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Nonlinear systems driven by noise and periodic forces with more than one frequency exhibit the phenomenon of
Ghost Stochastic Resonance (GSR) found in a wide and disparate variety of fields ranging from biology to
geophysics. The common novel feature is the emergence of a ‘ghost’ frequency in the system’s output which is absent
in the input. As reviewed here, the uncovering of this phenomenon helped to understand a range of problems, from
the perception of pitch in complex sounds or visual stimuli, to the explanation of climate cycles. Recent theoretical
efforts show that a simple mechanism with two ingredients are at work in all these observations. The first one is the
linear interference between the periodic inputs and the second a nonlinear detection of the largest constructive
interferences, involving a noisy threshold. These notes are dedicated to review the main aspects of this phenomenon,
as well as its different manifestations described on a bewildering variety of systems ranging from neurons,
semiconductor lasers, electronic circuits to models of glacial climate cycles.

Keywords: ghost stochastic resonance; complex inharmonic forcing; noise; threshold devices

1. Introduction

1.1. Beyond stochastic resonance

The phenomenon of Stochastic Resonance (SR) [1–7],
in which an optimal level of noise allows a nonlinear
system to follow the periodicity of the input signal,
received ample attention in a number of disciplines
over the last decades. The term Stochastic Resonance
was introduced by Benzi and co-workers [1,2] in their
original conjecture explaining the Earth’s ice ages
periodicities. The word resonance referred to the
existence of a maximum in the system’s response
synchronous with the periodic input, observed for a
certain amplitude of the noise.

Initial theoretical work to understand SR on discrete
or continuous bistable models emphasised the nonlinear
aspects of the phenomenology [5–7], while other efforts
[8,9] noted that its main aspects can be described within
the framework of linear response theory, such as for
example the relation between the sinusoidal input and
the spectral output component of the same frequency.
While SR was initially considered to be restricted to the
case of periodic input signals, now it is widely used
including aperiodic or broadband input signals. Differ-
ences exist also in current measures of the system’s
output performance: the signal-to-noise ratio (SNR) is

used for periodic inputs, mutual information for random
or aperiodic signals and linear correlation between
output and input signals in other cases.

This introductory review is dedicated to a variant of
SR termed Ghost Stochastic Resonance (GSR) which is
ubiquitous for nonlinear systems driven by noise and
periodic signals withmore than one frequency. GSR was
first proposed [10,11] to explain how a single neuron
suffices to detect the periodicities of complex sounds.
Later, similar dynamics was found to describe the
quasi-periodicity observed in abrupt temperature shifts
during the last ice age, known as Dansgaard-Oeschger
(DO) events [12]. Between these two examples, other
manifestations of GSR were subsequently identified in
disparate systems including neurons, semiconductors
lasers, electronic circuits, visual stimuli, etc. In the
following sections GSR will be reviewed including its
main underlying ingredients and the most relevant
manifestations in different natural phenomena.

1.2. Two examples of unexplained periodicities

To introduce the main aspects of GSR, we will use two
examples where a system responds with spectral
components which are not present in their inputs.
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1.2.1. The missing fundamental illusion in pitch
perception

Pitch is a subjective attribute by which any sound can
be ordered on a linear scale from low to high. If a tone
is composed of a single frequency, the perceived pitch
is its frequency. In the case of complex sounds,
composed of several pure tones, there is no objective
measure of the pitch, despite the fact that the accuracy
of different observers to distinguish between different
complex sounds can be as small as a few percent, even
for untrained ears.

A well-known illusion used to study pitch percep-
tion takes place when two tones of different frequencies
are heard together. The paradox is that, under these
conditions, the perception corresponds to a third,
lower pitched, tone and not to any of the two
frequencies. This is referred to as the missing funda-
mental illusion because the perceived pitch corresponds
to a fundamental frequency for which there is no
actual source of air vibration. A characteristic phe-
nomenon in pitch perception is the so-called pitch shift.
This refers to the variation of the perceived pitch when
the frequencies of an harmonic tone are rigidly
displaced. The first quantitative measurements of this
phenomena are reproduced in Figure 1 ([13] and [14]).

The experiment is described as follows: a sinusoidal
amplitude modulated sound:

sðtÞ ¼ ð1þ cos ð2pgtÞÞsin ð2pftÞ ¼ 1

2
sin ð2pðf� gÞtÞ

þ sin ð2pftÞ þ 1

2
sin ð2pðfþ gÞtÞ; ð1Þ

is presented to a group of subjects which were asked to
report the perceived pitch. This is a complex tone
composed of three components equi-spaced in fre-
quency by a value g. If f ¼ ng with n integer, the three
tones are higher harmonics of the fundamental g. If
the three components are displaced by Df, e.g. (f ¼
ng þ Df), the three tones are no longer higher
harmonics of g (g is not the missing fundamental) but
the difference between them remains equal to g. These
stimuli are represented in the top diagram of Figure 1 for
g ¼ 200 Hz, f ¼ 1.4 kHz and Df between 0 and 1 kHz.

It was assumed for many years that, under these
experimental conditions, the auditory system would
report a pitch corresponding to nonlinear distortions
[15]. In other words, pitch perception would be related
to the difference between the intervening tones. If that
were the case, the reported pitch should remain
constant (i.e. the red dashed line of bottom panel of
Figure 1). Instead, the reported pitches fall along
straight lines of slopes close (but not exactly) to 1/n. In
addition, there is a notorious ambiguity in the
judgement, which is peculiar in the sense that although
the same stimulus may produce different percepts they

group in well-defined values of pitch. The results in
Section 2.1 will show that all of the quantitative and
qualitative aspects of these experiments can be
replicated at once in terms of Ghost Stochastic
Resonance.

1.2.2. The Dansgaard-Oeschger events

Many paleoclimatic records from the North Atlantic
region and Eurasia show a pattern of rapid climate
oscillations, the so-called Dansgaard-Oeschger (DO)
events [12,16–20], which seem to exhibit a character-
istic recurrence time scale of about 1470 years during
the second half of the last glacial period [21–23]. Figure
2 shows the temperature anomalies during the events
as reconstructed from the ratio of two stable oxygen
isotopes as measured in two deep ice cores from
Greenland, the GISP2 (Greenland Ice Sheet Project 2
[16,24]) and NGRIP (North Greenland Ice Core
Project [20]) ice cores, during the interval between
10,000 and 42,000 years before present (BP). Note that
this isotopic ratio is a standard indicator to infer about
temperature variations in many paleoclimatic records.
The numbers 0–10 in Figure 2 label the Dansgaard-
Oeschger events, many of which are almost exactly
spaced by intervals of about 1470 years or integer
multiples of that value.

It has often been hypothesised that solar variability
could have played a role in triggering these rapid
temperature shifts. However, whereas many solar and
solar-terrestrial records, including the historical sun-
spot record, were reported to exhibit cycles of about 88
and 210 years, no noteworthy spectral component of
about 1470 years has been identified in these records
[25–31]. A turning point in this discussion is the work
of Braun et al. [32], showing that an ocean-atmosphere
model can even generate perfectly periodic Dansgaard-
Oeschger-like output events, spaced exactly by 1470
years or integer multiples of that value, when driven by
input cycles of about 87 and 210 years. In other words,
no input power at a spectral component corresponding
to 1470 years is needed to generate output events with
maximum spectral power at that value. This work
indicates that the apparent 1470 year response time of
the events could result from a superposition of two
shorter input cycles, together with a strong nonlinear-
ity and a millennial relaxation time in the dynamics of
the system as another manifestation of the GSR, as
will be discussed in Section 2.2.

It is important to notice that the stochastic aspect of
the GSR is relevant to replicate the entirety of the
experimental observations of pitch perception and DO
events described above. However, from a theoretical
point of view it can be possible to have similar
scenarios with a deterministic or suprathreshold ghost
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resonance, or also to replace the noise by a high
frequency signal, as will be discussed in the last section.

2. Ghost stochastic resonance

The two examples described above can be modelled in
terms of GSR. Despite some flavours, the models are
built upon two basic ingredients: linear interference of
pure tones plus a threshold, which plays the role of a
noisy detector of the largest peaks of the input signal.

In [10,11] the nonlinear element is a constant threshold
or a neuron’s model. In [33] the nonlinear device is an
exponential time-dependent double-threshold device,
as shown in Figure 3.

2.1. Modelling pitch perception

The understanding of the mechanisms behind pitch
perception are also relevant to related issues con-
cerning consonance, music and speech, for example.
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Figure 1. Results from Schouten’s experiments demonstrating that equidistant tones do not produce a constant pitch. The
authors used a complex sound as described in Equation (1) with centre values from 1.2 to 2.4 kHz. Top diagrams depict three
examples of the frequency spectra of the complex sound used (with centre frequencies of 1.4, 1.8 and 2.2 kHz). Dotted lines
correspond to the missing component g. The bottom graph indicates, with symbols (open or filled circles and triangles), the pitch
heard by the three subjects for each complex sound. The dashed lines show that a 1/n function consistently underestimates the
linear relation between the frequency and pitch shift. Reprinted with permission from D.R. Chialvo, Chaos 13, pp. 1226–30
(2003). Copyright (2003) by the American Institute of Physics.
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Many attempts have been made to model pitch percep-
tion [34–36]; however its neural mechanisms are still
controversial [37–42]. In this context, a simple model
[10,11], based on quantifiable and physiologically
plausible neural mechanisms was recently proposed
to account for key experimental observations related to
the missing fundamental illusion and pitch shift.

The assumptions of the model are simple. Let us
consider a complex tone Sc formed by adding pure
tones of frequencies f1 ¼ kf0, f2 ¼ (k þ 1)f0, . . . , fN ¼
(k þ N 7 1)f0 as an input of a nonlinear threshold
device. It can be observed that the harmonic tone Sc

exhibits large amplitude peaks (asterisks in left panel of
Figure 3) spaced at intervals T0 ¼ 1/f0. These peaks
are the result of a constructive interference between the
constitutive tones.

The threshold device detects ‘statistically’ (with the
help of noise) the largest peaks of Sc, which are spaced
by a value corresponding to the fundamental period.
The top panels of Figure 4 show the density distribu-
tions of inter-spike intervals t in the model for three
noise intensities. In the bottom panel the signal-to-
noise ratio is computed as the probability of observing
an inter-spike interval of a given t (+5% tolerance) as
a function of noise variance s, estimated for the two

input signals’ time scales: f1 (stars) and f2 (filled
circles), as well as for f0 (empty circles). The large
resonance occurs at f0, i.e. at a subharmonic frequency
which is not present at the input.

Similar results were obtained using a more elabo-
rated FitzHugh–Nagumo model [10]. The results
shown in the bottom panel of Figure 4 resemble those
described for the stochastic resonance phenomenon [7].
However, in this case, the optimum noise intensity for
which the system emits the majority of spikes is at a
frequency which is not present in the input. Thus, as
happens in the missing fundamental experiments, the
model neuron’s strongest resonance occurs at a
frequency which is not present in the input.

The results of Figure 4 are only representative of a
complex signal composed of harmonic tones, i.e. when
frequencies of pure tones composing Sc are integer
multiples of the missing fundamental. However, the
most interesting experimental results in pitch percep-
tion are related to the so-called pitch-shift effect, as
was shown in Figure 1. In order to verify if this model
is able to reproduce these results, the same threshold
device is stimulated by a complex tone Sc formed by
adding pure tones of frequencies f1 ¼ kf0 þ Df, f2 ¼
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Figure 2. Greenland temperature anomalies during the time
interval between 42,000 and 10,000 years before present (BP)
as reconstructed from the ratio of two stable isotopes as
measured in two deep ice cores from Greenland, the GISP2
(top) and NGRIP (bottom) ice cores. Numbers label the
Dansgaard-Oeschger events 0–10, following standard
paleoclimatic convention. Dashed lines are spaced by
approximately 1470 years. Note that many events recur
almost exactly in near-multiples of 1470 years, e.g. the events
0, 1, 2, 3, 5, 7 and 10 as recorded in the GISP2 data. Both ice
core records are shown on their respective standard time
scale, which was constructed by independent counting of
annual layers in the ice cores. Data from [16,20,24].

Figure 3. Two examples of GSR toy models. Left panels:
robust nonlinear stochastic detection of the missing
fundamental f0 by a constant threshold. (a) Example of a
complex sound Sc built by adding two sinusoidal S1 and S2

frequencies: f1 ¼ kf0 (bottom) and f2 ¼ (k þ 1)f0 (middle).
Specifically, xðtÞ ¼ 1

2 ðA1 sinðf12ptÞ þ A2 sinðf22ptÞÞ with
A1 ¼ A2 ¼ 1; k ¼ 2 and f0 ¼ 1 Hz in this case. The peaks
(asterisks) exhibited by Sc result from the constructive
interference of S1 and S2 and are spaced at the period of
the missing fundamental f0. (b) The peaks of the signal shown
in (a) can be reliably detected by a noisy threshold,
generating inter-spike intervals close to the fundamental
period or to an integer multiple thereof. Right panels:
conceptual climate model with a non-constant bi-threshold
function as described in Braun et al. [33]. Panel (c): complex
signal Sc as shown in panel (a) and the bi-threshold
exponential function (in red). Panel (d): the same bi-
threshold exponential function and the state function (with
value 1 if the system is in warm state and 0 if it is in the cold
state) for the conceptual climate model.
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(k þ 1)f0 þ Df, . . . , fN ¼ (k þ N 7 1)f0 þ Df. In this
way, Sc is formed by N equi-spaced tones shifted
linearly by Df. Note that if Df ¼ 0, f0 is the missing
fundamental frequency of Sc as in the previous case.

It is expected that the threshold crossings will
correspond preferentially to the highest peaks of Sc,
produced by the positive interference of the constituent
pure tones. If we think in the simplest case of
constructive interference of two tones, it arises from
the beating phenomenon which results in a carrier
frequency of fþ ¼ (f2 þ f1)/2 modulated in amplitude
with a sinusoidal wave of frequency f 7 ¼ (f2 7 f1)/2.
In this case, the interval between the highest peaks is
equal to the nearest integer number n of half-periods of
the carrier lying within a half-period of the modulating
signal. For the case of two consecutive higher har-
monics of a given fundamental f0, f1 ¼ kf0 and
f2 ¼ (k þ 1)f0, it can be obtained that n ¼ fþ/f 7 ¼
2k þ 1 and the corresponding interval is n/fþ ¼ 1/f0. If
the two frequencies are linearly shifted in Df, it is

expected that the most probable interval between the
highest peaks takes place at a rate fr with 1/fr ¼ n/
fþ ¼ (2k þ 1)/((2k þ 1)f0 þ 2Df).

In the general case where Sc is composed of N
harmonic tones as described above, the expected
resonant frequency fr follows the relation:

fr ¼ f0 þ
Df

kþ ðN� 1Þ=2 : ð2Þ

The agreement between simulations and the theory is
remarkable as demonstrated by the results in Figure 5
where the simulations and the theoretical lines match
perfectly.

If f0 ¼ 200 Hz, N ¼ 3 and k ¼ 6, the stimulus Sc

has the same features as those used in [14]. Panel (a) of
Figure 6 shows the results of these simulations
superimposed with psycho-acoustical pitch reports
from Schouten et al.’s experiments [14]. The results
of the simulations are presented as histograms of inter-
spike intervals produced by the neuron model. The
experimental results report the pitch detected by the
subjects in the experiments. Panel (b) of Figure 6 shows
the excellent agreement between Equation (2), simula-
tion data and the pitch estimated from the predomi-
nant inter-spike interval in the discharge patterns of
cat auditory nerve fibers in response to complex tones
[39,40]. It should be noticed that, in both cases, this
agreement is parameter independent.

The simplicity of the GSR model discussed until
now contrasts with previous ideas which suggested
complicated mechanisms mediated by relatively so-
phisticated structures not yet identified as timing nets
[35], delay lines [37], neural networks [42], oscillators in
combination with integration circuits [43], and others
[44]. Finally, it is important to remark that these
results were replicated by recent numerical experiments
on a detailed model of the cochlea [45].

2.2. Modelling Dansgaard-Oeschger events

As discussed in Section 1.2.2, many of the Dansgaard-
Oeschger temperature shifts (see Figure 2) are spaced
by intervals (or integer multiples) of about 1470 years,
but the origin of this apparent regularity is still a
matter of ongoing debate. One of the most prolific
approaches to understand the DO events was done
recently in terms of Ghost Stochastic Resonance [32].
In what follows we will show two models which, at
different scales and based on GSR, aim to explain the
recurrence properties of these warming events.

2.2.1. Ocean–atmosphere model

It has been hypothesised [32] that the 1470-year
recurrence time of the DO events could result from
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Figure 4. Single neuron GSR. Top panels: density
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variance s, estimated for the two input signals’ time scales: f1
(stars) and f2 (filled circles) as well as for f0 (empty circles).
The large resonance is at f0, i.e. a subharmonic which is not
present at the input. Reprinted with permission from D.R.
Chialvo, O. Calvo, D.L. Gonzalez, O. Piro, and G.V. Savino,
Phys. Rev. E 65, pp. 050902-5(R), (2002). Copyright (2002)
from American Physical Society.
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the presence of two centennial solar cycles, the DeVries
and Gleissberg cycles with leading spectral components
corresponding to periods near 210 and 87 years [25–
27,29,30] respectively. A carefully inspection of these
frequency cycles shows that they are approximately
the 7 and 17 harmonic superior of 1470, which leads to
the hypothesis that DO events could be caused by a
GSR mechanism. In order to test this hypothesis, a

coupled ocean–atmosphere model (CLIMBER-2) [32]
was forced with the two mentioned solar frequencies:

FðtÞ ¼ �A1 cosð2pf1tþ f1Þ � A2 cosð2pf2tþ f2Þ þ K:

ð3Þ

For simplicity, this forcing was introduced as a
variation in freshwater input with f1 ¼ 1/210 years71
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Figure 5. Pitch shift simulations for N ¼ 2 (left panels) and N ¼ 3 (right panels) frequency signals. Top: the probability (as grey
scale) of observing a spike with a given instantaneous firing frequency fp (in the ordinate) as a function of the frequency f1 of the
lowest of two components of the input signal (abscissa). The family of lines is the theoretical expectation (Equation (2)) for
N ¼ 2, 3 and k ¼ 1–7. Bottom: the same data from the top panels are replotted as input–output frequency ratio versus input
frequency f1 (f0 ¼ 1 Hz) (fp corresponds to fr in the notation of Equation (2)). Reprinted with permission from D.R. Chialvo, O.
Calvo, D.L. Gonzalez, O. Piro, and G.V. Savino, Phys. Rev. E 65, pp. 050902-5(R), (2002). Copyright (2002) from American
Physical Society.

Figure 6. Simulations and experiments of pitch shift. The left panel shows that the theoretical prediction of Equation (2)
superimposes exactly with the result of simulations (grey histograms, k ¼ 5–9 and N ¼ 3) and reported pitch from Schouten’s
experiments (circle and triangle symbols) [14]. Right panel (b): The theoretical expectation from Equation (2) is superimposed
here onto the experimental results of Cariani and Delgutte [40]. The physiological pitches estimated from the highest peak of the
interspike interval distribution in response to two variable (500–750 Hz) carrier AM tones with modulation frequencies
(horizontal dashed lines) of 125 Hz (downward triangles) or 250 Hz (upward triangles) fit the predictions of Equation (2)
(diagonal dotted lines with N ¼ 3). The agreement in both cases is parameter independent. Reprinted with permission from D.R.
Chialvo, Chaos 13, pp. 1226–30 (2003). Copyright (2003) by the American Institute of Physics.
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and f2 ¼ 1/86.5 years71. The motivation for using a
freshwater forcing is as follows: many ocean–atmo-
sphere models indicate that changes in the freshwater
flux to the area of deep buoyancy convection in the
northern North Atlantic could trigger shifts between
different modes of the thermohaline (i.e. density-
gradient driven) ocean circulation, since the density of
ocean water depends on salinity. During glacial times,
solar forcing is expected to have a notable influence on
the freshwater budget in the northern North Atlantic,
for example due to solar-induced variations in the mass
budget of the surrounding continental ice sheets.

The amplitudes A1 and A2 as well as the phases f1

and f2 are parameters of the forcing. The constant k
mimics changes in the background climate compared
with the Last Glacial Maximum, which is considered
as the underlying climate state. Further details of the
simulations can be found in [32]. Within a wide range
of forcing parameters, this kind of perturbation to
the model produces events similar to the DO ones. The
simulated events represent transitions between a
stadial (‘cold’) and interstadial (‘warm’) mode of the
North Atlantic thermohaline ocean circulation.

In the response of the model three different regimes
exist: a ‘cold regime’ in which the thermohaline ocean
circulation persists in the stadial mode, a ‘warm
regime’ in which the interstadial mode is stable and a
‘Dansgaard-Oeschger regime’ in which cyclic transi-
tions between both modes occur. These transitions
result in abrupt warm events in the North Atlantic
region, similar to the DO events as shown in the results
of Figure 7.

Events spaced by 1470 years are found within a
continuous range of forcing-parameter values. Indeed,
this time scale is robust when the phases, the
amplitudes and even the frequencies of the two forcing
cycles are changed over some range (see [32]). Noise,
when added to the periodic forcing, is unable to affect
the preferred tendency of the events to recur almost
exactly in integer multiples of 1470 years.

These simulations, which reproduce some of the
characteristic recurrence properties of the DO events in
the paleoclimatic records, clearly show that a ghost
stochastic resonance is at work in the model simula-
tions, making GSR a potential candidate to explain the
1470 years recurrence time scale of Dansgaard-
Oeschger events during the last ice age.

2.2.2. Conceptual DO model

As happened with the analysis of pitch perception in
Section 2.1, a low dimensional modelling approach can
be followed in order to isolate and understand the
main dynamical mechanism present in the behaviour
of the complex model analysed in last section.

The stability of the simulated 1470 year climate
cycle turns out to be a consequence of two well-known
properties of the thermohaline circulation: its long
characteristic time scale, and the high degree of
nonlinearity (that is, the threshold character) inherent
in the transitions between the two simulated modes of
the thermohaline circulation. A very simple conceptual
model that only incorporates these two properties is
able to mimic key features of CLIMBER-2, i.e. the
existence of three different regimes in the model
response, the frequency conversion between forcing
and response (that is, the excitation of millennial-scale
spectral components in the model response that do not
exist in the forcing) and the amplitude dependence of
the period in the model response [33]. The general idea
of this model is that DO events represent highly
nonlinear switches between two different climate states
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Figure 7. 1470 years recurrence time scale from the
CLIMBER-2 model simulations. All three panels show
changes DT in Greenland surface air temperature according
to simulations of Braun et al. [32]. The amplitudes of the
forcing [Equation (3)] are A1 ¼ A2 ¼ 10 mSv. Top, middle
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Note that despite the period of four times 1470 years in the
middle panel, the average inter-event spacing is 1960 years,
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each of which contains only events which recur exactly in
integer multiples of 1470 years. Reproduced from [32].
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corresponding to the stadial (‘cold’) and interstadial
(‘warm’) modes of the glacial thermohaline circulation.

This conceptual model is based on three key
assumptions:

(1) DO events represent repeated transitions be-
tween two different climate states, correspond-
ing to warm and cold conditions in the North
Atlantic region.

(2) These transitions are rapid compared to the
characteristic lifetime of the two climate states
and take place each time a certain threshold is
crossed.

(3) With the transition between the two states the
threshold overshoots and afterwards ap-
proaches equilibrium following a millennial-
scale relaxation process.

These three assumptions, which are supported by high-
resolution paleoclimatic records and/or by simulations
with a climate model [33] can be implemented in the
following way: a discrete index s(t) that indicates the
state of the system at time t (in years) is defined. The
two states, warm and cold, correspond with the values
s ¼ 1 and s ¼ 0 respectively. A threshold function T(t)
describing the stability of the system at time t is also
defined.

The next step is to define the rules for the time
evolution of the threshold function T(t). When the
system shifts its state, it is assumed that a discontinuity
exists in the threshold function: With the switch from
the warm state to the cold one (at t ¼ t0 in panel (d) of
Figure 3) T takes the value A0. Likewise, with the
switch from the cold state to the warm one (at t ¼ t00 in
panel (d) of Figure 3) T takes the value A1. As long as
the system does not change its state, the evolution of T
is assumed to be given by a relaxation process

TðtÞ ¼ ðAs � BsÞ exp
�
� t� ds

ts

�
þ Bs; ð4Þ

where the index s stands for the current state of the
model (i.e. s ¼ 1 is the warm state and s ¼ 0 the cold
one), d0 labels the time of the last switch from the
warm state into the cold one and d1 labels the time of
the last switch from the cold state into the warm one.
The third assumption is that the change from one state
to another happens when a given forcing function f(t)
crosses the threshold function. In the right panel of
Figure 3 we plot a schematic representation of the
threshold function when the model is forced by a bi-
sinusoidal input with frequencies f1 and f2 which
are the second and third harmonic of a given f0. As
we have seen in the previous sections, the peaks of the
forcing repeat with a period of 1/f0 years, despite the
absence of this period in the two forcing series.

A stochastic component represented by white noise
of zero mean and amplitude D is added in order to take
non-periodic forcing components into account.

In Figure 8 the response of the model is shown for
different values of noise amplitudes. It can be observed
that for an optimal noise amplitude the waiting time
distribution of the simulated events is peaked at 1470
years. This is reflected in the minimum of the coefficient
of variation of the waiting times (i.e. the standard
deviation divided by its average) and in the maximum
of the signal-to-noise ratio (calculated as that fraction
of inter-event waiting times that has values around 1470
years) for the optimal values of noise.

These results demonstrate that a low-dimensional
model, constructed from the dynamics of the events
manifested in the much more complex ocean–atmo-
sphere model CLIMBER-2 is able to exhibit GSR. For
completeness, one needs to discus how variations in any
one of the input frequencies could alter the results, in
other words how stable the GSR phenomenon is under
these changes. This analysis was addressed in Braun
et al. [32] who reported in their supplementary material
that such changes typically alter the average inter-event
waiting time by less than 20%, consistent with the
results presented in the supplementary material of a
successive study [33]. Another effect discovered in both
studies is that the dispersion of the inter-event waiting
time distribution increases when the system is driven
out of the resonance case by a change in any of the
forcing frequencies. Thus, the phenomenon was found
to be stable under changes of the input frequencies.

3. Related work

3.1. Binaural pitch perception

Besides the question of how pitch is perceived, another
contested debate relates to where perception takes
place. Although interval statistics of the neuronal
firings [39,40] show that pitch information is already
encoded in peripheral neurons, under other conditions
pitch perception can take place at a higher level of
neuronal processing [46]. A typical example is found in
binaural experiments, in which the two components of
a harmonic complex signal enter through different
ears. It is known that in that case a (rather weak) low-
frequency pitch is perceived. This is called ‘dichotic
pitch’, and can also arise from the binaural interaction
between broad-band noises. For example, Cramer and
Huggins [47] studied the effect of a dichotic white noise
when applying a progressive phase shift across a
narrowband of frequencies, centred on 600 Hz, to only
one of the channels. With monaural presentation
listeners only perceived noise, whereas when using
binaural presentation over headphones, listeners per-
ceived a 600 Hz tone against a background noise.
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Recent work shows that the binaural effects
described above can be explained in GSR terms. The
model comprises a three-neuron structure. Two of them
receive one single component of the complex signal, so
that each neuron represents detection at a different
auditory channel in a binaural presentation, acting
upon a third processing neuron [48]. These results
showed that the higher-level neuron is able to perceive
the pitch, hence providing a neural mechanism for the
binaural experiments. The membrane potential of the
neurons were simulated via a Morris–Lecar model [49].
The two input neurons were unidirectionally coupled to
the response neuron via a synaptic coupling model [50].
Details of the modelling can be found in [48].

The right panels of Figure 9 show the different
stages of the simulation when input neurons are
stimulated by pure tones with periods of 150 and
100 ms respectively. The panels (a) and (b) display the
membrane potential with spikes exhibiting the same
period of input signals. Panel (c) shows the synaptic
current elicited by these two neurons onto the proces-
sing output neuron. We can observe that the maxima of
this current are spaced at intervals of 300 ms, which
correspond to the missing fundamental frequency. The
same intervals appear in the spike trains of the
processing neuron as seen in panel (d).

In biological neural networks, each neuron is con-
nected to thousands of neurons whose synaptic activity

could be represented as ‘synaptic noise’. In this
configuration this effect is taken into account by adding
a white noise term of zero mean and amplitude Di in
the input neurons (i ¼ 1,2) and of amplitude D in the
processing neuron’s membrane potential. The firing
process of this neuron is then governed by noise. In the
left panels of Figure 10 we plot the mean time between
spikes Tp (panel (a)), the coefficient of variation (CV ¼
sp/(Tp), panel (b)) and the signal-to-noise ratio meas-
ured as the fraction of pulses spaced around T0 ¼ 1/f0,
T1 ¼ 1/f1 and T2 ¼ 1/f2 (panel (c)) as a function of the
noise amplitude in the processing neuron, D. Right
panels show the probability distribution functions of
the time between spikes Tp for three values of the noise
amplitude D: (d) low, (e) optimal and (f) high values.
Note the remarkable agreement between these results
and those obtained for a single neuron in Figure 4,
which confirm the robustness of GSR.

The next step was to check if this model reproduces
the pitch shift experiments sketched in Figure 1 and
follows the theoretical predictions of Equation (2). The
pure tones driving the input neurons have frequencies
f1 ¼ kf0 þ Df, and f2 ¼ (k þ 1)f0 þ Df. Figure 11
shows the results of the simulations. The instantaneous
frequency fr ¼ 1/Tp follows the straight lines predicted
in Equation (2) for N ¼ 2 , k ¼ 2 7 5 and f0 ¼ 1 Hz.
It is important to notice that even though the linear
superposition of inputs is replaced by a coincidence
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Figure 8. Conceptual model for DO events. Panel (a): forcing signal plus optimal noise and threshold function T(t). Panel (b):
signal-to-noise ratio calculated as that fraction of inter-event waiting times that has values within 10% and 20% of 1470 years
(right). Panel (c): histograms of the inter-event waiting times of the simulated events for optimal noise (left). Panel (d): coefficient
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detection of spikes in this configuration, the preferred
frequency response of the output neuron follows the
theoretical predictions made for linear interference

between tones. This is consistent with the arguments
used to deduce Equation (2), which looks for the coin-
cidence of maxima of the harmonic tones. Here, the
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Figure 9. Binaural GSR. Left panel: schematic representation of the binaural scenario. Right panel: deterministic responses to a
binaural harmonic signal. The membrane potential for the three neurons is shown: (a)–(b) input neurons, (d) processing output
neuron. The synaptic current acting on the output neuron is shown in plot (c). The two input neurons are stimulated with two
sinusoidal signals. Reprinted with permission from P. Balenzuela and J. Garcı́a-Ojalvo, Chaos 15, pp. 023903-10, (2005).
Copyright (2005) from American Institute of Physics and Y.V. Ushakov, A. Dubkov and B. Spagnolo, Phys. Rev. E 81, pp.
041911-23 (2010). Copyright (2010) from American Physical Society.

Figure 10. Binaural GSR. Left panels: response of the processing neuron as a function of the noise amplitude: (a) mean time
between spikes hTpi, (b) coefficient of variation, CV, and (c) signal-to-noise ratio measured as the fraction of pulses spaced
around T0 ¼ 1/f0, T1 ¼ 1/f1 and T2 ¼ 1/f2, as a function of the noise amplitude in the processing neuron, D. Right panels:
probability distribution functions of the time between spikes Tp for three values of the noise amplitude D: (d) low, (e) optimal,
and (f) high values. Reprinted with permission from P. Balenzuela and J. Garcı́a-Ojalvo, Chaos 15, pp. 023903-10, (2005).
Copyright (2005) from American Institute of Physics.
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output neuron detects coincidence of spiking neurons,
which also takes place preferentially at the maxima of
harmonic inputs.

A brain structure candidate for the dynamics of the
processing neuron is the inferior colliculus, which
receives multiple inputs from a host or more peripheral
auditory nuclei. Details of the physiology of this nuclei
are still uncertain, but enough evidence suggests that
temporal and frequency representation of the inputs
are present in the spike timing of their neurons. The
results in this section suggest that the neurons in this
nuclei can exhibit the dynamics described here, thus
participating in the perception of the binaural pitch.
The main consequence of these observations is that
pitch information can be extracted mono or binaurally
via the same basic principle, i.e. ghost stochastic
resonance, operating either at the periphery or at
higher sensory levels.

A similar three-neuron arrangement was studied in
[51], where two input neurons act on a third processing
neuron by means of excitatory connections. The input
neurons were described as a modification of the
Ornstein–Uhlenbeck diffusion process [52], where
periodic signals of frequencies f1 ¼ 2f0 þ Df and f2 ¼
3f0 þ Df were added to the drift coefficients. The pro-
cessing neuron was also simulated via an Ornstein–
Uhlenbeck diffusion process. Simulations in this model
confirmed the GSR phenomena in both the harmonic
(Df ¼ 0) and the inharmonic (Df 6¼ 0) cases [51].

3.2. Beyond pitch: consonance and dissonance

The elucidation of the mechanisms intervening in the
perception and processing of complex signals in an
auditory system is relevant beyond the identification of
pitch. An open challenge in this field is to understand
the physiological basis for the phenomena of conso-
nance and dissonance [53–55]. Consonance is usually
referred to as the pleasant sound sensation produced by
certain combinations of two frequencies played simul-
taneously. On the other hand, dissonance is the
unpleasant sound heard with other frequency combina-
tions [56]. The oldest theory of consonance and disso-
nance is due to Pythagoras, who observed that the
simpler the ratio between two tones, the more conso-
nant they will be perceived. For example, the consonant
octave is characterised by a 1/2 frequency ratio between
two tones, meanwhile the dissonant semitone is
characterised by a 15/16 ratio. Helmholtz [15] analysed
this phenomenon in the more sophisticated scenario of
complex tones. When two complex tones are played
together, it happens that for some combinations (sim-
ple ratio n/m) the harmonic frequencies match, while in
other cases (more complicated ratios n/m) they do not.
As the frequency ratio becomes more complicated, the
two tones share fewer common harmonics leading to an
unpleasant beating sensation or dissonance.

Ushakov et al. [57] used a neuronal configuration
similar to the one described in the left panel of Figure 9
to investigate the phenomenon of consonance and
dissonance in tonal music. In this configuration, a
complex input composed of two harmonic signals
(with frequencies f1 and f2) is transformed by this
simple sensory model into different types of spike
trains, depending on the ratio of the input frequencies.
More regular patterns in the inter-spike interval
distribution (ISI) were associated with consonant
accords whereas less regular spike trains and broader
ISI distributions corresponded to dissonant accords.

Figure 12 shows the ISI distributions of the proces-
sing neuron for a group of consonant accords: an octave
(2/1), a perfect fifth (3/2), a major third (5/4) and a minor
third (6/5). Notice the peaks in the distribution rout
which are not present in the input patterns of r1 and r2.
The results for dissonant accords are shown in Figure 13.
Further work of the same authors [58] found that
consonance can be estimated by the entropy of the ISI
distributions, being smaller for consonant inputs. These
results suggest that the entropy of the neural spike trains
is an objective quantifier of this very subjective percept.

3.3. A dynamical model for Dansgaard-Oeschger
events

In Section 2.2 two models were presented in order to
explain the characteristic 1470 years observed
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Figure 11. Binaural pitch shift simulations. Probability of
observing a spike in the processing neuron with instantaneous
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Chaos 15, pp. 023903-10, (2005). Copyright (2005) from
American Institute of Physics.
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recurrence time of DO events in terms of a bi-
sinusoidal forcing with frequencies close to the main
spectral components of two reported solar cycles, the
DeVries/Suess and Gleissberg cycles. In this section a

model [59] for the evolution of Greenland paleo-
temperature during about the last 80,000 years (an
interval that comprises the last ice age as well as the
current warm age called the Holocene) is described.
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Figure 12. Inter-spike interval distributions of the consonant accords: octave (2/1), perfect fifth (3/2), major third (5/4), and
minor third (6/5) for both input neurons (r1 and r2) and the processing neuron (rout). Under each picture there is the ratio of
frequencies (m/n) as well as the common musical terminology. Reprinted with permission from Y.V. Ushakov, A. Dubkov and B.
Spagnolo, Phys. Rev. E 81, pp. 041911-23 (2010). Copyright (2010) from American Physical Society.

Figure 13. Inter-spike interval distributions of the dissonant accords: major second (9/8), minor seventh (16/9), minor second
(16/15), and augmented fourth (45/32). Under each picture there is the ratio of frequencies (m/n) as well as the common musical
terminology. Reprinted with permission from Y.V. Ushakov, A. Dubkov and B. Spagnolo, Phys. Rev. E 81, pp. 041911-23
(2010). Copyright (2010) from American Physical Society.
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Figure 14 shows the reconstructed Greenland tem-
perature based on the ratio of two stable oxygen isotopes
as measured in the GISP2 deep ice core up to about
80,000 years before the present. Note that the dating
accuracy typically decreases with increasing age of the
ice. The temperature-proxy obtained from these records
[24] reveals at least three different dynamical regimes: the
early ice age, the late ice age and the Holocene. In a
simplified approach, these regimes can be interpreted as
the result of the switching between two states (a warm
one and a cold one) driven in part by noise. The interval
between 12,000 and 50,000 years before the present (late
ice age) would correspond to the ghost stochastic
resonance regime, whereas the last 10,000 years (known
as the Holocene) stand for an age without transitions.

The ideas underlying this model are the same as
those presented in Section 2.2: DO events represent
transitions between two different climate states corre-
sponding to the glacial cold (i.e. stadial) and the glacial
warm (i.e. interstadial) modes of the North Atlantic
thermohaline circulation. Note that the Holocene
mode of the ocean circulation is assumed to corre-
spond to the glacial interstadial mode. The assump-
tions in the model can be summarised as follows:

(1) The existence of two states, the glacial cold and
the glacial warm (or Holocene) ones.

(2) The states represent different modes of opera-
tion of the thermohaline circulation in the
North Atlantic region.

(3) The model is forced by a periodic input with
frequencies close to the leading spectral com-
ponents of the reported De Vries/Suess and
Gleissberg cycles (*207 and *87 years respec-
tively) plus a stochastic component.

(4) A transition between the states takes place each
time a certain threshold is crossed.

(5) After each transition the threshold overshoots
and afterwards approaches equilibrium fol-
lowing a millennial time scale relaxation
process.

(6) During the Holocene the periodic forcing is not
able by itself to produce transitions, and the
climate system remains in the warm state.

The model is presented as a dynamical system
submitted to a periodic forcing (with the frequencies
mentioned before) in a double well potential and a
stochastic component representing non-periodic for-
cing components. It is described by the following set of
differential equations:

_x ¼ 1

a
½yðx� x3Þ þ fðtÞ þDa1=2xðtÞ�; ð5Þ

_y ¼ � y

ts
þ ds; ð6Þ

where y(x 7 x3) ¼ 7dV/dx and V(x) is a double well
potential with a potential barrier following the
dynamics of the y variable. f(t) ¼ F [cos(2pf1t þ f1) þ
a sin(2pf1t þ f2)] mimics the solar forcing with
f1 ¼ 207 yr71 and f2 ¼ 87 yr71. The term Dx(t) stands
for a white noise process of zero mean and amplitude
D, and a is a scaling constant. In the equation for the
threshold dynamics, ts and ds were the characteristic
time decay and asymptotic threshold respectively
(s ¼ 1(0) for warm (cold) state).
In the absence of noise there is no transition between
states, and for an optimal amount of noise the system
switches between the warm and the cold state every
1470 years approximately, which corresponds to a
spectral component that is absent in the periodic input.
The regimes exhibited by the model for different noise
amplitude D were explored as presented in Figure 15
which shows a comparison between the output of the
model (x) and the GISP2 reconstructed temperature.
The comparison includes the temperature records as
well as their frequency spectra obtained via a Discrete
Fourier Transform (DFT). The three dynamical
regimes were tuned in order to obtain the best
matching between the Fourier spectra. Even though
the comparison between both series is not good enough
during the Holocene (panels (a) and (d)), a good
agreement exists during the ice age where the main
features of the dynamics are driven by transitions
between the two states. It is important to remark that
during the late Ice Age (panels (c) and (f)), the best fit
between the temperature records and the simulations
corresponds to a dynamical scenario very close to the
ghost stochastic resonance.
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Figure 14. Reconstructed Greenland temperature based on
the ratio of two stable oxygen isotopes as measured in the
GISP2 deep ice core from Greenland. The time series is
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and the Holocene. Data from [16] and [24].
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4. Ghost stochastic resonance in other systems

4.1. Visual perception

The robustness of the models discussed so far, as well
as the absence of fitting parameters, suggest that GSR
should be found in other sensory systems. A phenom-
enon that shows the analogy between the visual and
auditory systems was analysed in [60], where the
subjective rate of flickering for compound waveforms
without their fundamental frequencies were measured.
The questions in these experiments were:

. Could the observers perceive flicker at a funda-
mental frequency which is absent in the stimuli?

. Could this perception be sustained even if the
phases of the higher harmonics are randomised?

To answer these questions eight different stimuli
driving a light emitting diode were presented to a
group of subjects. All the stimuli were complex
waveforms consisting of five components. The fre-
quency of each component corresponded to the nth
harmonic of the common f0. These components had
equal amplitude and were added to construct two
kinds of waveforms for each stimulus: ‘in-phase’ and
‘random-phase’ waveforms for five different values of
f0 (f0 ¼ 0.75–3 Hz). Further details of the experimental
conditions can be found in [60]. Figure 16 shows the
main results of these experiments in which the
observers judged the flicker frequency in comparison

with the flickering of a test stimuli composed of a
single frequency. Note that in all cases the subjects
reported a flickering rate close to the absent f0, even in
the case of random-phase stimuli. Additional experi-
ments, modifying the frequencies of each component,
could replicate the pitch shift effect described in the
previous section.

The results of these experiments suggest that a phe-
nomenon analogous to the missing fundamental illusion
can be found in spatial vision as well. Visual patterns
with the fundamental missing were already used in
experiments of motion perception [61], where square-
wave gratings without the fundamental were presented
to a group of subjects. They perceived backwards
motion when presented in quarter-cycle jumps (even
though their edges and features all move forward). Even
though these experiments were not directly related with
GSR, it stresses the ubiquity of the missing fundamental
phenomenon across physiological systems.

4.2. Lasers

The uncovering of GSR phenomena in a variety of
environments drove the search to other dynamical
scenarios where similar phenomena could take place.
Semiconductor lasers subject to optical feedback
produce a rich dynamical behaviour, including im-
portant similarities with neuronal dynamics. One of
their most interesting ones is the Low Frequency
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Figure 15. Comparison between reconstructed temperature based on the ratio of two stable oxygen isotopes as measured in
GISP2 deep ice core from Greenland and variable x from the simulations. Left panels: time series for (a) Holocene, (b) Early Ice
Age and (c) Late Ice Age. Right panels: discrete Fourier transform from these series. Replotted from [59].
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Fluctuation regime (LFF) in which the output power
of the lasers suffers sudden dropouts to almost zero
power at irregular time intervals when biased close to
the threshold [62]. It was shown [63,64] that before the
onset of the LFFs a laser is stable under small periodic
perturbations of bias current and exhibits the three
ingredients of any excitable system, namely: the
existence of a threshold for the perturbation amplitude
above which the dropout events can occur; the form
and size of the dropout events are invariant to changes
in the magnitude of the perturbation; a refractory time
exists: if a second perturbation is applied at a time
shorter than the refractory time, the system no longer
responds.

It has been shown both experimentally [65,66] and
numerically [67,68] that a laser subject to optical
feedback can exhibit stochastic and coherence reso-
nance when biased close to the threshold. In what
follows, results concerning experimental and numerical
responses of a semiconductor laser subject to optical
feedback, biased close to the threshold and modulated
by two weak sinusoidal signals, are described [69]. Two-
frequency forcing of dynamical systems has been

already studied [65] with an emphasis on quasi-periodic
dynamics. In contrast, these results show a resonance at
a frequency that is absent in the input signals, i.e. GSR.

The experimental setup consisted of an index-
guided AlGaInP semiconductor laser (Roithner
RLT6505G), with a nominal wavelength of 658 nm
(further details can be found in [69]). The driving signal
was composed of the superposition of the two
immediate superior harmonics of f0 ¼ 4.5 MHz.

Figure 17 shows representative time traces and
probability distribution functions (PDF) of dropout
events. The left plot of the figure corresponds to
experimental data for low, intermediate and high
amplitude values of the injected signals. It can be
clearly seen that for an intermediate amplitude the
dropouts are almost equally spaced at a time interval
that corresponds grossly to 1/f0 (depicted by the
double-headed arrow in the middle panel), a frequency
that is not being injected. Thus the laser is detecting the
subharmonic frequency in a nonlinear way. To better
visualise this fact, the PDFs for a large number of
dropouts (approximately 1500) is plotted. For the
small amplitude (top-right panel in each side) a peak at
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Figure 16. GSR in response to a flickering visual stimuli. Each graph represents the perceived frequency of flickering of a visual
stimuli reported by four observers. The abscissa represents the frequency of the comparison stimulus matched with each test
stimulus. On the ordinate, the probability of the response is represented in percentiles. Inputs comprised several harmonics
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a time 1/f0 can be observed. Also there were other peaks
at longer times, which indicate that the system responds
sometimes to f0 although at some other times dropouts
are skipped. For the optimum value of the amplitude
(middle-right panel on each side) the PDF has a clear
peak at 1/f0 indicating that the system is resonating
with this frequency. For the higher amplitude (bottom-
right panel on each side), there are several peaks at
different times corresponding to higher frequencies.

Figure 18 shows the results of the dropout statistics
when both input frequencies are shifted by the same
quantity Df. Experiments revealed how the resonant
frequency of the laser followed the dynamics predicted
by Equation (2), supporting the robustness of the
proposed mechanism.

Similar results were found in [70] for two coupled
lasers driven separately by a distinct external perturba-
tion each, and show that the joint system can resonate

at a third frequency different from those of the input
signals. In other words, the GSR in this case was
mediated by the coupling between the dynamical
elements. Even though these experiments were per-
formed in the excitable regime of the semiconductor
lasers, similar results were found when studying the
polarisation response of a vertical-cavity surface-
emitting laser, driven simultaneously by two (or
more) weak periodic signals in the bistable regime
[71], confirming the occurrence of GSR.

4.3. Electronic circuits

GSR was also explored in electronic circuits whose
dynamical behaviour emulates neuronal dynamics. In
what follows, two different configurations using
Monostable Schmitt Trigger and Chua circuits are
analysed.
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Figure 17. GSR in lasers. Left (right) panels: experimental (numerical) results. Time series of the optical power in response to
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Figure 18. GSR in lasers, inharmonic case. Right (left) side: experimental (numerical) results. PDFs of the intervals between
dropouts are plotted as their inverse. For each pair of driving f1–f2 frequencies explored, the resulting PDF is plotted at the
corresponding f1 frequency. The lines are the expected resonance frequencies from the theoretical prediction given in Equation
(2). Reproduced from [69].
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4.3.1. Monostable Schmitt trigger

The behaviour of a neuronal-like electronic circuit was
explored in response to a complex signal plus noise
[72]. The system considered was a non-dynamical
threshold device [73], which compares a complex signal
Sc with a fixed threshold, and emits a ‘spike’ (i.e. a
rectangular pulse of relatively short fixed duration)
when it is crossed from below. This behaviour
emulates, in a very simplified way, the neuronal
‘firing’. The complex signal Sc is formed by adding
pure tones with frequencies f1 ¼ kf0, f2 ¼ (k þ 1)f0,. . .,
fn ¼ (k þ n 7 1)f0 plus a zero mean Gaussian dis-
tributed white noise term. The circuit implementing the
threshold device was comprised of two monostable
Schmitt triggers and up to five input frequency
combinations (i.e. n � 5) were explored. The output
of the circuit was digitised and processed offline to
compute intervals of time between triggering, from
which an inter-spike interval (ISI) histogram was
calculated. The signal-to-noise ratio (SNR) was
computed as before: the ratio between the number of
spikes with ISI equal to (or near within +5%) the time
scale of 1/f0, 1/f1 and 1/f2, and the total number of ISI
(i.e. at all other intervals).

Figure 19 shows the results from the experiments
using harmonic signals composed of up to five periodic
terms (i.e. Sc with n ¼ 2,3,4,5 and f0 ¼ 200 Hz). Even
though the output was rather incoherent with any of

the input frequencies (empty circles and stars), it is
clear that it was maximally coherent at some optimal
amount of noise, with the period close to 1/f0 (filled
circles). As in the previous cases, f0 was a frequency
absent in the signals used to drive the system,
demonstrating another instance of GSR.

The effects of frequency shift in the harmonic
inputs of Sc were also explored in this circuit. The
response of the circuit is plotted in Figure 20. As was
observed in the previous sections, the agreement
between the experimental results and the theoretical
predictions is remarkable.

4.3.2. Pulsed coupled excitable ‘Chua’ circuits

In Section 3.1, simulations for a binaural configura-
tion of GSR in numerical simulations were dis-
cussed. Here, results where the same mechanism is
explored experimentally via pulsed coupled electro-
nic neurons [74] are shown. To that end, two
excitable electronic circuits were driven by different
sinusoidal signals producing periodic spike trains at
their corresponding frequencies. Their outputs plus
noise were sent to a third circuit that processed these
spikes’ signals.

The model is the electronic implementation of the
so-called Chua circuit [75] in the excitable regime. The
two input circuits were harmonically driven at two
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Figure 19. GSR in a monostable Schmitt trigger. The figure
shows the signal-to-noise ratios versus the noise intensity for
signals with two to five frequencies (panels (a) to (d)
respectively). These are computed as the probability of
observing an inter-spike interval close to the time scales (with
a 5% tolerance) of the frequencies f0 (filled circles), f1 (empty
circles) and f2 (stars). Notice that the largest resonance is
always for the ghost f0, while the others are negligible.
Reprinted with permission from O. Calvo and D.R. Chialvo,
IJBC 16, pp. 731–735, (2006). Copyright (2006) from World
Scientific Publishers Co.

Figure 20. Frequency shift experiments in a monostable
Schmitt trigger. Shown are the main resonances for signals
with two to five frequencies (panels (a) to (d) respectively). In
each panel, the intervals (plotted as its inverse, fr) between
triggered pulses are plotted as a function of f1, which was
varied in steps of 40 Hz. Family of over-imposed lines are the
theoretical expectation (i.e. Equation (2) with N ¼ 2, 3, 4, 5
in panels (a) through (d) respectively) for increasing k ¼ 2–7.
Reprinted with permission from O. Calvo and D.R. Chialvo,
IJBC 16, pp. 731–735, (2006). Copyright (2006) from World
Scientific Publishers Co.
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different frequencies, f1 and f2, generated by a wave
generator. The amplitudes of both signals were set
above the threshold of the excitable circuits in order to
produce periodic spiking at their outputs. These spikes
were then fed to a third processing circuit via a voltage
follower (which guarantees unidirectional coupling)
and an electronic adder. The latter also received a
broadband noisy signal. The two harmonic inputs had
frequencies f1 ¼ kf0 þ Df and f2 ¼ (k þ 1)f0 þ Df as
explored already along these notes.

The frequencies of the input signals were f1 ¼ 1600
Hz and f2 ¼ 2400 Hz for the harmonic case. Left
column of Figure 21 shows the time series of the
output signal for three different values of noise
amplitudes: low, optimal and high. The corresponding
histograms for the inter-spike intervals are displayed
beside the time series. The middle panel of Figure 21
shows the coefficient of variation (CV) as a function of
the mean value of inter-spike time intervals. Both
panels show that there is an optimal amount of noise
for which the system responds at the missing funda-
mental frequency of the inputs, i.e. GSR.

As in the previous work, the influence of detuning
the input frequencies was further explored in these
experiments. It means that the differences between f1
and f2 was fixed in f0 but they were no longer a superior
harmonic of f0, given that f1 ¼ kf0 þ Df and f2 ¼ (k þ
1)f0 þ Df. The right panel of Figure 21 shows two
interesting results: one is that the experimental data
follow the theoretical prediction for k ¼ 2 and N ¼ 2;
the second is that there is no ambiguity in resonant
frequencies as was reported in the previous sections.
The reason behind this difference is related to the shape
of the periodic inputs (see details in [74]).

4.4. Beyond ghost stochastic resonance

Along these notes we have reviewed how a nonlinear
system responds to a combination of pure tones with
different frequencies. In all the exposed cases, the input
frequencies followed a particular relation: the differ-
ence between them was always constant and equal to
f0, which in the harmonic case corresponds to the
missing fundamental. In all cases, the analysed systems
responded with a preferred frequency which was
absent in the input.

The dynamics of nonlinear devices, when stimu-
lated by more than one frequency plus noise, was also
studied from related perspectives. For example, the
response of a discrete model system to a dichromatic
input in the regimes of stochastic and vibrational
resonance was numerically analysed in [76]. The tran-
sition between the stochastic resonance regime (where
frequencies are of the same order) to the vibrational
resonance one (where one of the frequencies is
much higher that the other) was studied in bistable
and threshold devices. A similar analysis was carried
out experimentally in bistable Schmitt trigger circuits
[77], where the authors analysed the phenomena of
mean switching frequency locking and stochastic
synchronisation and their dependence on the input
parameters.

Another perspective in the study of the dynamic of
nonlinear devices driven by more than one frequency
was carried out in [78], where the problem of transport
in a noisy environment was studied. In this work,
ratchet devices were stimulated by two periodic signals
with frequencies f1 and f2 following rational ratios (i.e.
f1/f2 ¼ m/n). The results focused on how the rectifica-
tion of a primary signal by a ratchet could be
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Figure 21. GSR in a binaural configuration of electronic neurons. Left panel: influence of the noise intensity on the spiking
behaviour of the system. The left-column plots show time series for: (a) low, (b) optimal, and (c) high values of noise. Plots (d)7(f)
are the corresponding probability distribution functions of the interval between spikes. Intermediate values of noise intensity ((b),
(e)) show an entrainment of the system at the ghost frequency fr ¼ 800 Hz (Tr ¼ 1/fr ¼ 1.25 ms). Middle panel: coefficient of
variation (CV) of the inter-spike interval versus its mean. The different measurements correspond to increasing values of noise. The
minimum of the CV corresponds to the entrainment of the system at the ghost period (Tr ¼ 1/fr ¼ 1.25 ms). Right panel: Mean
spike frequency of the processing circuit for varying frequency shift (Df). The dashed line corresponds to the theoretical value of fr
given by Equation (2) for k ¼ 2 and N ¼ 2. Reprinted with permission from A. Lopera, J.M. Buldú, M.C. Torrent, D.R. Chialvo,
and J. Garcı́a-Ojalvo, Phys. Rev. E 73, pp. 021101-06, (2006). Copyright (2006) from American Physical Society.
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controlled more effectively if a secondary signal with
tunable frequency and phase is applied.

5. Open questions and future work

Having reviewed the main theoretical aspects of the
GSR mechanism and how it contributed to explain
real-world problems of active scientific research in such
diverse branches as paleoclimatology and neu-
roscience, open questions certainly remain in at least
three aspects of the phenomenon: theoretical insights,
new manifestations of the same mechanism and
development of new statistical measures.

It is clear that important efforts are needed to
attain analytical descriptions of the GSR mechanism,
as was done earlier for the case of Stochastic
Resonance. A second line of inquiry might be directed
to uncover new manifestations of the same mechanism.
For instance, to study the characteristics of the GSR
phenomenon in response to more realistic, non-
sinusoidal cycles, since many real-world cyclic pro-
cesses are far from sinusoidal. Another relevant
question may be to investigate the response to input
frequencies which are not constant but jitters randomly
from one cycle to another, such that noise appears in
the frequency rather than in the amplitude domain.
Furthermore, it is important to note that most of the
studies performed so far on the subject of GSR were
based on comparably simple, low-dimensional models.
Since it is not certain up to what degree the complexity
of real-world systems (such as the climate or auditory
systems) can be reduced, future work should focus on
the study of this phenomenon in more detailed, higher
dimensional models. Finally, future work is required
concerning the development of new measures of
regularity that are particularly useful to distinguish
between a GSR and other related noise induced
phenomena in real data. This includes, among other
approaches, rigorous null-hypothesis testing, using
modern methods of nonlinear time series analysis.

6. Summary

The output of nonlinear systems driven by noise and
periodic stimulus with more than one frequency is
characterised by the emergence of a ‘ghost’ frequency
which is absent in the input. This phenomenon, called
ghost stochastic resonance, was proposed to explain a
well-known paradox in psychoacoustics: the missing
fundamental illusion. It was later found to provide a
theoretical framework to understand a wide variety of
problems, from the perception of pitch in complex
sounds or visual stimuli to climate cycles. The
robustness of this phenomenon relies on two simple
ingredients which are necessary to the emergence of

GSR: the linear interference of the periodic inputs and
a nonlinear detection of the largest constructive
interferences, involving a noisy threshold. Theoretical
analysis showed that when the input frequencies are
higher harmonics of some missing fundamental f0, the
predominant output frequency is f0. On the other
hand, when the input frequencies are still spaced by f0
but they are no longer higher harmonic of f0, the
predominant response frequencies follow a family of
linear functions described by Equation (2). The
remarkable agreement found between theory, simula-
tions and experiments is parameter independent and
able to explain problems in a wide variety of systems
ranging from neurons, semiconductor lasers, electronic
circuits to models of glacial climate cycles.
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[68] J.M. Buldú, J. Garcı́a-Ojalvo, C.R. Mirasso, and M.C.
Torrent, Stochastic entrainment of optical power drop-
outs, Phys. Rev. E 66 (2002), pp. 021106-10.

[69] J.M. Buldú, D.R. Chialvo, C.R. Mirasso, M.C. Torrent,
and J. Garcı́a-Ojalvo, Ghost resonance in a semiconduc-
tor laser with optical feedback, Europhys. Lett. 64
(2003), pp. 178–184.
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