AUTHORSHIP RECOGNITION USING THE DYNAMICS OF CO-OCCURRENCE NETWORKS

Camilo Akimushkin Valencia

camilo.akimushkin@gmail.com

Instituto de Física de São Carlos Universidade de São Paulo

11 November 2016

Authorship recognition

Lexical features (frequency)

Words, *n*-grams, functional words, types of words, discourse-connecting expressions, slang, contractions, dialects, orthography mistakes, proper names, semantic features (polysemy).

Character-level features

Character *n*-grams, frequent suffixes, punctuation.

Text format

Lengths of lines, words and phrases, formatting (white spaces), capitalization, nonalphanumeric characters, beginnings and ends of texts.

Other

Syntactic features: *n*-grams syntactic function, kinds of phrases, perplexity, morphological complexity.

Complex networks

Complexity of language

Dynamics on and of Complex Networks. 2009.

Numbers of connections of words, k

Word co-occurrence networks

Construction

It was the best of times,

it was the worst of times,

it was the age of wisdom,

it was the age of foolishness...

A Tale of Two Cities - Charles Dickens

Word co-occurrence networks

Construction

best times

worst times

age wisdom

age foolishness

Word co-occurrence networks

Construction

Network metrics

в

С

Network metrics

- 1 Clustering: $c_i = \frac{e_i}{k_i(k_i-1)}$
- **2** Diameter: $D = \max\{D_{ij}\}$
- **3** Radius: $r = \min\{D_{ij}\}$
- 4 Cliques: Number of complete subgraphs
- 5 Load centrality: Betweenness centrality with loads on edges
- **6** Transitivity: $T = 3 \frac{triangles}{triads}$
- **7** Betweenness centrality: $B_i = \sum_{s \neq i \neq t} \frac{g_{st}^i}{g_{st}}$
- 8 Shortest path: $l_{ij} = [A^n]_{ij}$
- **9** Connectivity: $k_i = [A^2]_{ii}$
- () Intermittency: $I_i = \operatorname{var}(\Delta)/\bar{\Delta}$
- () Number of nodes: N
- \bigcirc Number of edges: E
- A: Adjacency matrix; $g_{st} = \Sigma l_{st}$; Δ_i : Distance between two appearances of a word.

Dynamics of networks for authorship recognition

Authorship of books

- Few books per author
- Depends on style
- Small networks
- Uneven networks

Dynamics of networks for authorship recognition

Authorship of books

- Few books per author
- Depends on style
- Small networks
- Uneven networks

"Dynamics" OF the network

C. Akimushkin (IFSC-USP)

Autocorrelation

Wiener-Khinchin theorem

$$C(\tau) \equiv \int_{-\infty}^{\infty} x^*(t) x(\tau+t) \mathrm{d}t = \int_{-\infty}^{\infty} |x_{\nu}|^2 e^{-2\pi i\nu\tau} \mathrm{d}\nu = \mathcal{F}[|x_{\nu}|^2](\tau)$$

Stationarity tests and ARIMA fittings

Auto-regressive model AR(p)

 $x_t = a_1 x_{t-1} + a_2 x_{t-2} + \dots + a_p x_{t-p} + \varepsilon_t, \quad t > p$

Characteristic equation: $1 - a_1 z - a_2 z^2 + \cdots + a_p z^p = 0$ Unit root tests: z = 1?

Auto-Regressive Integrated Moving Average model ARIMA(p,d,q)

$$\left(1 - \sum_{i=0}^{p} \phi_i L^i\right) \left(1 - L\right)^d x_t = \left(1 + \sum_{i=0}^{q} \theta_i L^i\right) \varepsilon_t$$

Lag operator: $Lx_t = x_{t-1}$

Stationarity tests

	Phillips-Perron	KPSS	Dickey-Fuller	McK	innon
Clustering	0.010	0.071	0.017	0.008	0.167
Betweenness centrality	0.023	0.074	0.350	0.360	0.510
Cliques	0.010	0.086	0.377	0.393	0.521
Diameter	0.010	0.076	0.116	0.111	0.365
Intermittency	0.010	0.071	0.080	0.074	0.335
Load centrality	0.081	0.080	0.457	0.478	0.583
Degree	0.019	0.066	0.470	0.513	0.579
Radius	0.011	0.073	0.118	0.114	0.368
Shortest path	0.013	0.071	0.214	0.208	0.430
Edges	0.253	0.078	0.362	0.369	0.512
Nodes	0.022	0.067	0.368	0.378	0.514
Transitivity	0.010	0.083	0.014	0.005	0.126

$p_{value} > 0.05$ $p_{value} < 0.05$

ARIMA fittings

Network metric	$Value \ of \ d$		
	0	1	2
Clustering	55	25	0
Betweenness centrality	57	23	0
Cliques	69	11	0
Diameter	60	20	0
Intermittency	56	24	0
Load centrality	63	17	0
Degree	51	29	0
Radius	58	22	0
Shortest path	55	25	0
Edges	61	19	0
Nodes	49	31	0
Transitivity	64	16	0
Total	698	262	0

ARIMA(p,0,q)

Stationary 73%

ARIMA(p,1,q)

First order integrated 27%

Time series ARIMA fittings

Table: Series fitted with an ARIMA(p,d,q) model having the biggest values of the sum p + d + q.

		-	ARIMA(p,d,q)		,q)
Book	Measure	Sum	p	d	q
The Poems of Jonathan Swift, D.D., Volume 2	Load centrality	9	5	0	4
The Journal to Stella	Clustering	8	2	1	5
The Iron Heel	Clustering	8	3	1	4
Typee: A Romance of the South Seas	Edges	8	4	1	3

Data analysis

Dimensionality reduction

- Feature selection
- Feature extraction

48 Attributes 80 Books 8 Authors

Supervised learning

- Zero Rule: 1/8 = 12.5%
- One Rule
- Naive Bayes
- K-Nearest Neighbors
- J48 (tree)
- Radial Basis Function Networks

Precision

$$P_A = \frac{TP_A}{TP_A + FP_A}$$
Recall

$$R_A = \frac{TP_A}{TP_A + FN_A}$$

 $TP: \mbox{ True Positives } FP: \mbox{ False Positives } \\ FN: \mbox{ False Negatives } \end{cases}$

Feature selection

Features using score-based criteria.

Success scores and combinations of features using feature selection. In the upper figures maximum values are marked with circles. In the lower figures if an attribute is present in the combination the corresponding cell is painted black.

Feature extraction

C. Akimushkin (IFSC-USP)

Feature extraction

Scores using feature extraction.

Summary of classification success scores

Attributes	J48 (%)	KNN (%)	NB (%)	RBFN (%)
Original set	45.00	62.50	61.25	56.25
Variance threshold best	55.00	67.50	63.75	63.75
Score-based best	75.00	78.75	77.50	75.00
$\{\mu_1\}$	45.00	43.75	46.25	40.00
$\{\mu_2, \mu_3, \mu_4\}$	38.75	63.75	60.00	57.50
PCA	40.00	46.25	48.75	42.50
ISOMAP	63.75	88.75	81.25	83.75

The role of words

The Memoirs of Sherlock Holmes The Return of Sherlock Holmes

Only one different word out of the 20 highest ranked!

Dissimilarity matrix

Dissimilarity matrix

Projection

Summary

- ► Time series are stationary.
- ► Global sample statistics can be obtained.
- > Dynamic measures are author-dependent.
- Weight on edges is relevant.
- Dimensionality reduction enhances classification.
- Books are located on a curved manifold in attribute space.
- > A word's role in a network is author-dependent.
- Network metrics must be jointly used for classification.
- Many hidden features of networks.

Muchas gracias!