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From imperfect personalized data to Transportation models

“TImEGGOZ . Portable Platform
Individual Travel Diaries of Urban Traffic

Individual Trajectories Models of Vehicle Demand
Models and -Multiplicatice Cascades -Traffic Assignment
Knowledge -Daily Motifs -Social aware Routing (1)
Discovery -Radiation Model -Validation vs. Existing Models
BOSTON -Markov Model -Congestion Index Predictor (T")
— )
| e — )
— Parsing On-line
>
F _g _ Road Networks
Data Mining 22 2| [z2 |
S e BT 'g Ly | Expansion
] ] 33 £ 2 s Factors
The TimeGeo modeling framework & £ St |
of urban mobility without surveys Geographic
PNAS (August), 2016 Bt nes

Raw Mobile Phone Data

Validated against Boston MPO 2007 and 2010 Urban Demand Models



Comparison with travel demand models based on travel surveys
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Colak, S., Schneider, C.M., Wang, P & Gonzalez, M. C., On
the role of spatial dynamics and topology on network
flows, New Journal of Physics (2013)



In this work, we aim to analyze the phase
transitions road networks go through to a
state of congested transport.

We implement a point-queue model to represent traffic.

We introduce an analytically solvable framework that
includes simple topological measures of the network to
estimate the response.

We explore the implications of our model for the San
Francisco road network.



We load a
network with R
particles at every
time step, with a
randomly
selected origin
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The critical rate, Rc,
depends on the critical
element, which is the road
segment with the smallest
capacity to demand ratio.
The element is
determined by how many
shortest paths it lies on,
and is the origin of the
congestion spread.
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We analyze ti, the length of the
timespans at which the critical
element is operating at its capacity.
We observe no-scale timespans.
This behavior agrees with phase
transitions, as fluctuations increase
and the network swings between
the congested and uncontested
state.

The distributions are independent of
topology, but dependent on the
traffic model.
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We define V, number of particles
that can fit on a link, to model
space and how it affects
congestion.

For lower V values, the nature of
the transition shifts from a
continuous to discontinuous
one, highlighting the severity of
traffic spillback.
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Figure 4. A congestion map of the San Francisco road network for R =36
vehicles per timestep. Colors represent the times within which the road segments
become congested as a consequence of the spillover. The black circle denotes the
origin of congestion. (inset) PQM and SPQM transitions for the San Francisco
road network, where RF® = 40 and R3*M = 30.
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Summary

We studied the phase transition to
congestion as an interplay of
supply and demand.

We showed that network topology
and spatial constraints are
determining factors that govern the
nature of this transition.

- We consequently aim to analyze

realistic demand and traffic
conditions as they apply to a
typical commuter.

- We hope to incorporate

modifications to routing schemes
and understand their implications.

- A final overarching goal is to be

able to provide an understanding
of congestion for many cities.



Colak, S., Lima, A. & Gonzalez, M. C., Understanding
congested travel in urban areas, Nature
Communications (2016)



As cities grow, roads become
increasingly burdened.

1. understanding the complex interplay
between travel demand and the
road infrastructure and,

2. modeling path-level travel times and
overall congestionin not a single
city but many at once

has been particularly highlighted
challenges in this line of research.



In their 2013 report, TomTom stated
in cities like Moscow, Rio, Mexico
City and Beijing, commuters spend
about 75% extra time traveling due to
traffic.

The resulting loss of time, money and
energy are borne by all citizens.

Continuing investment in more
capacitated roads despite doubts
relating to induced demand only
provide short term relief.
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In this work, we aim to couple travel demand profiles and travel time
estimates to analyze how efficiently people move across cities.

We parse OpenStreetMap data, use OD information mined from
CDR data and route trips in the road networks.

We explore the relationship between distance and travel time, and
how it is influenced by aggregate characteristics of a city’s supply
and demand.

We measure the inefficiency of selfish routing and the potential
benefits of routing schemes that take social good into account.



The typical traffic problem is formalized
as follows:

minimize Z Pe = Z /0 e te(r)dz

r.VecE ecE ecE

subject to Zf;t = f*
p
Le = S: S: S: f;t(SSt(p) 6)7
S t D

ze >0, f3 > 0.

Algorithm B provides a fast and
efficient origin-based solution to this
problem.

ALGORITHM B(N)

Initialize B as the shortest path tree rooted at the origin.
Assign all flows to links to B.
while ry > 0.001
for all origins o
do Add to B, edges e with negative reduced costs.
do { Solve the Restricted Master Problem for B,.
Simplify B, by removing {e|z. = 0}.

RESTRICTED MASTER PROBLEM(Bush B, ¢)

Update costs on all links on B.
Calculate the longest route tree with paths P; and costs Uj.
Calculate the shortest route tree with paths p; and costs u;.
if maz{U; — u;,Vi} <€, stop.

else continue.
for all j
set of links in p; not in P; : S; = p; \ P
set of links in P; not in p; : L; = Py \ p;
difference in costs to j : g = (u; — u;) — (U; — Uj)
total marginal cost of sets S; and L;jh = ZeesjuLj Ce
flow to be shifted : do = min{9/n, min{z.|le € L;}}
add flow to shorter path : z. = z. + dz,e € Sj
remove flow to shorter path : z. = z. — dz,e € L;
update travel times : t.,e € S; U L;

do




Route Assignment

1. Road networks from
OpenStreetMap data.

2. Algorithm B, implements

equilibration on a directed acyclic
graph (DAG).

3. Keeptrack of where flow is sent
two and from.

~ 2o.dtoddod
ZeeE teVe ,

where t,4 and d,4 represent the demand and the travel time between an origin and a destination, and ¢, and v,

rq =1

represent the travel time and the volume on a road segment e.

This ensures that all drivers in the system are in fact taking the shortest possible routes,
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travel times using a standard BPR
function

f}r)‘io — f}l;oslon — f;fbay — 1.3 and f}l)isbon — fgorto =1.1.

fepPr(VoC, fp) =t5 * (1 + (“"FOC‘)S) * fp,
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a=06and =4
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VoC, volume/ capacity
Note: The results of validated travel time at the level of routes act as a validation

of the OD flows and show an application of the urban mobility platform to compare
cities and the cause of their congestion.



© Mapbox, © OpenStreetMap
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volume over capacity (VOC) == 0.00-0.25 0.25-0.75

FIG. 2. The maps of VOCs (volume over capacity) of the roads in the user equilibrium configuration. The
depicted cities are (a) Boston, USA, (b) San Francisco Bay Area, USA, (c) Lisbon, Portugal, (d) Porto, Portugal, and (e)
Rio de Janeiro, Brazil. Higher VOCs are generally observed in highways as they provide faster means of travel. (Boston is 2x

the distance scale.)
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Commuting distances follow a lognormal distribution (with means ranging
from 5 to 8 kilometers and standard deviations ranging from 2 to 4
kilometers) and exhibit similarity despite different city sizes.

Free and traffic speeds are normally distributed (with u fluctuating around 50
km/hr). Under traffic conditions, the spread of speed distributions vary more.
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We generate the route travel
times of commuters resulting
from the demand profile and
look at aggregate path

properties.

These results demonstrate a
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[', as a single dimensionless parameter, captures the load on the road infrastructure by bringing
together trip distances, trip magnitudes, road capacities, and the distances they span.

It also helps explain navigation speed in cities for varying distances, with \alpha essentially de-
scribing the sensitivity of the city to the stress imposed by travel demand on its roads.
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Here we investigate a typical relationship to test the common conception
that cities with higher population densities tend to be more congested.

Our findings show that I' is a better predictorthan p as it lacks the outlier
problem and provides a reasonable trend relating to overall congestion.



Next, we want to explore the
potential of routing solutions on
congestion alleviation.

To this end, we use a model that
represents cost as a linear
combination of the actual cost and

the marginal cost of a selected path.

We refer to A, the combination
parameter in [0,1], as the weight of
social good. A=0 refers to UE,
whereas A=1represents SO.

d[zete(ze)]

cX(xe) = (1 = Mte(ze) + A

dz,
N | dte(x.)
=|tc(ze) —I—L)\a:e iz
VAN
personal good social good

Te
minimize E / cé‘(xe)-xedaze
0

x.Veec E B

subject to Zf;t = fst

p
Te = ZZZf;t(SSt(pa 6),

e 20, f" > 0.



user equilibrium social optimum

100 drivers are going fromA to D.

2375 - | 100
£ 370 - 80
365 - 60
S 3.60 - | 40
2355 - | 20
© 350 0

00 02 04 06 08 1.0
UE A so
faBp = facp =25 faBp = facp = 50

faBcp = 50

% of potential savings



City
(min) Rio SF Bay Boston Lisbon Porto
FTT 20.6 21.1 19.3 22.4 15.3
Loss 14.1  12.5 8.2 8.0 4.0
UE 34.7 33.6 27.5 30.4 19.3

Benefit 2.6 2.6 1.3 2.1 1.1
SO 32.1 31.0 26.2 28.3 18.2
%S 18 21 16 27 28

15-30% of the time commuters lose in

congestion on a typical morning peak is caused
solely by selfish routing.



% of potential savings
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ForA =0.2, an average of about50% of
all potential savings can be realized for
our five subjectcities.

The shape of the curves indicate that
relatively modest social consideration
weights A can realize a significant portion
of the potentialtravel time savings.

This raises the question: whois
benefiting?
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FIG. 5. Benefit and congestion decrease distributions for different weights of social good. (a) A depiction of three
route alternatives with the corresponding travel times for a trip from Union Square to San Francisco Airport for A = 0; A = 0.2
and A = 1, respectively. (b) Counts of vehicle trips and observed travel time benefits for A = 1 and A = 0.1. Negative benefits
refer to increase in travel times for vehicles sacrificing for the social good. The spread of the distributions increase for higher
A. (c) The response of distributions of percentage decrease in time lost to congestion to increasing values of A. The skewness
towards positive values of congestion decrease indicate movement towards more optimal configurations.

Benefit distributions for commuters for A = 0.1 exhibit less spread
distributions compared to those for A = 1, but the skewness towards the

benefits remains inherent.



Summary

Takeaways

A city’s congestion fingerprint is
related to measurable
characteristics, namely a ratio of
total demand to total supply.

Lower A will moderate the magnitude
of benefits and losses while
realizing most of possible benefits,
making resulting policies fairer and
easier to implement

Future Work

- A more generalized approach that

takes multi-modal transportation
into account in the context of
comparison of cities

- Shape findings to provide input of

feedback for policies, for example,
in the context of
sociodemographics
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Percolation transition in Dynamic Traffic Networks with evolving critical
bottlenecks
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Urban Networks gridlocks: Network characteristics and dynamics
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Better information based on our pipeline
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Traffic Fundamental Diagram
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Morning peak as a cycle of loading and
unloading.
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How long does it take to unload?
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Nonequilibrium Critical Phenomena and Phase Transitions into Absorbing States

(a) subcritical (b) supercritical

H. Hinrichsen Review Article
Advances in Physics 49, 815-958 (2000), cond-mat/0001070



_ vehs / _ = vehs e _ppuvehs _

— R.=179%sh A R,=37.5%hs R =662k L Re=169
< 1 1= =

- nli— . — | E E —8 85
) = : E* s : B -

— L © R=180vehs/At [ . © R=38vehs/At [ O R=6Tvehs/M | © R=170veh

:’:/ - - - - R=184vehs/At ‘. [ -~ R=39vehs/At ¢ r---- R=TOvehs//At O ---- R=174veh

S 01 —-R=189vehs//t | | -— R=4lvehs/t &3 | — R=Tives/M 0O | -—-R=93vehs/t | -~ R=179veh

E — - R=194vehs/Mt — — R=43vehs/At *5 — - R=Tévehs/Mt =] — ~ R=96vehs/At —— R=185veh

F —— R=200vehs/At v —— R=45vehs/At » —— R=83vehs/M = —— R=99vehs/At —— R=190veh!

C 11 lIIIlIl 1 1 Illljl 11 lllllll 1 0 1 IIlIIIll 1 Illlllll oI IIlIIIII 111 0 1 llIIllIl 1 lIllIlII ! Illlllll 1111 0 11 IIlIlIl 11 lllllll 11 Illllll 11 01 11 lllllll 1|

0.001 001 01 1 0.001 001 01 1 0.001 001 01 1 0.001 001 01 1 0.001 001
(t —to)lel [A] (t —to)le| [A] (t —to)lel [A] (t —to)le| [A] (t -

Olmos, Colak, Gonzalez: Non-equilibrium phase transition in Urban Traffic, in preparation_



Number of cars in the network and relaxation time diverge after Rc
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Conclusions

« We studied urban traffic as an non equilibrium phase transition

« The control parameter is T the relaxation time in which most of the cars
have arrived to their destinations.

- T is explained by F , the ratio of vehicles/space available and the median

of the free flow travel time tff, determined by the commuting distances.

Colak, S., Lima, A. & Gonzalez, M. C., Understanding congested travel in urban areas, accepted
and to appear in Nature Communications (2016)

Olmons L, Colak, S. & Gonzalez, M. C., Urban traffic as a no-equilibrium phase transition,
In preparation (2016)
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Rio Olympic Games

* Rio population: 6.4 millions

 International Olympic
Committee (IOC) predicts
480,000 tourists in Rio for 2016
Olympics, that’s about 7.5% of
Rio population.

 How to evaluate the impact of
Olympics to the travel of local
population?

 How to manage the demand?




Data from Companies

* Mobile Phone Data (((A))) @

- Waze (extend the seed OD to weekdays) @

On-line

« Airbnb Supply @
airbnb
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* GIS (OSM road network of Rio)

Data from Government
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Venues, Airbnb, hotels, BRT & Metro
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(a) Data Integrated
(b) Number of audiences arrive venues and when? (used data: Olympics schedule

. '49
capacity of venues )



Travel demand prediction during Olympics

a) b)

2.5x108

Olympic tourists travel modes visualization

== All Travelers =3 Personal Vehicles
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(a) Tourist travel mode split

(b) Total travel demand during Olympics: 1.8 million person
/ 0.5 million vehicles in peak hour.
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Smart-app (routing)

Modifications on the level of altruism:;

d [xete(xe)]

* (xe) = (1= A)te(xe) + A
1

t
A=[0..1]  userEquilbrium Social Optimun
component component

dx,



Travel time changes
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Recommendations of Car reduction per Origin and
Destination

Vehicle demand decrease: ~1.3%
Total travel time decrease: ~10.5%



Collective demand Management
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. | Travel time estimates before and during the Olympic

Travel limes compared with Goog e Traffic
: . Games
Rio de Janeiro

Larke

Selfish Travel Time during Olympic

27min

XuY & Gonzalez, M. C.
Collective benefits in urban
traffic during mega events, (@arxiv 2016)




Conclusions

Data integration allow us to model demands for mega events in a faster way.
We can calculate the collective costs associated to each travel decision.

There are smarter ways to reduce cars via feasible transit usage that show
considerable benefits.

Open questions:
1-how to engage the population in games for social good?

2- how can we envision mobility on demand and self-driving cars in
planning for social good?

Important quantities describe the response of the urban system. This
understanding allows us to inform better decisions.



