  
P P ‘  (9.1.20) 

The  first part of this relation was advanced originally by Widom (1964) on quite 
different heuristic grounds. 

I n  assessing these relations let us note firstly that they are all satisfied by the 
classical critical-point exponents (see fold-out table). If they are tested for the 
planar Ising models they are also found to hold precisely. For the three-dimensional 
Ising lattices they are verified to well within the numerical uncertainties. (But it 
should be noted that As’, A4‘, etc., have not yet been studied numerically for d = 3). 
How do the values of the gap A‘ ( = P + y ’ )  compare with our expectations based on 
(9.1.16) and (9.1.4) ? We have 

= 0.533 ... (Isingd = 2) 

(Ising d = 3) 

1 8  
A‘ - 15 

8 
- = 0*605-0*635 r- 1 
A’ 13 

_ - -  
(9.1.21) 

in surprisingly close correspondence with our guesses 3 and 3. This suggests that 
our analysis, despite its obvious shortcomings, has grasped at least a significant part 
of the way dimensionality enters the problem. 

However, on this simple picture we cannot completely understand the behaviour 
as d -3 a since (9.1.4) suggests A‘ (d  = CO) = 1, whereas, as argued in 5 5.4, one should 
obtain the classical value which is A‘ = 13. One might, on a purely ad hoc basis, 
introduce an exponent pl’ and alter the microscopic surface tension in (9.1.8) by taking 

(9.1.22) 

on the condensation line (only). The  effect is to replace U by ul’ = cr/pl’ so that one 
could retain U = 4 and 8 in two and three dimensions and obtain agreement with 
(9.1.21) by taking pl’ = (d  = 2) and pl’ = 1*05-1.10 (d  = 3). Furthermore, 
pl’ = 1+ would then yield the expected classical behaviour when d+m. This may 
have some significance, since a classical van der Waals treatment of the macroscopic 
surface free energy yields an exponent ,U = 14 (see Widom 1965 a). For the plane 
Ising models, however, the exactly known macroscopic surface tension exponent 
p = 1 (Onsager 1944) does not quite correspond with the microscopic exponent pl’ 
needed for agreement with a‘, P and y‘ .  

By extending the analysis of (9.1.9) to T > T, (all p )  one can also determine the 
high-temperature droplet-model exponents. These are firstly characterized by the 
full symmetry 

a = a’, y = y’ 

A,j = 1 + &(y - a,) = A = A‘ (all j ) .  
(9.1.23) 

While such symmetry is undoubtedly correct for the plane Ising models (and also 
holds for the classical theories), it does seem doubtful for the three-dimensional 
models since, in particular, the numerical evidence reviewed in 5 8 indicates 

y’ - y~ 0.06 > 0 and A’ - A -  0.06 > 0. 
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It should be noted, however, that the predicted constancy of the gap exponents is 
observed to hold generally above T,. 

One could again allow for an asymmetry by choosing a different exponent p, 
for the (negative) microscopic surface free energy above T, when p = pc. Apart 
from its undesirable ad  hoc nature this procedure also leads to difficulties on crossing 
the critical isotherm unless something more elaborate is assumed away from p = pc. 

Present experimental evidence is reasonably consistent with the relations (9.1 .IS) 
to (9.1.20) and their high-temperature analogue 

A 8 = - ~ 

A - y 
- 2-01 + y  

2 - as - y 
(9.1.24) 

although, unfortunately, precise measurements of all the relevant exponents for a 
single physical system are still lacking and, in particular, the important question 
of symmetry, or lack of it, has not yet been resolved by observation.? 

Although there is clearly much left to be understood concerning the droplet 
picture of the critical point let us, as a last problem, turn to ferromagnetism and try 
to understand from the droplet viewpoint the results (i) that the isotropic two- 
dimensional Heisenberg model does not exhibit a spontaneous magnetization and 
(ii) that the values of y and A for the three-dimensional Heisenberg model are 
larger than for the corresponding Ising model (9  8). 

,4 ‘ droplet’ now becomes a ‘ microdomain ’ of overturned spins and its surface 
becomes the domain, or Bloch wall. The  difference between the diffuse structure 
of the domain wall in an isotropic ferromagnet and the abrupt spin reversal 
characterizing the wall in a highly anisotropic ferromagnet is well known. I n  the 
isotropic case the mean direction of the spins in the wall turns almost continuously 
from ‘up’  to ‘down’.  Let us consider such a d-dimensional ‘spherical’ domain of 
radius ma containing 1-ma down spins surrounded by a wall of n layers which 
hence contains the order of 

J‘ = (m  + - md (9.1.25) 

spins. The  change in mean angle between successive layers of the wall spins will be 
of magnitude A0 = Tin. As a reflection of the exchange coupling I S,  1 I S ,  1 cos 01,, 
between adjacent spins we may expect the incremental (free) energy associated with 
a pair of non-parallel spins to  be proportional to c o s ( A 0 > - 1 ~ $ ( A 0 ) ~ .  (More 
generally one could suppose the energy is proportional to (A0)6.) The  total wall free 
energy should thus vary as 

(9.1.26) 

For d = 2 this expression is minimized by taking n indefinitely great so that, 
however large one makes I (and hence m), the total wall free energy need never 
exceed some constant value. This corresponds to an exponent U = 0 in (9.1.2) and 

f Except, perhaps, for the lambda point of 4He where 01 = a’ = 0, as discussed. However, 
y ,  y’ ,  A and A’ are unknown for helium and might not display symmetry. 

46 
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leads via the previous calculation to a lack of stability of magnetization in zero fie1d.t 
Conversely for d = 3 the energy is minimized by 6 = 3’:s so that we expect to 
vary as Z1I3 in place of Z2I3 as for the anisotropic case. This leads us to expect a 
correspondingly larger value of the gap exponent A’N l / u  and, by the required 
symmetry, of A also. Since a is probably fairly close to zero for both Ising and 
Heisenberg models, when d = 3 we have A N  1 + Ay so that larger values of y may 
also be expected to correspond to larger values of A. However, the difference 
(1 /A)Ising - (l/A )Heis= 0.09 is rather smaller than would follow directly from the 
expected changes in U so, once again, the simple picture tells only part of the story. 
I n  real systems, nevertheless, it is plausible that larger values of A and A‘ will 
correspond to the more isotropic systems while systems with pronounced anisotropy 
should exhibit lower values. 

Table 13. 

Exponent 

as = as‘ 

P 
Y = Y f  

6 
11 = A’ 

U 

7 

7 
v = v’ 

Sets of exponents consistent with the various ‘homogeneity’ and 
‘scaling’ relations (listed in order of decreasing y) 
Exact 
Ising 

(d = 2) 

0 
B 

1% 

1; 

__ t6 = 0*5 j  
2-” 

t 

15 

1 5  

1 

‘ Heisenberg like ’ 
( S  = 3) (S = CO) 

-0.19 0 
0.38 - 3 

1.43 3 

4.8 5 
1.81 13 

2.21 2+ 

1 

4 - 

0.55 2 = 0.60 

0.73 0 
0.04 % 

Classical 

(d = E )  

0 
3 
1 
3 
13 

3 
29 

? 
(-“o) 

T o  close this section we list in table 13 various sets of exponent values which are 
consistent with the relations so far derived from the simple droplet picture. (The 
relations for the exponents q ,  v and v’ also listed are discussed below in 939.3 and 
9.4.) The  two columns headed ‘Ising like’ represent good fits to the numerical 
evidence for d = 3 below T, and above T,, respectively. The columns headed 
‘Heisenberg like’, on the other hand, may be taken as plausible speculations based 
solely on the estimated values of 01 and y ( S  = A), and y and A ( S  = a). The values 
of p N 0.38 and 0.33 are very suggestive but recall that there is no evidence for them. 

9.2. Homogeneity arguments 
We have discussed a microscopic picture of the critical point which, perhaps, 

gives some insight into the magnitudes and inter-relations of the critical exponents. 
By contrast we may also follow a more phenomenological macroscopic approach 
which will at least show why the exponent relations (9.1.16) to (9.1.20) and (9.1.24) 
are ‘most natural’. 

t The essence of this argument is given in the book by Wannier (1959) (see also Herring 
.and Kittel (1951, footnote 8 a)). 
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For simplicity we shall now consider a ferromagnet. Firstly, we recall that 
abooe T, we can always expand the free energy as 

A ( M ,  T )  = a o ( T ) + a , ( T ) M 2 + a 4 ( T ) M 4 +  ... , (9.2.1) 
According to the classical approach ( 5  5 .1)  we may also expand the coefficients in 
powers of T - T, near and at the critical point thus obtaining 

(ZIT = H = 2a,,,( T -  T,) M +  4a4,, M 3  + . . . (9.2.2) 

where and ~ 4 , o  are constants. From this, of course, one finds the classical and 
generally false result P = 3. T o  allow for a different value of ,B we may, following 
Widom’s (1965 b) treatment of the fluid case, modify (9.2.2) near the critical point 
to read 

H = bM{(T-T,)+clMI1’p) (9.2.3) 
where b and c are constants of appropriate dimensions. 

It should now be noticed that the factor in curly brackets in (9.2.3) is a homo- 
geneous function (of degree unity) in the variables 

t = T - T ,  and U = cIMl1’p. (9.2.4) 
Again following Widom, we postulate that this factor should be replaced by a 
general homogeneous function Y ( t ,  U )  of a degree which, as one easily sees by evaluat- 
ing the initial susceptibility above T,, should be chosen equal to y rather than to 
unity. We thus conclude that the equation of state close to the critical point might 
reasonably have the general form 

H =  IMY.”{(T-T,),clMll’P) (9.2.5) 
with 

(9.2.6) 
Effectively this same conclusion has been reached by Domb and Hunter (1965)  
and Domb (1966) following a somewhat similar route. (They also suggested on 
heuristic grounds that y‘/P might always be an even integer but present evidence, 
reviewed in 5 8, indicates y’/P 2: 6 - 1 N 4.2 for the three-dimensional Ising model,) 

Restrictions on Y ( t ,  U )  follow from general considerations: when H #  0 or 
M > .MO the free energy varies quite smoothly even at T = To. This means one must 
have a valid Taylor-series expansion 

Y ( t ,  1 )  = ?,bo+$,t+$,t2+... (9.2.7) 
for small t .  Similarly the general validity of the expansion (9.2.1) above T, implies 
the existence of the expansion 

(9.2.8) 
for small U .  Finally, the existence of an initial susceptibility (and higher derivatives) 
at zero field or = .MO below T, means that Y ( t , u )  has the corresponding deriva- 
tives on the line U = - t > 0. (For T < T,, i.e. t < 0, Y ( t ,  U )  is not defined inside the 
‘coexistence’ region [ uI <It I.) 

With these results it is now straightforward to deduce the values of the critical 
exponents y’ ,  6, A,, A,, .. . and A,‘, A,’, . . . . By integrating H with respect to M from 
some fixed value MI (where A(Ml,  T )  may be supposed quite regular for all T )  to 

Y(Xt, Xu) = M Y ( T ,  U ) .  

Y (1, U )  = fo +fl u2P +f, + ... 
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min{M,, 0} one can also obtain expressions for the singulav part of the free energy 
and hence for the specific heat exponents as and as’. Clearly all these exponents will 
depend only on ,8 and y .  Indeed, one finds precisely the relations already generated 
by the droplet picture, namely (9.1.16), (9.1.18) to (9.1.20) and (9.1.24) together 
with the symmetry (9.1.23). More specifically one finds that a, = asf = 0 corresponds 
to a logarithmic singularity plus, in general, a discontinuity but that in the ‘classical 
case’ ,8 = 3, y = 1 the logarithmic term may vanish, but need not (Griffiths 1967), 
leaving only a discontinuity. 

a t  first sight one might think that the symmetry of the exponents about T, 
could be avoided by assuming a different degree of homogeneity above and below T,. 
This allows one to have y f  # y but then necessarily implies that the entropy S( T ,  H )  
in a non-zero field H has a discontinuity at T = T, (Griffiths 1967).? This is clearly 
quite unacceptable. 

As observed before, the known exponents for the two-dimensional Ising model 
are in complete agreement with these ‘homogeneity relations ’, but the apparent 
lack of symmetry about T, in three dimensions seems to mean that the equation of 
state (9.2.5) cannot be quite generally valid. Nevertheless, it is worth while to 
explore its consequences a little further. 

Using the homogeneity of Y(t,  U) we may rewrite (9.2.5) in the form 

(9.2.9) 

where the ‘scaling functions’ are 

and 

in which A is again the gap exponent and m, and ho are constants. The  two functions 
Y+(w) are defined in terms of Y” through their inverses as 

(9.2.12) 

(For simplicity we consider only non-negative M and H.)  They are not completely 
independent functions since (9.2.7) implies that they have the common expansion 

Y*(w) = wD’A( 1 +gl w-l’A +gz w-2’A + - . . .) (9.2.13) 

for large w. Notice that by (9.1.20), PjA = lis, so that this form represents the 
critical isotherm -ki-H1’8. For small w the function Y ( w )  must have a Taylor series 
in odd powers of w while Y J w )  is expected to have at least one or two derivatives 
(assuming xo(T)  exists below T,). Griffiths (1967) has shown how suitable explicit 
analytic expressions for the functions Yi and ’k” can be constructed when ,B is a 
rational fraction. 

t I t  is a similar difficulty that arises in the droplet picture when the ad hoc microscopic 
surface tension indices are introduced. 
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Evidently (9.2.9) is stronger than the exponent relations alone since it states a 
law of corresponding states for the whole critical neighbourhood, i.e. it means that 
different isotherms near T, should map onto one another through the scalings 
(9.2.10) and (9.2.11). Recent studies of CrO, and Ni by Kouvel and Rodbell 
(1967a, b) have shown that, to within the experimental precision, such scaling 
functions can, indeed, be found (at least above T,). This is demonstrated in figure 18. 
I t  is an important development since it opens the possibility of a fully systematic 
comparison of the critical behaviour of different physical systems.? 

9.3. Correlation exponent relations 
So far we have considered exponent relations only for the thermodynamic 

functions but, as already seen in 3 6.3, the exponents for the decay of the correlation 
functions can also be interrelated. T o  recapitulate and extend slightly the previous 
discussion let us assume that there is only a single correlation length ~ - 1  which 
diverges at the critical point. If we adopt magnetic language we may then, as in 
9 6.3, write the ‘scaling relation’ 

(9.3.1) 

where ~ - l (  T ,  M )  satisfies 
.(T,O)-(T-T,)” (T>T, )  

K(T,,M)NIMlVC ( T =  T,) 
K( T ,  0) - (T,- T)u’ ( T <  Tc). (9.3.2) 

By the arguments already given in 9 6.3 this leads via the fluctuation relation to 

(2-7)v = y and (2-7)v’ = y’ 
and also 

( 2 - 7 ) v c  = 6-1.  

(9.3.3) 

(9.3.4) 

All these relations are in agreement with the classical predictions. The  first two are 
exact for the Ising model in two dimensions (3 6.3) and seem valid in three dimen- 
sions above To (98.1). The  last relation (9.3.4) has not so far been tested. 

The  assumption of a single diverging correlation length seems very plausible in 
a general physical system provided the interactions themselves are fairly simple and 
do not, in particular, include contributions of drastically different type or range 
which might none the less co-operate at the transition. T o  illustrate how the 
existence of, say, two diverging correlation lengths might destroy (9.3.3), let us 
suppose in place of (9.3.1) that for T >  T, 

(9.3.5) 

where D,(x) and Db(x) decay exponentially as %+a. Our asymptotic definition of 
the true correlation range must then yield 

K = min { K ~ ,  K b }  and v = max (va, vb). (9.3.6) 
Such a study of the existing data for fluids has recently been initiated by Green et al. 

(1 967). 
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Figure 18. Logarithmic plots of scaled magnetization (U E M )  data just above the Curie point 
with U' = m ( T )  = m,(T-T,)p+ and H'  = Ij(T) = h,(T-T,)* for (a)  CrO, with 
,L?- = 0.34 and A = 1.97, and (b) nickel with ,L?+ = 0.41 and A = 1.71. Broken lines 
represent limiting behaviour at high and low relative magnetization imposed, respec- 
tively, by the measured critical isotherm and by the normalization procedure. It should 
be noted that CrO, satisfies a scaling law even though the values of y ( N 1.6) and 
6 ( N 5.8)  are not typical for ferromagnets. 
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Similarly the ‘true ’ susceptibility exponent will be 

where the analysis of $6.3 has again been used. Finally, the asymptotic critical- 
Y = max{y, ,~bl= max{(2-~,)va, (2-7b)vbl (9.3.7) 

point decay is determined by 
7 = min {7,, 7 b l .  (9.3.8) 

One may now check that, for example, va = 6, v, = j and y b  = B, v b  = 1 lead to 
v = 1 and y = 1Q but 7 = +, which violates (9.3.3). 

Might it be possible to express, say, v’ and hence, accepting (9.3.3) and (9.3.5), 
v, v ,and 7 entirely in terms of the thermodynamic exponents? The  following 
heuristic argument due to Widom (1965 a) suggests the answer may be yes. Let us 
consider a ferromagnet below T, in a vanishingly small field and try to estimate the 
magnitude of the fluctuations of the magnetization density which occur in a region 
of linear dimension equal, or proportional to, the correlation length (and hence of 
volume, or area, about K-”. According to general theory the fluctuations in a 
suficiently large volume V are given by 

(9.3.9) 

Clearly the linear dimensions of V should be much greater than the range of inter- 
action; the correlation length satisfies this criterion close to To. However, more 
generally one would expect that the dimensions of V should also be much greater 
than K - ~  (although this question does not seem to have been discussed carefully in 
the literature). If, none the less, we assume that the correlation length, or some 
multiple of it, does indeed specify a sufficiently large volume, the right-hand side of 
(9.3.9) will vary as (q- T)dv’-Y’, On the other hand, it is natural to suppose that 
near To the spontaneous fluctuations in an ‘up’  domain in zero field will be such as 
to produce quite frequently a coherent but small ‘ down’ domain of dimension 
proportional to K - ~ .  Thus we suggest the identification 

(4M2)p7 N MO2( T )  N (T, - 7’)”. (9.3 .lo) 

dv’ = y’ + 2p (9.3.1 1) 

dv’ = 2 - as’. (9.3.12) 

Combination of these two estimates yields the new relation 

which, accepting the original relation (9.1,13), can also be written 

Alternatively (9.3.11) can be rewritten as a relation for 7 ,  namely, using (9.3.3), 

accepting (9.1.20), 
d(6 - 1) 
6 + 1  

7 = 2-- 

(9.3.13) 

(9.3.14) 

which is suggestive since it involves only exponents defined for T = q.7 
1 This last expression for 7, but with the additional restriction 7 3 0, has been derived 

independently by Stell (1 967) by neglecting the remainder in a certain functional Taylor-series 
expansion of the critical-point correlation function. This general approach was introduced by 
Lebowitz and Percus (1961, 1963) and Percus (1962) who studied the relation to Ornstein- 
Zernike theory (see the review by Fisher (1964 b) ). 
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Happily these four relations again check precisely for the two-dimensional Ising 
model. But there are serious difficulties: for large d we should expect, as argued in 
5 5.4, to recover the classical results, namely y’ = 1, /3 = $, 6 = 3, and v’ = +, 7 = 0. 
Clearly, however, this does not happen. On the contrary 7 becomes negative and 
large, which, as regards the critical scattering isotherm, is a rather disquieting 
prediction since it implies an indefinitely large enhancement for finite k. Maybe 
there is some special non-uniformity for large d that prevents us taking the limit so 
directly (as suggested by Kadanoff 1966 b) or maybe for some reason, as yet not 
explained, the heuristic argument applies only in sufficiently low dimensions.? 

Perhaps more serious is the situation for the three-dimensional Ising model. 
As discussed, ,8 = i6,- is established with quite high precision and it seems certain 
that y ’ > z  and 6 5 ( 5  8.1). The  formulae (9.3.13) and (9.3.14) then imply7 < 0 (see 
table 13) which clearly contradicts the positive value (8.1.12) found by Fisher and 
Burford (1967) (98.1). At present one might still hope that the numerical uncer- 
tainties will blunt this contradiction and that when direct estimates of v‘ are made 
they will confirm (9.3,11), but this looks somewhat doubtful. 

Disregarding these difficulties for the moment, we may point out, following 
Kadanoff $, an alternative, although perhaps less convincing, fluctuation argument 
yielding 

dv’ = 2 - 01‘ and dv = 2 - 01. (9.3.1 5) 

It should be noted that these specific-heat exponents are not those for the singular 
part, so that (9.3.15) does not always imply (9.3.12). Again we consider a zero-field 
fluctuation near T, in a volume of linear dimension K - ~  but now we ask for the 
temperature fluctuation ( A T 2 ) .  By general theory§ this will be inversely propor- 
tional to the product of the specific heat per spin and the volume, and hence 

( A T * } ~ ~ T - T c l o l + d v  or [ T-TC[%‘-dy‘ (T2 Tc) (9.3.16) 

where, as before, we have assumed that the volume chosen is sufficiently large to 
justify standard fluctuation theory. One now argues heuristically that the probable 
temperature fluctuations in such a volume should, most naturally, be of order 

As below the critical point, the Ising model is consistent with (9.3.15) when 
d = 2, but  causes difficulty for d = 3. Using the estimate (8.1.11) for v yields 
a: = 0.07 i 0.01 which falls short of the best present estimate (8.1.3) by 0.055 & 0.030. 
( I t  should be noted that the observed constancy of A,f (see (8.1.27)) and the previous 
homogeneity relations independently support the estimate 012: & = 0.125.) Some 
values for 7 and v = v’ consistent with the exponent relations are listed in table 13. 

T -  Tc[. This immediately yields (9.3.15). 

9.4. Complete scaling of the correlations 
I n  the previous section we reviewed the relations (9.3.3) and (9.3.4) connecting 

the exponents 7 ,  v, v’ and vc to the thermodynamic exponents y ,  y’ and 6. By some- 
what less compelling arguments we also advanced the relations (9.3.1 1) to (9.3.15) 

1 See also the footnote to p. 713. 
$ Kadanoff (1966 b) attributes this thermal fluctuation argument to Pippard and to 

8 See, for example, Landau and Lifshitz (1958, p. 352). 
Ginsberg. We present it here in a slightly different, but more physical, way. 
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which depend explicitly on the dimensionality. Although on balance one cannot at 
present be convinced of the general validity of these latter formulae, it is interesting 
to see how they, and all the previous homogeneity relations, can be derived together 
in a unified way from effectively one single hypothesis. 

We follow Kadanoff's arguments (Kadanoff 1966 b, Kadanoff et al. 1967) for a 
nearest-neighbour spin & Ising model. A related, but somewhat less direct, set of 
general arguments has been presented by Patashinskii and Pokrovskii (1 966). 
Near the critica! point the lattice can be divided into cells labelled p ,  p ' ,  . . . of side L 
satisfying 

a < L g K-1 (9.4.1) 

a being the lattice spacing. Since K + O  at the critical point, it is certainly possible 
for sufficiently small 

(9.4.2) 

to  find a wide, although not infinite, range of possible L values. (The  ability to vary 
L arbitrarily will, however, be used below.) Nom we argue that the properties of an 
isolated cell which does not interact with neighbouring cells will, since it is finite, 
not vary very rapidly for sufficiently small t .  Furthermore, since L < K - ~  all the 
spins in one cell will be well correlated and so we postulate that on average they 
point mostly ' u p  ' or mostly ' down'. This is a crucial assumption ; it is appealing 
but has not been established more rigorously. 

If s, = k 1 is the Ising spin Yariable for the site r our assumption enables us 
to write 

c sr = s"p(s)L L d  (9.4.3) 
r ( p )  

where the sum runs over sites in the cell p and where 8, = k 1 is a new spin variable 
associated with the whole cell. The  mean spin magnitude ( s ) ~  is defined by 

(9.4.4) 

and should not vary significantly with t near the critical point. 

reduced temperature t and reduced field 
We are now in a position to map the original Ising problem with spins sr, 

(9.4.5) 

into a new Ising problem for the cells, with spin variables 8, and reduced tempera- 
ture and field t' and h. This entails, of course, the assumption that the complicated 
interactions through the cell interfaces in the original lattice can be represented by a 
bilinear cell-cell interaction term 8, gP, with an interaction energy that is not too 
singular a function of t ,  h and L. Of course, this also is very hard to prove. ( I t  
should be mentioned that Buckingham (1966) has independently argued that a 
fluid system with short-range forces can be mapped into a nearest-neighbour Ising 
model.) 

From (9.4.3) it is clear that 
K = K(t ,  h, L )  = h(S)L L d  (9.4.6) 
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(9.4.7) 

where 0 is in cell 0 and r in cell p. In  terms of the correlation function F(r, t ,  h)  
for the Ising model this can finally be rewritten as 

(9.4.8) 

From this basic scaling relation all the previous formulae for the exponents can be 
derived by simply noting that the right-hand side must be independent of the 
choice of L. 

Thus by letting t = h = 0 and using the definition of 77 we see that f ( O , O ,  L )  = 0 
and that 

(S),EL+ $ = &(d-2+77). (9.4.9) 

Summing (or, effectively, integrating) on r and using the fluctuation relation yields 
for the susceptibility 

xr( t ,  h) N L2-7xT(t’, hLd-p). (9 -4.10) 

When h = 0 we have (essentially by definition) xT N t-7 for t > 0. This implies 

(9.4.1 1) 

Since we expect the effective interaction constant between cells for finite fixed L to 
be a non-singular function of temperature, the exponent 9 should not depend on the 
sign of t .  Using the definition of y‘ below T, we are thus led to expect the symmetry 
y = y’. Eventually, however, we would have to impose symmetry in any case for the 
reasons given previously in connection with the original homogeneity formula 
(9.31) (Griffiths 1967). 

If we return to (9.4.Q use (9.4.6), (9.4.9) and (9.4.11) and choose L proportional 
to Y ,  as we may, we obtain the full correlation scaling law 

qY, t ,  h)  2: y-d+2--11 G tY$ ~ ( y  + a; t ,  h -+ 01. (9.4.12) 

Evidently the scale of Y ,  and hence the correlation length, in zero field is determined 
by t-1’4 which leads to the identification 

( )Y$q 

(9.4.13) 

The  relations (9.3.3) between y ,  y ’ ,  77 and v, v’ are then a consequence of (9.4.11). 
Now, choice of L proportional to t-” in (9.65) shows that 

(9.4.14) 

where X is a function of a single variable. On integration from some h,, where 
M(t ,  h,) is non-singular, we obtain near the critical point, 

(9.4.15) 
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where Y is again a function of one variable. This is of precisely the form of the 
previous thermodynamic scaling relation (9.3 -9) and we immediately make the 
further identifications 

and 
A = A’ = &(dv+y)  = y+/3 (9.4.1 6) 

which should be compared with (9.3.9) and (9.2.11). Lastly, as in the original homo- 
geneity analysis, we may integrate again to obtain the free energy and thence the 
final relations 

& = 2 - a  =2- as ’ ) (9.4.1 7) 
which are to be compared with (9.3.12) and (9.3.15). 

2/3 = d v - y  

Table 14. Summary of exponent relations and agreement with relative 
numerical data 

Formulae Ising Classical limit 
( d  = 2 )  ( d  = 3 )  ( d  = a;) 

(6) $1 9.3, 9.4 
(2-17)v = y 
(2-7j)v’ = y’ 

(c) § 9.1 
6 = ( 2 - 0 1 , + ~ ) / ( 2 - 0 1 , - ~ )  = A/(A-y)  Yes 0) Yes 

01 = a’, y = y’, A = A‘, v = v’ Yes ? Yes 
( d )  $8 9.1, 9.2, 9.4 

( e )  019.3, 9.4 
dv‘ = y‘ + 2P, dv’ = 2 -as’ 
7 = 2 - dy’/(y’ + 2p) = 2 - d(6 - l ) / ( S  + 1) 
dv = 2-01, dv‘= 2-01’ Yes ? no 

9.5. Summary 
The most important conjectural exponent relations discussed in this section 

are displayed in table 14 where they are grouped together in an order which repre- 
sents roughly the weight of theoretical argument and evidence supporting them. 
The  apparent consistency with the numerical values for the d = 2 and d = 3 Ising 
models and with the classical predictions, which it was argued should correspond to 
d+ a, is indicated by the comments in the appropriately headed columns (see also 
table 13 ; note that a query indicates serious doubts.) 

Those relations involving the dimensionality directly seem most open to 
question, but it is remarkable that they are satisfied exactly by the planar Ising 
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models. Furthermore, the discrepancies in three dimensions are rather small 
although at present they seem quite definite. This and the behaviour for d+m 
might mean that in higher dimensions one also needs to introduce a characteristic 
area, volume, etc. (up to, perhaps, a (d -  1)-dimensional manifold) with a tempera- 
ture dependence not directly related to that of the correlation length and its powers. 
Some similar idea might also correct the droplet picture in the limit of large d and 
thereby also improve its representation of the values of h in two and three dimen- 
sions. Whether such speculations are useful lines of thought for future progress 
remains to be seen, but it may be hoped that the heuristic arguments already 
developed will either be strengthened into real proofs or further analysed to reveal 
in detail why they fail. New and more powerful ideas are needed for the complete 
general calculation of the critical exponent values, recognizing their dependence on 
the crucial features of the interactions as well as on the dimensionality. Until this 
goal is achieved our theoretical understanding of critical phenomena will remain 
seriously incomplete. 

10. Conclusions and outlook 
In  the foregoing sections we have discussed the theory of equilibrium critical 

phenomena with main emphasis on ‘simple’ systems characterized by a single 
dominant interaction of short range. I n  reviewing our conclusions and attempting 
to map future progress we shall also mention some aspects of the equilibrium 
behaviour that have been omitted or touched on only in passing. Finally, vie shall 
highlight some of the problems of the theory of non-equilibrium critical phenomena 
which have not been considered at all in this article. 

10.1. Equilibrium phenomena 
Firstly, as to the successes of present theory, the close analogies between critical 

phenomena in different systems have been given a firm theoretical base and the way 
is open to understand the often relatively small quantitative differences of behaviour 
in terms of essential differences in the Hamiltonians. The  defects of the classical 
treatments (and their limiting validity) have been thoroughly revealed and under- 
stood theoretically. Numerical calculations on the Ising and Heisenberg models 
have brought the predicted critical exponents very close to those observed experi- 
mentally, especially in the case of binary metallic alloys. One can be confident that 
the deviations now observed between theory and experiment are consequences of 
oversimplifications of the models (rather than deficiencies of calculation). The  
strong influence of dimensionality has been clearly demonstrated in connection with 
the Ising model. Indeed, while a solution for the two-dimensional Ising model in an 
arbitrary magnetic field would still be valuable, our knowledge of the analytic 
critical-point behaviour is already almost complete. I n  three dimensions any 
analytic results would, however, have great value if only as a check on the numerical 
extrapolations. Nevertheless, for the Ising model present numerical results are again 
almost complete and seem quite precise. The  most notable conclusion to be drawn 
from them is the probable lack of symmetry of the critical exponents about T,. As 
discussed at length in the previous section, this casts doubt on the validity of the 
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homogeneity and scaling theories of the critical point which otherwise look so 
promising. While we may expect further technical developments leading to longer 
series and improved extrapolation procedures, the differences around T, (if real) are 
sufficiently small that only rigorous analytical arguments seem likely to allay all 
reasonable doubts regarding the asymmetry (or on the contrary to prove that 
symmetry is actually realized). Experimentally, however, there remains much 
scope for resolving the question of symmetry for fluids, magnets, etc., by detailed 
measurements on carefully chosen single systems. 

T h e  dependence of the critical-point exponents on the Hamiltonian (as well as 
the dimensionality) is demonstrated by the results for the Heisenberg model. 
Although some light is thrown on these effects by the droplet picture, much 
remains to be elucidated and understood. One may expect that further numerical 
work will confirm present estimates above To and reveal more clearly the dependence 
on spin and anisotropy (and hence yield interesting results for quantal lattice gases), 
Undoubtedly, however, the most urgent need is for a systematic approximation 
scheme for determining the critical behaviour of the Heisenberg model below T,. 

T o  go forward it is now also necessary to try to calculate reliably for somewhat 
more realistic models. It seems premature to hope for rapid progress on the con- 
tinuum-gas models in the critical region, although the deviations of the observed 
critical exponents from the lattice-gas results make this very desirable. As a first 
step, lattice gases with hard cores of larger size (relative to the lattice spacing) as 
  ell as attractive interactions might well be studied, although the intervention of 
crystalline lattice ordering will probably still complicate the problem.? For ferro- 
magnets and antiferromagnets an important but  difficult task is the development of 
the theory of band- or spin-delocalized itinerant-electron magnetic models to the 
point where useful critical-point predictions can be made. Present theories have 
essentially not gone beyond the mean field approach (e.g. Izuyama and Kubo 1964, 
Fedders and Martin 1966). On the other hand, less realistic, but mathematically 
more tractable, models should still be devised and pursued since their properties, if 
accurately determined, will doubtless be useful in deepening our understanding of 
the interplay between dimensionality and the specific features of the model 
Hamiltonian even if these are not too realistic. 

In  this connection we have already discussed briefly in 3 2.9 the characteristically 
different critical behaviour of superconductors and ferroelectrics. We did not, 
however, consider separately ‘ dipolar magnets ’ in which the long-range magnetic 
dipole-dipole interactions play a significant role in the ordering. Since such 
systems have very low critical temperatures they can be studied experimentally in 
relatively large (on the scale kBTc/gPB) magnetic fields. Wolf and co-workers 
(e.g. Wolf and Wyatt 1964) have done notable work on the highly anisotropic 
(Ising-like) antiferromagnet dysprosium aluminium garnet. Although the changes, 
if any, in the critical exponents have not yet been fully determined, the existence of 

f I t  may be mentioned that lattice gases with hard cores of increased size but with no 
attractive interactions have been studied in some detail (Gaunt and Fisher 1965, Runnels 
1965, Bellemans and Nigam 1966, Ree and Chesnut 1966). These results are presumably 
relevant to the ‘melting’ of continuum hard-core fluids studied extensively by Monte Carlo and 
direct computer simulations (e.g. Alder and Wainwright 1960, 1962, Wood and Jacobson 
1957), but not to critical phenomena. 
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a lambda line of critical points terminating at a ‘hypercritical ’ point where the 
transition becomes first order has been clearly revealed (Keen et al. 1966). The  
extension and testing of the homogeneity laws for such transition points present an 
interesting problem. 

A related general question concerns the effects on the critical point of inter- 
actions with ‘ background’ degrees of freedom, particularly the mechanical-elastic 
modes of motion. Thus in certain cases a dependence of the magnetic coupling 
parameter J on the lattice spacing can apparently ‘split’ the ferromagnetic Curie 
point into two critical points at fields k H, leaving a first-order transition point 
(actually a triple point) in zero field.? 

The  effects on critical points of ‘secondary’ external fields (which are not 
directly related to the ordering) are of general theoretical interest and also of value 
because of the insight into the microscopic mechanisms that may be obtained. 
Gravitational fields have been investigated in connection with gas-liquid critical 
points (where they are essentially unavoidable) by, notably, Schneider, Schmidt and 
Lorentzen.1 Non-local effects seem not yet to have been detected but might be 
expected theoretically very close to T,. Recently Debye and Kleboth (1965) have 
measured the change in light scattering from a binary fluid critical mixture under 
an external electric field ; so far their results have been interpreted satisfactorily by a 
classical theory but, with developments of the technique, new aspects of non- 
classical behaviour should be revealed. 

A different type of external field is that associated with the boundaries or walls 
of a system. Theoretically the boundary free energies have been calculated 
explicitly for the plane Ising lattice and are found to exhibit strong critical anomalies 
(Fisher and Ferdinand 1967). Intimately related to the direct boundary effects are 
the limitations on the magnitudes of the specific heat and other ideally infinite 
anomalies by the finite size of a system (Domb 1965 a, b, c, Fisher and Ferdinand 
1967). As already mentioned, this may be one factor in the unexplained rounding of 
observed magnetic specific-heat anomalies and merits further theoretical and 
experimental exploration. 

The  inhomogeneous region near a wall is, at least superficially, similar to the 
interfacial region between two conjugate phases below a critical point. The  close 
link between the interfacial free energy (surface tension) and the other thermo- 
dynamic properties near the critical point has already been seen in the discussion of 
the droplet picture (39.1). For the plane-lattice Ising model, as mentioned, the 
surface free energy is known (Onsager 1944, Fisher and Ferdinand 1967). The  
classical theory of the interface due to van der Waals has been extended by Widom 
(1965 b) to allow for general values of the thermodynamic exponents. A scaling 
hypothesis, which is again checked by the Ising model in two dimensions, leads to a 
prediction for the sharp growth of the interfacial thickness as T, is approached. 

t See Bean and Rodbell (1962), de Blois and Rodbell (1963) and the conference paper by 
Garland and Renard and the subsequent discussion (in Green and Sengers 1966), where 
references to earlier theoretical and experimental work are given. So far only more or less 
classical theoretical treatments have been developed. 

8 See Weinberger and Schneider (1952), Schneider and Habgood (1953), E. H. W. 
Schmidt (in Green and Sengers 1966), and Lorentzen (1965). Lorentzen and Hanson (in Green 
and Sengers 1966) and Voronel’ and Giterman (1965) have studied the gravitational effects on 
binary fluid systems. 
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This in turn has recently been tested experimentally by Gilmer et al. (1965). 
Further developments, both experimental and theoreticalt, along these lines may be 
expected and should yield valuable insight into the effects of dimensionality. 
(Experimental studies of surface phases and their one-dimensional interfaces would 
also be most instructive.) 

Finally, under equilibrium phenomena one should note the ‘dilution’ effects 
that occur when, for example, a second molecular species is added near a gas-liquid 
critical point. In  this connection Chashkin et al. (1965) have reported peculiar 
structure in the specific-heat anomalies which, if not an artefact, demands a theoreti- 
cal interpretation. The  three-component or ternary fluid system presents a some- 
what similar case. The  critical behaviour of dilute ferromagnetic alloys (e.g. iron 
plus a non-magnetic metal) has been studied to some extent experimentally 
(e.g. Craig et al. 1965) but theoretical work has so far been confined mainly to 
estimating the lowering of the critical temperature on dilution (see, for example, 
Morgan and Rushbrooke 1963). 

10.2. Non-equilibrium phenomena 
Non-equilibrium phenomena near critical points may be divided roughly into 

macroscopic and microscopic aspects. Under the former heading is the question 
of the existence and nature of critical anomalies in the transport coefficients, for 
example the viscosity, the thermal conductivity, the diffusion coefficients, etc. 
Under the latter heading may be placed the behaviour of relaxation times for 
atomic and molecular processes, resonance linewidths, ultrasonic attenuation and 
inelastic scattering, particularly by light and by neutrons. Theoretically it is now 
clear that in all these cases it is the time and space (or frequency and wave-number) 
dependence of the underlying correlation functions for two (or sometimes a few) 
particles, spins, etc., that is relevant. Thus Van Hove (1954 a, b) has shown how 
the inelastic scattering from a fluid is determined by the function 

S ( k ,  w )  = exp {i(k.  r - ut)} G(r, t )  (10.2.1) 

where G(r, t)  is the correlation between a particle at the origin at time t = 0 and 
one at r at time t .  The development of formal expressions for the transport 
coefficients as integrals over time-correlation functions (see the excellent review by 
Zwanzig (1 965) ), demonstrates that macroscopic non-equilibrium phenomena are 
to be understood in principle from the same standpoint. Most existing theories, 
however, have not advanced far beyond macroscopic and semi-phenomenological 
descriptions of the type found to be unsatisfactory for equilibrium phenomena. 
Thus, in their original discussion of Brillouin scattering in fluids, Landau and 
Placzek; assumed that the microscopic fluctuations obeyed the bulk hydrodynamic 
equations. This implies that fluctuations of wave vector k propagate essentially as 
independent normal modes but subject to exponential damping with decay times 
T(k). Corresponding to the assumed exponential decay, frequency line shapes are 

+ A more detailed theoretical interpretation of the diffuse interface in terms of capillary 
waves has been advanced by Buff et al. (1965). 

$ See, for example, Frenkel (1964 b), Landau and Lifshitz (1959, 1960). 
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commonly predicted to be of characteristic Lorentzian shape, i.e. proportional to 

This picture of the fluctuations, which is a natural generalization of the 
Ornstein-Zernike theory, works very well in normal circumstances but might be 
expected to break down near a critical point. I n  some respects this has already been 
found. Thus  in a fluid the lifetime ~ ( k )  of the diffusive (non-propagating) mode is 
found theoretically to vary as pC,/hk2 where A is the thermal conductivity which is 
presumed to remain constant through the critical region. Since C,, diverges like 
KT, i.e. as ( T -  T , ) - y  when p = pc, a marked ‘thermodynamic slowing down’ of the 
fluctuations is predicted near T,. This is indeed observed, but, at the same time, 
the thermal conductivity h is also found to be divergent although more weakly than 
C ,  (see hIichels et al. (1962) who discovered that h varies approximately as 
C,  - - In 1 T - 7; I.) I n  the analogous theory for a ferromagnet (Van Hove 1954 a, b) 
a similar thermodynamic slowing down is predicted since T(k) should now vary as 
xT( T ) / k * .  Consequently the inelastic part of the critical scattering of neutrons is 
expected to vanish as T- t  T,. However, Jacrot et al. (1962) and Passel et al. (1965) 
have found that the inelastic linewidth for iron remains finite and essentially con- 
stant up to the Curie point. -It present the reason for this marked discrepancy is 
not really understood. 

Again the extent to which different systems have, or should have, analogous 
non-equilibrium critical behaviour is not clear. Thus,  Sengers (in Green and 
Sengers 1966) has pointed out that while the thermal conductivity of simple fluids 
has a definite critical anomaly the viscosity exhibits at most a very minor one. Con- 
versely for binary fluid mixtures large anomalies have been found in the viscosity 
of several systems but none has been seen in the thermal conductivities. 

Added impetus to the development of improved theories has been given recently 
by the development of new and very precise experimental techniques. Most notable 
is the use of lasers by Ford and Benedek (1965) and Alpert et al. (1965) to study 
inelastic light scattering at the critical points of pure fluids and binary mixtures. 
Nuclear magnetic resonance methods have also given valuable information very 
close to critical points (e.g. Heller and Benedek 1962, Heller 1966, Xoble and 
Bloom 1965). For recent surveys of these and other techniques the reader should 
consult the Pfpoceedings of the Washington Conference on Phenomena in the Aieigh- 
boyhood of Critical Points (Green and Sengers 1966), to which we have already 
referred on numerous occasions. The  Proceedings also contains theoretical dis- 
cussions of relaxation and inelastic processes in magnets by Alarshall and by Heller. 
A theory of non-equilibrium critical processes in fluids, particularly ultrasonic 
absorption, has been presented and reviewed by Fixman (1964). Attention should 
also be drawn to more recent theoretical work by Kawasaki (1966 a, b, c). 

I n  conclusion it is fair to say that both the theoretical and experimental situa- 
tion for non-equilibrium critical phenomena is some one to two decades behind that 
for the equilibrium phenomena-perhaps more, since already over twenty years 
have passed since Onsager’s exact solution for the square Ising lattice which opened 
the modern era of critical-point studies. Optimistically we may hope that the next 
decade may bring comparable progress in the study of time-dependent phenomena. 
Although the problems seem hard there is no doubt that the challenge should be 
accepted. 

(1 + T2 CO2)-’. 
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Exponent definitions and values 

Exponent 

below Tc 

a' 

B 
Y' 
V' 

A' 

at T = T, 

6 

rl 

above To 

a 

Y 
V 

A 

Definitions and experimental data 

AT = I T -  T, I 
Gas-liquid 

at coexistence T --f T,- 

Classical 
theory 

0 
(discon.) 

6 
1 

6 
14 

3 

0 

0 
(discon.) 

1 * 
16 

Exact and approximate theoretical values 

Ising 
(d  = 3) 

1 +0.18 
16 -0.035 

3% 2::::; 
1 * it::: 

(0.675 -+::81) 

5+k0*15 

k 0.008 

8 f 0.015 

1 f f 0.003 

i% k 0,0025 

1 3  k 0.03 

Heisenberg Heisenberg 
(d  = 3) (d  = 3) Exponent 
( S  = CO) (S = 4) 

below T, 

cy' 

B 
Y' 
V' 

A' 

at T = Tc 

6 

0.075 k 0.035 E 0.08 rl 

'above T, 

N O  (?) N O  (?)  cy 

1.33 k 0.01 1.43 k 0.04 Y 
0*692? 0.012 -0.74 V 

1-81 f 0.05 A 


