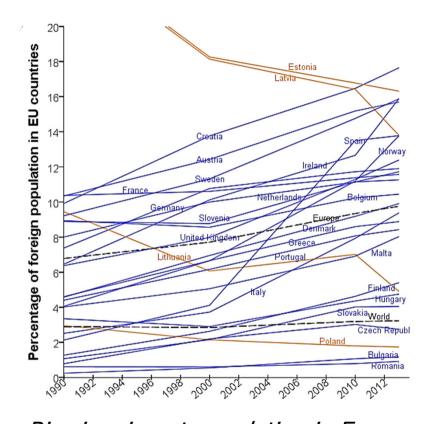
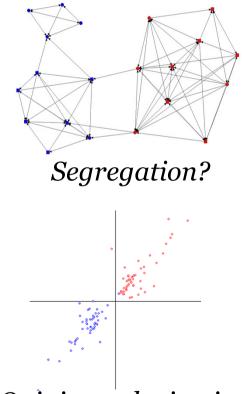


university of groningen



The complexity of social integration in a diverse society: can we connect theoretical models and big data?


Andreas Flache

Presentation @ Latin American School and Workshop on Data Analysis and Mathematical Modeling of Social Science. SoFiA - SocioFisica Argentina November, 7-11, 2016 Buenos Aires, Argentina

Cultural diversity on the rise – Societal integration under pressure?

Challenges to integration?

Rise immigrant population in Europe Source data: United Nations Department of Economic and Social Affairs (2013) Opinion polarization?

Where can computational sociology help?

Two big questions:

Where do we stand with social integration?

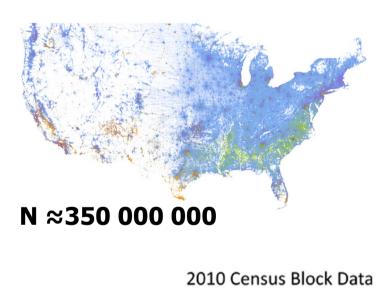
- > How much segregation and polarization do we see?
- > Under what conditions?

Where do we go with social integration?

- > Trends? Mechanisms?
- > Effects of policies?

Where do we stand?

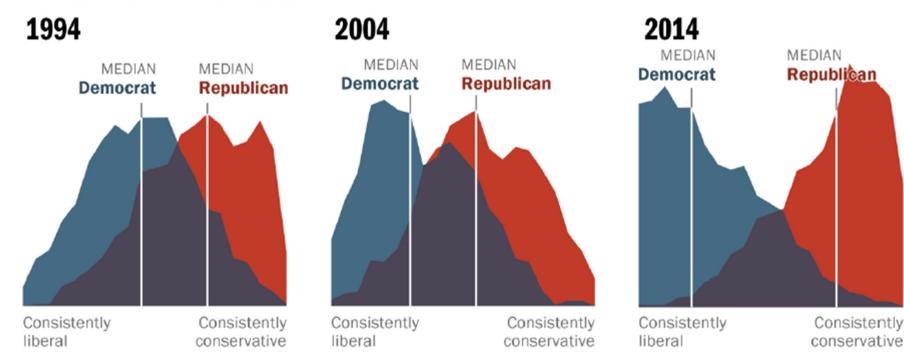
We need both "old data" and "new (big) data"


"Old data" (sometimes quite big...) government statistics, surveys, laboratory experiments

- > Segregation
 - spatial distribution of groups
 - distribution across schools, workplaces, associations ...
- Polarization
 - surveys, election outcomes (e.g. right wing voting) ...
- > Prejudice
 - surveys, experiments (e.g. Implicit Association Task)

Big old data: census and segregation

U.S. data based on U.S. government census block data (geolocated units of on average 60 inhabitants):

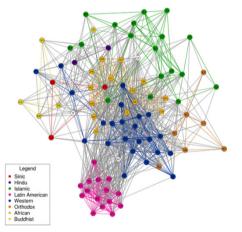

1 Dot = 1 Person

Inner City of Chicago, 2010

Dustin Cable. Demographics Research Group, Univ. of Virginia http://www.coopercenter.org/demographics/Racial-Dot-Map

Old data: surveys Polarization in political opinions (DiMaggio et al. 1996, Evans 2003, Fischer et al 2009)

Among the politically engaged


Source: Pew Research Center (2014).

Matthew Gentzkow, Stanford University. 2016.

"Old data" tell us a lot about integration

"new data" give us new knowledge, particularly when combined with "old data"

Segregation also in online communications?
State B, Park P, Weber I, Macy M (2015). PLoS ONE 10(5): e0122543.

- > Opinion formation:
 - Polarization and cultural divisions also online?
 - Link offline segregation to online polarization?

"New" and "old" data help to answer "where we stand"

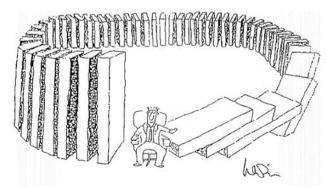
But where do we go?

- > What are expected trends in segregation, intergroup contact, opinion clustering, polarization...?
- > How would policy interventions affect these phenomena?

These questions can not be answered by data alone, however big, old or new.

We *also* need **theory-driven (computational) modelling** of possible processes

- \Rightarrow to know what the right questions are for looking at data
- \Rightarrow to answer questions about trends and interventions


Flache – SoFiA 2016

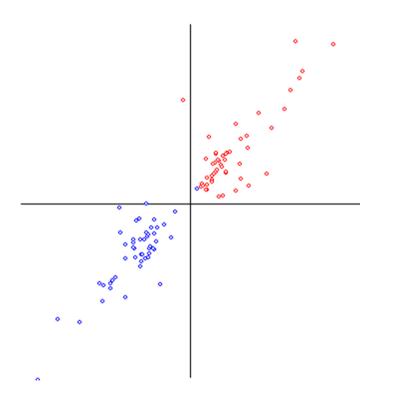
Why data alone do not suffice: Integration in a diverse society is a case of social complexity

- Interdependent individuals
- Self-reinforcing processes
- > Non-linearity
- \Rightarrow Unintended consequences:

unexpected undesirable effects of individual interactions

Why data alone do not suffice: Integration in a diverse society is a case of social complexity

- Interdependent individuals
- Self-reinforcing processes
- > Non-linearity
- \Rightarrow Unintended consequences:



unexpected undesirable effects of individual interactions

 \Rightarrow Complex Micro-Macro relations:

Situational-conditions (e.g. ethnic heterogeneity) may relate to macro-outcomes (e.g. ethnic segregation) in very unexpected ways.

Example: Modelling between-group opinion polarization

Example:

Modelling between-group opinion polarization

Two different causal pathways...

With fundamentally different implications

Possible process 1:

\Rightarrow interplay of positive and negative influence

Macy, Kitts, Flache & Benard 2003; Jager & Amblard 2005 *CMOT*; Baldassari & Bearman 2007 *ASR;* Fent, Groeber & Schweitzer 2007 ACS; Flache & Mäs 2008 *CMOT*; Flache & Macy 2011 *JMS;* ...

Possible process 2:

\Rightarrow persuasive argument exchange

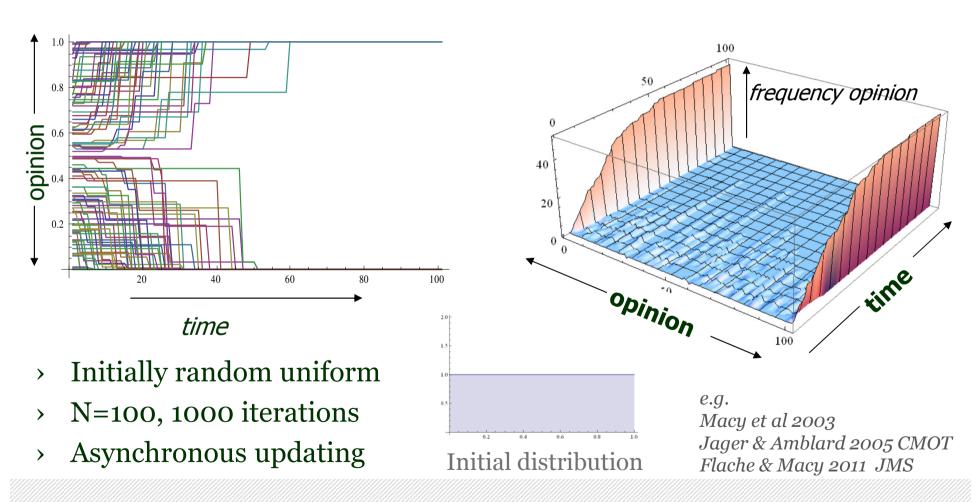
Mäs, Flache, Takács & Jehn *Org Sci* 2013; Mäs & Flache 2013 *PloS One,* La Rocca, Braunstein & Vazquez 2014.

Process 1: Modelling the interplay of positive and negative influence theoretically

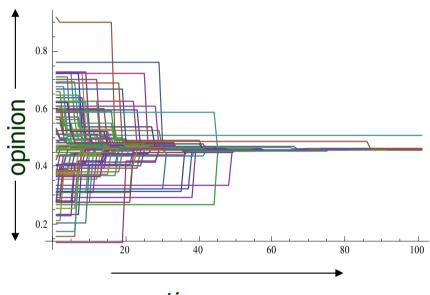
Extending earlier social influence models (French etc)

Positive influence (assimilation) and negative influence (differentiation):

• local neighbours "pull" or "push" opinion o depending on weight w_{ij}


$$\Delta o_{i,t} = \frac{1}{\text{scalingfactor}} \sum_{j \neq i} w_{ij,t} (o_{j,t} - o_{i,t}) \qquad 0 \le o \le +1$$

Homophily and xenophobia: change of relational weight *w*


• average distance > zero \Rightarrow positive weight, else *negative*

Interplay of positive and negative influence A typical result: bi-polarization

Another typical result: consensus

time

- > Initially unimodal, s.d. 0.15
- > N=100, 1000 iterations
- > Asynchronous updating

frequency opinion 100 50 time opinion 100 Initial distribution

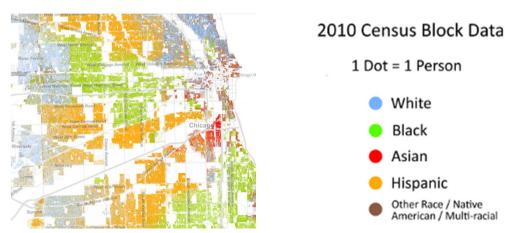
Modelling effects of "diversity": Integrating demographic features (Flache & Mäs 2008 CMOT, SimPat)

Similarity i-j depends on both demographic and opinion (dis)similarity:

$$w_{ij,t+1} = 1 - \frac{2\left(\sum_{d=1}^{D} \left| s_{id} - s_{jd} \right| + \sum_{f=1}^{F} \left| o_{ift} - o_{jft} \right| \right)}{\text{MaxDist}}, \quad -1 \le w_{ij,t+1} \le 1$$

D fixed demographic features s,

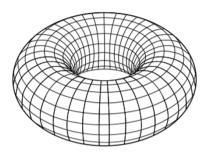
F changing opinion features o

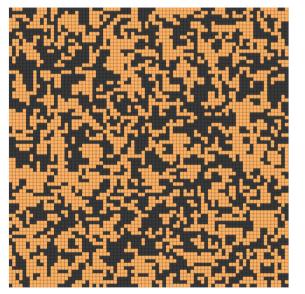

(Demographic) diversity and segregation can stabilize pluriformity – really?

Demographic segregation + local interaction

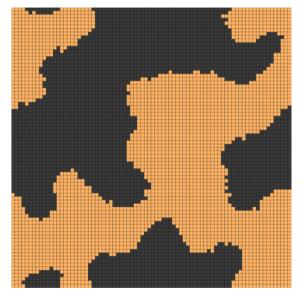
people interact more with similar others

 \Rightarrow Less interaction between dissimilar people


 \Rightarrow Less *negative* influence, less polarization

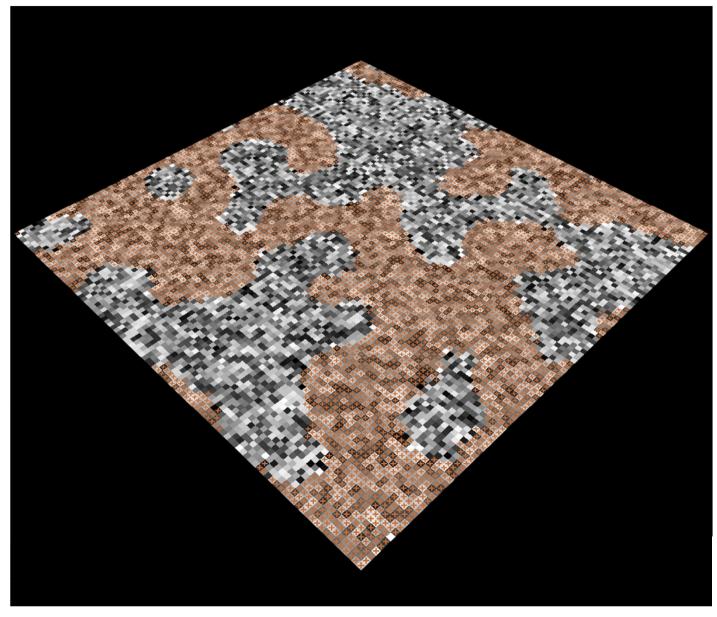


Inner City of Chicago, 2010. Dustin Cable. Demographics Research Group, Univ. of Virginia. http://www.coopercenter.org/demographics/Racial-Dot-Map


Modelling effects of segration in (slightly) realistic spatial settings

Settings with increasing level of segregation obtained from a Schelling-like segregation algorithm

Low segregation



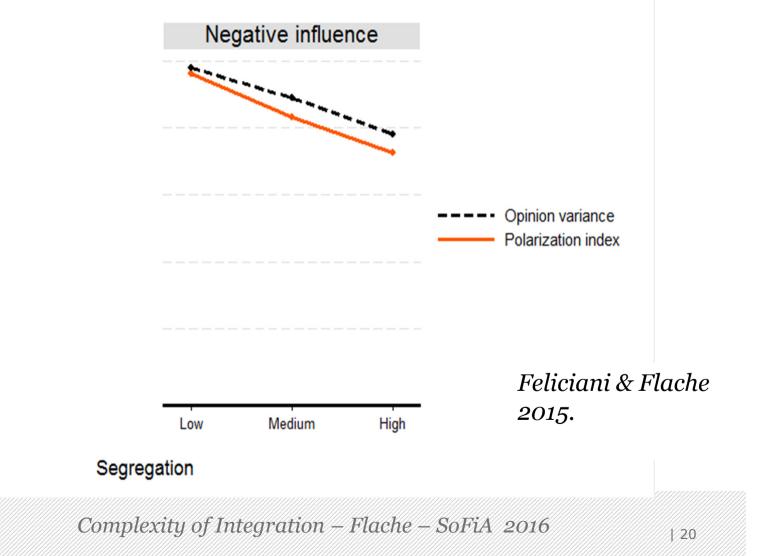
Medium segregation

High segregation

Feliciani & Flache 2015. Paper @Social Simulation 2015 (under review for publication)

Process 1: positive and negative influence with segregated spatial distribution

Here:


stylized 100x100 torodial world

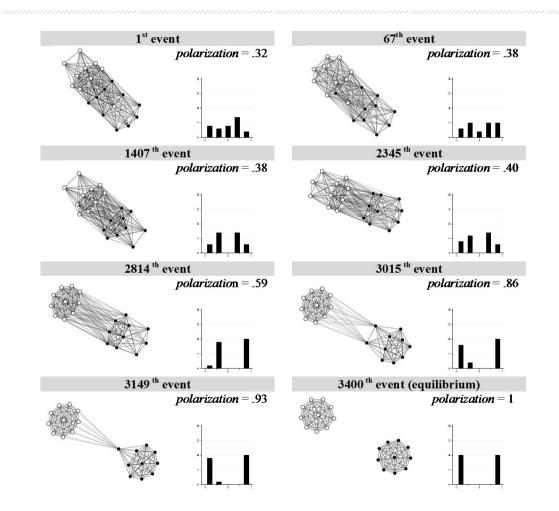
50/50 group distribution

Spatial distribution generated by Schelling-type simulation model

Feliciani & Flache 2015.

Does segregation decrease polarization? Yes, according to negative influence model

Process 2: Intergroup polarization without negative influence

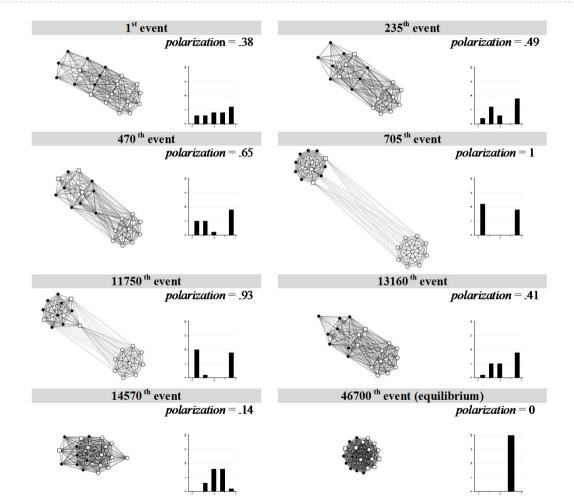

A model based on persuasive argument theory (Mäs, Flache, Takács & Jehn, 2013, Organization Science; Mäs & Flache, 2013 PlosOne)

- > Opinion is constituted by **arguments** arg_vector ++---- ⇒ opinion = -0.33
- > **Homophily**: the more similar, the more likely interaction
- > **Influence**: if *i* interacts with *j*, then *i* adopts argument from *j*.

\Rightarrow interaction with similar others increases polarization

Persuasive argument theory: Opinion polarization with maximal segregation

Dynamics of opinion and interaction network


with maximal segregation

Further assumptions:

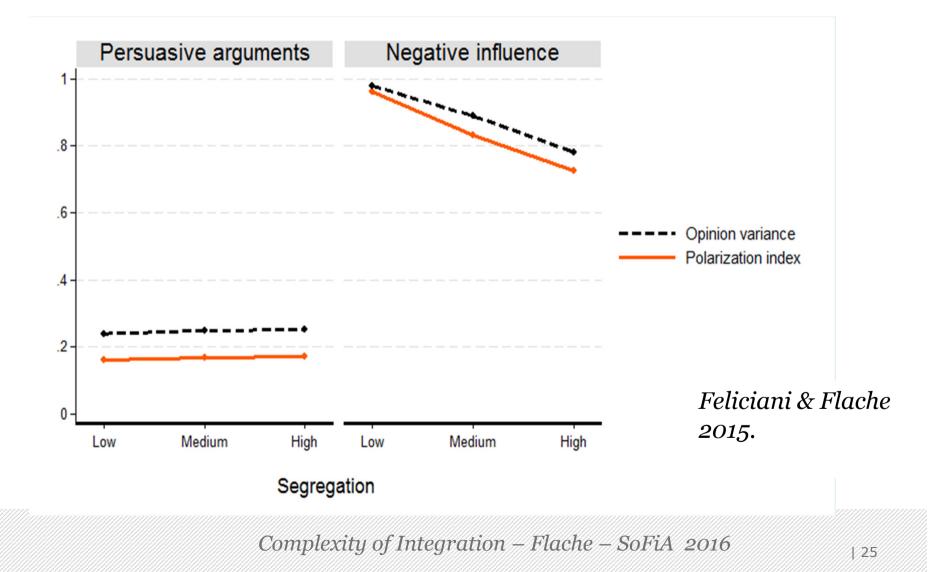
- strong homophily
- demographically biased opinions

Source: Mäs, Flache, Takács & Jehn, 2013, Organization Science

Persuasive argument theory: Consensus with reduced segregation

Now we added one (!) "criss-crossing" actor (all other things equal)

- ⇒ Sooner or later arguments communicated between opposing subgroups
- \Rightarrow System moves into consensus eventually


Source: Mäs, Flache, Takács & Jehn, 2013, Organization Science

Process 2: persuasive argument exchange with segregated spatial distribution

Feliciani & Flache 2015.

Does segregation increase or decrease polarization? It depends ...

Two plausible models – opposite predictions

Strategies to bring together computational modeling with data

Strategy 1: test micro assumptions

- computational modelling has told us what to look for
- > lab experiments (offline and online)

Strategy 2: test **macro predictions** for real settings

- > *input info* from (big) data on local residential situation.
- > simulation of "real setting" with alternative models
- > data (voting, online) to assess predicted opinion patterns

What goes on at the microlevel?

Controlled lab experiments

RESEARCH ARTICLE

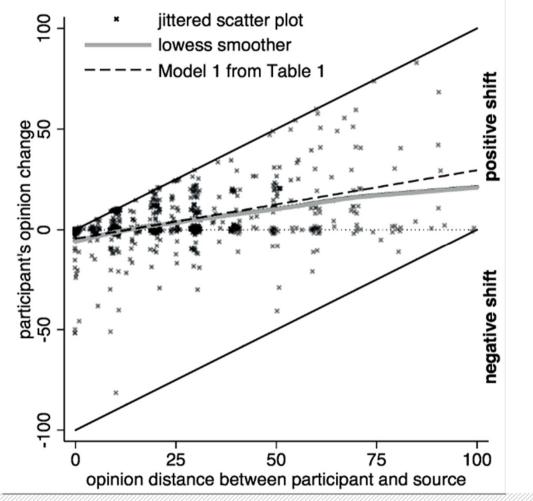
Discrepancy and Disliking Do Not Induce Negative Opinion Shifts

2016

Károly Takács¹*, Andreas Flache², Michael Mäs²

OPEN O ACCESS Freely available online

PLOS ONE

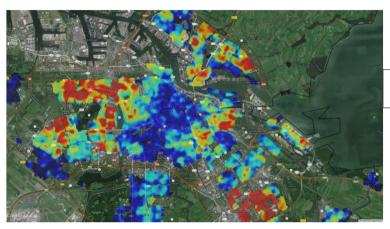

PLOS ONE

Differentiation without Distancing. Explaining Bi-Polarization of Opinions without Negative Influence

Michael Mäs¹*, Andreas Flache² 2013

1 Chair of Sociology, in particular Modeling and Simulation, ETH Zurich, Zurich, Switzerland, 2 Department of Sociology/ICS, University of Groningen, Groningen, The Netherlands

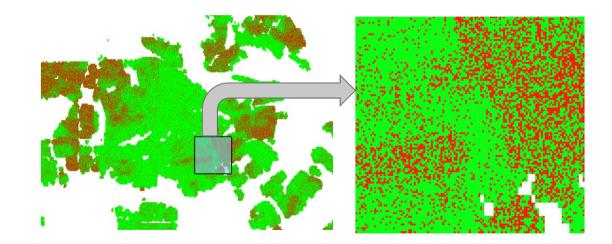
"Discrepancy and Disliking Do Not Induce Negative Opinion Shifts"



Influence mainly positive

No more negative influence if large disagreement

Takács, Flache & Mäs 2016. Plos One 11(6): e0157948. doi:10.1371/journal.pone.0157948


Example strategy 2: translating real spatial distributions into initial configurations for CA

Spatial distribution ethnic groups

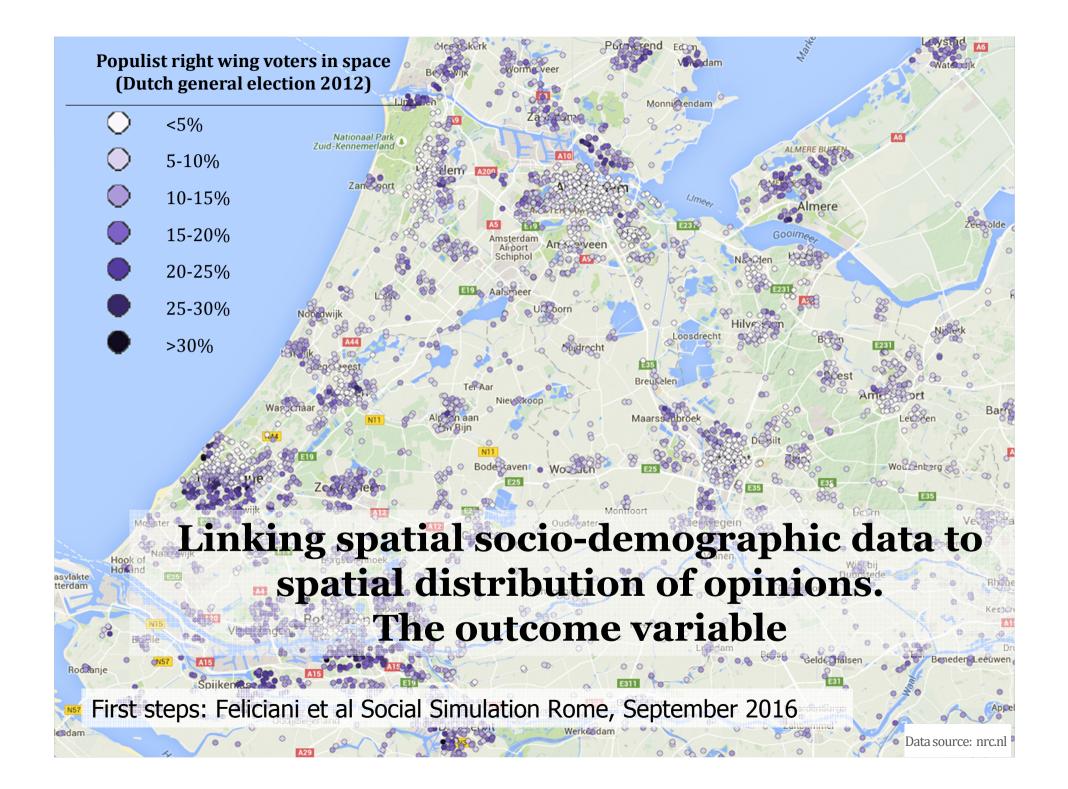
Data from Statistics Netherlands (here: Amsterdam, 2011) Map geographic positions on positions cell in CA

Assign "type" cell with probability (here based on color code map)

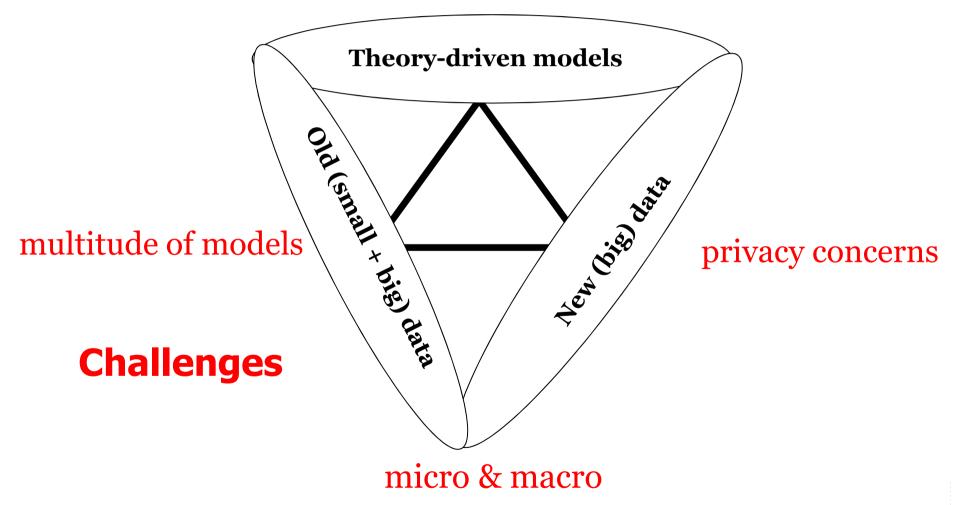
• Ethnic minority % Non-western immigrants

Age \bullet

% Residents older than 44


Household income ٠

% households whose income belongs to the lowest 40 percentiles


First steps: Feliciani et al Social Simulation Rome, September 2016

0%

Social integration in a diverse society & computational social science

Flache – SoFiA 2016

Thank you for your attention

Let's discuss!

Credits:

Michael Mäs Thomas Feliciani Jelmer Draaijer Norms and Networks Group

Michael W. Macy Karoly Takács James Kitts (Cornell)(Corvinus Budapest)(University of Massachusetts)

Related published work

- Takács, Flache, & Mäs. 2016. Discrepancy and Disliking Do Not Induce Negative Opinion Shifts. PLoS ONE 11(6): e0157948. doi:10.1371/journal.pone.0157948.
- Grow, Flache & Wittek, 2015. An Agent-Based Model of Status Construction in Task Focused Groups. *JASSS* 18 (2) 4. jasss.soc.surrey.ac.uk/18/2/4.html
- Munniksma, Verkuyten, Flache, Stark & Veenstra, 2015. Friendships and outgroup attitudes among ethnic minority youth. *IJIR*, 44, 88-99.
- Stark, Mäs & Flache, 2015. Liking and disliking minority-group classmates. *SSR* 50:164-176.
- Mäs & Flache. 2013. Differentiation without Distancing. Explaining Bi-Polarization of Opinions without Negative Influence. PLoS ONE 8(11): e74516.
- Munniksma, Stark, Verkuyten, Flache & Veenstra. 2013. Extended intergroup friendships within social settings. *GPIB*. 16(6) 752–770.
- Stark, Flache & Veenstra 2013. Generalization of positive and negative attitudes towards individuals to outgroup attitudes. *PSPB* 39: 608-622.
- Mäs, Flache, Takács & Jehn 2013. In the short term we divide, in the long term we unite: Organization Science 24. 3: 716–736.
- Stark & Flache, 2012. The Double Edge of Common Interest. *SoE* 85.2:179-199.
- Flache & Macy, 2011. Local Convergence and Global Diversity. *JCR* 55.6: 968 993.
- Flache & Macy 2011. Small Worlds and Cultural Polarization. *JMS* 35.1: 146-176.
- Mäs, Flache & Helbing, 2010. Individualization as Driving Force of Clustering Phenomena in Humans. *PLoS Computational Biology* 6(10): e1000959.
- Takacs, Janky & Flache. 2008. Collective action and network change. *SN* 30.3:177-189.
- Flache & Mäs 2008. How to get the timing right? *CMOT* 14.1:23-51.
- Flache & Mäs 2008. Why do faultlines matter? SimPat 16.2: 175-191.

ADDENDUM

Complexity of Integration – Flache – SoFiA 2016

| 35