Big Data to Tackle Urban Mobility Challenges

Marta C. Gonzalez

Associate Professor of Civil and Environmental Engineering, Center for Advanced Urbanism

The Urban Era

Congestion

- Pollution, waste and water problems
- Unaffordable hosing

Occupy 3% of the earth surface

Over 50% of population

Generate 80% of global emissions and consume 75% of world resources

Internet on the move: Connected locations and transportation modes

New Business Opportunities

1- Big data to improve Urban Mobility?

2- Big data to improve Urban Policy?

3- Do this require new workforce and practices for planning cities?

How do we govern cities related to Mobility?

steer davies gleave

Founded in 1978 has 16 Companies around the World

> Bogota Bologna Boston Leeds London Los Angeles Madrid Mexico City New Delhi New York Rome San Juan Santiago Sao Paulo Toronto Vancouver

Urban transit

Urban Models today still use Travel Surveys

\$200 per usable Survey

1 sample day, 2.5x10⁴ households out of 2.6x10⁶

58% response rate.(3.7 calls and 17 minutes per survey)

2011-2012

TRANSIMS (TRansportation ANalysis SIMulation System) is an integrated set of tools developed to conduct regional transportation system analyses.

Sample Paper:

Behavioral calibration and analysis of a large-scale travel microsimulation G Flötteröd, Y Chen, K Nagel Networks and Spatial Economics 12 (4), 481-502

10 BREAKTHROUGH TECHNOLOGIES 2013 Big Data From Cheap Phones

Deep insights into human behavior on a global scale in real-time

Source: Teralytics

Features Extracted from data of Active Users

Marta C. Gonzalez

Models Results

Synthetic Trajectories From Sparse Data of sample User (previous locations used)

TimeGeo: a spatiotemporal framework for modeling urban mobility without surveys (Shan Jiang, Yingxiang Yang, Daniele Veneziano, Shounak Athavale, Marta C. Gonzalez), PNAS (2016)

real minutes/animation second

Home Work

Other

Comparable results with Metropolitan Planning Office Models

NCHRP 08-95 [Active]

Cell Phone Location Data for Travel Behavior Analysis

Trans. Research Records, "Practice Ready" (2014)

Trans. Res. C: Emergent Technologies (2015)

Validated Travel Demand

60

^aDepartment of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States ^bDepartment of Urban Studies and Planning, Massachusetts Institute of Technology, Cambridge, MA, United States

Demand Management for Large Events

Yanyan Xu PhD. Postdoctoral Associate Department of Civil and Environmen Email: yanyanxu@mit.edu

eering, MIT

Rio Olympic Games

- Rio population: 6.4 millions
- International Olympic Committee (IOC) predicts 480,000 tourists in Rio for 2016 Olympics, that's about 7.5% of Rio population.
- How to evaluate the impact of Olympics to the travel of local population?
- How to manage the demand?

Data from Companies

- Mobile Phone Data
- Waze (extend the seed OD to weekdays)

airbnb

oi

On-line

Airbnb Supply

• GIS (OSM road network of Rio)

- Hotel, Venues and Schedules
- Camera Data

Venues, Airbnb, hotels, BRT & Metro

(a) Data Integrated

(b) Number of audiences arrive venues and when? (used data: Olympics schedule, 19 capacity of venues)

Traffic Model

Travel demand prediction during Olympics

(a) Tourist travel mode split

(b) Total travel demand during Olympics: 1.8 million person / 0.5 million vehicles in peak hour.

Smart-app (routing)

Modifications on the level of altruism:

Smart-app (routing)

Recommendations of Car reduction per Origin and Destination

Total travel time decrease: ~10.5%

Rio de Janeiro

Travel time from Marker.

Selfish Travel Time during Olympic

Current Travel Times (min)

Prediction during Olympic Games (min)

Travel time estimates before and during the Olympic Games

On-line applications to estimate disruptions and recommendations for big events

Olympic Stadiun

Understanding and Mitigating Congestion in Urban Areas

Luis Eduardo Olmos Sánchez PhD Candidate Physics Department National University of Colombia

alvaro.ramirez@telefonica.com gonzalo.durban@telefonica.com

volume over capacity (VOC) - 0.00 - 0.25 - 0.25 - 0.75 - 0.75 - 1.25 - > 1.25

(a) Boston

(b) San Francisco Bay Area

(c) Lisbon(d) Porto

(e) Rio de Janeiro

Using 3 months of phone data And Census Information on Population and numbers of cars and their usage

Open Street Map data for the Streets when not better data is available

Better information based on our pipeline

Morning peak as a cycle of loading and unloading.

How long does it take to unload?

T is the results of Travel distances in free flow,*#*cars and available space

Current work: Decision platform for urban transportation

Alphabet Inc's (NASDAQ:GOOGL)

A transportation coordination platform that uses analytics and messaging to help cities work with citizens to increase the efficiency of road, parking, and transit use, improving access to mobility for all.

Urbanization in China New Opportunities: Big Data Study Area: Beijing

Housing Price to estimate housing affordability

- Linking Affordable Housing Policy with
- Traffic Congestion Mitigation

Method and Results

Source: redif

AM OD flows from Affordable Housing Projects

Adoption of Financial Services for Low Income Groups

Credit Card Users 251,000 Debit Card Users 855,000 #Transactions 23 millions

Population 8.9 millions Area 1,485 km²

Dr. Riccardo Di Clemente Postdoctoral Associate MiT HuMNet Lab rdicle@mit.edu

BILL& MELINDA GATES foundation

Proxy for urban mobility S. Sobolevsky et al., 2014 IEEE international congress on big data, 136–143 (2014).

Predictability of the shoppers' visitation pattens C. Krumme, *et al.*, *Sci. Rep.* **3**, 10.1038/srep01645 (2013).

Users' Reidentificability

Y.-A. De Montjoye, et al., Science, 347, 536–539 (2015).

How much of our life-style can be described by the sequence of credit card swipes?

Coupling Credit Card Data with Mobile Phone Metrics

Ë

Emerging Trends in Transactions' Type

Comparative Analysis of transactions' type

ک

Sequitur Algorithm

equence of discrete symbols.

₽ĦŢM@₽₽Ħ₽M@₽

Compressed Sequence

Words as Ordered Sequence of transactions

Quantifying Words significance

How to Cluster the Users?

Characterizing the clusters

Life Style

Commuters:

High expenditure, living far from the city center, higher radius of gyration, low social diversity and female %

Household-chiefs:

Lower expenditure, older Age, more females

Commutinç

Youth:

Younger age, taxi and communication technologies

Commuting

High-techs:

Higer expenditure, social and mobility diversity, core transaction is information technologies

Commuting

Diners:

High expenditure and mobility diversity, less females. Restaurants is core transaction

Commuting

Conclusions

Riyadh road attractors

- Today we can measure behavior from communication technologies and can plan cities with them.
- Real time incentives is the next frontier.
- Integration of data from companies, governments and online platforms is needed.
- Platforms for urban data, and flow of information there may be the next Internet.

Expenditures behavior by age group

Age 20-34:

Computer store, TAXI, Fast Food

Age 50-64

Grocery store, Insurance Sales, Highway Tolls