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The Science of
Cities
e And so a growing number of people
have begun, gradually, to think of
cities as problems in organized
complexity -- organisms that are
replete with unexamined, but

obviously intricately interconnected,
and surely understandable,
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Big Data and Human
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Wang, Pu, et al.
"Understanding road usage
patterns in urban areas."
Scientific reports 2 (2012).
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Song, Chaoming, etal.
"Modelling the scaling
properties of human
mobility."Nature Physics
6.10 (2010):818-823.
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Number of spabio-temporal points

de Montjoye, Yves-
Alexandre, et al. "Uniquein
the Crowd: The privacy
bounds of human mobility."
Scientific reports 3 (2013).




Big Data and Human Behavior
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Overarching Goal

Opportunities:

Massive:spatiotemporal mformatlon -
— millions of individuals in'a- gNén metro area
— long time period servation (in months).

g -

.
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Obstacles:
Massive, and passive data with lots of noise
— anonymity of individuals
./—missing information "~
—no social demogfa‘pfhlc ¢haracteristics
— potentially biased sample




Overarching Goal

How to extract human daily activities (e.g., types, sequences, and chains) from these massive,
passive and noisy Big Data that are comparable to travel demand models from travel surveys?
and asses the role of Social Routing?

1.1 0,000
l 1,600,000 - 3,000,000
I 3,100,000 - 12,000,000

1.9 miIIiorl total users observedinthe 2 Human Activity Density 4 P.M.-7 P.M.
months, in Boston 2010.



Raw Data Description
Traces of People — Where and When

WIRELESS NETWORK
OPERATORS

é é é e ANONYMIZING

AirSage Wireless Signal
Extraction (WISE) Technology Platform
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Reference:
hitp://www.airsage.com/Technology/How-it-works/

800 million of historical location

records for 1 million

anonymous individuals who use

phones in the Boston
metropolitan area

Data for one anonymous user:

Estimation precision error:

~ 300 meter

Longitude Latitude Time
-71.059998 42.356132 1266513700
-71.059730 42.356391 1266513800
-71.063884 42.355315 1266513900
-71.063884 42.355315 1266514200




Not \
another
telemarketer!

Travel Survey

$200 per usable Survey

1 sample day,
2.5x10% households out of 2. 6x106

58% response rate.
(3.7 calls and 17 minutes per survey)

2011-2012
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Raw Data Description

Example of ope angnymous
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Extraction of Daily Trajectories
Example of one anonymo
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Spatio Temporal Patterns

Temporal patterns
1. Activity stay duration
2. Number of trips in a day

Spatial Patterns

1. Distance Traveled

2. Frequency of Visits

3. Number of locations visited per day



Frequency of Visits per Location

Population

Individual
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Preferential return and Exploration

Time:t + At

Ar

Fa= 1-pS7

Explains hierarchy of visits

flk)y=k*,E=12

Song, Koren, Wang, Barabasi, Nature Physics 2010



Universal Patterns of Individual Mobility
Daily Motifs

Statistically significant configurations of
individual’s travel network

1AL R R

<> Nodes: visited stay regions

< Directed edges: trips between
the nodes



Universal Patterns of Individual Mobility
Daily Motifs

17 most frequent motifs accountfor over 95% of the measured daily trips.
Cell-phone data can be treated as survey data for analyzing human mobility.

AL ORSONES

40%

30% 3/5 4/83 4/5,408 4/108
a Il rhone
= 20% B su rvey

|
|
|
|
|
|
|
|
10% I
|
|

0% . -
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
motif [D

Data source: Massachusetts Travel Survey
Data and Cell Phone Data in 2010.



The Perturbation Model
;o050 0~

XN,

HO) 0=0—-0-

t+1

p(t)
TTIT 111
O%
%Jﬁ"
O

Gm 12w T§ ,%
~ L = 10
ti ______ :l _____ [__- &
S ‘
——+ il N — —t— p’! L’
6am 12pm 6pm 12am

Unravelling daily humanmobility motifs by C. M. Schneider et al., Interface, 2013




Distr.

Number of Visited Locations by the

Populationin 1 day.
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Basic Ingredients of the Model:

Transition between Flexible Activities + Time Budget
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TRANSIMS (TRansportation ANalysis SIMulation System) is
an integrated set of tools developed to conduct regional
transportation system analyses.

Input Data

Population
Synthesizer |

N, [——
Activity L

Generafor |

Route 4|
Planner (),

¥oeqpas

¥ simulator ™

Results

Sample Paper:

Behavioral calibration and analysis of a large-scale travel
microsimulation G Flétteréd, Y Chen, KNagel

Networks and Spatial Economics 12 (4), 481-502




Transportation demand modeling

* Choice models based on the attributes of the transport
alternatives and characteristics of travelers

 Attributes » Characteristics of travelers

— Mode (bus, train, a 40, — Trip purpose (work, school,

air, ships etc.) social activities etc.)

_ Level of service %, — Professional activity

— Education

- Ase

-~

* Travel time
« Travel cost
* Frequency

. Reliability///




Main unknown is Building Occupancy

(
‘e

w " » ’ [N

OpenPath

Time Kev Number of points (max 46)

In 2011 researchers found and Apple
confirmed that iPhone and and iPad collected
information related to the devise location



TimeGeo: Modeling Individual Trajectories

Data Sources
—2 millions of individual phone users in Boston
(For purchase nationwide in AirSage.com)

—14 Months of self-collected complete mobile
phone data of 1 Student.

Goal
Model Individual Trajectories
(resolution 10min and 300mts radius)



Stay region extraction

From stay to stay region

Stay Region: stays from different trajectories might represent the same
location

Interchangeable with “location”

cell record

stay point

LY 4 stay region
‘/ s3
rl ’




Stay Extraction

e Home: The stay point at which a user is observed the most between 8pm and 7am on weeknights.

e Work: The stay point at which a user is observed the most between 7am and 8pm on weekdays, provided this
location is visited more than once per week and is more than 500m from their home location. Users are not

necessarily assigned a work location.

e  Other: All other stay locations.

26



How to learn features from passive users to
Model Sparse users?

Stays of Sparse User
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What is the probability of
departing from home to do a
flexible activity at time t?

0.015

Non Commuters
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Time independent Markov Model

Spatio Temporal features from passive data

Pl = 1— P(t) Moving from “home”
P,=1—-p5 P(t) Moving from “other”

P?» =P (t)BQP (t) Moving from “other” to “other”

/31 Generates shorter stays in the flexible location state.

/32 Generates Different number of activities in a row per active cycle



Ranking of POls to select New
Destination
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The Model

Features Extracted from data of Active Users

Global Trip prob. Individual Mobility Rates Preferential Return Ranking of Explorations
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Models Results
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TimeGeo: Individual 1

364-day simulation
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TimeGeo: Individual 2

364-day simulation
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TimeGeo Sparse Users

Synthetic Trajectories
From Sparse Data

of sample User
(previous locations
used)
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Sparse Raw Data B1=4 B2=23 n=6 B1=10 B2=73 nu=6 Sparse User
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TimeGeo: a spatiotemporal framework for modeling urban mobility

withoutsurveys (Shan Jiang, Yingxiang Yang, Daniele Veneznar@m o
Shounak Athavale, Marta C. Gonzalez),




TimeGeo Individual Patterns
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Comparison with travel demand models based on travel surveys
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Conclusions

Mainstream models require sociodemographic information from costly
manual surveys, which are small in sample sizes and updated in low

frequency

We presented an individual mobility framework, TimeGeo, that extracts

features from passively collected
data sources.

The model is able to generate individual trajectories in high spatial resolution
with interpretable mechanisms, capturing heterogenoeus individual choices.

It can be flexibly adapted to input data with various resolutions, and extended
for various modeling purposes



Coupling Human Mobility and Social
Behavior

Collaborators
e Carlos Herrera-Yague - PhD Student
e Christian M. Schneider - Postdoc
e Marta C. Gonzalez — Advisor

INTERFACE

JRS Interface (2015) rsif.royalsocietypublishing.org



Mobility and Social Behavior

Geography in social networks:
e Users who live near each other are far more likely to be friends (Liben-Nowell 2005)
e Geographic proximity can improve link prediction in networks (Wang 2011)
e Roughly 15-30% of trips are taken for social purposes (Cho 2011, Grabowicz 2013)

e Predictions of a user's movement are improved by information about the movement of
their friends (Domenico 2012)

Open Questions:

e How do we measure mobility similarity within urban areas where distance is less
important?

e How much of a user's visitation patterns can we hope to reconstruct from the movement's
of their social contacts?

e Can we contextualize social relationships by looking at features of movement?
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Mobility and Social Behavior
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Mobility and Social Behavior

Mobility Similarity Predictability
e vi and vj are location vectors for nodes i and j. . '—Ogation vectors of contacts form a vector
supspace.

e Takes values between -1 and 1. . , :
e Project a user's location vector onto the

e Accounts for visit frequency. subspace.

e Similarity not inflated by many 0 elements. e Compare projection to actual vector.

e A upper bound on how much of a user's
visitation patterns can be reconstructed
from the visits of their contacts

e Controls for differences in call volume.

TP L A vy.| where f; are contacts of a user )

COS 91 . = vy B=|q,.---, g ¢ | where B 15 an orthonormal basis of A
J vi|lvj]

predictability



Mobility and Social Behavior

Measurements made in

three cities R1, R2, and A“ c E ® v
R3 and two countries 10 0s . o
e 0 o
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“ 10 o 04 ¥
= - 40 ,.o’
Users are far more 10°? 0.2 gl
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Mobility and Social Behavior

Measure mobility similarity
over time

Cluster edges using k-
means (paint edges)

High intra-group clustering
coefficient

Composition of ego-
network is correlated with
mobility behaviors.
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Mobility and Social Behavior

e Extend mobility modelintroduced by
Song et al. Nature Physics 2010 to

include social behavior. 107, ) 107
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Understanding individual routing behavior

Lima, A, Stanojevik R., Papagianaki
D., Rodriguez P. & Gonzalez, M. C

INTERFACE

rsif.royalsocietypublishing.org

JRS Interface (2016)



Motivations
It is the natural next step in understanding human mobility.

Route choice is a fundamental step of traffic prediction, the
task of transforming a set of travel demand (OD matrix) into
flows and travel times.

The assumption that “people choose the minimum cost
path”, although widely accepted in academic and
commercial enviroments, has little empirical support.



How do people navigate in the city?

We analyse 1,5 M GPS trajectories, driven
by a set of individuals within four major
European cities during a period of 18
months.

How many routes a driver uses typically.

If the routes performed by users are
“optimal”.

Whether some routes are predominant
over others.




From trajectories to route choices

Each trajectory is composed by an arbitrary
number of points, every N seconds.

We cluster each driver’'s source /
destination points into a set of significant
locations, here shown as dotted circles.

We group trajectories by source-destination
pair into routine trips, here shown as black
arrows.

Finally we further cluster the trajectories in
each routine trip into a set of route
choices, color coded in figure.

O
Significant
Location
/ Signiticant
\ S Location
N
Sigrlnli"fi‘cant
Location



From messy trajectories to route choices

Clustering algorithms typically require the number of clusters to be specified. We instead
use non-parametric algorithms, like MeanShift and DBSCAN.

Trajectories have an heterogeneous number of points (even on the same routes,
because of traffic jams, delays, ...). It is not trivial to compare them.

We used Dynamic Time Warping to establish a matching between the two sets of
trajectory points.

This methodology is agnostic of the underlying urban network. It can be used to
transform unstructured location sequences into route choices between significant

locations in any city.

W(Ait1, Bjt1)
W(Ai,Bj) = d(ai,bj) + min W(AH_l,Bj)
W(Aza Bj+1)
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040 .

Most people use few routes, o ? 8%'21».

despite the total period under 03517 - 5 City 3

consideration is 18 months. O i ¢ Cyd
0.30F .\

We compared user trips to trips RN

returned by Google Directions AP, 0.25H:

which accounts for distance and :

traffic conditions. “—g 020l ' lognorm(p =0.71,0 =2.22)
We found that 53% of the 0.15 |-

preferred trips ever used are not

optlmal 0.10

And the more often people travel 0.051

between two locations, the more BB
likely is for them to have a PPy Y . 2o - e
preferred route. 123 4 56 7 8 9=10

Number of routes per routine trip



The boundaries of human
routes

We rototranslated and scaled every trajectory to
the same reference system, having source (0, 0)
and destination (1, 0).

95% of the positions are contained within an
ellipse of high-eccentricity.

Eccentricity measures us how much the useris
away from the ideal straight location.
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flickr: rogermeyer

Take away messages - Recap

Drivers often do not choose the shortest path.

Regardless of the urban network, they drive within an
high-eccentricity ellipse, with foci as source /
destination.

For recurring trips, a dominant route is preferred, and
some alternative routes are occasionally taken.

This set of behavioural rules can be used to inform
realistic models of routing behaviour that are not based
on minimum-cost assumptions.
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