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From imperfect personalized data to Transportation models

The TimeGeo modeling framework 
of urban mobility without surveys
PNAS (August), 2016

Validated against Boston MPO 2007 and 2010 Urban Demand Models



Comparison with travel demand models based on travel surveys

The TimeGeo modeling framework of urban mobility without surveys
PNAS (August), 2016



Çolak, S., Schneider, C.M., Wang, P & Gonzalez, M. C., On
the role of spatial dynamics and topology on network
flows, New Journal of Physics (2013)
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In this work, we aim to analyze the phase 
transitions road networks go through to a 
state of congested transport.
We implement a point-queue model to represent traffic.
We introduce an analytically solvable framework that 
includes simple topological measures of the network to 
estimate the response.
We explore the implications of our model for the San 
Francisco road network.

5



We load a 
network with R
particles at every 
time step, with a 
randomly 
selected origin 
and a 
destination. 
Particles follow 
fixed shortest 

PQM : point queue model

SPQM: spatially constrained point queue model
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The critical rate, Rc, 
depends on the critical 
element, which is the road 
segment with the smallest 
capacity to demand ratio.
The element is 
determined by how many 
shortest paths it lies on, 
and is the origin of the 
congestion spread. delay:

inflow:

order:
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We analyze ti, the length of the 
timespans at which the critical 
element is operating at its capacity.
We observe no-scale timespans. 
This behavior agrees with phase 
transitions, as fluctuations increase
and the network swings between 
the congested and uncontested 
state.
The distributions are independent of 
topology, but dependent on the 
traffic model.
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We define V, number of particles 
that can fit on a link, to model 
space and how it affects 
congestion. 

For lower V values, the nature of 
the transition shifts from a 
continuous to discontinuous 
one, highlighting the severity of 
traffic spillback.
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Summary

We studied the phase transition to 
congestion as an interplay of 
supply and demand.

We showed that network topology 
and spatial constraints are 
determining factors that govern the 
nature of this transition.

• We consequently aim to analyze
realistic demand and traffic 
conditions as they apply to a 
typical commuter.

• We hope to incorporate 
modifications to routing schemes
and understand their implications.

• A final overarching goal is to be 
able to provide an understanding 
of congestion for many cities.
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Çolak, S., Lima, A. & Gonzalez, M. C., Understanding 
congested travel in urban areas, Nature 
Communications (2016)
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As cities grow, roads become 
increasingly burdened.

1. understanding the complex interplay 
between travel demand and the 
road infrastructure and,

2. modeling path-level travel times and 
overall congestion in not a single 
city but many at once

has been particularly highlighted 
challenges in this line of research.
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In their 2013 report, TomTom stated 
in cities like Moscow, Rio, Mexico 
City and Beijing, commuters spend 
about 75% extra time traveling due to 
traffic.

The resulting loss of time, money and 
energy are borne by all citizens. 

Continuing investment in more 
capacitated roads despite doubts 
relating to induced demand only 
provide short term relief.
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In this work, we aim to couple travel demand profiles and travel time 
estimates to analyze how efficiently people move across cities.
We parse OpenStreetMap data, use OD information mined from 
CDR data and route trips in the road networks.

We explore the relationship between distance and travel time, and 
how it is influenced by aggregate characteristics of a city’s supply 
and demand.

We measure the inefficiency of selfish routing and the potential 
benefits of routing schemes that take social good into account.



The typical traffic problem is formalized 
as follows:

Algorithm B provides a fast and 
efficient origin-based solution to this 
problem.



Route Assignment
1. Road networks from 

OpenStreetMap data.

2. Algorithm B, implements 
equilibration on a directed acyclic 
graph (DAG).

3. Keep track of where flow is sent 
two and from.
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Assigned volumes are converted to link 
travel times using a standard BPR 
function  

Note: The results of validated travel time at the level of routes act as a validation 
of the OD flows and show an application of the urban mobility platform to compare 
cities and the cause of their congestion.
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Commuting distances follow a lognormal distribution (with means ranging 
from 5 to 8 kilometers and standard deviations ranging from 2 to 4 
kilometers) and exhibit similarity despite different city sizes.

Free and traffic speeds are normally distributed (with μ fluctuating around 50 
km/hr). Under traffic conditions, the spread of speed distributions vary more.
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We generate the route travel 
times of commuters resulting 
from the demand profile and 
look at aggregate path 
properties.
These results demonstrate a 
validation of our estimated travel 
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demand-to-supply ratio

Γ, as a single dimensionless parameter, captures the load on the road infrastructure by bringing 
together trip distances, trip magnitudes, road capacities, and the distances they span. 

It also helps explain navigation speed in cities for varying distances, with \alpha essentially de-
scribing the sensitivity of the city to the stress imposed by travel demand on its roads.



Here we investigate a typical relationship to test the common conception 
that cities with higher population densities tend to be more congested.

Our findings show that Γ is a better predictor than ρ as it lacks the outlier 
problem and provides a reasonable trend relating to overall congestion.
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Next, we want to explore the 
potential of routing solutions on 
congestion alleviation. 

To this end, we use a model that 
represents cost as a linear 
combination of the actual cost and 
the marginal cost of a selected path.

We refer to λ, the combination 
parameter in [0,1], as the weight of 
social good. λ=0 refers to UE, 
whereas λ=1 represents SO.

personal good social good



100 drivers are going from A to D.

user equilibrium social optimum

SOUE
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15-30% of the time commuters lose in 
congestion on a typical morning peak is caused 
solely by selfish routing. 



For λ = 0.2, an average of about 50% of 
all potential savings can be realized for 
our five subject cities.

The shape of the curves indicate that 
relatively modest social consideration 
weights λ can realize a significant portion 
of the potential travel time savings.

This raises the question: who is 
benefiting?

self social



Benefit distributions for commuters for λ = 0.1 exhibit  less spread 
distributions compared to those for λ = 1, but the skewness towards the 

benefits remains inherent.



Summary
Takeaways

A city’s congestion fingerprint is 
related to measurable 
characteristics, namely a ratio of 
total demand to total supply.

Lower λ will moderate the magnitude 
of benefits and losses while 
realizing most of possible benefits, 
making resulting policies fairer and 
easier to implement 

Future Work

• A more generalized approach that 
takes multi-modal transportation 
into account in the context of  
comparison of cities

• Shape findings to provide input of 
feedback for policies, for example, 
in the context of 
sociodemographics
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Luis Olmos Serdar Colak

The Science of Urban Traffic



D. Li et. Al PNAS (2014) 

Links colored by
SPEED RATIO:

0.4          red
0.4-0.7    yellow
>0.7        green

Percolation transition in Dynamic Traffic Networks with evolving critical
bottlenecks



Urban Networks gridlocks: Network characteristics and dynamics



bay

(a) Boston                  
(b) San Francisco Bay Area

(c)   Lisbon                      
(d)   Porto

(e) Rio de Janeiro

Using 3 months of phone data 
And Census Information on Population
and numbers of cars and their usage

Open Street Map data for the Streets when 
not better data is available



Better information based on our pipeline

xe # Cars in the road link e

Road link length in miles

Ce Capacity in the road link [cars/miles2]

le     

Colak, Lima, Gonzalez, Nature Communications  2016





Traffic Fundamental Diagram



Morning peak as a cycle of loading and
unloading.



How long does it take to unload?





Loading Rates





H. Hinrichsen Review Article
Advances in Physics 49, 815-958 (2000); cond-mat/0001070

Nonequilibrium Critical Phenomena and Phase Transitions into Absorbing States



Olmos, Colak, Gonzalez: Non-equilibrium phase transition in Urban Traffic, in preparation



Number of cars in the network and relaxation time diverge after Rc



• We studied urban traffic as an non equilibrium phase transition

• The control parameter is τ  the relaxation time in which most of the cars 
have arrived to their destinations.

• τ is explained by Γ , the ratio of vehicles/space available and the median 

of the free flow travel time tff, determined by the commuting distances.

Conclusions

Çolak, S., Lima, A. & Gonzalez, M. C., Understanding congested travel in urban areas, accepted 
and to appear in Nature Communications (2016)
Olmons L, Çolak, S. & Gonzalez, M. C., Urban traffic as a no-equilibrium phase transition, 
In preparation (2016)



Demand Management for Large 
Events
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Rio Olympic Games
• Rio population: 6.4 millions
• International Olympic 

Committee (IOC) predicts 
480,000 tourists in Rio for 2016 
Olympics, that’s about 7.5% of 
Rio population.

• How to evaluate the impact of 
Olympics to the travel of local 
population?

• How to manage the demand?
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Data from Companies

• Mobile Phone Data
• Waze (extend the seed OD to weekdays)

On-line
• Airbnb Supply

Data from Government
• Hotel, Venues and Schedules
• Camera Data

• GIS (OSM road network of Rio)



Venues, Airbnb, hotels, BRT & Metro
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(a) Data Integrated
(b) Number of audiences arrive venues and when? (used data: Olympics schedule, 

capacity of venues )



Travel demand prediction during Olympics

(a) Tourist travel mode split

(b) Total travel demand during Olympics: 1.8 million person 
/ 0.5 million vehicles in peak hour.



Traffic Model

Rio CDR + Waze Data



Smart-app (routing)
Modifications on the level of altruism:

User Equilibrium
component Social Optimun

component
λ=[0..1]



Travel time changes



Travel time changes per day



Recommendations of Car reduction per Origin and 
Destination

Vehicle demand decrease: ~1.3%
Total travel time decrease: ~10.5%



Collective demand Management
Travel time

Marginal cost per link

We rank routes per total marginal cost



Travel time estimates before and during the Olympic 
Games

Xu Y,. & Gonzalez, M. C.
Collective benefits in urban 
traffic during mega events, (@arxiv 2016)



• Data integration allow us to model demands for mega events in a faster way.

• We can calculate the collective costs associated to each travel decision.

• There are smarter ways to reduce cars via feasible transit usage that show 
considerable benefits.

• Open questions: 
1-how to engage the population in games for social good?

2- how can we envision mobility on demand and self-driving cars in
planning for social good?

• Important quantities describe the response of the urban system. This 
understanding allows us  to inform better decisions. 

Conclusions


