TOWARD FLUORESCENCE NANOSCOPY

Martín Diego Bordenave

mdborde@fibertel.com.ar

Sabrina Simoncelli

sabrina.simoncelli@gmail.com

TEMAS DE NANOFÍSICA

Departamento de Física Juan José Giambiagi, FCEyN, UBA Septiembre 2010

Stefan W Hell

- INTRODUCCIÓN
- MEJORANDO LA RESOLUCIÓN
- ROMPIENDO EL LÍMITE DE DIFRACCIÓN
- STED
 - STED
 - STED + 4-Pi
- CONCLUSIONES

STED

La resolución es la mínima distancia a la cual un microscopio puede discriminar dos o más objetos de la misma clase.

MEJORANDO LA

RESOLUCIÓN

Está limitada por la difracción.

Para mejorar la resolución (disminuir Δr) se puede:

DISMINUIR la longitud de onda: Longitudes de onda menores a 350 nm. son incompatible en sistemas biológicos vivos.

AUMENTAR la apertura numérica: Limitada técnicamente a 70° aproximadamente.

ERNST ABBE (1873)

Monumento erigido en honor de Ernst Abbe mostrando su ecuación describiendo el límite de difracción. Se encuentra situada en frente al edificio de Psicología de la Universidad de Jena en Alemania.

4 /29

MICROSCOPÍA CONFOCAL Y MICROSCOPÍA DE FLUORESCENCIA MULTIFOTÓNICA

- 1. Permitieron imágenes 3D.
- 2. No mejoraron demasiado la resolución (180 nm en el plano focal y 500-800 nm en el plano óptico)

MICROSCOPÍA DE FLUORESCENCIA

- 1. Detecta moléculas únicas siempre y cuando las demás moléculas estén suficientemente lejos.
- 2. Distingue una cantidad arbitraria de moléculas mientras que no sean de la misma clase
- 1. Cómo mejorar la habilidad de la microscopía para **DISTINGUIR MOLÉCULAS ÚNICAS** en una gran densidad espacial.
- 2. Cómo producir VOLÚMENES DE FLUORESCENCIA que sean MUCHO MENORES que aquellos logrados por la microscopía Confocal o Multifotónica.

Utilizando:

- A. Luz visible.
- B. Objetivos de microscopio regulares .
- C. A temperaturas entre 18-37°C . Aplicable a CÉLULAS VIVAS.

MICROSCOPÍA 4-PI

1. Mejoró la resolución axial en un factor de hasta 7 VECES combinando la apertura de los lentes opuestas

STED

1. Cruzar la barrera de difracción se logrará utilizando una relación NO LINEAL entre la intensidad de luz y la señal medida. Se basa e la saturación de las transiciones entre dos estados moleculares.

¿Qué se podía lograr hasta 1990?

¿Cuál es la idea del *Review*?

¿Que se logró en las últimas décadas?

(a) Como resultado de la difracción, luego de enfocar un haz de luz, se forma un spot que se encuentra estirado a lo largo del eje óptico. El ángulo de enfoque de la lente no es un ángulo sólido completo de 4π . Si lo fuera, el punto focal sería esférico y la resolución lateral y axial serian iguales.

(b) Dos objetivos de microscopio son utilizados para maximizar el ángulo total.

Las ondas de luz convergentes de los objetivos de microscopio se suman por interferencia constructiva.

Esto resulta en un spot central de luz que ha reducido su tamaño en un factor de 4 a 7 veces. Pero se encuentra acompañado de dos máximos laterales de menor intensidad.

SE AUMENTÓ la Resolución AXIAL en un factor de 4 a 7 veces.

CONFOCAL PSF

4 Pi PSF

Cálculo de las PSF para un Microscopio 4Pi cambiando la apertura numérica

- A. Longitud de onda de Excitación: 488nm.
- B. Longitud de onda de Emisión: 520 nm.

RESOLUCIÓN

EL RETO DE LOS LÓBULOS SECUNDARIOS

Los órdenes de interferencia a distancia $\lambda/2$ del máximo principal producen imágenes fantasma o satélites que se deben remover por deconvolución. La deconvolución es posible si la intensidad de los lóculos secundarios no supera el 50% de la intensidad del máximo principal. Las lentes comerciales (inmersión) no permite bajar de 60-70%. Por lo tanto se deben usar técnicas especiales de supresión de estos lóbulos

- DETECCIÓN CONFOCAL: Rechaza luz fuera de 1. foco.
- 2. EXCITACIÓN POR DOS FOTONES: Dependencia cuadrática de la intensidad.
- **3. DETECCIÓN COHERENTE** (por las dos lentes opuestas): la diferencia en λ entre excitación y emisión reduce la detección de los lóbulos secundarios (están en distinta posición).

RESOLUCIÓN

DISPOSICIÓN EXPERIMENTAL

Leica TCS 4Pi

http://www.mpibpc.mpg.de/groups/hell/

ALGUNOS EJEMPLOS

Confocal 4Pi-confocal

Imagen 3D renderizada de la red mitocondrial de una célula de levadura. La matriz mitocondrial está marcada con GFP, mientras que la pared celular esta teñida con el colorante Calcoflúor blanco mostrando el trazado de rayos. Esta imagen 4 Pi de la célula viva con 100 nm. de resolución en 3D permitió estudiar la influencia de determinadas proteínas mitocondriales en la morfología mitocondrial.

NanoBiophotonics - from: Brochure 2003 of the MPI for Biophysical Chemistry (<u>http://www.mpibpc.mpg.de/groups/hell/other_publications/brochureMPI2003EN.pdf</u>)

Microtúbulos de células de fibroplasto de ratón fijas y marcadas por inmunofluorescencia.

Imagen 3D de la Red Mitocondrial de una Célula de Levadura

Egner et al.

INTRODUCCIÓN

RESOLUCIÓN

MÁS EJEMPLOS...

Aparáto de Golgi, obtenido a través de MMM-4Pi Imaging de GATT-EGFP en células de Vero vivas con una resolución axial de 100 nm. El Inset muestra una vista de Epi-fluorescencia para correlacionar el aparato de Golgi con los núcleos.

4Pi-Confocal Microscopy is coming of Age (J. Bewersdorf, A. Egner, S.W. Hell) - GIT Imaging & Microscopy, Nov. 2004 (http://www.mpibpc.mpg.de/groups/hell/other_publications/GIT_4_04.pdf)

Imágenes de Microtúbulos en Células

J. Struct. Biol. 1998,123, 236-247

Secciones ópticas (imágenes xz) de la bacteria *"Escherichia coli"*, cuya membrana ha sido teñida con el colorante DF 1-43 (Rojo) y el nucleoide con DAPI (Azul). Las secciones se pueden juntar para formar una imagen en 3D si se las apila en la dirección del eje y. Z corresponde con el eje óptico. Las dimensiones son 2.7 x 0.8 x 1.8 µm³ en las direcciones x, y, z.

(a-h) Imágenes 4Pi-Confocal

(i-p) Imágenes Confocales

(q-x) Imágenes 4Pi-Confocal con una restauración utilizando el algoritmo de "Richardson-Lucy" para aumentar la resolución.

Estado Temprano de División Celular Humana Microtúbulos marcados

http://www.youtube.com/watch?v=daBdvpqYZ-U

A medida que la imagen rota se puede observar la complejidad del citoesqueleto cuando la célula empieza a separarse.

Esta muestra fue preparada exclusivamente por el Dr. Brian T. Bennett, mientras era un estudiante de grado en la Universidad Médica de Massachusetts en el Laboratorio del Dr. Kendall Knight. La imagen fue capturada utilizando un microscopio Leica TCS 4PI por el Dr. Brian T. Bennett y el Dr. T. Szellas. http://www.youtube.com/watch?y=daBdypgYZ-U

Estado Tardío de la División Celular Humana

http://www.youtube.com/watch?v=LT8VUCB0yR8

Se observa la unión entre dos células, en la etapa tardía de la división. A medida que la imagen gira se puede observar el surco de la unión.

Esta muestra fue preparada exclusivamente por el Dr. Brian T. Bennett, mientras era un estudiante de grado en la Universidad Médica de Massachusetts en el Laboratorio del Dr. Kendall Knight. La imagen fue capturada utilizando un microscopio Leica TCS 4PI por el Dr. Brian T. Bennett y el Dr. T. Szellas. http://www.voutube.com/watch?v=LT8VUCB0vR8

E_d (modo rosquilla) \rightarrow moléculas fluorescentes sólo en el centro.

Mecanismos Competitivos

Hell, S.W. in Increasing the resolution of far-field fluorescence light microscopy by point-spread-function engineering in Topics in Fluorescence Spectroscopy Vol. 5. (ed. Lakowicz, J.R.) 361–422 (Plenum, New York, 1997).

I_{sat..}:Intensidad de saturación

Resolución clásica:

Resolución STED

$$\Delta r \approx \frac{\lambda}{2nsen\alpha}$$

$$\Delta r \approx \frac{\lambda}{2nsen\alpha\sqrt{1+I_{depl.}/I_{sat.}}}$$

Colorantes para STED

ATTO ACC (CON LTC CON-1) 444 km 10/2 so 50/2 m 70/2 m <th70 2="" m<="" th=""> <th70 2="" m<="" th=""></th70></th70>	Dye name (Manufacturer (Distributor)	Exc. Wavelength	Exc. Pulse	STED	STED Pulse	Repetition Rate	Avg. STED	Peak	Pulse Energy	(Spatial Resolution	Reference(s)
Name Name <th< th=""><th>ATTO 425 (ATTO-TEC GmbH)</th><th>440 nm</th><th>130 ps</th><th>532 nm</th><th>1 ns</th><th>60 kHz</th><th>24 – 162 uW</th><th>0.4 – 2.7 nJ</th><th>500 h 60//mm2</th><th>70 - 80 nm (xy)</th><th>B. Rankin et al., Ont. Lett. 33, 2491 (2008)</th></th<>	ATTO 425 (ATTO-TEC GmbH)	440 nm	130 ps	532 nm	1 ns	60 kHz	24 – 162 uW	0.4 – 2.7 nJ	500 h 60//mm2	70 - 80 nm (xy)	B. Rankin et al., Ont. Lett. 33, 2491 (2008)
ATTO 52 (ATTO FEC (mild) 400m 00 pr 00 pr 00 pr 200 pr 400 pr	Mn doped ZnSe Qdots (Nanomaterials & Nanofabrication Laboratories)	440 nm	< 90 ps	676 nm	cw	cw		9 MW/cm ²	SDD 101007CH1	45 nm (xy)	S.Invine et al., Angew. Chem. Int. Ed. 47, 2685 (2008)
ATD 512 APTO-FEC Gra-M1 40 rm 50 pr 50 pr 20 pr 20 pr 20 pr 20	ATTO 532 (ATTO-TEC GmbH)	470 nm	100 ps	615 nm	200 ps	80 MHz	14 – 18 mW			66 – 72 nm (xy)	K. Willig et al., <i>Nature</i> 440, 935 (2006) J. Sieber et al., <i>Biophys. J.</i> 90, 2843 (2006) K. Willig et al., <i>New J. Phys.</i> 8, 106 (2006)
ATTO SEQ APTO THE On-M4 Marker Marker <td>ATTO 532 (ATTO-TEC GmbH)</td> <td>470 nm</td> <td>80 ps</td> <td>603 nm</td> <td>280 ps</td> <td>250 kHz</td> <td>0.5 mW</td> <td></td> <td>2 nJ</td> <td><25 nm (xy)</td> <td>G. Donnert et al., Proc. Natl. Acad. Sci. USA 103, 11440 (2006)</td>	ATTO 532 (ATTO-TEC GmbH)	470 nm	80 ps	603 nm	280 ps	250 kHz	0.5 mW		2 nJ	<25 nm (xy)	G. Donnert et al., Proc. Natl. Acad. Sci. USA 103, 11440 (2006)
ATD 932 (2017) TEC 6neb/1) 48 m 10 pp 60 m 20 pp 20 pp< 20 pp 20 pp 20 pp<	ATTO 532 (ATTO-TEC GmbH)	488 nm	100 ps	615 nm	200 ps	80 MHz	16 mW			60 – 70 nm (xy)	D. Fitzner et al., <i>EMBO J</i> , 25, 5037 (2006) R. Kellner, <i>Neurosci</i> , 144, 135 (2007)
DY-445U (Dyamis Gm-4) 48 m 6 (100 p) 48 m 100 p 6 (100 p) 6 m<	ATTO 532 (ATTO-TEC GmbH)	488 nm	120 ps	600 nm	200 ps	250 kHz		1.1 GW/cm ²		<40 nm (xy)	L. Meyer et al., Small 4, 1095 (2008)
Max B (ontringen Gab) 48 or 6 or 6 0 or <	DY-485XL (Dyomics GmbH)	488 nm	< 100 ps	647 nm	~ 200 ps	72 MHz	(20 + 3) mW			40 – 45 nm (xyz)	R. Schmidt et al., Nat. Meth. 5, 539 (2008)
Chrone 48 (with Matr) H8 m H9 p 02 m 10 m 02 mm <	Alexa Fluor 488 (Invitrogen GmbH)	488 nm	cw	592 nm	cw	cw	< 600 mW			< 60 nm (xy)	G. Moneron et al., Opt. Expr. 18, 1302 (2010)
Chrone dataChrone dataControl data <td>Chromeo 488 (Actif Motif)</td> <td>488 nm</td> <td>140 ps</td> <td>602 nm</td> <td>200 ps</td> <td>250 kHz</td> <td>0.6 mW</td> <td></td> <td></td> <td>~ 30 nm (xy)</td> <td>L. Meyer et al., Small 4, 1095 (2008) (Supporting Material)</td>	Chromeo 488 (Actif Motif)	488 nm	140 ps	602 nm	200 ps	250 kHz	0.6 mW			~ 30 nm (xy)	L. Meyer et al., Small 4, 1095 (2008) (Supporting Material)
Oregon Green Alls (Invitance Michael)6 and 48 and 48 and b C6 and 68 and 	Chromeo 488 (Actif Motif)	488 nm	cw	592 nm	cw	cw	< 600 mW			< 60 nm (xy)	G. Moneron et al., Opt. Expr. 18, 1302 (2010)
FTC 48 nm 68 mm 7	Oregon Green 488 (Invitrogen GmbH)	488 nm	cw	592 nm	cw	cw	< 600 mW			< 60 nm (xy)	G. Moneron et al., Opt. Expr. 18, 1302 (2010)
DVAHS (DVAMISE 0RbH) 49 nm 60 m 40 nm 10 ps 57 nm 20 nm 50 mm 60 mm 50 mm 60 mm 50 mm 60 mm 40 nm 40 nm 10 ps 57 nm 20 mm 40 nm 40 nm<	FITC	488 nm	cw	592 nm	cw	cw	< 600 mW			< 60 nm (xy)	G. Moneron et al., Opt. Expr. 18, 1302 (2010)
GFP 400 nm 100 ps 57 nm 200 ps 80 Mt2 72 mt/2 -72 mt/2000 K. Miller at J., Mat. Akker, 32 (2000) Clinine 400 nm 100 ps 562 nm 60 mt/200 80 mt/200 mt/200 8 mt/200 </td <td>DY-495 (Dyomics GmbH)</td> <td>488 nm</td> <td>cw</td> <td>592 nm</td> <td>cw</td> <td>cw</td> <td>< 600 mW</td> <td></td> <td></td> <td>< 60 nm (xy)</td> <td>G. Moneron et al., Opt. Expr. 18, 1302 (2010)</td>	DY-495 (Dyomics GmbH)	488 nm	cw	592 nm	cw	cw	< 600 mW			< 60 nm (xy)	G. Moneron et al., Opt. Expr. 18, 1302 (2010)
Citrine 400 nm 000 n	GFP	490 nm	100 ps	575 nm	200 ps	80 MHz	7.2 mW			~ 70 nm (xy)	K. Willig et al., Nat. Meth. 3, 721 (2006)
Chrine689 cm692 c	Citrine	490 nm	100 ps	598 nm	300 ps	80 MHz	36 mW	-807 MW/cm ²	0.45 nJ	48 nm (xy)	B. Hein et al., Proc. Natl. Acad. Sci. USA 105, 14271 (2008)
YFP400 m600 m600 m600 m000 m00 MAX00 MAX<	Citrine	488 nm	cw	592 nm	cw	cw	112 mW	62 MW/cm ²		~ 60 nm (xy)	B. Hein et al., Proc. Natl. Acad. Sci. USA 105, 14271 (2008)
ATTO 555 (ATTO-TEC GnbH) S12 mm 9 mp 640 - 60 m, 90 mp 1 - 2 MHz 0 - 40 mn (vy) D. Wildsager al., Qit. Exp. (16, 6014 (2008)) ATTO 555 (ATTO-TEC GnbH) 100 mm or of vg 640 - mm or 14 mW -60 mm (vy) D. Wildsager al., Qit. Exp. (16, 6014 (2008)) ATTO 555 (ATTO-TEC GnbH) 100 mm 0 of vg 60 mm 0 of vg	YEP	490 nm	100 ps	598 nm	300 ps	80 MHz	18 mW	400 M00/cm ²	0.23 nJ	~ 70 nm (xy)	U. V. Nägerl et al., Proc. Natl. Acad. Sci. USA 105, 18982 (2008)
ATTO 565 (ATTO-TEC 0mbH) 632 nm ow 0 47 nm ow 10 mW - 60 nm (v) K Willing at J, Mb. Akebr. 4, 615 (2007) A More at J, Mb. Akebr. 4, 615 (2007) ATTO 565 (ATTO-TEC 0mbH) 532 nm 10 ps 70 nm 107 ps 70 nm 00 nW - 70 nm (v) 0. Moneron, SW. Hell, Opt Akebr. 4, 615 (2007) MC1 17 TEC 0mbH) 532 nm 10 ps 70 nm 107 ps 70 hm 00 ps 71 MH2 - 60 nm (v) M. Dyba et al., Mb. Akebr. 4, 615 (2007) MC1 07 EC 0mbH) 532 nm 10 ps 70 nm 20 ps 72 MH2 - 60 nm (v) M. Dyba et al., Mb. Akebr. 4, 615 (2007) MC1 07 EC 0mbH 532 nm 10 ps 70 nm 20 ps 70 MH2 - 60 nm (v) M. Dyba et al., Mb. Akebr. 4, 615 (2007) MC1 07 EC 0mbH 532 nm 10 ps 70 nm 20 ps 70 MH2 30 m (v) M. Dyba et al., Mb. Akebr. 4, 615 (2007) MC1 0502 C22 64 nm 22 ns 640 m 22 ns 640 m 30 m (v) M. Dyba, S.M. Hell, Phys. Rev. Lett. 88, 10301 (2002) Pridine 2 / LOE S22 644 nm 20 ns 70	ATTO 565 (ATTO-TEC GmbH)	532 nm	~ 90 ps	640 – 660 nm	~ 90 ps	1 – 2 MHz				30 – 40 nm (xy)	D. Wildanger et al., Opt. Expr. 16, 9614 (2008)
ATTO SES (ATTO-TEC GmbH) D00 r m D00 r m D00 r m D00 r m Provide model and set of the set o	ATTO 565 (ATTO-TEC GmbH)	532 nm	cw	647 nm	cw	cw	114 mW			~ 60 nm (xy)	K. Willig et al., Nat. Meth. 4, 915 (2007)
IR 121 SE (Roche Diagnostisc) 52 nm 100 ps 79 nm 107 ps 78 MHz 10.4 mW -50 nm (pz) M. Dyba et al., Abt. Botech. 21, 1303 (2003) NH51 (ATD-TEC GmbH) 532 nm (100 ps 64 nm *20 ps 78 MHz 10.4 mW -60 nm (pz) 40 -40 nm (pz) K- benuic et al., Abt. Botech. 21, 1303 (2003) VI. Boge avancies in diamond 52 nm 10 ps 64 nm *20 ps 80 MHz 8.0 MHz 40 MM/cm ² word R threeger et al., Abt. Botech. 21, 1303 (2003) VI. Boge avancies in diamond 52 nm 00 ps 75 nm 2. ns 8 MHz 8.0 MWz 9.0 mm 9 nm (pz) R threeger et al., Abt. Botech. 21, 1303 (2003) VI. Boge avancies in diamond 52 nm 00 ps 75 nm 2. ns 70 MHz 9.0 mm (pz) 8.0 mWz 3 nm (pz) 8.0 m/s 8.0 m/s 3 nm (pz) M. Dyba, SW. Hell, Phys. Rev. Lett. 80, 105001 (2002) VI. Boge avancies in diamond 52 nm 20 nm 20 nm (pz) 1.4 - 2 4 ml 3 nm (pz) M. Dyba, SW. Hell, Phys. Rev. Lett. 80, 105001 (2002) VI. Boge avancies in diamond 50 nm 9.0 ps 70 MHz 1.2 mW 1.4 - 2 4 ml <	ATTO 565 (ATTO-TEC GmbH)	1060 nm	300 fs @ 117 MHz, 10 m)0/	676 nm	cw	cw	200 mW			~ 70 nm (xy)	G. Moneron, S.W. Hell, Opt. Expr. 17, 14567 (2009)
NH.31 (ATTO-TEC 0mbH) 532 nm C100 ps 647 nm 2 00 ps 72 MHz (20 + 3) mV 40 MM/cm ² 40 - 46 nm (cyc) R. Schmidt et al., Adt. Meth. 5, 630 (2009) V. Boyarsky, et al., Chem. Ex. J. 14, 1794 (2009) V/D Boyarsky, et al., Dep. Handbibborholsz, MPI Octamine derivatives 632 nm 00 ps 75 nm 3.2 ns 80 MHz 80 MHz 9.0 MW/cm ² 100 ps 76 nm (cyc) R. Schmidt et al., Adt. Meth. 5, 630 (2009) V. Boyarsky, et al., Chem. Ex. J. 14, 1794 (2009) Wilforgen vasancies in dismond 632 nm 00 ps 75 nm 3.2 ns 80 MHz 80 mW 9.0 GW/cm ² 100 pJ 6 m, (cyc) Ritkeger et al., Adt. Meth. 3, 630 (2009) V. Boyarsky, et al., Chem. Exr. J. 14, 1794 (2009) Victogen vasancies in dismond 632 nm 00 ps 75 nm 9.0 MHz 8.7 mW 3.0 mW 30 mm (cyc) M. Dyba, S.W. Hell, Phys. Rev. Lett. 88, 163001 (2002) D. Widanger et al., Adt. Meth. 3, 630 (2009) Diff. 100 mm (cyc) N. Dyba, S.W. Hell, Phys. Rev. Lett. 88, 163001 (2002) D. Widanger et al., Adt. Meth. 3, 630 (2009) Diff. 100 mm (cyc) N. Dyba, S.W. Hell, Phys. Rev. Lett. 88, 163001 (2002) D. Widanger et al., Adt. Meth. 3, 630 (2009) Diff. 100 mm (cyc) N. Dyba, S.W. Hell, Phys. Rev. Lett. 88, 163001 (2002) Diff. 100 mm (cyc) N. Macroso	MR 121 SE (Roche Diagnostics)	532 pm	10 ns	793 pm	107 ps	76 MHz	10.4 m/0/			~ 50 pm (z)	M. Ducha et al. Abt. Bioteck, 21, 1303 (2003)
Suttenated & ngidsed rhodsmine derivatives S22 nm 100 ps 640 nm ~ 300 ps 80 MHz 40 MW/cm ² < 690 nm (vg) X. Boyarskiy et al., Other. Eur. J. 14, 1764 (2008) Nitrogen vacancies in diamond 532 nm 00 ps 775 nm 3.2 ns 80 MHz 960 mW 9.0 GW/cm ² 106 nJ 61 nm (vg) Ritrogen et al., Adv. Photon. 3, 144 (2009) Printine 2: LIDS 722 Caso mbH 250 fs 76 nm 10 ps 76 MHz 12.2 mW 41 nm (z) M. Dyba et al., Adv. J. Phys. 7, 134 (2005) Printine 2: LIDS 722 Caso mbH 250 fs 745 nm 13 ps 76 MHz 8.78 mW 14 - 2.4 ml (z) M. Dyba et al., Adv. J. Phys. 7, 134 (2005) Printine 2: LIDS 722 Caso mbH 70 nm 90 ps 600 - 710 nm + 00 ps 1 MHz 3.8 mW 3.8 nJ 20 nm (z) M. Dyba et al., J. Adv. J. Phys. Rev. Lett.88, 163901 (2002) RTD 350 (ATTO-EE GmbH) 70 nm 90 ps 600 - 710 m + 00 ps 1 MHz 3.8 mW 3.8 nJ 20 nm (xy) D. Wildanger et al., J. Adv. Sca. 26, 26 (2009) 45 nm (xy) D. Wildanger et al., J. Adv. Sca. 26, 26 (2009) 57 mm (xy) D.	NK51 (ATTO-TEC GmbH)	532 nm	< 100 ps	647 nm	~ 200 ps	72 MHz	(20 + 3) mW			40 – 45 nm (xvz)	R. Schmidt et al., Alet. Meth. 5, 539 (2008)
Nitrogen vacancies in diamond 52 nm 60 ps 775 nm 3.2 ns 8 MHz 60 m/W 8.0 BW/m 60 m (v) Ritueger et al., Add. Phyton, 3, 144 (2009) Pyriding 2 / LDS 722 69 nm 20 is 76 nm 3 ps 76 MHz 3 nm (x) M. Dyba, 5.W. Hell, Phys. Rev. Lett. 88, 10301 (2002) Pyriding 2 / LDS 722 60 nm 20 is 74 nm 50 - 20 ps 76 MHz 1.2 mW 4 nm (x) M. Dyba, 5.W. Hell, Phys. Rev. Lett. 88, 10301 (2002) RH 414 (Biotium, Inc.) 65 nm 20 is 74 nm 1 ps 76 MHz 1.4 - 2.4 mW 1.4 - 2.4 mW 0.4 0 nm (x) D. Wildanger et al., <i>Opt. Syn.</i> 16, 0614 (2003) RTD 530 (ATTO-TEC GmbH) 70 nm 90 ps 600 - 710 m - 90 ps 1 MHz 3.8 mW 3.8 nJ 0.40 nm (x) D. Wildanger et al., <i>J. Microsc. 286</i> , 55 (2009) RTD 530 (ATTO-TEC GmbH) 70 nm 90 ps 600 - 710 m - 90 ps 1 MHz 3.8 mW 3.8 nJ D. Wildanger et al., <i>J. Microsc. 286</i> , 55 (2009) DyLight 534 (Thermo Sitentific) 70 nm 90 ps 600 - 710 m - 90 ps 1 MHz 3.8 mW 3.8 nJ D. Wildange	Sulfonated & rigidized rhodamine derivatives (V. Boyarskiy, Dep. NanoBiophotonics, MPI Göttingen)	532 nm	100 ps	640 nm	~ 300 ps	80 MHz	<u> </u>	40 MW/cm ²		< 90 nm (xy)	V. Boyarskiy et al., Chem. Eur. J. 14, 1784 (2008)
Pyridine 2 / LDS 722 564 nm 250 fs 760 nm 13 ps 76 MHz 33 nm (z) M. Dyba, S.W. Hell, Phys. Rev. Lett. 88, 163901 (2002) (Exclorin, Radiant Dyes GmbH) 564 nm 250 fs 760 nm 60 - 200 ps 760 MHz 12 zm W 44 nm (z) M. Dyba, S.W. Hell, Phys. Rev. Lett. 88, 163901 (2002) (Exclorin, Radiant Dyes GmbH) 564 nm 250 fs 766 nm 13 ps 76 MHz 8.78 mW 30 nm (z) M. Dyba, S.W. Hell, Phys. Rev. Lett. 88, 163901 (2002) ATTO 550 (ATTO-TEC GmbH) 570 nm 90 ps 690 - 710 nm - 90 ps 1 MHz 1.4 - 2.4 mW 1.4 - 2.4 nJ 30 - 40 nm (xy) D. Wildanger et al., J. Morosoc. 286, 35 (2009) ATTO 550 (ATTO-TEC GmbH) 570 nm 90 ps 690 - 710 nm - 90 ps 1 MHz 3.8 mW 3.8 nJ D. Wildanger et al., J. Morosoc. 286, 35 (2009) ATTO 553 (ATTO-TEC GmbH) 570 nm 90 ps 690 - 710 nm - 90 ps 1 MHz 3.8 mW 3.8 nJ D. Wildanger et al., J. Morosoc. 286, 35 (2009) ATTO 553 (ATTO-TEC GmbH) 670 nm 90 ps 735 - 755 nm - 90 ps 1 MHz 3.8 mW 3.8 nJ D. Wildanger et al., J. Morosoc. 2	Nitrogen vacancies in diamond	532 nm	60 ps	775 nm	3.2 ns	8 MHz	850 mW	8.6 GW/cm ²	106 nJ	6 nm (xy)	Rittweger et al., Nat. Photon. 3, 144 (2009)
Pyridine 2 / LDS 722 554 nm 260 fs 746 nm 50 - 200 ps 76 MHz 12.2 mW 44 nm (c) M. Dyba et al., New. J. Phys. 7, 134 (2005) (Exciton, Radiant Dyes GmbH) 554 nm 250 fs 746 nm 13 ps 76 MHz 8.78 mW 30 nm (c) M. Dyba, S.W. Hell, Phys. Rev. Lett. 88, 163901 (2002) ATTO 590 (ATTO-TEC GmbH) 570 nm 90 ps 690 - 710 nm × 90 ps 1 MHz 1.4 - 2.4 mW 1.4 - 2.4 nJ 30 - 40 nm (xy) D. Wildanger et al., J. Microso, 286, 35 (2009) ATTO 590 (ATTO-TEC GmbH) 570 nm 90 ps 690 - 710 nm × 90 ps 1 MHz 3.8 mW 3.8 nJ D. Wildanger et al., J. Microso, 286, 35 (2009) Attro 594 (Invitrogen Corp.) 570 nm 90 ps 690 - 710 nm × 90 ps 1 MHz 3.8 mW 3.8 nJ D. Wildanger et al., J. Microso, 286, 35 (2009) DyLight 594 (Interno Scientific) 570 nm 90 ps 690 - 710 nm × 90 ps 1 MHz 3.8 mW 3.8 nJ D. Wildanger et al., J. Microso, 286, 35 (2009) DyLight 594 (Interno Scientific) 570 nm 90 ps 690 - 710 nm × 90 ps 1 MHz 3.8 mW 3.8 nJ D. Wildanger et al., J. Micro	Pyridine 2 / LDS 722 (Exciton, Radiant Dyes GmbH)	554 nm	250 fs	760 nm	13 ps	76 MHz				33 nm (z)	M. Dyba, S.W. Hell, <i>Phys. Rev. Lett.</i> 88, 163901 (2002)
RH 414 (Biodium, Inc.) 654 nm 250 fs 746 nm 13 ps 76 MHz 8,78 mW 30 nm (z) M. Dyba, S.W. Hell, Phys. Rev. Lett. 88, 163901 (2002) ATTO 590 (ATTO-TEC GmbH) 670 nm ~90 ps 690 - 710 nm ~90 ps 1 MHz 1.4 - 2.4 mW 1.4 - 2.4 nJ 30 - 40 nm (xy) D. Wildanger et al., Opt. Expr. 16, 8614 (2008) ATTO 590 (ATTO-TEC GmbH) 670 nm ~90 ps 690 - 710 nm ~90 ps 1 MHz 3.8 mW 3.8 nJ 20 nm (xy) D. Wildanger et al., J. Microso. 236, 35 (2009) Attro 594 (ATTO-TEC GmbH) 670 nm ~90 ps 690 - 710 nm ~90 ps 1 MHz 3.8 mW 3.8 nJ D. Wildanger et al., J. Microso. 236, 35 (2009) Attro 594 (ATTO-TEC GmbH) 670 nm ~90 ps 690 - 710 nm ~90 ps 1 MHz 3.8 mW 3.8 nJ D. Wildanger et al., J. Microso. 236, 35 (2009) AtTO 534 (ATTO-TEC GmbH) 670 nm ~90 ps 690 - 710 nm ~90 ps 1 MHz 3.8 mW 3.8 nJ D. Wildanger et al., J. Microso. 236, 35 (2009) AtTO 633 (ATTO-TEC GmbH) 630 nm 90 ps 690 - 710 nm ~90 ps 1 MHz 3.8 mW 3.8 nJ D. Wildanger et al., J. Microso. 236, 35 (2009) AtTO 6437 (ATTO-TEC GmbH) 630 nm 90	Pyridine 2 / LDS 722 (Exciton, Radiant Dyes GmbH)	554 nm	250 fs	745 nm	50 – 200 ps	76 MHz	12.2 mW			44 nm (z)	M. Dyba et al., <i>New. J. Phys.</i> 7, 134 (2005)
ATTO 590 (ATTO-TEC GmbH) 570 nm • 90 ps 690 - 710 nm • 90 ps 1 MHz 3.8 mW 3.8 nJ D. Wildanger et al., J. Morosoc. 286, 35 (2009) ATTO 594 (ATTO-TEC GmbH) 570 nm • 90 ps 690 - 710 nm • 90 ps 1 MHz 3.8 mW 3.8 nJ D. Wildanger et al., J. Morosoc. 286, 35 (2009) D.Wildanger et al., J. Morosoc. 286, 35 (2009) Morosoc. 286, 35 (20	RH 414 (Biotium, Inc.)	554 nm	250 fs	745 nm	13 ps	76 MHz	8.78 mW			30 nm (z)	M. Dyba, S.W. Hell, Phys. Rev. Lett. 88, 163901 (2002)
ATTO 590 (ATTO-TEC GmbH) 570 nm * 90 ps 690 - 710 nm * 90 ps 1 MHz 3.8 mW 3.8 mW 3.8 nJ 20 nm (xy) 46 nm (xy), 108 nm (z) Alexa 584 (Invitrogen Corp.) 670 nm * 90 ps 690 - 710 nm * 90 ps 690 - 710 nm * 90 ps 690 - 710 nm * 90 ps 1 MHz 3.8 mW 3.8 nJ 0. Wildanger et al., J. Microsoc. 236, 35 (2009) AltTO 594 (ATTO-TEC GmbH) 570 nm * 90 ps 690 - 710 nm * 90 ps 1 MHz 3.8 mW 3.8 nJ 0. Wildanger et al., J. Microsoc. 236, 35 (2009) DyLight 594 (Themo Scientific) 670 nm * 90 ps 690 - 710 nm * 90 ps 1 MHz 3.8 mW 3.8 nJ 0. Wildanger et al., J. Microsoc. 236, 35 (2009) ATTO 683 (ATTO-TEC GmbH) 690 nm * 90 ps 690 - 710 nm * 90 ps 1 MHz 3.8 mW 3.8 nJ 0. Wildanger et al., O. Microsoc. 236, 35 (2009) ATTO 683 (ATTO-TEC GmbH) 690 nm * 90 ps 756 rm * 90 ps 1 HHz 3.8 mW 3.8 nJ 0 40 nm (xy) 0. Wildanger et al., O. Microsoc. 236, 35 (2009) ATTO 683 (ATTO-TEC GmbH) 635 nm 100 ps 756 nm * 90 ps 76 MHz 1.4 - 2.4 mW 1.4 - 2.4 mW 1.4 - 2.4 mW 4.0 nm (xy) 0. Wildanger et al., O. Microsoc. 2	ATTO 590 (ATTO-TEC GmbH)	570 nm	~ 90 ps	690 – 710 nm	~ 90 ps	1 MHz	_1.4 – 2.4 m₩	1	1.4 – 2.4 nJ	30 – 40 nm (xy)	D. Wildanger et al., Opt. Expr. 16, 9614 (2008)
Alexa 594 (Invitrogen Corp.) 570 nm * 90 ps 690 - 710 nm * 90 ps 1 MHz 3.8 mW 3.8 nJ D. Wildanger et al., J. Mkoroso. 236, 35 (2009) DyLight 594 (fhrmo Scientific) 570 nm * 90 ps 690 - 710 nm * 90 ps 1 MHz 3.8 mW 3.8 nJ D. Wildanger et al., J. Mkoroso. 236, 35 (2009) 1 A 2.4 mW 1.4 - 2.4 nJ 30 - 40 nm (xy) D. Wildanger et al., J. Mkoroso. 236, 35 (2009) 1 A 2.4 mW 1.4 - 2.4 nJ 30 - 40 nm (xy) D. Wildanger et al., J. Mkoroso. 236, 35 (2009) 1 A 2.4 mW 1.4 - 2.4 nJ 40 nm (xy) D. Wildanger et al., J. Mkoroso. 236, 35 (2009) 1 A 2.4 mW 1.4 - 2.4 nJ 40 nm (xy) D. Wildanger et al., J. Mkoroso. 236, 35 (2009) 1 A 2.4 mW 1.4 - 2.4 nJ 40 nm (xy) N. Wildanger et al., J. Mkoroso. 236, 35 (2007) 1 A 2.4 mW 1.4 - 2.4 mW 1.4 - 2.4 nJ 40 nm (xy	ATTO 590 (ATTO-TEC GmbH)	570 nm	~ 90 ps	690 – 710 nm	~ 90 ps	1 MHz	3.8 mW		3.8 nJ	20 nm (xy) 45 nm (xy), 108 nm (z)	D. Wildanger et al., J. Mioroso, 236, 35 (2009)
ATTO 594 (ATTO-TEC GmbH) 570 nm * 90 ps 690 - 710 nm * 90 ps 1 MHz 3.8 mW 3.8 nJ D. Wildanger et al., J. Aktorosc. 236, 35 (2009) DyLight 594 (Thermo Scientific) 670 nm * 90 ps 690 - 710 nm * 90 ps 1 MHz 3.8 mW 3.8 nJ D. Wildanger et al., J. Aktorosc. 236, 35 (2009) ATTO 633 (ATTO-TEC GmbH) 630 nm * 90 ps 735 - 755 nm * 90 ps 1 - 2 MHz 1.4 - 2.4 mW 1.4 - 2.4 nJ 30 - 40 nm (xy) D. Wildanger et al., J. Aktorosc. 236, 35 (2009) ATTO 633 (ATTO-TEC GmbH) 630 nm 100 ps 750 nm * 200 ps 76 MHz * 1.5 nJ 40 nm (xy) A. Punge et al., Aktor Attor	Alexa 594 (Invitrogen Corp.)	570 nm	~ 90 ps	690 – 710 nm	i ~ 90 ps	1 MHz	3.8 mW		3.8 nJ		D. Wildanger et al., J. Microsc. 236, 35 (2009)
DyLight 594 (Thermo Scientific) 570 nm • 90 ps 690 – 710 nm • 90 ps 1 MHz 3.8 mW 3.8 nJ D. Wildanger et al., J. Microsc. 236, 35 (2009) ATTO 633 (ATTO-TEC GmbH) 630 nm • 90 ps 755 – 755 nm • 90 ps 1 – 2 MHz 1.4 – 2.4 mW 1.4 – 2.4 nJ 30 – 40 nm (xy) D. Wildanger et al., J. Microsc. 236, 35 (2009) ATTO 633 (ATTO-TEC GmbH) 635 nm 100 ps 750 nm • 200 ps 76 MHz • 1.5 nJ 40 nm (xy) A. Punge et al., Micr. Res. Techn. 71, 644 (2008) ATTO 637 (ATTO-TEC GmbH) 635 nm 0w 750 nm ow 0w 423 mW • 65 nm (xy) G. Donnet et al., Micr. Res. Techn. 71, 644 (2007) ATTO 647N (ATTO-TEC GmbH) 635 nm 100 ps 760 nm ow 0w 423 mW • 65 nm (xy) G. Donnet et al., Biophys. J.: Biophys. Lett., L67 (2007) ATTO 647N (ATTO-TEC GmbH) 635 nm 100 ps 750 nm 200 ps 76 MHz 1.2 GW/om ² 40 nm (xy) L. Meyer et al., Small 4, 1095 (2008) ATTO 647N (ATTO-TEC GmbH) 635 nm 68 ps 781 nm 303 ps 40 MHz 10.1 mW 0.25 nJ	ATTO 594 (ATTO-TEC GmbH)	570 nm	~ 90 ps	690 – 710 nm	i ~ 90 ps	1 MHz	3.8 mW		3.8 nJ		D. Wildanger et al., J. Microsc. 236, 35 (2009)
ATTO 633 (ATTO-TEC GmbH) 630 nm ~ 90 ps 735 - 755 nm ~ 90 ps 1 - 2 MHz 1.4 - 2.4 mW 1.4 - 2.4 nJ 30 - 40 nm (xy) D. Wildanger et al., Opt. Expr. 16, 8614 (2008) ATTO 633 (ATTO-TEC GmbH) 635 nm 100 ps 760 nm ~ 200 ps 78 MHz ~ 1.5 nJ 40 nm (xy) A Punge et al., Macr. Res. Techn. 71, 644 (2008) ATTO 647N (ATTO-TEC GmbH) 635 nm cw 750 nm cw 423 mW ~ 60 nm (xy) K. Willig et al., Macr. Res. Techn. 71, 644 (2008) ATTO 647N (ATTO-TEC GmbH) 635 nm 100 ps 760 nm cw 423 mW ~ 60 nm (xy) K. Willig et al., Macr. Res. Techn. 71, 644 (2008) ATTO 647N (ATTO-TEC GmbH) 635 nm 100 ps 760 nm cw 423 mW ~ 60 nm (xy) K. Willig et al., Macr. Age, Slophys. Lett., 167 (2007) ATTO 647N (ATTO-TEC GmbH) 635 nm 100 ps 760 nm 200 ps 76 MHz 1.2 GW/cm ² 40 nm (xy) L. Meyer et al., Swall 4, 1095 (2008) ATTO 647N (ATTO-TEC GmbH) 635 nm 63 ps 781 nm 303 ps 40 MHz 10.1 mW 0.25 nJ 40 nm (xy) L. Meyer et al., Swall 4, 1095 (2008) JA 26 (K.H. Drexhage, Siegen University) 635 nm<	DyLight 594 (Thermo Scientific)	570 nm	~ 90 ps	690 – 710 nm	i ~ 90 ps	1 MHz	3.8 mW		3.8 nJ		D. Wildanger et al., J. Miorosc. 236, 35 (2009)
ATTO 633 (ATTO-TEC GmbH) 635 nm 100 ps 760 nm ~ 200 ps 76 MHz ~ 1.5 nJ 40 nm (xy) A Punge et al., <i>Micr. Res. Techn.</i> 71, 644 (2008) ATTO 647N (ATTO-TEC GmbH) 635 nm cw 760 nm cw cw 423 mW ~ 60 nm (xy) K. Willig et al., <i>Micr. Res. Techn.</i> 71, 644 (2008) ATTO 647N (ATTO-TEC GmbH) 635 nm 100 ps 760 nm cw 423 mW ~ 60 nm (xy) K. Willig et al., <i>Micr. Res. Techn.</i> 71, 644 (2008) ATTO 647N (ATTO-TEC GmbH) 635 nm 100 ps 760 nm cw 423 mW ~ 60 nm (xy) G. Donnet et al., <i>Stophys. J.: Biophys. Lett.</i> , L67 (2007) ATTO 647N (ATTO-TEC GmbH) 635 nm 100 ps 750 nm 200 ps 76 MHz 1.2 GW/cm ² 40 nm (xy) L Meyer et al., <i>Stoches</i> 320, 247 (2008) ATTO 647N (ATTO-TEC GmbH) 635 nm 120 ps 750 nm 200 ps 76 MHz 1.2 GW/cm ² 40 nm (xy) L Meyer et al., <i>Stoches</i> 320, 247 (2008) JA 26 (K.H. Drexhage, Siegen University) 635 nm 68 ps 761 nm 303 ps 40 MHz 10.1 mW 0.26 nJ 40 nm (x) V. Westphal et al., <i>Stoches</i> 320, 247 (2003) JA 26 (K.H. Drexhage, Siegen University) <td>ATTO 633 (ATTO-TEC GmbH)</td> <td>630 nm</td> <td>~ 90 ps</td> <td>735 – 755 nm</td> <td>~ 90 ps</td> <td>1 – 2 MHz</td> <td>_1.4 – 2.4 m₩</td> <td>6</td> <td>1.4 – 2.4 nJ</td> <td>30 – 40 nm (xy)</td> <td>D. Wildanger et al., Opt. Expr. 16, 9614 (2008)</td>	ATTO 633 (ATTO-TEC GmbH)	630 nm	~ 90 ps	735 – 755 nm	~ 90 ps	1 – 2 MHz	_1.4 – 2.4 m₩	6	1.4 – 2.4 nJ	30 – 40 nm (xy)	D. Wildanger et al., Opt. Expr. 16, 9614 (2008)
ATTO 647N (ATTO-TEC GmbH) 635 nm cw 760 nm ow cw 423 mW ~ 60 nm (xy) K. Willig et al., Net. Meth. 4, 916 (2007) ATTO 647N (ATTO-TEC GmbH) 635 nm 100 ps 760 nm 300 ps 260 kHz 700 MW/om² ~ 66 nm (xy) 6. Donnet et al., Siophys. J.: Biophys. Lett., L67 (2007) ATTO 647N (ATTO-TEC GmbH) 635 nm 120 ps 750 nm 200 ps 76 MHz 1.2 GW/om² 40 nm (xy) L. Meyer et al., Sinall 4, 1095 (2008) ATTO 647N (ATTO-TEC GmbH) 635 nm 68 ps 761 nm 303 ps 40 MHz 10.1 mW 0.26 nJ 40 nm (x) V. Westphal et al., Appl. Phys. B. 77, 377 (2003) JA 26 (K.H. Drexhage, Siegen University) 635 nm 68 ps 775 nm 300 ps 76 MHz 800 MMV/om² 16 nm (x) V. Westphal et al., J. Phys. B. 77, 377 (2003) JA 26 (K.H. Drexhage, Siegen University) 635 nm 68 ps 775 nm 300 ps 76 MHz 800 MW/om² 16 nm (x) V. Westphal et al., J. Phys. B: At. Mol. Opt. Phys. 38, 5695 (2005) JA 26 (K.H. Drexhage, Siegen University) 635 nm 68 ps 780 nm 300 ps 80 MHz 90 – 100 mW 1.13 – 1.25 nJ 47 nm (xy) V. Westphal et al., J	ATTO 633 (ATTO-TEC GmbH)	635 nm	100 ps	750 nm	~ 200 ps	76 MHz			~ 1.5 nJ	40 nm (xy)	A. Punge et al., Micr. Res. Techn. 71, 644 (2008)
ATTO 647N (ATTO-TEC GmbH) 635 nm 100 ps 760 nm 300 ps 250 kHz 700 MW/cm ² ~ 65 nm (xy) 6. Donnert et al., Biophys. J.: Biophys. Lett., L67 (2007) ATTO 647N (ATTO-TEC GmbH) 635 nm 120 ps 750 nm 200 ps 76 MHz 1.2 GW/cm ² ~ 66 nm (xy) 6. Donnert et al., Biophys. J.: Biophys. Lett., L67 (2007) ATTO 647N (ATTO-TEC GmbH) 635 nm 120 ps 750 nm 200 ps 76 MHz 1.2 GW/cm ² ~ 40 nm (xy) L. Meyer et al., Sieall 4, 1095 (2008) JA 26 (K.H. Drexhage, Siegen University) 635 nm 68 ps 781 nm 303 ps 40 MHz 10.1 mW 0.25 nJ 40 nm (x) V. Westphal et al., Appl. Phys. B. 77, 377 (2003) JA 26 (K.H. Drexhage, Siegen University) 635 nm 68 ps 775 nm 300 ps 76 MHz 800 MMV/cm ² 16 nm (x) V. Westphal et al., J. Phys. B: At. Hol. Opt. Phys. 38; 6095 (2005) JA 26 (K.H. Drexhage, Siegen University) 635 nm 68 ps 780 nm 300 ps 80 MHz 90 – 100 mW 1.13 – 1.25 nJ 47 nm (xy) V. Westphal et al., J. Phys. B: At. Hol. Opt. Phys. 38; 6095 (2005) JA 26 (K.H. Drexhage, Siegen University) 637 nm 64 ps 778 – 785 nm 303 ps 40 MHz 10	ATTO 647N (ATTO-TEC GmbH)	635 nm	cw	750 nm	ew	cw	423 mW			~ 50 nm (xy)	K. Willig et al., Net. Meth. 4, 915 (2007)
ATTO 647N (ATTO-TEC GmbH) 635 nm 120 ps 760 nm 200 ps 76 MHz 1.2 GW/cm ² 40 nm (xy) L. Meyer et al., Small 4, 1095 (2008) JA 26 (K.H. Drexhage, Siegen University) 635 nm 68 ps 781 nm 303 ps 40 MHz 10.1 mW 0.25 nJ 40 nm (xy) V. Westphal et al., Appl. Phys. 8, 77, 377 (2003) JA 26 (K.H. Drexhage, Siegen University) 635 nm 68 ps 775 nm 300 ps 76 MHz 800 MW/cm ² 16 nm (x) V. Westphal et al., Appl. Phys. 8, 77, 377 (2003) JA 26 (K.H. Drexhage, Siegen University) 635 nm 68 ps 775 nm 300 ps 76 MHz 800 MW/cm ² 16 nm (x) V. Westphal, S.W. Hell, Phys. Rev. Lett. 94, 143903 (2005) JA 26 (K.H. Drexhage, Siegen University) 635 nm 68 ps 780 nm 300 ps 80 MHz 90 – 100 mW 1.13 – 1.26 nJ 47 nm (xy) V. Westphal et al., J. Phys. B: At. Mol. Opt. Phys. 38, 5695 (2005) JA 26 (K.H. Drexhage, Siegen University) 637 nm 64 ps 778 – 785 nm 303 ps 40 MHz 120 – 100 mW 1.13 – 1.26 nJ 47 nm (xy) V. Westphal et al., Appl. Phys. Lett. 82, 3125 (2003) JA 26 (K.H. Drexhage, Siegen University) 637 nm 64 ps 778 – 785 nm 303 ps 40 MHz	ATTO 647N (ATTO-TEC GmbH)	635 nm	100 ps	780 nm	300 ps	250 kHz		700 MW/cm ²		~ 65 nm (xy)	G. Donnert et al., Biophys. J.: Biophys. Lett., L67 (2007) V. Westphal et al., Science 320, 247 (2008)
JA 26 (K.H. Drexhage, Siegen University) 635 nm 68 ps 781 nm 303 ps 40 MHz 10.1 mW 0.25 nJ 40 nm (x) V. Westphal et al., Appl. Phys. B, 77, 377 (2003) JA 26 (K.H. Drexhage, Siegen University) 635 nm 68 ps 775 nm 300 ps 76 MHz 800 MW/om ² 16 nm (x) V. Westphal, S.W. Hell, Phys. Rev. Lett. 94, 143903 (2005) JA 26 (K.H. Drexhage, Siegen University) 635 nm 68 ps 780 nm 300 ps 80 MHz 90 – 100 mW/ 1.13 – 1.25 nJ 47 nm (xy) V. Westphal et al., J. Phys. B: At. Mol. Opt. Phys. 88, 8695 (2005) JA 26 (K.H. Drexhage, Siegen University) 635 nm 68 ps 780 nm 300 ps 80 MHz 90 – 100 mW/ 1.13 – 1.25 nJ 47 nm (xy) V. Westphal et al., J. Phys. B: At. Mol. Opt. Phys. 88, 8695 (2005) JA 26 (K.H. Drexhage, Siegen University) 637 nm 64 ps 778 – 785 nm 303 ps 40 MHz	ATTO 647N (ATTO-TEC GmbH)	635 nm	120 ps	750 nm	200 ps	76 MHz		1.2 GW/cm ²		<40 nm (xy)	L. Meyer et al., Small 4, 1095 (2008)
JA 26 (K.H. Drexhage, Siegen University) 635 nm 68 ps 776 nm 300 ps 76 MHz 800 MW/om ² 16 nm (x) V. Westphal, S.W. Hell, <i>Phys. Rev. Lett.</i> 94, 143903 (2005) JA 26 (K.H. Drexhage, Siegen University) 635 nm 68 ps 780 nm 300 ps 80 MHz 90 – 100 mW/ 1.13 – 1.25 nJ 47 nm (xy) V. Westphal et al., <i>J. Phys. B: At. Mol. Opt. Phys.</i> 88, 8695 (2005) JA 26 (K.H. Drexhage, Siegen University) 637 nm 68 ps 778 – 785 nm 303 ps 40 MHz 91 – 100 mW/ 1.13 – 1.25 nJ 47 nm (xy) V. Westphal et al., <i>Appl. Phys. Lett.</i> 82, 3125 (2003)	JA 26 (K.H. Drexhage, Siegen University)	635 nm	68 ps	781 nm	303 ps	40 MHz	10.1 mW		0.25 nJ	40 nm (x)	V. Westphal et al., Appl. Phys. B. 77, 377 (2003)
JA 26 (K.H. Drexhage, Siegen University) 635 nm 68 ps 760 nm 300 ps 80 MHz 90 – 100 mW 1,13 – 1,25 nJ 47 nm (xy) V. Wiestphal et al., J. Phys. B: At. Mol. Opt. Phys. 38, 8695 (2005 JA 26 (K.H. Drexhage, Siegen University) 637 nm 64 ps 778 – 786 nm 303 ps 40 MHz 120 – 140 nm (xy) V. Wiestphal et al., Appl. Phys. Lett. 82, 3125 (2003)	JA 26 (K.H. Drexhage, Siegen University)	635 nm	68 ps	775 nm	300 ps	76 MHz		800 MW/cm ²		16 nm (x)	V. Westphal, S.W. Hell, Phys. Rev. Lett. 94, 143903 (2005)
JA 26 (K.H. Drexhage, Siegen University) 637 nm 54 ps 778 – 785 nm 303 ps 40 MHz 120 – 140 nm (xy) V. Westphal et al., Appl. Phys. Lett. 82, 3125 (2003)	JA 26 (K.H. Drexhage, Siegen University)	635 nm	68 ps	780 nm	300 ps	80 MHz	90 – 100 mW	1	1.13 - 1.25 n.	J 47 nm (xy)	V. Westphal et al., J. Phys. B: At. Mol. Opt. Phys. 38, 8695 (2005
	JA 26 (K.H. Drexhage, Siegen University)	637 nm	54 ps	778 – 785 nm	303 ps	40 MHz				120 – 140 nm (xy)	V. Westphal et al., Appl. Phys. Lett. 82, 3125 (2003)

http://www.mpibpc.mpg.de/groups/hell/

Hell, S.W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated emission depletion microscopy. Opt. Lett. 19, 780–782 (1994).

Benjamin Harke, Jan Keller, Chaitanya K. Ullal, Volker Westphal, Andreas Schönle, and Stefan W. Hell. Resolution scaling in sted microscopy. Optics Express, 16(6):4154–4162, 2008.

Campo de visión = 2,5 x 1,8 µm Resolución xy= 62 nm (18x reducción de área) XY: 16-kHz espejo resonante; Z: piezo.

http://www.sciencemag.org/cgi/content/full/1154228/DC1

30

Trayectorias:

Westphal, V., S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, S. W. Hell (2008): "Video-Rate Far-Field Optical Nanoscopy Dissects Synaptic Vesicle Movement". Science 320, 246 - 249.

RESOLUCIÓN

24 / 29

DISPOSICIÓN EXPERIMENTAL

Detección por una sola lente: Tipo-A

Imágenes de la primer microscopia de campo lejano con resolución espacial de 30 de 40 nm, (λ /23).

CONFOCAL

STED-4Pi

STED-4Pi (Filtro lineal)

Dyba, M. and S. W. Hell (2002). "Focal spots of size lambda/23 open up far-field fluorescence microscopy at 33 nm axial resolution." Phys. Rev. Lett.

EJEMPLOS Y APLICACIONES

Red microtubular de una célula humana embrionaria del riñón (HEK)

Tamaño del pixel: 95nm x 9,8nm (x, z)

Resolución axial de ~ 50 nm. (1/16, λ_{exc} =739nm)

26/29

Dyba, M., S. Jakobs and S. W. Hell (2003). "Immunofluorescence stimulated emission depletion microscopy." Nature Biotechno.l. 21(11): 1303-1304.

- 1. Con la Microscopía 4Pi se aumentó la Resolución AXIAL en un factor de **4 a 7 veces** (comparado con la Microcopía confocal)
- 2. Se lograron eliminar los lóbulos secundarios.
- 3. Con la Microcopía 4 Pi se logran imágenes en 3D con resolución de **100 nm** en células vivas.
- 4. La Microscopía STED rompió el límite de difracción observando resoluciones de Δ**x~ 30nm.**
- 5. En contraste a las otras microscopias no lineales, STED utiliza intensidades de láseres bajas permitiendo el estudio de células vivas.
- 6. STED, es la única técnica conocida capaz de observar volúmenes fluorescentes en la escala del zeptolitro.
- La microscopia 4Pi-STED, permitió observar experimentos de inmunofluorescencia con Δz~
 50nm.

http://www.leica-microsystems.com/products/confocal-microscopes/details/product/leica-tcs-sted/showcase/

