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2.1.   THE GRATING EQUATION [top] 

           When monochromatic light is incident on a grating surface, it is 
diffracted into discrete directions. We can picture each grating groove as being 
a very small, slit-shaped source of diffracted light. The light diffracted by each 
groove combines to form a diffracted wavefront. The usefulness of a grating 
depends on the fact that there exists a unique set of discrete angles along which, 
for a given spacing d between grooves, the diffracted light from each facet is in 
phase with the light diffracted from any other facet, so they combine 
constructively. 

           Diffraction by a grating can be visualized from the geometry in Figure 2-
1, which shows a light ray of wavelength λ incident at an angle α and 
diffracted by a grating (of groove spacing d, also called the pitch) along angles 
βm. These angles are measured from the grating normal, which is the dashed 

line perpendicular to the grating surface at its center. The sign convention for 
these angles depends on whether the light is diffracted on the same side or the 
opposite side of the grating as the incident light. In diagram (a), which shows a 
reflection grating, the angles α > 0 and β1 > 0 (since they are measured counter-

clockwise from the grating normal) while the angles β0 < 0 and β–1 < 0 (since 

they are measured clockwise from the grating normal). Diagram (b) shows the 
case for a transmission grating. 

           By convention, angles of incidence and diffraction are measured from 
the grating normal to the beam. This is shown by arrows in the diagrams. In 
both diagrams, the sign convention for angles is shown by the plus and minus 
symbols located on either side of the grating normal. For either reflection or 
transmission gratings, the algebraic signs of two angles differ if they are 
measured from opposite sides of the grating normal. Other sign conventions 
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Figure 2-1.   Diffraction by a plane grating. A beam of monochromatic light of 
wavelength λ is incident on a grating and diffracted along several discrete 
paths. The triangular grooves come out of the page; the rays lie in the plane of 
the page. The sign convention for the angles α and β is shown by the + and – 
signs on either side of the grating normal. (a) A reflection grating: the incident 
and diffracted rays lie on the same side of the grating. (b) A transmission 
grating: the incident and diffracted rays lies on opposite sides of the grating. 

exist, so care must be taken in calculations to ensure that results are self-
consistent. Another illustration of grating diffraction, using wavefronts 
(surfaces of constant phase), is shown in Figure 2-2. The geometrical path 
difference between light from adjacent grooves is seen to be d sinα + d sinβ. 
[Since β < 0, the latter term is actually negative.] The principle of interference 
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dictates that only when this difference equals the wavelength λ of the light, or 
some integral multiple thereof, will the light from adjacent grooves be in phase 
(leading to constructive interference). At all other angles β, there will be some 
measure of destructive interference between the wavelets originating from the 
groove facets. 

           These relationships are expressed by the grating equation 

mλ = d (sinα + sinβ), (2-1) 

which governs the angles of diffraction from a grating of groove spacing d. 
Here m is the diffraction order (or spectral order), which is an integer. For a 
particular wavelength λ, all values of m for which |mλ/d| < 2 correspond to 
physically realizable diffraction orders. 

           It is sometimes convenient to write the grating equation as 

Gmλ = sinα + sinβ, (2-1') 

where G = 1/d is the groove frequency or groove density, more commonly 
called "grooves per millimeter". 

           Eq. (2-1) and its equivalent Eq. (2-1') are the common forms of the 
grating equation, but their validity is restricted to cases in which the incident 
and diffracted rays are perpendicular to the grooves (at the center of the 
grating). The vast majority of grating systems fall within this category, which is 
called classical (or in-plane) diffraction. If the incident light beam is not 
perpendicular to the grooves, though, the grating equation must be modified: 

Gmλ = cosε (sinα + sinβ), (2-1'') 

Here ε is the angle between the incident light path and the plane perpendicular 
to the grooves at the grating center (the plane of the page in Figure 2-2). If the 
incident light lies in this plane, ε = 0 and Eq. (2-1") reduces to the more 
familiar Eq. (2-1'). In geometries for which ε ≠ 0, the diffracted spectra lie on a 
cone rather than in a plane, so such cases are termed conical diffraction. 

For a grating of groove spacing d, there is a purely mathematical relationship 
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between the wavelength and the angles of incidence and diffraction. In a given 
spectral order m, the different wavelengths of polychromatic wavefronts 
incident at angle α are separated in angle: 

β (λ) = arcsin(mλ/d – sinα). (2-2) 

When m = 0, the grating acts as a mirror, and the wavelengths are not separated 
(β = –α  for all λ); this is called specular reflection or simply the zero order. 

 

Figure 2-2.   Geometry of diffraction, for planar wavefronts. The terms in the 
path difference, d sinα and d sinβ, are shown. 

A special but common case is that in which the light is diffracted back toward 
the direction from which it came (i.e., α = β); this is called the Littrow 
configuration, for which the grating equation becomes 

mλ = 2d sinα,     in Littrow. (2-3) 

           In many applications (such as constant-deviation monochromators), the 
wavelength λ is changed by rotating the grating about the axis coincident with 
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its central ruling, with the directions of incident and diffracted light remaining 
unchanged. The deviation angle 2K between the incidence and diffraction 
directions (also called the angular deviation) is 

2K = α – β = constant (2-4) 

while the scan angle φ, which is measured from the grating normal to the 
bisector of the beams, is 

2φ = α + β. (2-5) 

 

Figure 2-3.   A sine bar mechanism for wavelength scanning. As the screw is 
extended linearly by the distance x shown, the grating rotates through an angle 
φ in such a way that sinφ is proportional to x. 

Note that φ changes with λ (as do α and β). In this case, the grating equation 
can be expressed in terms of φ and the half deviation angle K as 

mλ = 2d cosK sinφ. (2-6) 

This version of the grating equation is useful for monochromator mounts (see 
Chapter 7). Eq. (2-6) shows that the wavelength diffracted by a grating in a 
monochromator mount is directly proportional to the sine of the angle φ 
through which the grating rotates, which is the basis for monochromator drives 
in which a sine bar rotates the grating to scan wavelengths (see Figure 2-3). 
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2.2.   DIFFRACTION ORDERS [top] 

2.2.1.   Existence of Diffraction Orders. 

           For a particular set of values of the groove spacing d and the angles α 
and β, the grating equation (2-1) is satisfied by more than one wavelength. In 
fact, subject to restrictions discussed below, there may be several discrete 
wavelengths which, when multiplied by successive integers m, satisfy the 
condition for constructive interference. The physical significance of this is that 
the constructive reinforcement of wavelets diffracted by successive grooves 
merely requires that each ray be retarded (or advanced) in phase with every 
other; this phase difference must therefore correspond to a real distance (path 
difference) which equals an integral multiple of the wavelength. This happens, 
for example, when the path difference is one wavelength, in which case we 
speak of the positive first diffraction order (m = 1) or the negative first 
diffraction order (m = –1), depending on whether the rays are advanced or 
retarded as we move from groove to groove. Similarly, the second order (m = 
2) and negative second order (m = –2) are those for which the path difference 
between rays diffracted from adjacent grooves equals two wavelengths. 

           The grating equation reveals that only those spectral orders for which 
|mλ/d| < 2 can exist; otherwise, |sinα + sinβ | > 2, which is physically 
meaningless. This restriction prevents light of wavelength λ from being 
diffracted in more than a finite number of orders. Specular reflection (m = 0) is 
always possible; that is, the zero order always exists (it simply requires β = 
–α). In most cases, the grating equation allows light of wavelength λ to be 
diffracted into both negative and positive orders as well. Explicitly, spectra of 
all orders m exist for which 

–2d < mλ < 2d,     m an integer. (2-7) 

For l/d << 1, a large number of diffracted orders will exist. 

           As seen from Eq. (2-1), the distinction between negative and positive 
spectral orders is that 
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β > –α   for positive orders (m > 0), 

β < –α   for negative orders (m < 0), 

β = –α   for specular reflection (m = 0), 

(2-8) 

This sign convention for m requires that m > 0 if the diffracted ray lies to the 
left (the counter-clockwise side) of the zero order (m = 0), and m < 0 if the 
diffracted ray lies to the right (the clockwise side) of the zero order. This 
convention is shown graphically in Figure 2-4. 

2.2.2.   Overlapping of Diffracted Spectra. 

           The most troublesome aspect of multiple order behavior is that 
successive spectra overlap, as shown in Figure 2-5. It is evident from the 
grating equation that, for any grating instrument configuration, the light of 
wavelength λ diffracted in the m = 1 order will coincide with the light of 
wavelength λ/2 diffracted in the m = 2 order, etc., for all m satisfying inequality 
(2-7). In this example, the red light (600 nm) in the first spectral order will 
overlap the ultraviolet light (300 nm) in the second order. A detector sensitive 
at both wavelengths would see both simultaneously. This superposition of 
wavelengths, which would lead to ambiguous spectroscopic data, is inherent in 
the grating equation itself and must be prevented by suitable filtering (called 
order sorting), since the detector cannot generally distinguish between light of 
different wavelengths incident on it (within its range of sensitivity). [See also 
Section 2.7 below.] 

2.3.   DISPERSION [top] 

           The primary purpose of a diffraction grating is to disperse light spatially 
by wavelength. A beam of white light incident on a grating will be separated 
into its component colors upon diffraction from the grating, with each color 
diffracted along a different direction. Dispersion is a measure of the separation 
(either angular or spatial) between diffracted light of different wavelengths. 
Angular dispersion expresses the spectral range per unit angle, and linear 
resolution expresses the spectral range per unit length. 
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Figure 2-4.   Sign convention for the spectral order m. In this example a is 
positive. 
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Figure 2-5.   Overlapping of spectral orders. The light for wavelengths 100, 
200 and 300 nm in the second order is diffracted in the same direction as the 
light for wavelengths 200, 400 and 600 nm in the first order. In this diagram, 
the light is incident from the right, so α < 0. 

2.3.1.   Angular dispersion 

           The angular spread dβ of a spectrum of order m between the wavelength 
λ and λ + dλ can be obtained by differentiating the grating equation, assuming 
the incidence angle α to be constant. The change D in diffraction angle per unit 
wavelength is therefore 

D =  = Gm secβ (2-9) 

where β is given by Eq. (2-2). The ratio D = dβ /dλ is called the angular 
dispersion. As the groove frequency G = 1/d increases, the angular dispersion 
increases (meaning that the angular separation between wavelengths increases 
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for a given order m). 

           In Eq. (2-9), it is important to realize that the quantity m/d is not a ratio 
which may be chosen independently of other parameters; substitution of the 
grating equation into Eq. (2-9) yields the following general equation for the 
angular dispersion: 

D =  (2-10) 

For a given wavelength, this shows that the angular dispersion may be 
considered to be solely a function of the angles of incidence and diffraction. 
This becomes even more clear when we consider the Littrow configuration (α 
= β ), in which case Eq. (2-10) reduces to 

D = ,     in Littrow. (2-11) 

When |β | increases from 10° to 63° in Littrow use, the angular dispersion 
increases by a factor of ten, regardless of the spectral order or wavelength 
under consideration. Once β has been determined, the choice must be made 
whether a fine-pitch grating (small d) should be used in a low order, or a course-
pitch grating (large d) such as an echelle grating should be used in a high order. 
[The fine-pitched grating, though, will provide a larger free spectral range; see 
Section 2.7 below.] 

2.3.2.   Linear dispersion 

           For a given diffracted wavelength λ in order m (which corresponds to an 
angle of diffraction β), the linear dispersion of a grating system is the product 
of the angular dispersion D and the effective focal length r' (β ) of the system: 

r'D = r' = Gmr' secβ. (2-12) 
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The quantity r' dβ = dl is the change in position along the spectrum (a real 
distance, rather than a wavelength). We have written r' (β ) for the focal length 
to show explicitly that it may depend on the diffraction angle β (which, in turn, 
depends on λ). 

           The reciprocal linear dispersion, also called the plate factor P, is more 
often considered; it is simply the reciprocal of r' D, usually measured in 
nm/mm: 

P = . (2-12') 

P is a measure of the change in wavelength (in nm) corresponding to a change 
in location along the spectrum (in mm). It should be noted that the terminology 
plate factor is used by some authors to represent the quantity 1/sinΦ, where Φ 
is the angle the spectrum makes with the line perpendicular to the diffracted 
rays (see Figure 2-6); in order to avoid confusion, we call the quantity 1/sinΦ 
the obliquity factor. When the image plane for a particular wavelength is not 
perpendicular to the diffracted rays (i.e., when Φ ≠ 90°), P must be multiplied 
by the obliquity factor to obtain the correct reciprocal linear dispersion in the 
image plane. 

 

Figure 2-6.   The obliquity angle Φ. The spectral image recorded need not lie in 
the plane perpendicular to the diffracted ray (i.e., Φ ≠ 90°). 
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2.4. 
    

RESOLVING POWER, SPECTRAL RESOLUTION, 
AND BANDPASS [top] 

2.4.1.   Resolving power 

           The resolving power R of a grating is a measure of its ability to separate 
adjacent spectral lines of average wavelength λ. It is usually expressed as the 
dimensionless quantity 

R = . (2-13) 

Here ∆λ is the limit of resolution, the difference in wavelength between two 
lines of equal intensity that can be distinguished (that is, the peaks of two 
wavelengths λ1 and λ2 for which the separation |λ1 - λ2| < ∆λ will be 

ambiguous). The theoretical resolving power of a planar diffraction grating is 
given in elementary optics textbooks as 

R = mN. (2-14) 

where m is the diffraction order and N is the total number of grooves 
illuminated on the surface of the grating. For negative orders (m < 0), the 
absolute value of R is considered. 

           A more meaningful expression for R is derived below. The grating 
equation can be used to replace m in Eq. (2-14): 

R = . (2-15) 

If the groove spacing d is uniform over the surface of the grating, and if the 
grating substrate is planar, the quantity Nd is simply the ruled width W of the 
grating, so 
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R = . (2-16) 

As expressed by Eq. (2-16), R is not dependent explicitly on the spectral order 
or the number of grooves; these parameters are contained within the ruled 
width and the angles of incidence and diffraction. Since 

|sinα + sinβ | < 2 (2-17) 

the maximum attainable resolving power is 

RMAX =  (2-18) 

regardless of the order m or number of grooves N. This maximum condition 
corresponds to the grazing Littrow configuration, i.e., α ≈ β (Littrow), |α | ≈ 
90° (grazing). 

           It is useful to consider the resolving power as being determined by the 
maximum phase retardation of the extreme rays diffracted from the grating. 
Measuring the difference in optical path lengths between the rays diffracted 
from opposite sides of the grating provides the maximum phase retardation; 
dividing this quantity by the wavelength λ of the diffracted light gives the 
resolving power R. 

           The degree to which the theoretical resolving power is attained depends 
not only on the angles α and β, but also on the optical quality of the grating 
surface, the uniformity of the groove spacing, the quality of the associated 
optics, and the width of the slits and/or detector elements. Any departure of the 
diffracted wavefront greater than λ/10 from a plane (for a plane grating) or 
from a sphere (for a spherical grating) will result in a loss of resolving power 
due to aberrations at the image plane. The grating groove spacing must be kept 
constant to within about 1% of the wavelength at which theoretical 
performance is desired. Experimental details, such as slit width, air currents, 
and vibrations can seriously interfere with obtaining optimal results. 

           The practical resolving power is limited by the spectral half-width of the 
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lines emitted by the source. This explains why systems with revolving powers 
greater than 500,000 are usually required only in the study of spectral line 
shapes, Zeeman effects, and line shifts, and are not needed for separating 
individual spectral lines. 

           A convenient test of resolving power is to examine the isotopic structure 
of the mercury emission line at 546.1 nm. Another test for resolving power is to 
examine the line profile generated in a spectrograph or scanning spectrometer 
when a single mode laser is used as the light source. Line width at half intensity 
(or other fractions as well) can be used as the criterion. Unfortunately, 
resolving power measurements are the convoluted result of all optical elements 
in the system, including the locations and dimensions of the entrance and exit 
slits and the auxiliary lenses and mirrors, as well as the quality of these optics. 
Their effects are necessarily superimposed on those of the grating. 

2.4.2.   Spectral resolution 

           While resolving power can be considered a characteristic of the grating 
and the angles at which it is used, the ability to resolve two wavelengths λ1 and 

λ2 = λ1 + ∆λ generally depends not only on the grating but on the dimensions 

and locations of the entrance and exit slits (or detector elements), the 
aberrations in the images, and the magnification of the images. The minimum 
wavelength difference ∆λ (also called the limit of resolution, or simply 
resolution) between two wavelengths that can be resolved unambiguously can 
be determined by convoluting the image of the entrance aperture (at the image 
plane) with the exit aperture (or detector element). This measure of the ability 
of a grating system to resolve nearby wavelengths is arguably more relevant 
than is resolving power, since it takes into account the image effects of the 
system. While resolving power is a dimensionless quantity, resolution has 
spectral units (usually nanometers). 

2.4.3.   Bandpass 

           The bandpass B of a spectroscopic system is the wavelength interval of 
the light that passes through the exit slit (or falls onto a detector element). It is 
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often defined as the difference in wavelengths between the points of half-
maximum intensity on either side of an intensity maximum. An estimate for 
bandpass is the product of the exit slit width w' and the reciprocal linear 
dispersion P: 

B ≈ w' P. (2-19) 

An instrument with smaller bandpass can resolve wavelengths that are closer 
together than an instrument with a larger bandpass. Bandpass can be reduced 
by decreasing the width of the exit slit (to a certain limit; see Chapter 8), but 
usually at the expense of decreasing light intensity as well. 

           Bandpass is sometimes called spectral bandwidth, though some authors 
assign distinct meanings to these terms. 

2.4.4.   Resolving power vs. resolution 

           In the literature, the terms resolving power and resolution are sometimes 
interchanged. While the word power has a very specific meaning (energy per 
unit time), the phrase resolving power does not involve power in this way; as 
suggested by Hutley, though, we may think of resolving power as 'ability to 
resolve'. 

           The comments above regarding resolving power and resolution pertain 
to planar classical gratings used in collimated light (plane waves). The situation 
is complicated for gratings on concave substrates or with groove patterns 
consisting of unequally spaced lines, which restrict the usefulness of the 
previously defined simple formulae, though they may still yield useful 
approximations. Even in these cases, though, the concept of maximum 
retardation is still a useful measure of the resolving power. 

2.5.     FOCAL LENGTH AND ƒ/NUMBER [top] 

           For gratings (or grating systems) that image as well as diffract light, or 
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disperse light that is not collimated, a focal length may be defined. If the beam 
diffracted from a grating of a given wavelength λ and order m converges to a 
focus, then the distance between this focus and the grating center is the focal 
length r'(λ). [If the diffracted light is collimated, and then focused by a mirror 
or lens, the focal length is that of the refocusing mirror or lens and not the 
distance to the grating.] If the diffracted light is diverging, the focal length may 
still be defined, although by convention we take it to be negative (indicating 
that there is a virtual image behind the grating). Similarly, the incident light 
may diverge toward the grating (so we define the incidence or entrance slit 
distance r(λ) > 0) or it may converge toward a focus behind the grating (for 
which r(λ) < 0). Usually gratings are used in configurations for which r does 
not depend on wavelength (though in such cases r' usually depends on λ). 

           In Figure 2-7, a typical concave grating configuration is shown; the 
monochromatic incident light (of wavelength λ) diverges from a point source at 
A and is diffracted toward B. Points A and B are distances r and r', 
respectively, from the grating center O. In this figure, both r and r' are positive. 

           Calling the width (or diameter) of the grating (in the dispersion plane) W 
allows the input and output ƒ/numbers (also called focal ratios) to be defined: 

ƒ/noINPUT = ,   ƒ/noOUTPUT =  (2-20) 

Usually the input ƒ/number is matched to the ƒ/number of the light cone 
leaving the entrance optics (e.g., an entrance slit or fiber) in order to use as 
much of the grating surface for diffraction as possible. This increases the 
amount of diffracted energy while not overfilling the grating (which would 
generally contribute to stray light). 

           For oblique incidence or diffraction, Eqs. (2-20) are often modified by 
replacing W with the projected width of the grating: 

ƒ/noINPUT = ,   ƒ/noOUTPUT =  (2-21) 

These equations account for the reduced width of the grating as seen by the 
entrance and exit slits; moving toward oblique angles (i.e., increasing |α | or |β 

http://www.gratinglab.com/library/handbook5/chapter2.asp (17 of 23) [6/15/02 6:27:52 PM]



Diffraction Grating Handbook - Chapter 1

|) decreases the projected width and therefore increases the ƒ/number. 

 

Figure 2-7.   Geometry for focal distances and focal ratios (ƒ/numbers). GN is 
the grating normal (perpendicular to the grating at its center, O), W is the width 
of the grating (its dimension perpendicular to the groove direction, which is out 
of the page), and A and B are the source and image points, respectively. 

           The focal length is an important parameter in the design and 
specification of grating spectrometers, since it governs the overall size of the 
optical system (unless folding mirrors are used). The ratio between the input 
and output focal lengths determines the projected width of the entrance slit that 
must be matched to the exit slit width or detector element size. The ƒ/number is 
also important, as it is generally true that spectral aberrations decrease as 
ƒ/number increases. Unfortunately, increasing the input ƒ/number results in the 
grating subtending a smaller solid angle as seen from the entrance slit; this will 
reduce the amount of light energy the grating collects and consequently reduce 
the intensity of the diffracted beams. This trade-off prohibits the formulation of 
a simple rule for choosing the input and output ƒ/numbers, so sophisticated 
design procedures have been developed to minimize aberrations while 
maximizing collected energy. See Chapter 7 for a discussion of the imaging 
properties and Chapter 8 for a description of the efficiency characteristics of 
grating systems. 
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2.6.   ANAMORPHIC MAGNIFICATION [top] 

           For a given wavelength λ, we may consider the ratio of the width of a 
collimated diffracted beam to that of a collimated incident beam to be a 
measure of the effective magnification of the grating (see Figure 2-8). From 
this figure we see that this ratio is 

 
(2-22) 

Since α and β depend on λ through the grating equation (2-1), this 
magnification will vary with wavelength. The ratio b/a is called the 
anamorphic magnification; for a given wavelength λ, it depends only on the 
angular configuration in which the grating is used. 

 

Figure 2-8.   Anamorphic magnification. The ratio b/a of the beam widths 
equals the anamorphic magnification. 
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           The magnification of an object not located at infinity (so that the 
incident rays are not collimated) is discussed in Chapter 8. 

2.7.   FREE SPECTRAL RANGE [top] 

           For a given set of incidence and diffraction angles, the grating equation 
is satisfied for a different wavelength for each integral diffraction order m. 
Thus light of several wavelengths (each in a different order) will be diffracted 
along the same direction: light of wavelength λ in order m is diffracted along 
the same direction as light of wavelength λ/2 in order 2m, etc. 

           The range of wavelengths in a given spectral order for which 
superposition of light from adjacent orders does not occur is called the free 
spectral range Fλ. It can be calculated directly from its definition: in order m, 
the wavelength of light that diffracts along the direction of λ1 in order m+1 is 

λ1 + ∆λ, where 

λ1 + ∆λ = λ1 (2-23) 

from which 

Fλ = ∆λ = . (2-24) 

           The concept of free spectral range applies to all gratings capable of 
operation in more than one diffraction order, but it is particularly important in 
the case of echelles, because they operate in high orders with correspondingly 
short free spectral ranges. 

           Free spectral range and order sorting are intimately related, since grating 
systems with greater free spectral ranges may have less need for filters (or cross-
dispersers) that absorb or diffract light from overlapping spectral orders. This is 
one reason why first-order applications are widely popular. 

http://www.gratinglab.com/library/handbook5/chapter2.asp (20 of 23) [6/15/02 6:27:52 PM]

http://www.gratinglab.com/library/handbook5/chapter8.asp


Diffraction Grating Handbook - Chapter 1

2.8. 
    

ENERGY DISTRIBUTION (GRATING EFFICIENCY) 
[top] 

           The distribution of incident field power of a given wavelength diffracted 
by a grating into the various spectral order depends on many parameters, 
including the power and polarization of the incident light, the angles of 
incidence and diffraction, the (complex) index of refraction of the metal (or 
glass or dielectric) of the grating, and the groove spacing. A complete treatment 
of grating efficiency requires the vector formalism of electromagnetic theory 
(i.e., Maxwell's equations), which has been studied in detail over the past few 
decades. While the theory does not yield conclusions easily, certain rules of 
thumb can be useful in making approximate predictions. The topic of grating 
efficiency is addressed more fully in Chapter 9. 

           Recently, computer codes have become commercially available that 
accurately predict grating efficiency for a wide variety of groove profiles over 
wide spectral ranges. 

2.9.   SCATTERED AND STRAY LIGHT [top] 

           All light that reaches the image plane from anywhere other than the 
grating, by any means other than diffraction as governed by Eq. (2-1), is called 
stray light. All components in an optical system contribute stray light, as will 
any baffles, apertures, and partially reflecting surfaces. Unwanted light 
originating from the grating itself is often called scattered light. 

2.9.1.   Scattered light 

           Of the radiation incident on the surface of a diffraction grating, some 
will be diffracted according to Eq. (2-1) and some will be absorbed by the 
grating itself. The remainder is unwanted energy called scattered light. 
Scattered light may arise from several factors, including imperfections in the 
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shape and spacing of the grooves and roughness on the surface of the grating. 

           Diffuse scattered light is scattered into the hemisphere in front of the 
grating surface. It is due mainly to grating surface microroughness. It is the 
primary cause of scattered light in interference gratings. For monochromatic 
light incident on a grating, the intensity of diffuse scattered light is higher near 
the diffraction orders for that wavelength than between the diffracted orders. 
M.C. Hutley (National Physical Laboratory) found this intensity to be 

proportional to slit area, and probably proportional to 1/λ4. 

           In-plane scatter is unwanted energy in the dispersion plane. Due 
primarily to random variations in the groove spacing or groove depth, its 
intensity is directly proportional to slit area and probably inversely proportional 
to the square of the wavelength. 

           Ghosts are caused by periodic errors in the groove spacing. 
Characteristic of ruled gratings, interference gratings are free from ghosts when 
properly made. 

2.9.2.   Instrumental stray light 

           Stray light for which the grating cannot be blamed is called instrumental 
stray light. Most important is the ever-present light reflected into the zero 
order, which must be trapped so that it does not contribute to stray light. Light 
diffracted into other orders may also find its way to the detector and therefore 
constitute stray light. Diffraction from sharp edges and apertures causes light to 
propagate along directions other than those predicted by the grating equation. 
Reflection from instrument chamber walls and mounting hardware also 
contributes to the redirection of unwanted energy toward the image plane; 
generally, a smaller instrument chamber presents more significant stray light 
problems. Light incident on detector elements may be reflected back toward the 
grating and rediffracted; since the angle of incidence may now be different, 
light rediffracted along a given direction will generally be of a different 
wavelength than the light that originally diffracted along the same direction. 
Baffles, which trap diffracted energy outside the spectrum of interest, are 
intended to reduce the amount of light in other orders and in other wavelengths, 
but they may themselves diffract and reflect this light so that it ultimately 

http://www.gratinglab.com/library/handbook5/chapter2.asp (22 of 23) [6/15/02 6:27:52 PM]



Diffraction Grating Handbook - Chapter 1

reaches the image plane. 

2.10.   SIGNAL-TO-NOISE RATIO (SNR) [top] 

           The signal-to-noise ratio (SNR) is the ratio of diffracted energy to 
unwanted light energy. While we might be tempted to think that increasing 
diffraction efficiency will increase SNR, stray light usually plays the limiting 
role in the achievable SNR for a grating system. 

           Replicated gratings from ruled master gratings generally have quite high 
SNRs, though holographic gratings sometimes have even higher SNRs, since 
they have no ghosts due to periodic errors in groove location and lower 
interorder stray light. 

           As SNR is an instrument function, not a property of the grating only, 
there exist no clear rules of thumb regarding what type of grating will provide 
higher SNR. 

PREVIOUS CHAPTER    NEXT CHAPTER 
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6.     PLANE GRATINGS AND THEIR 
MOUNTS
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6.1.   GRATING MOUNT TERMINOLOGY [top] 

           The auxiliary collimating and focusing optics that modify the wavefronts 
incident on and diffracted by a grating, as well as the angular configuration in 
which it is used, is called its mount. Grating mounts are a class of spectrometer, 
a term which usually refers to any spectroscopic instrument, regardless of 
whether it scans wavelengths individually or entire spectra simultaneously, or 
whether it employs a prism or grating. For this discussion we consider grating 
spectrometers only. 

           A monochromator is a spectrometer that images a single wavelength or 
wavelength band at a time onto an exit slit; the spectrum is scanned by the 
relative motion of the entrance (and/or exit) optics (usually slits) with respect to 
the grating. A spectrograph is a spectrometer that images a range of 
wavelengths simultaneously, either onto photographic film or a series of 
detector elements, or through several exit slits (sometimes called a 
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polychromator). The defining characteristic of a spectrograph is that an entire 
section of the spectrum is recorded at once. 

6.2.   PLANE GRATING MONOCHROMATOR MOUNTS 
[top] 

           A plane grating is one whose surface is flat. Plane gratings are normally 
used in collimated incident light, which is dispersed by wavelength but do not 
focused. These mounts require auxiliary optics, such as lenses or mirrors, to 
collect and focus the energy. Some simplified plane grating mounts illuminate 
the grating with converging light, though the focal properties of the system will 
then depend on wavelength. For simplicity, only plane reflection grating 
mounts are discussed below, though each mount may have a transmission 
grating analogue. 

6.2.1.   The Czerny-Turner Monochromator 

           This design involves a classical plane grating illuminated by collimated 
light. The incident light is usually diverging from a source or slit, and 
collimated by a concave mirror (the collimator), and the diffracted light is 
focused by a second concave mirror (the camera); see Figure 6-1. Ideally, since 
the grating is planar and classical, and used in collimated incident light, no 
aberrations should be introduced into the diffracted wavefronts. In practice, 
aberrations are contributed by the off-axis use of the concave spherical mirrors. 

 

http://www.gratinglab.com/library/handbook5/chapter6.asp (2 of 8) [6/15/02 6:29:35 PM]



Diffraction Grating Handbook - Chapter 6

Figure 6-1.   The Czerny-Turner mount. The plane grating provides dispersion 
and the concave mirrors provide focusing. 

           Like all monochromator mounts, the wavelengths are imaged 
individually. The spectrum is scanned by rotating the grating; this moves the 
grating normal relative to the incident and diffracted beams, which (by Eq. (2-
1)) changes the wavelength diffracted toward the camera. For a Czerny-Turner 
monochromator, light incident and diffracted by the grating is collimated, so 
the spectrum remains at focus at the exit slit for each wavelength, since only 
the grating can introduce wavelength-dependent focusing properties. 

           Aberrations caused by the auxiliary mirrors include astigmatism and 
spherical aberration (each of which is contributed additively by the mirrors); as 
with all concave mirror geometries, astigmatism increases as the angle of 
reflection increases. Coma, though generally present, can be eliminated at one 
wavelength through proper choice of the angles of reflection at the mirrors; due 
to the anamorphic (wavelength-dependent) tangential magnification of the 
grating, the images of the other wavelengths experience subsidiary coma 
(which becomes troublesome only in special systems). 

6.2.2.   The Ebert-Fastie Monochromator 

           This design is a special case of a Czerny-Turner mount in which a single 
relatively large concave mirror serves as both the collimator and the camera 
(Fig. 6-2). Its use is limited, since stray light and aberrations are difficult to 
control. 
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Figure 6-2.   The Ebert-Fastie mount. A single concave mirror replaces the two 
concave mirrors found in Czerny-Turner mounts. 

6.2.3.   The Monk-Gillieson Monochromator 

           In this mount (see Figure 6-3), a plane grating is illuminated by 
converging light (r < 0). Usually light diverging from an entrance slit (or fiber) 
is rendered converging by off-axis reflection from a concave mirror (which 
introduces aberrations, so the light incident on the grating is not composed of 
perfectly spherical converging wavefronts). The grating diffracts the light, 
which converges toward the exit slit; the spectrum is scanned by rotating the 
grating to bring different wavelengths into focus at or near the exit slit. Often 
the angles of reflection (from the primary mirror), incidence and diffraction are 
small (measured from the appropriate surface normals), which keeps 
aberrations (especially off-axis astigmatism) to a minimum. 
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Figure 6-3.   The Monk-Gillieson mount. A plane grating is used in converging 
light. 

           Since the incident light is not collimated, the grating introduces 
wavelength-dependent aberrations into the diffracted wavefronts (see Chapter 
7). Consequently the spectrum cannot remain in focus at a fixed exit slit when 
the grating is rotated (unless this rotation is about an axis displaced from the 
central groove of the grating, as pointed out by Schroeder5). For low-resolution 
applications, the Monk-Gillieson mount enjoys a certain amount of popularity, 
since it represents the simplest and least expensive spectrometric system 
imaginable. 

6.2.4.   The Littrow Mount 

           A grating used in the Littrow or autocollimating configuration diffracts 
light of wavelength λ back along the incident light direction (Fig. 6-4). In a 
Littrow monochromator, the spectrum is scanned by rotating the grating; this 
reorients the grating normal, so the angles of incidence α and diffraction β 
change (even though α = β  for all λ). The same auxiliary optics can be used as 
both 
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Figure 6-4.   The Littrow monochromator mount. The entrance and exit slits are 
slightly above and below the dispersion plane, respectively; they are shown 
separated for clarity. 

collimator and camera, since the diffracted rays retrace the incident rays. 
Usually the entrance slit and exit slit (or image plane) will be offset slightly 
along the direction parallel to the grooves so that they do not coincide; of 
course, this will generally introduce out-of-plane aberrations. As a result, true 
Littrow monochromators are quite popular in laser tuning applications (see 
Chapter 12). 

6.2.5.   Double & Triple Monochromators 

           Two monochromator mounts used in series form a double 
monochromator. The exit slit of the first monochromator usually serves as the 
entrance slit for the second monochromator (see Figure 6-5). Stray light in a 
double 
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Figure 6-5.   A double monochromator mount. 

monochromator is much lower than in a single monochromator: it is the 
product of ratios of stray light intensity to parent line intensity for each system. 
Also, the reciprocal linear dispersion of the entire system is the sum of the 
reciprocal linear dispersions of each monochromator. 

           A triple monochromator mount consists of three monochromators in 
series. These mounts are used only when the demands to reduce stray light are 
extraordinarily severe (e.g., Raman spectroscopy). 
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9.0.   INTRODUCTION [top] 

           Efficiency and its variation with wavelength and spectral order are important characteristics 
of a diffraction grating. For a reflection grating, efficiency is defined as the energy flow (power) of 
monochromatic light diffracted into the order being measured, relative either to the energy flow of 
the incident light (absolute efficiency) or to the energy flow of specular reflection from a polished 
mirror substrate coated with the same material (relative efficiency). Efficiency is defined similarly 
for transmission gratings, except that an uncoated substrate is used in the measurement of relative 
efficiency. 

           High-efficiency gratings are desirable for several reasons. A grating with high efficiency is 
more useful than one with lower efficiency in measuring weak transition lines in optical spectra. A 
grating with high efficiency may allow the reflectivity and transmissivity specifications for the 
other components in the spectrometer to be relaxed. Moreover, higher diffracted energy may imply 
lower instrumental stray light due to other diffracted orders, as the total energy flow for a given 
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wavelength leaving the grating is conserved (being equal to the energy flow incident on it minus 
any scattering and absorption). 

           Control over the magnitude and variation of diffracted energy with wavelength is called 
blazing, and it involves the manipulation of the micro-geometry of the grating grooves. In the 1888 
edition of Encyclopædia Brittanica, Lord Rayleigh recognized that the energy flow distribution (by 
wavelength) of a diffraction grating could be altered by modifying the shape of the grating grooves. 
A few decades later, R.W. Wood showed this to be true when he ruled a grating on which he had 
controlled the groove shape, thereby producing the first deliberately blazed diffraction grating. 

           The choice of an optimal efficiency curve for a grating depends on the specific application. 
Often the desired instrumental efficiency is linear; that is, the intensity of light transformed into 
signal at the image plane must be constant across the spectrum. To approach this as closely as 
possible, the spectral emissivity of the light source and the spectral response of the detector should 
be considered, from which the desired grating efficiency curve can be derived. Usually this 
requires peak grating efficiency in the region of the spectrum where the detectors are least 
sensitive; for example, a visible-light spectrometer using a silicon detector would be much less 
sensitive in the blue than in the red, suggesting that the grating itself be blazed to yield a peak 
efficiency in the blue. 

           A typical efficiency curve (a plot of absolute or relative diffracted efficiency vs. diffracted 
wavelength λ) is shown in Figure 9-1. Usually such a curve shows 

 

Figure 9-1.   A typical (simplified) efficiency curve. This curve shows the efficiency E of a grating 
in a given spectral order m, measured vs. the diffracted wavelength λ. The peak efficiency EP 

occurs at the blaze wavelength λB. 

a single maximum, at the peak wavelength (or blaze wavelength) λB. This curve corresponds to a 
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given diffraction order m; the peak of the curve decreases in magnitude and shifts toward shorter 
wavelengths as |m| increases. The efficiency curve also depends on the angles of use (i.e., the 
angles of incidence and diffraction). Moreover, the curve depends on the groove spacing d (more 
appropriately, on the dimensionless parameter λ/d) and the material with which the grating is 
coated (for reflection gratings) or made (for transmission gratings). 

           In many instances the diffracted power depends on the polarization of the incident light. P-
plane or TE polarized light is polarized parallel to the grating grooves, while S-plane or TM 
polarized light is polarized perpendicular to the grating grooves (see Figure 9-2). For completely 
unpolarized incident light, the efficiency curve will be exactly halfway between the P and S 
efficiency curves. 

           Usually light from a single spectral order m is used in a spectroscopic instrument, so a 
grating with ideal efficiency characteristics would diffract all of the power incident on it into this 
order (for the wavelength range considered). In practice, this is never true: the distribution of the 
power by the grating depends in a complicated way on the groove spacing and profile, the spectral 
order, the wavelength, and the grating material. 

 

Figure 9-2.   S and P polarizations The P polarization components of the incident and diffracted 
beams are polarized parallel to the grating grooves; the S components are polarized perpendicular 
to the P components. Both the S and P components are perpendicular to the propagation directions. 

           Anomalies are locations on an efficiency curve (efficiency plotted vs. wavelength) at which 
the efficiency changes abruptly. First observed by R. W. Wood, these sharp peaks and troughs in 
an efficiency curve are sometimes referred to as Wood's anomalies. Anomalies are rarely observed 
in P polarization efficiency curves, but they are often seen in S polarization curves (see Figure 9-3). 
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Figure 9-3.   Anomalies in the first order for a typical grating with triangular grooves. The P 
efficiency curve (thick line) is smooth, but anomalies are evident in the S curve (thin line). The 
passing-off locations are identified by their spectral order at the top of the figure. 

           Lord Rayleigh predicted the locations (in the spectrum) where such anomalies would be 
found: he suggested that anomalies occur when light of a given wavelength λ' and spectral order m' 
is diffracted at |β | = 90° from the grating normal (i.e., it passes over the grating horizon). For 
wavelengths λ < λ', |β | < 90°, so diffraction is possible in order m' (and all lower orders), but for λ 
> λ' no diffraction is possible in order m' (but it is still possible in lower orders). Thus there is a 
discontinuity in the diffracted power vs. λ in order m' at wavelength λ, and the power that would 
diffract into this order for λ > λ' is redistributed among the other spectral orders. This causes abrupt 
changes in the power diffracted into these other orders. 

           The Rayleigh explanation does not cover the extension towards longer wavelengths, where 
anomalies are due to resonance effects. The position of an anomaly depends to some degree on the 
optical constants of the reflecting material of the grating surface. 

9.1.   GRATING EFFICIENCY AND GROOVE SHAPE [top] 

           The maximum efficiency of a grating is typically obtained with a simple smooth triangular 
groove profile, as shown in Figure 9-4, when the groove (or 
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Figure 9-4.   Triangular groove geometry. The angles of incidence α and diffraction β are shown in 
relation to the facet angle θ for the blaze condition. GN is the grating normal and FN is the facet 
normal. The facet normal bisects the angle between the incident and diffracted rays. The blaze 
arrow (shown) points from GN to FN. 

blaze) angle θ is such that the specular reflection angle for the angle of incidence is equal (in 
magnitude and opposite in sign) to the angle of diffraction. Ideally, the groove facet should be flat 
with smooth straight edges, and be generally free from irregularities on a scale comparable to the 
small fraction (< 1/10) of the wavelength of light being diffracted. 

           Fraunhofer was well aware that the distribution of power among the various diffraction 
orders depended on the shape of the individual grating grooves. Wood, many decades later, was the 
first to achieve a degree of control over the groove shape, thereby concentrating spectral energy 
into one angular region. Wood's gratings were seen to light up, or 'blaze', when viewed at the 
correct angle. 

9.2. 
    

EFFICIENCY CHARACTERISTICS FOR TRIANGULAR-GROOVE 
GRATINGS [top] 

           Gratings with triangular grooves can be generated by mechanical ruling, or by blazing 
sinusoidal groove profiles by ion etching. The efficiency behavior of gratings with triangular 
groove profiles (i.e., blazed gratings) may be divided into six families, depending on the blaze 
angle:9 
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family blaze angle

very low blaze angle θ < 5°

low blaze angle 5° < θ < 10°

medium blaze angle 10° < θ < 18°

special low anomaly 18° < θ < 22°

high blaze angle 22° < θ < 38°

very higb blaze angle θ > 38°

           Very low blaze angle gratings (θ < 5°) exhibit efficiency behavior that is almost perfectly 
scalar; that is, polarization effects are virtually nonexistent. In this region, a simple picture of 
blazing is applicable, in which each groove facet can be considered a simple flat mirror. The 
diffracted efficiency is greatest for that wavelength that is diffracted by the grating in the same 
direction as it would be reflected by the facets. This efficiency peak occurs at λ/d = 2 sinθ 
(provided the angle between the incident and diffracted beams is not excessive). At λB/2, where λB 

is the blaze wavelength, the diffracted efficiency will be virtually zero (Figure 9-5) since for this 
wavelength the second-order efficiency will be at its peak. Fifty-percent absolute efficiency is 
obtained from roughly 0.67λB to 1.8λB. 

 

Figure 9-5.   First-order theoretical efficiency curve: 2° blaze angle and Littrow mounting (2K = 
0). Solid curve, S-plane; dashed curve, P-plane. 

http://www.gratinglab.com/library/handbook5/chapter9.asp (6 of 22) [6/15/02 6:31:06 PM]



Diffraction Grating Handbook - Chapter 9

           For low blaze angle gratings (5° < θ < 10°), polarization effects will occur within their 
usable range (see Figure 9-6). In particular, a strong anomaly is seen near λ/d = 2/3. Also observed 
is the theoretical S-plane theoretical efficiency peak of 100% exactly at the nominal blaze, 
combined with a P-plane peak that is lower and at a shorter wavelength. It is characteristic of all P-
plane curves to decrease monotonically from their peak toward zero as λ/d → 2, beyond which 
diffraction is not possible (see Eq. (2-1)). Even though the wavelength band over which 50% 
efficiency is attained in unpolarized light is from 0.67λB to 1.8λB, gratings of this type (with 1200 

groove per millimeter, for example) are widely used, because they most effectively cover the 
wavelength range between 200 and 800 nm (in which most ultraviolet-visible (U5-Vis) 
spectrophotometers operate). 

 

Figure 9-6.   Same as Figure 9-5, except 9° blaze angle. 

           A typical efficiency curve for a medium blaze angle grating (10° < θ < 18°) is shown in 
Figure 9-7. As a reminder that for unpolarized light the efficiency is simply the arithmetic average 
of the S- and P-plane efficiencies, such a curve is shown in this figure only, to keep the other 
presentations simple. 

           The low-anomaly blaze angle region (18° < θ < 22°) is a special one. Due to the fact that the 
strong anomaly that corresponds to the -1 and +2 orders passing off (λ/d = 2/3) occurs just where 
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these gratings have their peak efficiency, this anomaly ends up being severely suppressed (Figure 9-
8). This property is quite well maintained over a large range of angular deviations (the angle 
between the incident and diffracted beams), namely up to 25°, but it depends on the grooves having 
an apex angle near 90°. The relatively low P-plane efficiency of this family of blazed gratings 
holds the 50% efficiency band from 0.7λB to 1.9λB. 

 

Figure 9-7.   Same as Figure 9-5, except 14° blaze angle. The curve for unpolarized light (marked 
U) is also shown; it lies exactly halfway between the S and P curves. 
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Figure 9-8.   Same as Figure 9-5, except 19° blaze angle. 

           High blaze angle gratings (22° < θ < 38°) are widely used, despite the presence of a very 
strong anomaly in their efficiency curves (Figure 9-9). For unpolarized light, the effect of this 
anomaly is greatly attenuated by its coincidence with the P-plane peak. Another method for 
reducing anomalies for such gratings is to use them at angular deviations above 45°, although this 
involves some sacrifice in efficiency and wavelength range. The 50% efficiency is theoretically 
attainable in the Littrow configuration from 0.6λB to 2λB, but in practice the long-wavelength end 

corresponds to such an extreme angle of diffraction that instrumental difficulties arise. 
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Figure 9-9.   Same as Figure 9-5, except 26° 45' blaze angle. 

           Theoretically, all gratings have a second high-efficiency peak in the S-plane at angles 
corresponding to the complement of the blaze angle (90° – θ ); in practice, this peak is fully 
developed only on steeper groove-angle gratings, and then only when the steep face of the groove 
is not too badly deformed by the lateral plastic flow inherent in the diamond tool burnishing 
process. The strong polarization observed at all high angles of diffraction limits the useable 
efficiency in unpolarized light, but it makes such gratings very useful for tuning lasers, especially 
molecular lasers. The groove spacing may be chosen so that the lasing band corresponds to either 
the first or second of the S-plane high-efficiency plateaus. The latter will give at least twice the 
dispersion (in fact the maximum possible), as it is proportional to the tangent of the angle of 
diffraction under the Littrow conditions typical of laser tuning. 

           Very-high blaze angle gratings (θ > 38°) are rarely used in the first order; their efficiency 
curves are interesting only because of the high P-plane values (Figure 9-10). In high orders they are 
often used in tuning dye lasers, where high dispersion is important and where tuning through 
several orders can cover a wide spectral region with good efficiency. Efficiency curves for this 
family of gratings are shown for two configurations. With an angular deviation of 8°, the efficiency 
does not differ too much from Littrow; when this angle is 45°, the deep groove results in sharp 
reductions in efficiency. Some of the missing energy shows up in the zeroth order, but some of it 
can be absorbed by the grating. 
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Figure 9-10.   Same as Figure 9-5, except 46° blaze angle and 8° and 45° between the incident and 
diffracted beams (shown as light and heavy lines, respectively). 

9.3. 
    

EFFICIENCY CHARACTERISTICS FOR SINUSOIDAL-GROOVE 
GRATINGS [top] 

           A sinusoidal-groove grating can be obtained by the interferometric (holographic) recording 
techniques described in Chapter 4. Sinusoidal gratings have a somewhat different diffracted 
efficiency behavior than do triangular-groove gratings, and are treated separately. 

           It is convenient to consider five domains of sinusoidal-groove gratings, with progressively 
increasing modulation µ, where 

µ =  (9-1) 

h is the groove height and d is the groove spacing:10 
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domain modulation

very low µ < 0.05

low 0.05 < µ < 0.15

medium 0.15 < µ < 0.25

high 0.25 < µ < 0.4

very higb µ > 0.4

           Very low modulation gratings (µ < 0.05) operate in the scalar domain, where the theoretical 
efficiency peak for sinusoidal grooves is only 33.8% (Figure 9-11). This figure may be readily 
scaled, and specification is a simple matter as soon as it becomes clear that the peak wavelength 
always occurs at λB = 3.4h = 3.4µd. A blazed grating with an equivalent peak wavelength will 

require a groove depth 1.7 times greater. 

           Low modulation gratings (0.05 < µ < 0.15) are quite useful in that they have a low but rather 
flat efficiency over a λ/d band from 0.35 to 1.4 (Figure 9-12). This figure includes not only the 
infinite conductivity values shown on all previous ones, but includes the effects of finite 
conductivity by adding the curves for an 1800 g/mm aluminum surface. The most significant effect 
is in the behavior of the anomaly, which is the typical result of the finite conductivity of real 
metals. 
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Figure 9-11.   First-order theoretical efficiency curve: sinusoidal grating, µ = h/d = 0.05 and 
Littrow mounting (2K = 0) 

           Figure 9-13 is a good example of a medium modulation grating (0.15 < µ < 0.25). It 
demonstrates an important aspect of such sinusoidal gratings, namely that reasonable efficiency 
requirements confine first-order applications to values of λ/d > 0.45, which eliminates them from 
systems with wide wavelength ranges. Over this restricted region, however, efficiencies are 
comparable to those of triangular grooves, including the high degree of polarization. This figure 
also demonstrates how a departure from Littrow to an angular deviation of 8° splits the anomaly 
into two branches, corresponding to the new locations of the –1 and +2 order passing-off 
conditions. 

 

Figure 9-12.   First-order theoretical efficiency curve: sinusoidal grating, aluminum coating, 1800 
grooves per millimeter, µ = 0.14 and Littrow mounting. Solid curves, S-plane; dashed curves, P-
plane. For reference, the curves for a perfectly conducting surface are shown as well (light curves). 
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Figure 9-13.   Same as Figure 9-12, except µ = 0.22 and 8° between incident and diffracted beams 
(2K = 8°). 

           High modulation gratings (0.25 < µ < 0.40), such as shown in Figure 9-14, have the 
maximum useful first-order efficiencies of sinusoidal-groove gratings. Provided they are restricted 
to the domain in which higher orders diffract (i.e., λ/d > 0.65), their efficiencies are very similar to 
those of triangular-groove gratings having similar groove depths (i.e., 26° < θ < 35°). 
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Figure 9-14.   Same as Figure 9-12, except µ = 0.36. 

           Very-high modulation gratings (µ > 0.40), in common with equivalent triangular-groove 
gratings, have little application in the first order due to their relatively low efficiencies except 
perhaps over narrow wavelengths ranges and for grazing incidence applications. 

9.4.   THE EFFECTS OF FINITE CONDUCTIVITY [top] 

           For metal-coated reflection gratings, the finite conductivity of the metal is of little 
importance for wavelengths of diffraction above 4 µm, but the complex nature of the dielectric 
constant and the index of refraction begin to effect efficiency behavior noticeably for wavelengths 
below 1 µm, and progressively more so as the wavelength decreases. In the P-plane, their effect is a 
simple reduction in efficiency, in direct proportion to the reflectance. In the S-plane, the effect is 
more complicated, especially for deeper grooves and shorter wavelengths. 

           Figure 9-15 shows the first-order efficiency curve for a widely-used grating: 1200 g/mm, 
triangular grooves, medium blaze angle (θ = 10°), coated with aluminum and used with an angular 
deviation of 8°. The finite conductivity of the metal cause a reduction in efficiency; also, severe 
modification of the anomaly is apparent. It is typical that the anomaly is broadened and shifted 
toward a longer wavelength with respect to the infinite conductivity curve. Even for an angular 
deviation as small as 8°, the single anomaly in the figure is separated into a double anomaly. 
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           For sinusoidal gratings, the situation is shown in Figures 9-12 and 9-14. Figure 9-13 is 
interesting in that it clearly shows a series of new anomalies that are traceable to the role of 
aluminum. 

           With scalar domain gratings (either θ < 5° or µ < 0.10), the role of finite conductivity is 
simply to reduce the efficiency by the ratio of surface reflectance. 

 

Figure 9-15.   First-order theoretical efficiency curve: triangular-groove grating, aluminum 
coating, 1200 grooves per millimeter, 10° blaze angle and 2K = 8°. Solid curves, S-plane; dashed 
curves, P-plane. For reference, the curves for a perfectly conducting surface are shown as well 
(light curves). 

9.5.   DISTRIBUTION OF ENERGY BY DIFFRACTION ORDER [top] 

           Gratings are most often used in higher diffraction orders to extend the spectral range of a 
single grating to shorter wavelengths than can be covered in lower orders. For blazed gratings, the 
second-order peak will be at one-half the wavelength of the nominal first-order peak, the third-
order peak at one-third, etc. Since the ratio λ/d will be progressively smaller as |m| increases, 
polarization effects will become less significant; anomalies are usually negligible in diffraction 
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orders for which |m| > 2. Figures 9-16 and -17 show the second- and third-order theoretical Littrow 
efficiencies, respectively, for a blazed grating with θ = 26°45'; they are plotted as a function of 
mλ/d in order to demonstrate the proper angular ranges of use. These curves should be compared 
with Figure 9-9 for corresponding first-order behavior. 

 

Figure 9-16.   Second-order theoretical efficiency curve: 26° 45' blaze angle and Littrow mounting. 
Solid curve, S-plane; dashed curve, P-plane. 

           For gratings with sinusoidally shaped grooves, higher orders can also be used, but if 
efficiency is important, the choice is likely to be a finer pitch first-order grating instead. When 
groove modulations are very low (so that the grating is used in the scalar domain), the second-order 
efficiency curve looks similar to Figure 9-18, except that the theoretical peak value is about 23% 
(instead of 33.8%) and occurs at a wavelength 0.6 times that of the first-order peak, which 
corresponds to 2.05h (instead of 3.41h), where h is the groove depth. Successive higher-order 
curves for gratings with sinusoidal grooves are not only closer together, but drop off more sharply 
with order than for gratings with triangular grooves. For sufficiently deeply modulated sinusoidal 
grooves, the second order can often be used effectively, though (as Figure 9-18 shows) polarization 
effects are relatively strong. The corresponding third-order theoretical curve is shown in Figure 9-
19. 
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Figure 9-17.   Same as Figure 9-16, except third order. 

 

Figure 9-18.   Second-order theoretical efficiency curve: sinusoidal grating, µ = 0.36 and Littrow 
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mounting. Solid curve, S-plane; dashed curve, P-plane. 

 

Figure 9-19.   Same as Figure 9-18, except third order. 

9.6.   USEFUL WAVELENGTH RANGE [top] 

           A grating is of little use if high-grade imaging is not accompanied by sufficient diffraction 
efficiency. The laws governing diffracted efficiency are quite complicated, but a very rough rule of 
thumb can be used to estimate the useful range of wavelengths available on either side of the blaze 
(peak) wavelength for triangular-groove gratings. 

           For coarse gratings (for which d = 2λ), in the first diffraction order the efficiency is roughly 
half its maximum (which is at λB) at 2λB/3 and 3λB/2. Curves of similar shape are obtained in the 

second and third orders, but the efficiencies are typically 20% less everywhere, as compared with 
the first order. 

           Grating of fine pitch (d ≈ λ) have a somewhat lower peak efficiency than do coarse gratings, 
though the useful wavelength range is greater. 
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9.7.   BLAZING OF RULED TRANSMISSION GRATINGS [top] 

           Because they have no metallic overcoating, triangular-groove transmission gratings display 
far simpler efficiency characteristics than do their ruled counterparts. In particular, transmission 
gratings have efficiency curves almost completely free of polarization effects. 

           The peak wavelength generally occurs when the direction of refraction of the incident beam 
through a groove (thought of as a small prism) equals the direction dictated by the grating equation. 
[This is in direct analogy with the model of reflection grating blazing in that the grooves are 
thought of as small mirrors.] Due to the index of refraction of the grating, though, the groove angle 
exceeds the blaze angle for a transmission grating. 

9.8.   BLAZING OF HOLOGRAPHIC REFLECTION GRATINGS [top] 

           Although holographic gratings generally do not have the triangular groove profile found in 
ruled gratings, holographic gratings may still exhibit blazing characteristics (see, for example, 
Figure 9-18). For this reason it is not correct to say that all blazed gratings have triangular profiles, 
or that all blazed gratings are ruled gratings - blazing refers to high diffraction efficiency, 
regardless of the profile of the grooves or the method used to generate them. 

           This being said, there are some cases in which it would be preferable for a holographic 
grating to have a triangular groove profile rather than a sinusoidal profile. A useful technique for 
rendering sinusoidal groove profiles more nearly triangular is ion etching. By bombarding a surface 
with energetic ions, the material can be removed (etched) by an amount per unit time dependent on 
the angle between the beam and the local surface normal. The etching of a sinusoidal profile by an 
ion beam provides a continuously varying angle between the ion beam and the surface normal, 
which preferentially removes material at some parts of the profile while leaving other parts hardly 
etched. The surface evolves toward a triangular groove profile as the ions bombard it. 

9.9.   OVERCOATING OF REFLECTION GRATINGS [top] 

           All standard reflection gratings are furnished with an aluminum (Al) reflecting surface. 
While no other metal has more general application, there are a number of special situations where 
alternative surfaces or coatings are recommended. 

           The metallic coating on a reflection grating is evaporated onto the substrate. This produces a 
surface whose reflectivity is higher than that of the same metal electroplated onto the grating 
surface. The thickness of the metallic layer is chosen to enhance the diffraction efficiency 
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throughout the spectral region of interest. 

           The reflectivity of aluminum drops rather sharply for wavelengths below 170 nm. While 
freshly deposited, fast-fired pure aluminum in high vacuum maintains its reflectivity to 
wavelengths shorter than 100 nm, the thin layer of oxide normally present absorbs wavelengths 
below about 170 nm. 

           Fortunately, a method borrowed from mirror technology makes it possible to preserve the 
reflectivity of aluminum to shorter wavelengths. The process involves overcoating the grating with 
a thin layer of fast-fired aluminum, which is followed immediately by a coating of magnesium 
fluoride (MgF2) approximately 25 nm thick; the grating is kept at room temperature for both 

coatings. The main purpose of the MgF2 coating is to protect the aluminum from oxidation. The 

advantage of this coating is especially marked in the region between 120 and 170 nm. While 
reflectivity drops off sharply below this region, it remains higher than that of gold and comparable 
to that of platinum, the most commonly used alternative materials, down to 70 nm. 

           On an experimental basis, the use of lithium fluoride (LiF) instead of MgF2 has proved 

effective in maintaining relatively high reflectivity in the 100 to 110 nm region. Unfortunately, a 
LiF film deteriorates unless maintained in a low humidity environment, which has curtailed its use, 
though it can be protected by a very thin layer of MgF2. 

           Gratings coated with gold (Au) and platinum (Pt) have been used for some time. Gold 
gratings have the great advantage that they can be replicated directly from either gold or aluminum 
master gratings, and are therefore most likely to maintain their groove profiles. 

           Overcoating gratings so that their surfaces are coated with two layers of different metals 
sometimes leads to a change in diffraction efficiency over time. Hunter et al.11 have found the 
cause of this change to be intermetallic diffusion. For example, they measured a drastic decrease 
(over time) in efficiency at 122 nm for gratings coated in Au and then overcoated in Al + MgF2; 

this decrease was attributed to the formation of intermetallic compounds, primarily AuAl2 and 

Au2Al. Placing a suitable dielectric layer such as SiO between the two metallic layers prevents this 

diffusion. 

           As mentioned elsewhere, fingerprints are a danger to aluminized optics. It is possible to 
overcoat such optics, both gratings and mirrors, with dielectrics like MgF2, to prevent finger acids 

from attacking the aluminum. These MgF2 coatings cannot be baked, as is customary for glass 

optics, and therefore must not be cleaned with water. Spectrographic-grade organic solvents are the 
only recommended cleaning agents, and they should be used sparingly and with care. 

           Multilayer dielectric overcoatings, which are so useful in enhancing plane mirror surfaces, 
are of little value on a typical diffraction grating used in the visible and infrared spectra, as these 
coatings lead to complex guided wave effects that are rarely useful. For wavelengths below 30 nm, 
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though, in which grazing angles of incidence and diffraction are common, multilayer coatings can 
enhance efficiency considerably.12 

PREVIOUS CHAPTER    NEXT CHAPTER 
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