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We present a physiologically plausible binaural mechanism for the perception of the pitch of
complex sounds via ghost stochastic resonance. In this scheme, two neurons are driven by noise and
a different periodic signal eachswith frequenciesf1=kf0 and f2=sk+1df0, wherek.1d, and their
outputssplus noised are applied synaptically to a third neuron. Our numerical results, using the
Morris–Lecar neuron model with chemical synapses explicitly considered, show that intermediate
noise levels enhance the response of the third neuron at frequencies close tof0, as in the cases
previously described of ghost resonance. For the case of an inharmonic combination of inputs
sf1=kf0+Df and f2=sk+1df0+Dfd noise is also seen to enhance the rates of most probable spiking
for the third neuron at a frequencyf r = f0+fDf / sk+1/2dg. In addition, we show that similar
resonances can be observed as a function of the synaptic time constant. The suggested ghost-
resonance-based stochastic mechanism can thus arise either at the peripheral level or at a higher
level of neural processing in the perception of pitch. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1871612g

The perception and processing of environmental complex
signals resulting from the combination of multiple inputs
is a nontrivial task for the nervous system. In many spe-
cies, solving efficiently this sensory problem could have
an evolutionary payoff. A classical example is the percep-
tion of the pitch of complex sounds by the auditory sys-
tem, the mechanism of which remains controversial. Re-
cently, a mechanism for the perception of pitch has been
proposed on the basis of the so-called ghost stochastic
resonance. Under this paradigm, an appropriate level of
noise yields an optimal subharmonic neural response to a
combination of two or more harmonic signals that lack
the fundamental frequency, which is nevertheless per-
ceived by the system. The original proposal concentrated
in the peripheral level of the perception process, by con-
sidering the case of a simple monoaural presentation of
the complex signal. On the other hand, it is known that
complex sounds are also perceived when its two constitu-
ent tones are presented binaurally (i.e., one in each ear).
Thus, the question that remains is whether ghost stochas-
tic resonance can participate in detecting this “virtual”
dichotic pitch at a higher level of processing. In this pa-
per we present, on the basis of numerical simulations, a
plausible mechanism for the binaural perception of the
pitch of complex signals via ghost stochastic resonance.
In this scenario, each of the two input tones drives a dif-
ferent noisy neuron (corresponding to detection in the
left–right auditory pathways), and together they drive a
third noisy neuron that perceives the missing fundamen-
tal. In this way, the same basic mechanism of ghost reso-

nance can explain pitch perception occurring at both the
peripheral and a higher processing level.

I. INTRODUCTION

A. Pitch perception by single neurons

Under many conditions sensory neurons can be consid-
ered as noisy threshold detectors, responding to external sig-
nals seither from the environment or from other neuronsd in
an all-or-nothing manner. Substantial effort has been dedi-
cated to examine theoretically and numerically the response
of neurons to simple input signals, usually harmonic, both
under deterministic1,2 and stochastic3,4 conditions.

Much less studied is the case of multiple input signals. It
is known, for instance, that a high-frequency signal enhances
the response of a neuron to a lower frequency driving via
vibrational resonance.5 On the other hand, two-frequency
signals are commonly used for diagnostic purposes, such as
in the analysis of evoked potentials in the human visual
cortex,6 but the detection and processing of this type of com-
bined signals is poorly understood. Recently, a study of the
response of a neuron to a combination of harmonics in which
the fundamental is missing7 has shed new light upon the
problem of the perception of the pitch of complex sounds.8

The perceived pitch of a pure tone is simply its fre-
quency. In contrast, the perceived pitch of a complex sound
sformed by a combination of pure tonesd is a subjective at-
tribute, which can nevertheless be quantified accurately by
comparing it with a pure tone. In the particular case of har-
monic complex soundsssignals whose constituent frequen-
cies are multiple integers of a fundamental frequencyd, the
perceived pitch is the fundamental, even if that frequency is
not spectrally present in the signal. For that reason, the pitch
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is usually referred to in this case as a “virtual pitch,” and its
perception is sometimes called the “missing fundamental il-
lusion.”

The neural mechanism underlying pitch perception re-
mains controversial. From a neurophysiological perspective,
the perceived pitch is associated with the inter-spike interval
statistics of the neuronal firings.9,10 The analysis presented in
Refs. 7 and 8 shows that a neuron responds optimally to the
missing fundamental of a harmonic complex signal for an
intermediate level of noise, making use of two ingredients:
sid A linear interference of the individual tones, which natu-
rally leads to signal peaks at the fundamental frequency, and
sii d a nonlinear threshold that detects those peaksswith the
help of a suitable amount of noise, provided the signal is
deterministically subthresholdd. The behavior of this rela-
tively simple model yields remarkably good agreement with
previous psychophysical experiments.11 The phenomenon
has been termedghost stochastic resonancesGSRd, and has
been replicated experimentally in excitable electronic
circuits12 and lasers.13

B. Signal integration and processing of distributed
inputs

Besides the question ofhow pitch is perceived, another
contested debate relates towhereperception takes place. Al-
though interval statistics of the neuronal firings9,10 show that
pitch information exists in peripheral neurons, other results
seem to indicate that, at least to some extent, pitch percep-
tion takes place at a higher level of neuronal processing.14 A
typical example is found in binaural experiments, in which
two components of a harmonic complex signal enter through
different ears. It is known that in that case asrather weakd
low-frequency pitch is perceived. This is called “dichotic
pitch,” and can also arise from the binaural interaction be-
tween broad-band noises. For example, Cramer and
Huggins15 studied the effect of a dichotic white noise when
applying a progressive phase shift across a narrowband of
frequencies, centered on 600 Hz, to only one of the channels.
With monaural presentation listeners only perceived noise,
whereas when using binaural presentation over headphones,
listeners perceived a 600 Hz tone against a background
noise.

It is worth examining whether the ghost resonance
mechanism introduced by Chialvoet al.7,8 can also account
for the binaural effects described above. Ghost resonance has
already been seen to be enhanced by coupling in experiments
with diffusively coupled excitable lasers,16 but no studies in
synaptically coupled neurons have been made so far. Given
that chemical synapses lead to pulse coupling, a reliable co-
incidence detection is required in order for ghost resonance
to arise in this case. We examine the situation in which two
different neurons receive one single component of the com-
plex signal eachsso that each neuron represents detection at
a different auditory channel in a binaural presentationd, and
act upon a third neuron which is expected to perceive the
pitch of the combined signal. Our results show that this
higher-level neuron is indeed able to perceive the pitch,
hence providing a neural mechanism for the binaural experi-
ments.

II. MODEL DESCRIPTION

A. Neuron model

We describe the dynamical behavior of the neurons with
the Morris–Lecar model17

dVi

dt
=

1

Cm
sI i

app− I i
ion − I i

synd + Dijstd, s1d

dWi

dt
= fLsVidfW`sVid − Wig, s2d

whereVi and Wi stand for the membrane potential and the
fraction of open potassium channels, respectively, and the
subindexi labels the different neurons, withi =1,2 repre-
senting the two input neurons andi =3 denoting the process-
ing neuron.Cm is the membrane capacitance per unit area,
I i
app is the external applied current,I i

syn is the synaptic cur-
rent, and the ionic current is given by

I i
ion = gCaM`sVidsVi − VCa

0 d + gKWisVi − VK
0d

+ gLsVi − VL
0d, s3d

wheregasa=Ca,K ,Ld are the conductances andVa
0 the rest-

ing potentials of the calcium, potassium and leaking chan-
nels, respectively. The following functions of the membrane
potential are also defined:

M`sVd =
1

2
F1 + tanhSV − VM1

VM2
DG , s4d

W`sVd =
1

2
F1 + tanhSV − VW1

VW2
DG , s5d

LsVd = coshSV − VW1

2VW2
D , s6d

whereVM1, VM2, VW1, andVW2 are constants to be specified
later. The last term in Eq.s1d is a white noise term of zero
mean and amplitudeDi, uncorrelated between different neu-
rons.

In the deterministic and single-neuron case, this system
shows a bifurcation to a limit cycle for increasing applied
currentIapp.18 This bifurcation can be a saddle-nodestype Id
or a subcritical Hopf bifurcationstype IId depending on the
parameters. We chose this last option for the numerical cal-
culations presented in this papersIt is currently not known
what type of neurons detect the pitch in the auditory system.
However, our investigations on standard stochastic resonance
show that the response of both types of neurons to single-
frequency driving is qualitative identical,19 so we can expect
that the results to be described below will also hold in type I
neuronsd.

The specific values of the parameters used in what fol-
lows are shown in Table I.20 The equations were integrated
using the Heun method,22 which is equivalent to a second-
order Runge–Kutta algorithm for stochastic equations.
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B. Synapses model

In this work we couple the neurons using a simple model
of chemical synapses.21 In this model, the synaptic current
through neuroni is given by

I i
syn= o

jPneighsid
gi

synr jsVi − Esd, s7d

where the sum runs over the neighbors that feed neuroni,
gi

syn is the conductance of the synaptic channel,r j stands for
the fraction of bound receptors of the postsynaptic channel,
Vi is the postsynaptic membrane potential, andEs is a param-
eter whose value determines the type of synapsessif larger
than the rest potential, e.g.,Es=0 mV, the synapses is exci-
tatory; if smaller, e.g.,Es=−80 mV, it is inhibitoryd.

The fraction of bound receptors,r i, follows the equation:

dri

dt
= afTgis1 − r id − br i , s8d

where fTgi =usT0
i +tsyn− tdust−T0

i d is the concentration of
neurotransmitter released in the synaptic cleft,a and b are
rise and decay time constants, respectively, andT0

i is the time
at which the presynaptic neuronslabeled nowid fires, what
happens whenever the presynaptic membrane potential ex-
ceeds a predetermined value, in our case chosen to be
10 mV. The time during which the synaptic connection is
active is given bytsyn. The values of the parameters that we
use were taken from Ref. 21, and are specified in Table I.

III. THE CASE OF DISTRIBUTED HARMONIC
COMPLEX SIGNALS

As mentioned above, we consider a network of three
neurons organized in two layers. The first layer is composed
of two unitsscalled “input neurons”d that receive the external
inputs, and whose responses act upon the processing layer,
composed in this case of only one unitscalled “processing
neuron”d. The coupling is unidirectional from each of the
input neurons to the processing neuron. Of course, physi-
ological realism dictates that more than three neurons will be
present. However, we model here for simplicity the simplest
possible case; one can expect that adding more neurons will
only improve the results.

In order to analyze the global response of this network to
a distributed complex signal, we apply to each one of the
input neurons a periodic external current with frequenciesf1

and f2,

I i
app= I0i

app+ Ai coss2pf itd, i = 1,2, s9d

where the values of the bias currentsI0i
app, the modulation

amplitudesAi and the frequenciesf i will be specified below
in each case.

In response to this driving, the input neurons emit a se-
quence of spikes with inter-spike intervalsISId distributions
centered atf1 and f2 and with standard deviations directly
related to the noise amplitudesD1 and D2. The current ap-

FIG. 1. Deterministic response to a distributed har-
monic complex signal. The membrane potential for the
three neurons is shown:sad and sbd Input neurons,sdd
processing neuron. The synaptic current acting on neu-
ron 3, I3

syn, is shown in plotscd. The two input neurons
are fed with two sinusoidal signals of amplitudesA1

=8 mA, A2=8.5 mA, and periodsT1=150 ms, T2

=100 ms, respectivelyswhich gives a ghost resonance
of T0=300 msd. The bias current for all three neurons is
I0i
app=33 mA, the synaptic coupling between input and

processing neurons isgsyn=2 nS andtsyn=1 ms. All
noise amplitudes are zero,D1=D2=D3=0 mV/ms.

TABLE I. Parameters values of the Morris–Lecar and synapse models used
in this work.

Parameters Morris–LecarsTII d

Cm 5 mF/cm2

gK 8 mS/cm2

gL 2 mS/cm2

gCa 4.4 mS/cm2

VK −80 mV
VL −60 mV
VCa 120 mV
VM1 −1.2 mV
VM2 18 mV
VW1 2 mV
VW2 30 mV
f 1/25 s−1

Parameters Synapses
a 0.5 ms−1 mM−1

b 0.1 ms−1

gsyn sspecified in each cased
tsyn sspecified in each cased
Es 0 mV
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plied to the processing neuron is not modulated and its value,
I03
app, is also chosen below threshold, so that the neuron does

not fire in the absence of synaptic coupling.

A. Deterministic case

In order to tune the system, we start the analysis in the
deterministic case. Figure 1 shows the behavior of the sys-
tem in the absence of noisesD1=D2=D3=0 mV/msd. In this
deterministic situation, the input neurons fire exactly with the
frequencies at which they are modulated. Iff1=kf0 sor,
equivalently,T1=T0/k, whereTi is the period corresponding
to the frequencyf id and f2=sk+1df0 sor T2=T0/ sk+1dd, the
two input neurons exhibit simultaneous spikes at intervals
T0=1/ f0 sprovided the two harmonic signals are in phased,
so that the synaptic current acting on the third neuron has
maxima with the same frequency, as can be observed in Fig.
1scd. In this exampleT1=150 ms andT2=100 ms, so thatk
=2 andT0=300 ms. Under these conditions, and for an ad-
equatesi.e., large enoughd value of the coupling strength
gsyn, the processing neuron fires with frequencyf0

=s1/300d kHz, as shown in Fig. 1sdd. We can see here that
the basic mechanism involved in this behavior is the detec-
tion of coincidences of incoming spikes by the output neu-
ron. This is not entrainment nor phase locking, because that
third neuron is not in the oscillatory regime, and hence it
does not have a free-running frequency.

B. Stochastic case

The previous example is, however, unrealistic since in
normal conditions a neuron is affected by a substantial level
of noise coming from, among other sources, the background
activity of other neurons acting upon it. To simulate this
behavior, we add noise to the super-threshold modulation
currents of the input neurons, and to thesconstantd sub-
threshold current of the processing neuron. We consider the
three noise sources independent of each other, because the
three neurons are not subject to the same background noise
sthey are spatially distant from each other, and in any case
their synaptic connections to other neurons, main origin of
the noise, will be different from each otherd. However, we
have checked that the behavior to be presented below also
holds in the case of common noisesresults not shownd.

Noise causes a drift in the spike times and a broadening
in the distribution of ISIsfsee Fig. 2sadg. As a consequence
of this, a fraction of the pulses reaching the output neuron at
the ghost frequency will not do it at the same time, and the
response of the processing neuron will be poorer than in the
deterministic case. We will now show that even in this case
the missing fundamental frequency can be successfully de-
tected, as was suggested in Refs. 7 and 8 for a single neuron.
Here the synaptic couplinggsyn and the applied current in the
output neuronI3

app are slightly below the bifurcation thresh-
old, so that this neuron would not fire in absence of noise
swhenD3=0 mV/msd.

With this in mind, we conduct a series of numerical ex-
periments looking for the occurrence of ghost stochastic
resonance. We choosef1=2 Hz and f2=3 Hz, so the ghost
resonance should be located atf0=1 Hz. The values of the

amplitudes of the modulating currents and the noise in the
input neurons are those specified in Fig. 2sad. As usual in
neurophysiology, in order to quantify the behavior of the
system we evaluate the time between consecutive spikes,Tp.
In what follows, we analyze the first two moments of the
distribution of Tp, namely its mean valuekTpl and its nor-
malized standard deviationsalso known as coefficient of
variationd Rp=sp/ kTpl. To estimate the coherence of the out-
put with the frequencies of interest, we also compute the
fraction f t0 of inter-spike intervals in the neighborhood of
T0=1/ f0. The dependence of these variablesscorresponding
to the processing neurond on the noise amplitudeD3 is shown
in Fig. 3 for the case where the input neurons fire with inter-
spike intervals with the distribution shown in Fig. 2sad.
These results display a clear resonance atD3,4 mV/ms.
The normalized standard deviation of the ISI distribution
fFig. 3sbdg exhibits a minimum when the spikes of the third
neuron are spaced, on average,kTpl=1000 msfFig. 3sadg.
Additionally, around 80% of the spikes are spaced ±5%
around T0=1000 ms forD3,4 mV/ms fFig. 3scdg. These
results clearly indicate that noise enhances the response of
the processing neuron at the frequencyf0, which is not
present in the input neurons.

The right panels of Fig. 3 show the probability distribu-
tion functions of the inter-spike intervalsTp for three values
of the noise in the processing neuron. For low noise ampli-
tude, the neuron spikes most likely when two input spikes
arrive together, but with randomly one or more of these co-
incidence events is skipped. For this reason, the probability
distribution function shows peaks centered at multiples ofT0,
as it usually happens in conventional stochastic resonance.23

As the noise level increases skips occurs less frequently, until
an optimal noise for which almost all spikes occur everyT0,

FIG. 2. Distribution of inter-spike intervals of the input neurons in two
cases:sad Both neurons with super-threshold modulationsA1=23.60 mA,
A2=24.20 mAd plus noise sD1=0.05 mV/ms, D2=0.2 mV/msd; and sbd
both neurons modulated with a sub-threshold harmonic currentsA1

=23.04 mA, A2=22.20 mAd plus optimal noise sD1=0.4 mV/ms, D2

=1.2 mV/msd, i.e., in the stochastic resonance regime. The bias currents are
I01,2
app =25 mA andI03

app=2.20 mA.
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i.e., at the missing fundamental frequency. For even larger
noise amplitude spikes appear at the original input periods
T1=1/ f1 and T2=1/ f2 and at all period differencesfFig.
3sfdg, as can be expected if most local maxima in the synaptic
current produce a spike. The different heights of the peaks in
the distribution can be understood from the fact that neurons
respond differently depending on the frequency.1

C. Quantifying the coherence detection efficiency

As we said above, the pitch detection mechanism de-
pends on how efficient the output neuron is in detecting the
coincidences in the arriving pulses. In order to examine this
issue in more detail, we have considered two ways in which
coincidence detection is compromised, and measured the ef-
ficiency with which the ghost frequency is detected therein.

First, we consider the case where the modulation cur-
rents of the input neurons are sub-thresholdsi.e., the neurons
do not fire in absence of noised and we add an optimal
amount of noise to tune them into stochastic resonance con-
ditions. This means that the neurons respond preferentially at
their corresponding driving frequenciessagainf1 and f2d, but
this firing is induced by noise, so that the corresponding ISI
distributions fsee Fig. 2sbdg are much broader than in the
case described earlierfsee Fig. 2sadg, where modulations
were super-threshold, and the only role of the noise was to
broaden slightly the ISI distributions. Fluctuations in the
inter-spike intervals are tantamount to random phase differ-
ences between the modulated input currents. In that situation
the coherence detection mechanism decreases its efficiency,
as shown in Fig. 3scd: The optimalsi.e., maximald fraction of
pulses spaced at around the ghost resonance period decreases
from its previous value*80% ffull circles in Fig. 3scdg down
to ,55% fempty triangles in Fig. 3scdg. Still, we note that
even in this highly extreme noisy situation the ghost reso-
nance is sufficiently detected.

In order to quantify the limit of robustness of the coher-
ence detection mechanism, we now consider a second situa-
tion, in which a constant phase difference is added to
the modulating current of neuron 2 with respect to that of
neuron 1

I2
app= I02

app+ A2 cosF2pS t

T2
+

DT

T2
DG . s10d

Figure 4 plots the optimal fraction of pulses around the ghost
resonance as a function of this phase difference, measured in
terms of the timing mismatchDT. We set the parameters of
the input neurons back into the noisy limit-cycle operation
regime shown in Fig. 2sad ssuper-threshold modulation plus
noised. The caseDT=0 is the one plotted in Fig. 3, where the
optimal fraction of pulses around the ghost resonance is
larger than 80%. As the phase difference increases that opti-
mal fraction decreases, dropping to half its initial value for a
relative timing mismatch on the order of 7.5%. This cut-off
value will depend on how far below threshold the processing
neuron operates, on the noise amplitude, and on the width of
the ISI distributions of the input neuronsfFig. 2sadg.

D. Role of synaptic coupling

In the binaural mechanism of ghost stochastic resonance
described above, synaptic coupling obviously plays an im-
portant role, since the transfer of the input modulation from
the sensory neurons to the processing neuron occurs synap-

FIG. 3. Left panels: Response of the processing neuron
for increasing noise amplitude:sad Mean time between
spikes kTpl, sbd coefficient of variationRp=sp/ kTpl,
and scd fraction of pulses spaced aroundT0=1/ f0, T1

=1/ f1 andT2=1/ f2 as a function of the noise amplitude
in the processing neuron,D3. Right panels: Probability
distribution functions of the time between spikesTp for
three values of the noise amplitudeD3: sdd D3

=1 mV/ms, sed D3=4 mV/ms, andsfd D3=8 mV/ms.
Parameters aretsyn=35 ms andgsyn=1 mS for the syn-
apses and we usedf1=2 Hz, f2=3 Hz swhich gives f0

=1 Hzd. Other parameters are those of Fig. 2sad, except
for the triangles in plotscd, which correspond to Fig.
2sbd.

FIG. 4. Maximum fraction of pulses at the ghost resonance as a function of
the timing mismatch between the input modulating currents relative to the
period of the currentT2, DT/T2. Parameters are the same than in Fig. 3 with
D3=4 mV/ms.
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tically. Taking into account that synaptic transmission is an
intrinsically dynamical phenomenonswhose temporal behav-
ior we are modeling explicitlyd, it is natural to expect that the
characteristic time scale of this process will influence the
occurrence of the resonance. Indeed, the results shown above
correspond to an optimal value of the synaptic timetsyn. As
shown in Fig. 5 for fixed noise strengthD3, a resonance in
the response of the system to the missing fundamental is also
observed with respect totsyn.

We recall thattsyn represents the time during which the
neurotransmitters remain in the synaptic cleft before they
start to disappear with rateb, and it is a measure of the width
of the pulses of the synaptic current received by the process-
ing neuron. Therefore, for lowtsyn fFig. 5sddg the synaptic
pulses are very narrow, and hence coincidence detection is
compromised. The characteristic probability distribution
function in this case presents peaks at multiples ofT0, indi-
cating that even if the noise level is optimized, coincident
spikes from input neurons are skipped.

As tsyn increases the current pulses widen and coinci-
dence detection improves, so that an optimal situation is
reached for which the ghost resonance is very clear. But if
we continue increasing the value oftsyn the synaptic pulses

become exceedingly wide and sequences of double spikes
appearsspaced byTds=1/ fdsd. This happens because noise
can excite two spikes while the synaptic current remains
high. Indeed, Fig. 5scd shows that the fraction of spikes oc-
curring at intervals aroundTds s±5%d begins to be important
for tsyn.50 ms. The corresponding distribution function in
Fig. 5sfd, shown here fortsyn=150 ms, corroborates this fact.

The joint effect of the synaptic timetsyn and the noise
strengthD3 can be observed in the three-dimensional plots
shown in Fig. 6. This figure showsRp and f t0 as a function of
both D3 andtsyn. We can see the response of the processing
neuron at the missing fundamental is most favorable when
both parameters are simultaneously optimized. The normal-
ized standard deviation of the ISI distribution,Rp, shows a
clear minimum fortsyn,35 ms andD,4 mV/ms. For these
same parameter values, the fraction of spikesf t0 occurring at
intervals aroundT0 exhibits a maximum at almost 80%.

IV. THE INHARMONIC CASE

A paradigmatic experimental result in pitch perception
refers to the pitch reported by human subjects to the presen-
tation of an inharmonic complex sound, in which the origi-

FIG. 5. Left panels:sad Mean time between spikes,sbd
coefficient of variation, andscd fraction of pulses
aroundT0=1/ f0 and Tds=1/ fds as a function oftsyn.
Right panels: Probability distribution functions of the
inter-spike intervalsTp for three values oftsyn: sdd
tsyn=1.5 ms,sed tsyn=35 ms, andsfd tsyn=150 ms. The
value ofgsyn is different for each value oftsyn, chosen
so that the processing neuron is below threshold and
does not fire in the absence of noise. In particular,
gsyn=2.50 nS for tsyn=1.5 ms, andgsyn=1.00 nS for
tsyn=35 ms andtsyn=150 ms. The driving frequencies
are f1=2 Hz and f2=3 Hz swhich gives f0=1 Hzd.
Other parameters are those of Fig. 3sed sin particular,
D3=4 mV/msd.

FIG. 6. sColord Left: Fraction of pulsesf t0 occurring at intervalsTp equal s±5%d to the period of the ghost resonancesT0=1/ f0d. Right: Coefficient of
variationRp. Both quantities plotted as function of noise amplitudesD3d andtsyn.
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nally harmonic components of the input are all shifted in
frequency by a constantDf. In such a way the individual
component are still separated in frequency by a constant
missing “fundamental”f0, but are no longer multiples of it.
The frequenciesf1 and f2 are chosen to be

f1 = kf0 + Df, f2 = sk + 1df0 + Df , s11d

with k integer. In other words,f0 is no longer the greatest
common divider off1 and f2, even though its still their dif-
ference. If the system is simply detecting the differencef2

− f1, it should always display a fixed resonance atf0, inde-
pendently of the frequency shiftDf. But if the pitch detection
does depends onDf, it will no longer be perceived as the
difference between the input frequencies. This last situation
is in fact what was found in human experiments.11 The neu-
ral mechanism proposed in Refs. 7 and 8 shows that the
frequency of the ghost resonance shifts linearly withDf fol-
lowing the relation:

f r = f0 +
Df

k + 1/2
. s12d

in agreement with the auditory experimental results of Refs.
9–11.

We now examine whether a scaling similar to that of Eq.
s12d is observed in the response of the processing neuron. We
fix the noise amplitudeD3 and synaptic timetsyn to their
optimal values at the resonancesD3=4 mV/ms, tsyn

=35 msd and compute the probability of observing a spike
with rate f r for increasingDf. The results are plotted in Fig.
7 as a function off1, and show that the largest probability
corresponds to spike rates following the prediction of rela-
tion s12d. Changing the noise amplitude only obscures the
observation of the spike density, but it does not affect the
agreement with the theoretical expression. In the bottom of
Fig. 7 one can also see traces of less probable spikes, corre-
sponding to a trivial subharmonic response of the system.

Figure 7 shows that the processing neuron emits spikes
following Eq. s12d for k=2,3,4,5. Asmentioned above,
this relation is sustained by experimental data of pitch
detection.11 Those experimental results indicate that equidis-

tant tones in monoaural presentation do not produce constant
pitch, similarly to what we observe in our binaural numerical
experiments. We are not aware of binaural human experi-
ments shifting the frequency components as in Ref. 11,
which would be interesting to compare with our numerical
predictions in Eq.s12d.

V. CONCLUSIONS

In this paper we demonstrate the phenomenon of ghost
stochastic resonance in a neural circuit where two neurons
receive two components of a complex signal and their out-
puts drive a third neuron that processes the information. The
results show that the processing neuron responds preferen-
tially at the “missing fundamental” frequency, and that this
response is optimized by synaptic noise and by synaptic time
constant. The processing neuron is able to detect the coinci-
dent arrival of spikes from each of the input neurons, and
this coincidence detection is analogous to the linear interfer-
ence of harmonic components responsible of the ghost re-
sponse in the single-neuron case.7 A brain structure candidate
for this dynamics is the inferior colliculus, which receives
multiple inputs from a host of more peripheral auditory nu-
clei. Details of the physiology of this nucleus are still uncer-
tain, but enough evidence suggests that temporal and fre-
quency representations of the inputs are present in the spike
timing of their neurons. Our results suggest that the neurons
in this nucleus can exhibit the dynamics described here, thus
participating in the perception of binaural pitch. The main
consequence of these observations is that pitch information
can be extracted mono or binaurally via the same basic prin-
ciple, i.e., ghost stochastic resonance, operating either at the
periphery or at higher sensory levels.
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