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The understanding of the structure and dynamics of the intricate network of connections among
people that consumes products through Internet appears as an extremely useful asset in order
to study emergent properties related to social behavior. This knowledge could be useful, for
example, to improve the performance of personal recommendation algorithms. In this contri-
bution, we analyzed five-year records of movie-rating transactions provided by Netflix, a movie
rental platform where users rate movies from an online catalog. This dataset can be studied as
a bipartite user-item network whose structure evolves in time. Even though several topological
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properties from subsets of this bipartite network have been reported with a model that combines
random and preferential attachment mechanisms [Beguerisse Dı́az et al., 2010], there are still
many aspects worth to be explored, as they are connected to relevant phenomena underlying
the evolution of the network. In this work, we test the hypothesis that bursty human behavior
is essential in order to describe how a bipartite user-item network evolves in time. To that end,
we propose a novel model that combines, for user nodes, a network growth prescription based
on a preferential attachment mechanism acting not only in the topological domain (i.e. based on
node degrees) but also in time domain. In the case of items, the model mixes degree preferential
attachment and random selection. With these ingredients, the model is not only able to repro-
duce the asymptotic degree distribution, but also shows an excellent agreement with the Netflix
data in several time-dependent topological properties.

Keywords : Complex networks; bipartite networks; Netflix; bursting; recommendation systems.

1. Introduction

During the past years, we have witnessed a wide
range of contributions on the applications of
Complex Networks Theory to real data [Newman,
2003; Boccaletti et al., 2006; Costa et al., 2011].
The main reason behind this explosion is the large
number of datasets accessible to any user through
Internet. Nevertheless, an excess of information can,
sometimes, be a disadvantage, since a user may have
problems to find specific information or even get lost
in the pool of data. Personal recommendation algo-
rithms deal with this drawback of large datasets,
and have been specially fruitful in the context of
music [Herlocker et al., 2004; Cano et al., 2006;
Zanin et al., 2009; Celma, 2010] or movie recom-
mendation [Zhang et al., 2007; Zhou et al., 2007;
Beguerisse D́ıaz et al., 2010]. Within this frame-
work, collaborative filtering methods [Sarwar et al.,
2001; Herlocker et al., 2004] have shown very high
performance as measured by high scores in their
recommendation results. This kind of algorithms
rely on the data previously collected from users’
behavior, namely the number, type and rating of
the items they have consumed. In the last decade,
a lot of effort has been made in order to improve
collaborative filtering algorithms, trying to increase
their score in the prediction of what users’ next
choice will be [Bobadilla et al., 2009; Zanin et al.,
2009]. Nevertheless, less attention has been paid to
the data that these recommendation algorithms are
using as a ground for their automatic predictions. In
the current work, we are concerned about the cre-
ation and evolution of rating networks, which are
usually taken as the input of collaborative filtering
algorithms. Rating networks are bipartite networks

[Holme et al., 2003] whose fundamental nodes are
split into two kinds, users and items, and links are
created when a user gives a rate to a certain item
that he/she has consumed. In this way, we obtain
(complex) rating networks that are continuously
evolving in time, increasing its number of users,
items and links. Due to its relevance and availabil-
ity, we have analyzed the rating dataset given by
Netflix, an online movie rental platform [Netflix,
2011].

Statistical features of Netflix data were already
the subject of several studies. Some of them have
focused on collaborative filtering procedures and/or
recommendation algorithms [Bennett & Lanning,
2007; Zanin et al., 2009], others [Beguerisse
D́ıaz et al., 2010] in describing relevant topological
properties of the subsets of the Netflix database.
In the present contribution our aim is twofold: on
one hand, we want to understand the underlying
rules that drive the evolution of this rating network
and, on the other hand, we want to design a model
able to reproduce the main features of users, items
and links. We will see that the analysis of one-year
long top-rated movies shows a power-law distribu-
tion in the degree of items (movies) and an absence
of a power law behavior in the degree distribution
of users, as well as a non-Poissonian distribution in
human activity time domain, which is characterized
by bursts of intense activity (high number of rat-
ings) followed by periods of inactivity. These long-
tailed distribution was already reported for the Net-
flix network [Beguerisse D́ıaz et al., 2010], as well as
for other kinds of human activities [Barabási, 2005;
Oliveira & Barabási, 2005; Vazquez et al., 2006,
2007; Zhou et al., 2008].
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Interestingly, we found that a model for the cre-
ation of new links that is only based on preferen-
tial attachment and random selection is not capable
of reproducing the complete abovementioned obser-
vations. In particular, it is not able to reproduce
the bursty behavior observed in user node’s dynam-
ics. In this contribution, we will show that a com-
bination of preferential attachment in degree and
time-domain is indeed needed to better describe the
evolving rating networks. Moreover, the observed
balance between these driving forces could also
be taken into account in order to design efficient
recommendation algorithms based on this kind of
datasets.

The manuscript is organized as follows: in
Sec. 2, we define the main properties of the Rat-
ing Network (RN) we are studying; in Sec. 3, we
show the results obtained when analyzing the net-
work structure and its temporal evolution; Sec. 4
is devoted to the design of an evolutionary model
that reproduces the fundamental properties of the
Netflix Rating Network; finally, in Sec. 5, we sum-
marize the results obtained and discuss the implica-
tions that the network evolution has on the design
of recommendation algorithms.

2. The Netflix Rating Network

Netflix is an online movie rental platform upon
which a social network of user-assigned video rat-
ings was established. Six years of online ratings
(i.e. transactions) were made publicly available as
a part of the Netflix competition [Bennett & Lan-
ning, 2007] in the year 2007. The whole dataset
includes a collection of 480 189 users, 17 770 movies,
and 100 480 507 ratings, spanning about six years of
activity, from October 1998 to December 2005.

The Netflix rating dataset can be naturally cast
into a bipartite network representation in which
users and movies are continuously entering the sys-
tem. New links are established between both types
of nodes every time a rating transaction is regis-
tered. A schematic picture of the network temporal
dynamics can be seen in Fig. 1.

The first user’s rating determines his/her entry
time point to the market. Analogously, the first
rating a given film receives defines its entrance in
the network. These two quantities can be used to
trace the overall dynamical evolution of the Netflix
expanding market. From the observed dynamics,
phenomenological growing laws, M(t) and U(t), can
be inferred for movies and users respectively (see

Fig. 1. Construction and evolution of a user-item rating
network. Users, items and ratings appear at discrete times ti.
A new link is created when a user rates a certain item (movies,
in the case of Netflix). Users and items are continuously
added to the system. In this qualitative example, Item 3
would be a network hub.

Fig. 7 in Appendix A). In the following sections
we have made use of this phenomenological grow-
ing curves in order to model the network dynamics.

For the sake of computational modeling efforts,
we decided to consider only a representative subset
of the complete database. On one hand, we focus
on ratings that were worth the highest score (five
stars) in order to assure that the user’s feeling about
the movie is fully positive. On the other, we only
keep transactions that have occurred between Jan-
uary 6, 2001 and January 6, 2002. We verify that
several topological and dynamical features remain
unaltered for other date choices, as long as a whole
year of sampling period was considered (see Fig. 8
in Appendix A). This is somehow to be expected,
as a calendar one-year period can be considered a
natural time scale to describe human-related activ-
ity patterns. Keeping track of five-stars transactions
over one year resulted in a network of U = 17729
users, M = 4734 movies and T = 300 351 ratings
(links).

3. Topological Properties of Netflix
Bipartite Network

The first step in order to unveil a bipartite net-
work connectivity pattern can be done by analyz-
ing the degree distribution of user and movie nodes.
They are depicted in Fig. 2, in panel (a) for movies
and panel (b) for users. The movie’s degree dis-
tribution displays a dominant power-law behavior
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Fig. 2. Degree distributions (P (k)) for (a) movies and (b) users. Netflix data from 2001 (in black) as well as results of QP
model for Q = 0.56 and P = 0.99 (in red) are shown. Meanwhile, the one corresponding to movies displays a predominant
power law behavior with exponent α ∼ 1.15 in the range (k = 1–300), the distribution corresponding to users shows a strong
exponential character. The insets show the cumulative degree distributions.

(truncated by finite size effects) with an exponent
of α ∼ 1.15, although this is not the case for the
user’s degree distribution. The simplest assumption
in order to model this behavior is that a preferential
attachment mechanism underlies the selection pro-
cedure of movies, meanwhile a mixing with random
selection should be involved in the users’s behavior.
This approximation was already used in [Beguerisse
D́ıaz et al., 2010] and it will be tested in Sec. 3.1.

3.1. A basic approximation :
Preferential attachment and
random selection

We start with a simple model (the QP-Model), sim-
ilar to the one presented in [Beguerisse D́ıaz et al.,
2010], which combines preferential attachment and
a random node selection prescription onto an evolv-
ing user-item network. The dynamics of the model
is defined by the evolution of the nodes and the
rules by which a user selects a given item. The evo-
lution in time of movies and users, M(t) and U(t),
are taken as empirical growth laws, since they were
fitted from the data (see Appendix A for details).
Each simulation step, ts, corresponds to a rating
transaction that links a user to a movie. If a new

user (movie) node has to be incorporated to the
market at a given simulation step, it would be the
one selected to participate in the transaction. Oth-
erwise an already existing user (movie) node would
be selected following the P (ui, ts) (P (mi, ts)) prob-
ability distribution function:

P (ui, ts) = Q
ki(ts)

U(ts)∑

l

kl(ts)

+ (1 − Q)
1

U(ts)
(1)

P (mj, ts) = P
kj(ts)

M(ts)∑

l

kl(ts)

+ (1 − P )
1

M(ts)
, (2)

where U(ts),M(ts) are the number of users and
movies that are already in the market after ts trans-
actions and ki/j is the node degree. Q ∈ [0, 1] and
P ∈ [0, 1] are model parameters that control the rel-
ative strength between the preferential attachment
and the random assignment character of the proba-
bilistic assignment rule for users and movies, respec-
tively. The entire simulation included M = 4734
movies, U = 17729 users and T = 300 351 ratings
which corresponds to a one-year period (2001).
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It is important to point out that even though
human days (labeled as t in this work) were the time
units used in the original dataset, we considered the
number of transactions (ts) as the model time scale.
The correspondence between days and transactions
was fitted from the original dataset following the
same approach used in [Beguerisse D́ıaz et al., 2010]
(see Appendix A for further details).

As can be seen in Fig. 2 (in red), the model
could adequately fit the empirical data for the
degree distribution of both type of nodes (Q = 0.56,
P = 0.99, χ2

NORM = 0.14). Details about the fit-
ting procedure can be seen in Appendix A. Looking
at the best fit parameter values it can be realized
that rather large deviation from a pure preferen-
tial attachment behavior is obtained for user nodes,
given the empirical node degree distribution which
displays a strong exponential character.

3.2. Network dynamical features

Given that the network is continually growing with
the influx of new nodes (users and movies), it is
sensible to investigate some dynamical features of
the system in order to better understand its tem-
poral organization. The trivial tendency of elder
nodes to have participated in more transactions
than newcomers, just because they were around
longer in the market, was analyzed in Figs. 3(a)
and 3(b). In these panels we show the average
node degree 〈k〉 as a function of the insertion date,
for users and movies, respectively. It is remarkable
that, whereas older films tend to show higher aver-
age degree values than recently incorporated ones,
no such strong correlation could be established for
users. This asymmetry could not be recapitulated
by the QP-model (in red).
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Fig. 3. Topological dynamical analysis of the Netflix data (in black) and QP-Model (Q = 0.56 and P = 0.99, red) for
(left) users and (right) movies. (a) and (b) Mean degree 〈k〉 as a function of the market insertion date, (c) and (d) distribution
of times between transactions, P (∆t), (e) and (f) the life cycle of users and movies. Active (total) nodes are shown with dashed
(full) lines. Left panels show how the QP model fails to describe the dynamical features of the network.

1250180-5



July 29, 2012 11:21 WSPC/S0218-1274 1250180

E. F. Lavia et al.

The rate of individual transactions is another
interesting dynamical feature of our system.
Figures 3(c) and 3(d) show the distribution of
times between transactions, P (∆t), for users and
movies. Aside from the expected seven-day pat-
tern of activity (small ripples in the figure, also
in panel (c) of Fig. 8) which corresponds to typi-
cal inter-event period in time organization of many
human activities, we found a heavily-tailed distri-
bution for both, users and movies distributions,
with a stronger power-law dominance in the lat-
ter case. We can observe that the QP-model (red
lines) could fit accurately enough the data corre-
sponding to movies. However, also in this case, it
fails to reproduce the observed behavior for users,
displaying a larger than observed fraction of small,
and midsize inter-event intervals, and underrepre-
sented largely delayed patterns of activities.

In the same figure, in panels (e) and (f), the
permanence of users and movies in the network is
analyzed. We define the duration of the spanning
life cycle of a node over a finite temporal window,
as the number of days that mediate between its
appearance on the network (first rating recorded)
and their last rating within the analyzed period. We
consider that a node is active if it has not reached
its corresponding final degree. Again, and in con-
cordance with the above observations, we noticed
that the QP-model fails to mimic the observed
behavior for users. The overrepresentation of small
inter-event times, observed in panel (c) for user
transactions results in the consumers with similar
degrees remaining active for longer times in the
model than in the real network.

4. A New Model: Degree and Time
Preferential Attachment

At this point, it becomes evident that even the
node degree distribution could be well adjusted by
the QP-model, the preferential-attachment and ran-
dom selection mechanisms did not convey the model
enough flexibility to adequately fit the reported
dynamical behavior of the system. Even if several
movie-related temporal observables could be nicely
adjusted by the model, this was not generally the
case of user-related dynamical behavior. This kind
of qualitative asymmetry could not be corrected by
different values of parameters Q and P . On the
contrary, it reflects the intrinsic different nature
between both types of nodes, and the complexity
of human temporal task organization. In order to

look for differences in temporal patterns between
users and movies we plot, in Fig. 4, the time interval
between consecutive transactions as a function of
the transaction number for randomly selected users
and movies of three arbitrarily categories: highly
connected nodes (k ∼ 360 for users k ∼ 2100 for
movies), regular ones (k ∼ 155 for users k ∼ 615 for
movies) and low connected nodes (k ∼ 50 for users
k ∼ 110 for movies).

Figure 4 contrasts the dynamical activity of
movies and users. It can be noticed that the
latter ones display bursts of activity separated
from long periods of inactivity, consistently with
reported patterns of inter-event distribution asso-
ciated with human dynamics [Barabási, 2005;
Oliveira & Barabási, 2005; Vazquez et al., 2006].

In order to take into account these observa-
tions, we develop a new model of network evolution
(the RP-model), which combines for user dynam-
ics a preferential attachment in the degree with a
preferential attachment in the time domain. We use
the same empirical growing laws than in the QP-
model (i.e. M(t) and U(t) as shown in Fig. 7) and
the same number of movies, users and transactions
(M = 4734, U = 17729 and T = 300 351, respec-
tively) but we change the probability of selecting
an existing user at a given time. In this model,
the probabilities of selecting a user or a movie are
read as,

P (ui, ts) = R
ki(ts)

U(ts)∑

l

kl(ts)

+ (1 − R)

1
ts − tLs,i

U(ts)∑

l

1
ts − tLs,l

(3)

P (mj , ts) = P
kj(ts)

M(ts)∑

l

kl(ts)

+ (1 − P )
1

M(ts)
, (4)

where U(ts),M(ts) are the number of users and
movies that are already in the market after ts trans-
actions, ki/j is the node degree and tLs,i is the time
step where the ith user has made his last rate.
R ∈ [0, 1] is the model parameter that controls the
relative strength between the preferential attach-
ment in degree and preferential attachment in time
domain. P ∈ [0, 1] plays the same role as in the
QP-model.

This model takes into account the asymmetry
observed in the temporal behavior of humans and
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Fig. 4. Dynamical behavior of consumers and movies. The time interval between consecutive transactions as a function of
the transaction number for (left) users and (right) movies are plotted. (a) and (b) High, (c) and (d) medium, (e) and (f)
low connected nodes are sketched. Both columns highlight the differences in their dynamical behavior: Whereas the human
activity is organized in burst of activity separated with long periods of inactivity for different kind of consumers, the movie’s
behavior depends on their degree of popularity. In particular, the most ranked movies are consumed almost every day. This
plot also clearly shows how the QP-model fails to reproduce the behavior of users, but accurately describes how the movies
behave.

movies by breaking the symmetry between nodes
and movies selection probability rules. The second
term of Eq. (3), that is, the one proportional to
1/(ts − tLs,i) ensures a succession of consecutive rat-
ings for users who have recently qualified while
the first term allows a user who has not rated
for some time to requalify and enter again in a
regime of bursts. In addition, the selection intro-
duced by the first term of Eq. (3) is through the
usual degree-based preferential attachment, and it
promotes bringing back users of high degree.

Following the same procedure used with the
previous model, we adjust the parameters R and
P in order to get the best fit to the users and
movies degree distributions in the year 2001 Net-
flix database. We obtained R = 0.11 and P = 1.0
with χ2

NORM = 0.25.
In Fig. 5, we show the performance of the new

RP-model (for R = 0.11 and P = 1.0), matching

several topological/dynamical features of the Net-
flix network that were already examined in Figs. 2
and 3 for the simpler QP-model, i.e. the degree dis-
tributions [panels (a) and (b)], the mean degree
as a function of the market insertion date [panels
(c) and (d)], distribution of times between trans-
actions, P (∆t) [panels (e) and (f)], and the life
cycle of users and movies [panels (g) and (h)].
We can appreciate how the incorporation of pref-
erential attachment in time domain, instead of a
random selection, is enough to qualitatively repro-
duce the main dynamical aspects of Netflix bipartite
network.

For users, their dynamics in the RP-model is
much closer to those observed in the data when we
use the probability of the form Eqs. (3) and (4).
Equiprobable random assignment, as in the QP-
model, overemphasizes the importance of the per-
manence of the users so that, on average, only the
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Fig. 5. Topological/dynamical analysis of the Netflix data (black), RP-Model (R = 0.11 and P = 1, green) and QP-Model
(Q = 0.56 and P = 0.99, red) for (left) users and (right) movies. (a) and (b) Degree distributions, (c) and (d) mean degree 〈k〉
as a function of the market insertion date, (e) and (f) distribution of times between transactions, P (∆t), (g) and (h) the life
cycle of users and movies. Active (total) nodes are shown by dashed (full) lines. Left panels confirm that RP model describes
accurately the dynamical features of the Netflix bipartite network.

initial nodes can be high degree nodes and also fails
to capture the inter-event dynamics. The exponen-
tial character of the distribution, when using ran-
domness, would indicate that the appearance of
users follows a pattern more in accordance with a
Poissonian process [Vazquez et al., 2006] in which
a time scale for time intervals between consecutive
transactions can be defined.

In order to further characterize the tempo-
ral activity patterns generated by the RP-model
and compare with those observed in Netflix

data, we define an observable which quantitatively
characterizes the user-nodes bursting behavior. For
each user node in the model, we considered the
sequence of inter-event intervals {∆tj} (j ∈ [1, k−1]
(as plotted in Fig. 4), where k is the node degree).
We sorted this set in a decreasing order, and calcu-
lated the time, t90, at which the cumulative inac-
tivity period reaches 90% of the life time of each
node. A small t90 value corresponds to a situa-
tion where the temporal transaction history of a
given user is dominated by large inactivity periods.
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Fig. 6. Characterization of bursting behavior through inac-
tivity periods of time. t90 distribution (normalized by the
time at which the cumulative inactivity period reaches 90% of
the life time of each user) is obtained for all user nodes of the
real network (black), QP-model (red), and RP-model (green).
Lower values of t90 indicate longer period of inactivity.

On the contrary, a user behavior dominated by
small intervals will display a large value of t90.

In Fig. 6, we report the t90 distribution
obtained for all user nodes of the real network
(black), QP-model (red), and RP-model (green).
We can see that for real users, the t90 distribution
is dominated by small values. This is compatible
with the idea that the respective temporal dynamics
shows a combination of a few large inactivity peri-
ods mixed with burst activity patterns. The curves
associated to the RP-model present a rather similar
character to the real ones (albeit they do show less
variability than the real data). Finally, the t90 distri-
bution of the QP-model indicates a behavior domi-
nated by small time intervals. This is a remarkable
result, as the model parameters were obtained just
by fitting a static observable, i.e. the node degree
distribution.

5. Conclusions

During the last years, rating networks have been
a useful source of information for the development
of personal recommendation algorithms. Neverthe-
less, the structure and evolution of this kind of
networks has to be taken into account for the devel-
opment of these algorithms since processes as ran-
domness, preferential attachment or aging, to name
a few, may have crucial implications in the score
of the recommendation algorithms. In the current
work, we have shown that the traditional paradigm

of modeling user-item networks with a combina-
tion of preferential attachment and randomness
successfully reproduces the degree distribution of
both users and items, showing a dominant power-
law behavior in movies and stronger exponen-
tial dominance for consumers. Nevertheless, this
approximation is insufficient for those systems
where the interventions of the users report burst-
ing phenomena. To overcome this drawback, we
have designed a model of the network growing with
explicit temporal correlation in the rating behav-
ior of users. The inclusion of a parameter R, that
balances whether the preferential attachment mech-
anism takes place in the connectivity or in time
domain, successfully reproduces several dynamical
properties of the network. This is a remarkable
result, as the model parameters were obtained just
by fitting a static observable, i.e. the node degree
distribution. The optimal obtained combination of
user node selection strategies shows that 11% of
connectivity preferential attachment is enough to fit
experimental data when combined with temporal-
based prescription. This value is to be compared
with the 56% level of connectivity-PA needed when
combined with a random selectivity criteria in the
QP-model. It is clear then that on one hand, the
new introduced mechanism serves to partially grant
a “rich-get-richer” scenario regarding connectivity
distributions. But most importantly the preferential
attachment mechanism in time domain favors the
emergence of pattern of burst activity as it favors
the succession of consecutive ratings for users who
have recently qualified. Moreover the degree-based
PA mechanism makes it possible for a user who has
not rated for some time to requalify and enter again
in a regime of bursts. This selection promotes bring-
ing back users of high degree.

Finally, we think that it is possible to trace an
analogy between these results and those obtained
in [Zanin et al., 2009], where authors showed that
aging effects could increase the efficiency of personal
recommendation algorithms. In our case, we believe
that the inclusion of the bursting as an a priori
pattern of users’s behavior could also enhance the
score of these methods (e.g. to take into account the
bursting in order to find the most suitable time to
recommend).
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Appendix A

Growth

If we take the first rate date as introductory date
for a node in the network, we can construct the
curves M(t) and U(t) which represent the number
of movies and users incorporated to the system at
t-days from the beginning. These curves (in black)
are shown in panels (b) and (c) of Fig. 7.

In order to incorporate this growing process
to the model, we fit both curves in the whole 365
day period following a two-regimes adjustment. For
users, this partition is a lineal growing (1 ≤ t ≤ 3)
followed by power law curve (4 ≤ t ≤ 365), mean-
while for movies we used a combination of two dif-
ferent power law growths (1 ≤ t ≤ 9) and (10 ≤
t ≤ 365). This scheme resulted in the red curves of
Fig. 7.

As we said in the description of the QP-model,
the time in the original dataset is given in days
(labeled as t in this work), meanwhile the natural
time scale in the model is in transactions (ts). The
correspondence between days and transactions was
fitted from the original dataset following the same
approach used in [Beguerisse D́ıaz et al., 2010] and
it is shown in panel (a) of Fig. 7 for the whole Net-
flix dataset.

Validation of the Extracted
One-Year Subset

In Fig. 8 we show how the topological properties of
bipartite Netflix network for three consecutive years
(2001–2003) superimpose each order, validating the
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Fig. 7. Growth process of the network and the model. (a) Number of transactions, (b) users and (c) movies as a function of
time. In (a) if for the full 5-year period, (b) and (c) are shown for the 2001 year. Netflix data are in black, meanwhile model
curves are displayed in red.
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Fig. 8. Topological properties of bipartite Netflix network for three consecutive years (2001–2003) in one year, temporal
windows for (left) users and (right) movies. (a) and (b) Probability of having a degree of k, (c) and (d) normalized distribution
of times between transactions, P (∆t).
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Fig. 8. (Continued)

approach of taking one-year windows to analyze
the data.

Model Optimal Fit Parameters

In order to compare the QP and RP models against
real data we choose a set of parameters R,P or
Q,P which give the best fit in the degree distri-
butions P (k) of users and movies. This adjustment
was quantified using the χ2 of the degree distribu-
tions of users and movies for the model when com-
pared with the corresponding real network. Using
a step of ∆R = ∆P = ∆Q = 0.01 in the region
0.45 < Q < 0.58 and 0.85 < P < 1.0 (for the QP
model) and 0.04 < R < 0.20 and 0.9 < P < 1.0 (for
the RP model) we have explored a total of 224 and
187 configurations, respectively.

Since we are interested in finding the
best configuration that fits both distributions

simultaneously, we minimize the sum of the χ2 for
both types of node. To make the sum and to con-
sider equal weights for both types of nodes, we nor-
malize the value of χ2 for each distribution (users
and movies) according to:

χ2
norm =

χ2 − min(χ2)
(max(χ2) − min(χ2))

,

so that the quantity to minimize for the optimal fit
will be

χ2
NORM = χ2

norm(users) + χ2
norm(movies). (A.1)

In this way, we find the optimal parame-
ters of the QP and RP models taking the min-
imum value (A.1) inside the explored region of
parameters.
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