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Experiments involving the spectrum of atomic hydrogen
are very useful for introducing the quantization of energy levels
(1–3) to chemistry students. Using the Balmer series (4, 5), it
turns out that the energy of the lone orbiting electron depends
exclusively on the principal quantum number, n. In this case
the electron is solely subject to the electrostatic influence of
the nucleus. The sodium atom, as any alkali metal, resembles
the hydrogen atom in having only one electron in the valence
shell. However, the interelectronic interactions must be
considered in the energy calculations because of the penetration
of this electron into the inner closed shells. As a consequence
of the radial probability-density distribution (Fig. 1) the energy
levels depend not just on the principal quantum number,
but also on the angular momentum quantum number, l. A
quantity called the quantum defect, µ, which accounts for
the distinct capability of the valence electrons to penetrate
into the atom’s inner closed shells, is usually introduced (5).1

On the other hand, many concepts on atomic structure
(energy levels, ionization potentials, electronegativity of the
elements, and so on) are discussed in terms of effective nuclear
charges. In the case of the valence electron of an alkali metal
this quantity involves the shielding effect of the inner-shell
electrons on the nuclear charge Z * (6–10). The effective
nuclear charge depends on n and l quantum numbers, and
can be used to describe the spectral series. It seems to be an
easier concept for students to understand than the quantum
defect, because it retains the meaning of an integer quantum
number, as learned in basic courses. These advantages in using
Z * instead of µ, together with the method presented in this
article, overcome the advantage that µ is practically constant
for a given l (only one value of µ has to be calculated for
each angular momentum, from the experimental data).

We describe a simple graphical method for using spectral
data to determine the effective nuclear charges, Z *nl , felt
by the valence electron of sodium in the ground and various
excited energy states, the shielding constants σnl , and the
energy levels. The shielding constant represents the amount
of nuclear charge screened by the inner electrons on the outer

nl electron, σnl  = Z – Z *nl , where Z is the total nuclear charge.
This procedure has been used in our undergraduate physical
chemistry laboratory classes. Its accuracy is high enough for
didactic purposes.

This experiment is very convenient for introducing the
concept of angular momentum and its effect on the energies
of the orbitals, as well as the concepts of a main subject like
spectroscopy.

Methods

The energy term for the sodium atom, Tnl = R(1/(n – µl )2),
corresponds to the binding energy (cm{1) of an electron in
an nl orbital. Introducing the effective nuclear charge the
expression becomes Tnl = R(Z *nl )2/n2. Therefore the Rydberg
series (4 ) for the sodium atom may be rewritten as:
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where νl are the wavenumbers (cm{1) corresponding to the
transitions between the two terms in the second member.

The effective nuclear charge is a measure of the average
nuclear charge felt by the outermost electron in the various
orbitals, considering the interelectronic repulsions and its
penetration capability. Therefore, effective nuclear charges can
be evaluated from experimental data using the eqs 1 to 3.
Instead of solving these equations analytically, a graphical
approach using spreadsheet software (Origin, Excel, etc.) was
employed.

Experimental Procedure

The sodium spectrum can be obtained with any kind of
spectrometer, from an old photographic instrument to a
modern recording spectrophotometer. The spectrum shown
in Figure 2 was obtained with a Jobin Yvon U-1000 instrument
that gives the spectrum directly in cm{1. Owing to the expo-
nential variation of the line intensities in a spectral series,
the spectrum in the high-energy side was plotted on a loga-
rithmic scale. In the 16,000–18,500 cm{1 region the height
of the lines is the intensity (nonlogarithmic) after passing
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Figure 1. Radial probability-density distribution (distance in atomic
units) for the 3s, 3p, and 3d electrons in the sodium atom. The
shaded area corresponds to the core.
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through a Corning glass filter #512 (or a neodymium salt
solution); this filter reduces drastically the intensity of the
yellow line, indicated by (p). The spectrum can be obtained
in about half an hour. The calculations and interpretation of
the results may take about four hours. The baseline in the
high-frequency side shows a structure due to rotational–
vibrational bands of Na2 molecules. This will not be discussed
because it is beyond the scope of this article.

Identification of the Spectral Series

The first step in analyzing the emission spectrum is to
correctly attribute the spectral series. By a close inspection of
the spectrum (Fig. 2), disregarding the fine structure (only
the transitions involving the 3P3/2 level, in the doublets, will be
considered in the following), it is possible to distinguish two
progressions of lines, indicated by (a) and (b), which become
closer and closer going to higher wavenumbers. Considering
eqs 1 to 3, it is evident that when n → ∞ the sharp and diffuse
series tend to the same limit, T3p = R(Z *3p )2/32. Therefore,
the two progressions can be attributed to these series.

Assignment of Diffuse Series

The equation for the diffuse series, eq 3, can be written
as νd = A – BX, where X = 1/n2, B = R(Z *nd )2. From a plot of
the wavenumbers (cm{1) as a function of 1/n2 for the (a) and
(b) progressions only the diffuse series should give a straight
line because the d electron is almost nonpenetrating and Z *nd
can be assumed as 1. The correct attribution of the principal
quantum numbers to the lines can be determined by trial
and error, assigning different n values to the first line in the
spectrum (starting with n = 3) until the best correlation
coefficient is obtained from a linear regression. In this way,
the diffuse series can be identified as the progression (a) in
Figure 2 and the Rydberg constant and the value of T3p can be
obtained, respectively, from the slope (B) and the linear co-
efficient (A) of this straight line. We obtained R = 110,562 cm{1

(lit. 109,734 cm{1 [5]) and T3p = 24,489 cm{1 (lit. 24,476 cm{1

[11]), as shown in Figure 3.

Assignment of Sharp Series and Calculation of Z *ns

The values of (Z *ns )2 for the ns levels can be determined
by substituting the appropriate νs (beginning with the first of
the (b) lines in Fig. 2) and n values into the expression (Z *ns )2 =
(T3p – νs)n2/R (T3p = 24,489 cm{1 and R = 110,562 cm{1 were
previously determined).

The correct attribution of n to the νs (with n ≥ 4) can
be obtained calculating the energy terms (Tns = R(Z *ns )2/n2)
from the (Z *ns )2 above, for n = 4, 5, 6, …, for n = 5, 6, 7, …
and for n = 6, 7, 8, …. It is observed that only the set of
values starting with n = 5 gives the correct values of the energy
terms by comparison with the values from the literature (11).

It is useful to find an expression correlating (Z *ns )2 with
any value of the principal quantum number, because it allows
the prediction of the spectral lines even for those transitions
out of the observed spectral region. As the effective nuclear
charge is expected to decrease with increasing n for a fixed l,
plots of (Z *ns )2 versus 1/n and 1/n2 were tried. The plot as a
function of 1/n2 (Fig. 4(a)) shows a linear dependence, fitted
by the linear regression

(Z *ns)2 = 17.695/n2 + 1.162 (4)

Figure 3. Plot of experimental wavenumbers for the diffuse series
as a function of 1/n2 (filled squares) and the corresponding linear
regression (dotted line).

Figure 4. (a): Plot of (Z*ns)2 as a function of 1/n2 with the (Z*ns)2
calculated from the spectral values of the sharp series (filled squares)
and the corresponding linear regression (full line; eq 2). (b): Plot
of (Z*np)2 as a function of 1/n2 for the principal series (filled squares)
and the corresponding linear regression (full line; eq 3).

Figure 2. Emission spectrum of the sodium atom, intensity in arbitrary
units. In the 16,000–18,500 cm{1 region a didymium No. 512
filter (Corning) was employed to decrease the intensity of the yellow
line (p). In the high-energy side, a logarithmic scale was used
because of the enormous difference in the intensities of the lines.
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From this equation the squared effective nuclear charge
can be estimated for any value of n ≥ 4 (see Table 1). The T3s
and (Z *3s )2 values can be determined straightforwardly from
the first line of the principal series (yellow line); since T3p is
already known and T3s – T3p = 16,978 cm{1, we have (Z *3s )2 =
41,467 × 32/R.

Calculation of Z *np and the Energy Terms

Unfortunately, only the 3S–3P transition of the principal
series is observed in the visible region of the spectrum (indi-
cated by (p) in Fig. 2). The remaining transitions have lines in
the ultraviolet region and are filtered by the glass tube of the
sodium lamp. Even so, it is possible to find the relationship for
the (Z *np )2 because as 1/n2 tends to zero, (Z *np )2 and (Z *ns )2 con-
verge to the same limit; that is, when n → ∞, (Z *∞p)2 =
(Z *∞s)2 = 1.162, the linear coefficient of eq 4. The value of (Z *3p )2

can be calculated from the term T3p, (Z *3p )2 = 24,488 × 32/R =
1.9935. These two points define a straight line (Fig. 4(b))
described by the equation

(Z *np )2 = 7.482/n2 + 1.162 (5)

This equation can be used to evaluate the squared effective
nuclear charges of the np electrons for n ≥ 3. From these values
it is possible to calculate the energies of the transitions in
the ultraviolet region. The validity of eq 5 can be verified by
comparison with the energy levels from the literature (11).

The calculated effective charges and their squared values
are listed in Table 1, showing their dependence on the angular
momentum and principal quantum numbers. As expected,
the values of the calculated effective nuclear charges follow
the sequence

Z *ns > Z *np > Z *nd

To verify the reliability of this new procedure, the energies
of the ns, np, and nd electrons (3 ≤ n ≤ 10) were calculated,
according to Tnl = R(Z *nl )2/n2, and compared with the values
from the literature (Table 2). The errors are reasonably low
and of the same magnitude as those obtained using the
method of quantum defects (12).

The shielding factor σnl can be calculated from the ex-
pression (Z – σnl ) = Z *nl  (Z = atomic number). Its values are
presented in Table 1 for the ns and np levels. As
expected, σnl is a function of the quantum num-
bers n and l, because the ability of the valence elec-
tron to penetrate into the closed shells depends on
the level in which it is found.

In conclusion, our method makes it possible to
determine experimentally the effective nuclear
charges, the shielding factors, and the energies
of the several states of the valence electron of the
sodium atom with good accuracy. The most im-
portant point is that this charge can be considered
as responsible for the effect of the interelectronic
interactions without changing the integer value of
the quantum number in the denominator in the
Rydberg equations.

Note
1. The quantum defect is a function of the angular momentum

quantum number and is practically independent of the principal
quantum number. Using the Rydberg series (12, 13) the quantum defects
can be determined from the linear and angular coefficients in the plot
of the wavenumbers of the spectral lines versus 1/n2, starting from the
diffuse series where the µ for d orbitals (nonpenetrating orbit) is nearly
equal to zero. Then, the energy terms Tnl = R/(n – µ l )

2, where R is the
Rydberg constant, can be estimated by substituting the appropriate
values of µ and n into this expression.
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seulaVerutaretiLdnasmreTygrenEdetaluclaC.2elbaT
motAmuidoSehtrof

n
Tns mc/ 1– Tnp mc/ 1– Tnd mc/ 1–

dclac fer 11 δ )%( a dclac fer 11 δ )%( a dclac fer 11 δ )%( a

3 764,14 054,14 40.0 344,42 674,42 31.0 582,21 772,21 60.0

4 376,51 017,51 32.0 842,11 771,11 36.0 019,6 109,6 51.0

5 072,8 942,8 52.0 754,6 704,6 87.0 224,4 314,4 02.0

6 970,5 770,5 40.0 502,4 251,4 72.1 170,3 260,3 92.0

7 734,3 834,3 30.0 569,2 809,2 79.1 652,2 942,2 13.0

8 684,2 184,2 02.0 802,2 151,2 56.2 727,1 127,1 14.0

9 588,1 578,1 15.0 117,1 556,1 83.3 563,1 953,1 44.0

01 084,1 764,1 29.0 763,1 213,1 91.4 601,1 001,1 45.0
aRelative error.

Z*nd(Z*nd)2Z*np(Z*np)2

dnasegrahCraelcuNevitceffEdetaluclaC.1elbaT
nortcelEecnelaVmuidoSehtrofsrotcaFgnidleihS

n
seireSprahS seireSlapicnirP seireSesuffiD

σns σnp

3 5573.3 48.1 61.9 8989.1 14.1 95.9 0000.1 00.1

4 1862.2 15.1 94.9 1726.1 72.1 37.9 0000.1 00.1

5 9968.1 73.1 36.9 1064.1 12.1 97.9 0000.1 00.1

6 7356.1 82.1 27.9 1963.1 71.1 38.9 0000.1 00.1

7 3325.1 32.1 77.9 2413.1 51.1 58.9 0000.1 00.1

8 7834.1 71.1 38.9 6872.1 31.1 78.9 0000.1 00.1

9 6083.1 61.1 48.9 1452.1 21.1 88.9 0000.1 00.1

01 1933.1 41.1 68.9 7632.1 11.1 98.9 0000.1 00.1

(Z*ns)2 Z*ns
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