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Phonon heat transfer across a vacuum 
through quantum fluctuations

King Yan Fong1,3, Hao-Kun Li1,3, Rongkuo Zhao1, Sui Yang1, Yuan Wang1 & Xiang Zhang1,2*

Heat transfer in solids is typically conducted through either electrons or atomic 
vibrations known as phonons. In a vacuum, heat has long been thought to be 
transferred by radiation but not by phonons because of the lack of a medium1.  
Recent theory, however, has predicted that quantum fluctuations of electromagnetic 
fields could induce phonon coupling across a vacuum and thereby facilitate heat 
transfer2–4. Revealing this unique quantum effect experimentally would bring 
fundamental insights to quantum thermodynamics5 and practical implications to 
thermal management in nanometre-scale technologies6. Here we experimentally 
demonstrate heat transfer induced by quantum fluctuations between two objects 
separated by a vacuum gap. We use nanomechanical systems to realize strong phonon 
coupling through vacuum fluctuations, and observe the exchange of thermal energy 
between individual phonon modes. The experimental observation agrees well with 
our theoretical calculations and is unambiguously distinguished from other effects 
such as near-field radiation and electrostatic interaction. Our discovery of phonon 
transport through quantum fluctuations represents a previously unknown 
mechanism of heat transfer in addition to the conventional conduction, convection 
and radiation. It paves the way for the exploitation of quantum vacuum in energy 
transport at the nanoscale.

Quantum mechanics states that quantum fields are never at rest but 
fluctuate constantly, even at a temperature of absolute zero. These fluc-
tuations lead to extraordinary physical consequences in many areas, 
ranging from atomic physics (for example, spontaneous emission and 
the Lamb shift7) to cosmology (for example, Hawking radiation8). In 
1948, Casimir described a force that acts between neutral objects based 
on quantum fluctuations of electromagnetic fields9. This force is of both 
fundamental interest in quantum field theory and practical importance 
in nanoscale and microscale technology10,11. Although the mechanical 
consequences of the Casimir effect have been extensively studied and 
precisely quantified12–17, its role in thermodynamics is rarely explored. 
Recently, it has been predicted that the Casimir effect can induce pho-
non transport between nearby objects and thus transfer heat through 
a vacuum gap2–4. However, this intriguing quantum phenomenon has 
not been observed owing to stringent experimental requirements for 
nanometre gaps. At such small distances, other effects such as charge–
charge interactions18,19, evanescent electric fields20 and surface phonon 
polaritons21 may contribute and obscure experimental verification.

Here we experimentally demonstrate heat transfer between two 
objects driven by quantum vacuum fluctuations. Using nanomechani-
cal systems to access individual phonon modes and resonantly enhance 
the thermal energy exchange, we boost the distance range at which 
the phenomenon becomes observable by over two orders of magni-
tude to hundreds of nanometres, compared to the nanometre to sub-
nanometre range predicted for bulk solids2–4. This allows us to single 
out the Casimir effect from other short-range effects. We quantify 

the temperature change of the phonon modes through their thermal 
Brownian motion and unambiguously show that the two phonon modes 
thermalize in the strong Casimir phonon coupling regime. Our result 
reveals a new mechanism of heat transfer through a quantum vacuum. 
It also opens up new opportunities for studying quantum thermody-
namics and energy transport using nanomechanical devices.

To illustrate the concept, we consider the interaction of two phonon 
modes based on a spring-mass model (shown in Fig. 1a). Two objects 
attached to springs are linked to thermal baths at different tempera-
tures and undergo thermal Brownian motions. Displacement of the two 
objects perturbs the zero-point energy of the electromagnetic vacuum, 
giving rise to the Casimir interaction9. In the regime in which thermal 
Brownian motions of the objects are much slower than the response 
time of the Casimir interaction, the Casimir force acts instantaneously 
and is conservative in nature22–24. The Casimir interaction effectively 
acts as a coupling spring that connects the two objects, through which 
the hot object agitates the cold object. As a result, thermal energy is 
transferred across the phonon modes from the hot to the cold side.

In the experimental setting, we use frequency-matched nanome-
chanical oscillators to realize and resonantly enhance this Casimir  
heat transfer effect (Fig. 1b). Two parallel membrane resonators,  
each clamped to a substrate at different temperatures (T1 and T2), are 
separated by an adjustable distance, d. In the presence of the Casimir 
force, FCas(d), the system can be modelled as two coupled harmonic 
oscillators driven by Langevin forces from different temperature 
baths25,26: u γu Ω u Ωg u α u δF m¨ + 2 ˙ + − 2 ( − ) = /i i i i i i j i i

2
C , where i j i j, ∈ {1, 2}, ≠ ,  
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g F d Ωρ= ( )/2′
C Cas A is the coupling rate that arises from the Casimir force, 

and ui, Ω, mi, γi, αi, ρA and δFi are respectively the displacement, reso-
nance frequency, effective mass, dissipation rate, mode-matching 
factor, membrane area density and Langevin force. At large separation, 
where the Casimir interaction is negligible, the phonon modes of the 
membranes are in thermal equilibrium with their respective thermal 
baths, that is, T T=′

i i, where k T m Ω u= ⟨ ⟩′
i i iB

2 2  is the mode temperature 
determined by the thermal Brownian motion27. At short distances, the 
Casimir interaction dominates and induces thermal energy exchange 
between the phonon modes, manifested as an observable deviation 
of the mode temperatures from their bath temperature (see Supple-
mentary Information section 1).

We use optical interferometry to measure the thermal Brownian 
motion in order to determine the phonon mode temperatures (Fig. 2a). 
Using minimal laser power (8 μW) to avoid thermo-optical heating, we 
resolve the thermomechanical noise of the fundamental modes with 
a signal-to-background ratio of about 20 dB (Fig. 2e, f). The two high-
stress stoichiometric Si3N4 membranes of different dimensions 
(330 × 330 × 0.1 μm3 and 280 × 280 × 0.1 μm3) are coated with gold 
(75 nm) on both sides for the purposes of optical reflection and 

electrical contact (Fig. 2b, c). The dimensions of the two membranes 
are different such that their fundamental flexural mode frequencies 
can be matched at different temperatures by thermally tuning the 
membrane stress. At bath temperatures T1 = 287.0 K and T2 = 312.5 K, 
the resonances match at Ω/2π = 191.6 kHz (Fig. 2d), with high quality 
factors of Q1 = 4.5 × 104 and Q2 = 2.0 × 104. A bias voltage (Vb) is applied 
across the two membranes to compensate for any built-in electrostatic 
potential that may overwhelm the Casimir effect.

An essential experimental requirement here is to align the two planar 
resonators with a high degree of parallelism, which has been a hurdle 
for precision measurement of the Casimir force between planar struc-
tures13. To solve the problem, we implement high-precision (below 
10−4 rad) membrane alignment using an optical interferometric tech-
nique and an electrical method28 with specific mesa structures and 
electrode patterning (Fig. 2b, c) (see Methods). This allows us to explore 
the Casimir interaction between two parallel planes separated by an 
unprecedented distance of around 300 nm (ref. 13).

We observe the Casimir heat transfer between the phonon modes 
of the membranes (Fig. 3a). The mode temperatures show a strong 
dependence on the distance. At large separations, the mode tempera-
tures are the same as their thermal bath temperatures, while at small 
separations (less than 600 nm) they begin to deviate. As the distance 
is decreased further to below 400 nm, T 1

′  and T 2
′  become nearly identi-

cal, showing thermalization of the two phonon modes. Such a heat-
transfer effect is observed only when the resonance frequencies are 
matched within the linewidth, that is, when Ω Ω| − |2 1  is less than γ1,γ2. In 
the measurement, the mode temperatures are determined by their 
thermal Brownian motions. The mechanical motion can be decom-
posed into u t X t Ωt Y t Ωt( ) = ( )cos + ( )sini i i , with Xi(t) and Yi(t) being the 
two quadrature components. The two measured quadrature compo-
nents display a circularly symmetric distribution in the phase space, 
showing that the thermal motions are random with all phases being 
equally available (Fig. 3b, c). A plot of the probability distribution of 
the total energy E m Ω X Y= ( + )/2i i i i

2 2 2  (Fig. 3d) shows that it follows the 
statistics of a canonical ensemble, that is, P E( ) ∝ ei

E k T− /i B i
′
. The difference 

between Ti and T i
′ determines the net heat flux flowing from the thermal 

bath to the phonon mode, given by P γk T T= 2 ( − )i i i iB
' . From the measured 

mode temperatures (Fig. 3a), we obtain the averaged heat flux trans-
ferred across the two thermal baths by P P P= ( − )/22→1 2 1  (Fig. 3e).

The observed phenomenon can be quantitatively explained by the 
competition between the Casimir coupling rate (gC) and the mode-bath 
thermal exchange rate (γi = Ω/2Qi). When d decreases from 600 nm to 
350 nm, gC increases rapidly and the system evolves from weak (gC ≪ γi) 
to strong (gC ≫ γi) Casimir phonon coupling regime (Extended Data 
Fig. 1). Using coupled-mode Langevin equations (see Supplementary 
Information, section 1), we derive the mode temperatures and the heat 
flux across the two thermal baths as:

( )
T T

γ T T

γ γ
= +

( − )

( + ) 1 +

′
i i

j j i

i j

γ γ

g

i j

C
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=
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g
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B

i j
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where g g α α=′
C C 1 2 is the effective coupling rate that accounts for mode 

mismatch. In the experiment, α α1 2 = 0.97and therefore g ′
C is approx-

imately gC. The theoretical prediction well describes the experimental 
data (solid lines in Fig. 3a, e). When gC ≫ γi, thermalization occurs 
T T( = )′ ′

1 2  and the heat flux reaches a maximum value of 6.5×10−21 J s−1. 
Additional experimental results obtained from different samples and 
conditions are presented in Extended Data Fig. 2. In our theoretical 
analysis, we apply the proximity force approximation29, which is valid 
under the condition that the wavelength of the phonon mode is much 
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Fig. 1 | Casimir heat transfer driven by quantum vacuum fluctuations. a, As a 
conceptual illustration, we consider a spring-mass model in which two objects 
are separately linked to a hot and a cold thermal bath. The hot (or cold) object 
has higher (or lower) thermal energy and therefore undergoes greater (or 
lesser) thermal Brownian motion. Owing to the Casimir interaction, the two 
objects are effectively linked by a coupling spring through which the rapid 
thermal motion of the hot object agitates the cold object. As a result, thermal 
energy is transferred from the hot to the cold side. b, In the experimental 
setting, we use a pair of nanomechanical membrane resonators to demonstrate 
this mechanism of heat transfer. The two phonon modes (the fundamental 
modes of the membranes) have mode temperatures T( )i

′  that are determined by 
their thermal Brownian motions. The Casimir interaction facilitates thermal 
energy exchange between the two phonon modes at short distances, d. As a 
result, the mode temperatures deviate from their bath temperatures T T( ≠ )ii

′ .
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Fig. 2 | Experimental setup and fabricated samples. a, Cross-sectional view of 
the experimental setup, showing two nanomechanical Si3N4 membranes 
aligned in parallel and brought close together. Partially reflecting mirrors (M1 
and M2) are placed behind the membranes, and laser beams (wavelength 
633 nm) are sent from both sides to interferometrically measure the 
thermomechanical motion of the membranes. The distances between the 
mirrors and the membranes are feedback controlled by piezo-actuators to 
maintain long-term stability of the interferometric detection sensitivity. The 
two samples are mounted on a closed-loop thermoelectric cooler and heater to 
stabilize the sample temperatures and tune the mechanical resonance 
frequencies. The setup is kept in a vacuum below 10−6 Torr. b, c, Optical images 

of the samples. The Si3N4 membranes (100 nm) are coated with gold (75 nm) on 
both sides for optical reflection and electrical contact. The mesa structure on 
the left sample (b) and the electrodes on the right sample (c) are fabricated for 
parallel alignment (see Methods). To compensate for the built-in electrostatic 
potential, a bias voltage Vb is applied between the membrane surfaces. d, At 
room temperature, resonance frequencies of the two modes differ by around 
50 kHz owing to the difference in the dimensions of the membranes. By 
adjusting the sample temperature to tune the film stress, the two frequencies 
are matched at Ω/2π = 191.6 kHz when bath temperatures reach T1 = 287.0 K and 
T2 = 312.5 K (black dashed line). e, f, Thermomechanical noise spectra of the 
fundamental modes.
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Fig. 3 | Observation of Casimir heat transfer. a, In the presence of the Casimir 
interaction, the mode temperatures deviate from their bath temperatures 
when the two membranes are brought close. At distances below 400 nm, T 1

′  and 
T 2

′  become nearly identical, showing thermalization of the two phonon modes. 
The mode temperatures are measured from the thermal Brownian motion, 
k T m Ω u= ⟨ ⟩iB

2
i i
′ 2 . Error bars represent the standard error obtained from four 

hours of continuous measurement. The data agree well with calculations using 
coupled-mode Langevin equations (solid lines). b, c, Measured quadrature 
components (in picometres) of the thermal displacement of phonon modes 1 
(b) and 2 (c) at T 1

′  = 287.0 K and T 2
′  = 312.5 K, respectively. Dashed lines indicate 

standard deviations of the distributions; the enclosed areas are proportional to 
the mode temperatures. d, Probability distributions of the phonon-mode 
energy follow the statistics of a canonical ensemble P E( ) ∝ ei

Ei k T− / B i
′

, 
represented by solid lines. e, Heat flux transferred across the two thermal 
baths as a function of distance, extracted from the measured mode 
temperatures in panel a. The error bars originate from error propagation in the 
calculation. The solid line represents the theoretical prediction of the coupled-
mode model. Additional experimental results obtained from different samples 
and conditions are presented in Extended Data Fig. 2.
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larger than the membrane separation (d/γ is of the order of 10−3 in the 
experiment). For higher-order phonon modes with wavelengths com-
parable to or smaller than the gap, modification of Casimir energy 
owing to the surface modulation of phonons needs to be considered2,30.

To verify that the observed heat transfer is due to the Casimir inter-
action, we examine the phonon-mode coupling characteristics. When 
the membranes are brought close, we observe an anti-crossing feature 
in the thermal noise spectra, revealing strong coupling of the two 
modes (Fig. 4a). The frequency splitting Δf of the two peaks is a direct 
indicator of the coupling strength. Taking both the Casimir and  
the electrostatic effects into consideration, we can express the  
frequency splitting as Δf  =  ΔfCas  +  Δfele, with ΔfCas  =  g′C(d)/π and 

f K d V V VΔ = ( )[( − ) + ]bele E 0
2

rms
2  being the Casimir and electrostatic com-

ponents, respectively31. The coefficient KE(d) is proportional to d−3, and 
V0 and Vrms represent the first and second moments of the surface 
potential difference between the two metallized membranes. The 
unique dependence of Δfele on Vb and d (Fig. 4b) allows calibration of 
the absolute distance between the two membranes13,14,16 (see Methods). 
We observe that the surface potential V0 remains constant as distance 
is varied (see Extended Data Fig. 3), which agrees with the theoretical 
prediction for parallel plane configuration31. When V0 is compensated 
by the applied bias voltage Vb, we observe that the frequency splitting 
shows a distance dependence of d −4.91±0.12 (Fig. 4c). This verifies that 
the Casimir effect dominates over the electrostatic effect in our meas-
urement. This result also represents the first demonstration of strong 
phonon coupling induced by the Casimir force.

Finally, we distinguish the observed Casimir heat transfer from ther-
mal radiation effects. Near-field thermal radiation generates heat flow 
through the vacuum gap and slightly modifies the temperature of the 
bulk membranes. This leads to changes in membrane stress and thus 
frequency shifts of the phonon modes (see Methods and Extended 
Data Fig. 4). Unlike Casimir phonon coupling, the thermal radiation 
effect does not depend on the frequency matching of the two modes, 
which we verify by offsetting the frequencies of the two modes through 
thermal tuning. The observed frequency shifts are less than 40 Hz in the 
distance range of our measurement. These frequency shifts correspond 
to temperature changes of less than 0.02 K, based on the measured 
frequency–temperature dependence of 2 kHz K−1 for the membrane 
modes (Fig. 2d). The slight temperature changes agree with our calcu-
lation using the measured radiation heat transfer coefficient between 
gold surfaces32. On the other hand, thermal radiation pressure may also 

provide mechanical coupling between two phonon modes. However, 
such an effect is estimated to be negligible in our experimental condi-
tion (less than 4% for distances shorter than 800 nm)33 (see Extended 
Data Fig. 1e).

In conclusion, we have experimentally demonstrated heat trans-
fer driven by quantum fluctuations using nanomechanical devices. 
Our observation is unambiguously distinguished from other effects, 
including electrostatic interactions and near-field thermal radiation. 
In this work, we have focused on heat transfer through single-phonon 
modes. When the majority of phonon modes in a solid take part in 
the thermal exchange process, the effect generalizes to heat transfer 
between two bulk solids2–4. The ability to control thermal flow with a 
quantum vacuum opens up a new arena for studying quantum ther-
modynamics34,35 and for implementing quantum thermal machines5. 
Moreover, our method for achieving and controlling strong Casimir 
phonon coupling provides a versatile platform for implementing 
coherent phonon processes (for example, phonon state transfer and 
entanglement) using a quantum vacuum.
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Methods

Numerical calculation of the Casimir force
We calculate the Casimir force between the membrane samples on the 
basis of Lifshitz theory36. The calculation takes into account the finite 
conductivity and dispersion of the gold film and the geometry of the 
fabricated membrane structure (Extended Data Fig. 1a). The Casimir 
force per area can be written as ℏF d η c d( ) = − π /240Cas

2 4, where η is the 
correction factor applied to the Casimir force between two planar 
perfect conductors (Extended Data Fig. 1b). When the system enters 
the strong coupling regime (gC ≫ γ1, γ2), thermalization between the 
two phonon modes T T( = )′ ′

1 2  occurs (see Extended Data Fig. 1c, d). We 
also calculate the Casimir pressure caused by thermal fluctuations of 
the electromagnetic field (Extended Data Fig. 1e). In the distance  
range of our experiment (d < 800 nm), the thermal Casimir force (at 
300 K) is less than 4% of the Casimir pressure driven by quantum  
fluctuations.

Device fabrication
The process of device fabrication is illustrated in Extended Data Fig. 5a–f.  
The process started with a silicon wafer (500 μm thick) coated with stoi-
chiometric Si3N4 (100 nm thick) on both sides by low-pressure chemical 
vapour deposition. Photolithography was performed at the back side 
of the wafer and SF6 plasma etching was used to remove the Si3N4 at the 
opening windows. The silicon wafer was then etched through in a KOH 
solution (25%, 80 °C, 7 h), creating freestanding Si3N4 membranes at the 
front side of the wafer. For the right sample, the first photolithography 
and liftoff were performed to pattern contact electrodes (75 nm Au) on 
the surface of the membrane. The second photolithography and liftoff 
were performed to pattern spacers (150 nm Au). After that, the back 
side of the sample was evaporated with 75 nm Au. For the left sample, 
photolithography and SF6 plasma etching were performed to define a 
square region (500 × 500 μm2) around the membrane, whose corners 
were designed to make contact with the spacers on the right sample. 
A short KOH (25%, 80 °C, 15 min) etch was used to create a mesa struc-
ture with a depth of around 25 μm. After the KOH etch, the sample was 
evaporated with 75 nm Au on both sides.

After fabrication, the left sample was attached to a custom-made 
copper plate using conductive silver paint (Extended Data Fig. 5i) and 
the right sample was mounted on a printed circuit board (PCB) with 
the on-chip electrodes wire-bonded to the corresponding contact pads 
(Extended Data Fig. 5j).

Cleanliness of the membrane surfaces is crucial for parallel align-
ment of the two membranes at a short distance. We inspected samples 
under a confocal microscope, which can identify particles with sizes 
down to 100 nm. To maintain a high degree of cleanliness, we carried 
out the sample fabrication, wire-bonding and mounting of samples 
onto sample holders in a clean-room environment. Using atomic force 
microscopy, we measured the surface roughness of the membrane to 
be less than 1.5 nm.

Parallel alignment of the membrane samples
A diagram of the parallel alignment setup is shown in Extended Data 
Fig. 6a. The two samples were designed such that the corners of the 
mesa structure on the left sample align to the spacers on the right sam-
ple. The gold films coated on both sides of the membranes block the 
red detection laser (λ = 633 nm) while allowing dim transmission of 
blue illumination from a high-brightness LED (λ = 460 nm). A bias volt-
age, Vb, is applied between the two membrane surfaces. When the two 
samples are brought close and touch each other at the spacer regions, 
an electrical signal is picked up, pinpointing the corner that is touching. 
Simultaneous touching of the four corners indicates good alignment of 
parallelism. In the experiment, the distances at which the first corner 
touches and at which all four corners touch are within 80 nm.

Simultaneously, the parallelism between the membrane is moni-
tored optically by imaging the brightness distribution of the inter-
ference pattern. Aligned membranes show uniform optical images 
when changing the distance (Extended Data Fig. 6b). By analysing the 
optical intensity at different locations of the membrane while changing 
the membrane separation, we obtain the relative tilting angles of the 
membranes with respect to the x and y axes as Δθx = 22 ± 25 μrad and 
Δθy = 43 ± 24 μrad (Extended Data Fig. 6d). For comparison, images 
of the misaligned membranes are shown in Extended Data Fig. 6c.  
In this case, Δθx = 228 ± 33 μrad and Δθy = 179 ± 39 μrad (Extended Data 
Fig. 6e).

Experimental setup and signal acquisition
The experimental setup is illustrated in Extended Data Fig. 7a. Two 
laser beams split from an intensity stabilized He/Ne laser (Thorlabs, 
HRS015B) are sent to the back sides of the membranes to interfero-
metrically detect the thermal motion of the membranes. The distance 
between the mirror and the membrane is feedback-controlled by piezo-
actuators, using the DC component of the reflected light (monitored 
by photodetectors) as a feedback signal. This is to achieve long-term 
stability of the detection sensitivity. The samples are mounted on a 
closed-loop thermoelectric heater/cooler, using a platinum resistance-
temperature detector (RTD) as a temperature sensor connected to 
a temperature controller (Lakeshore 330). Feedback control of the 
bath temperatures allows stabilization and tuning of the mechanical 
frequencies. The right sample is mounted on a calibrated closed-loop 
piezo linear stage, which controls the relative distance between the 
membranes with a precision of around 5 nm.

The AC optical signals are detected by avalanched photodetectors 
and fed to lock-in amplifiers (Stanford Research, SR840). The lock-
in reference frequency is set to be offset by 50 Hz from the mechani-
cal resonance in order to prevent spiking of the reference signal. The 
time sequences of the two quadrature components are recorded by 
a data-acquisition system. Fast Fourier transform is then performed 
to obtain the thermal spectra of the mechanical modes. This method 
allows faster measurement of the thermal spectra compared with the 
frequency-sweeping benchtop spectrum analyser.

An optical image of the sample mount assembly and control stages 
is shown in Extended Data Fig. 7b. During the measurement, the whole 
assembly is kept in a vacuum chamber with pressure below 10−6 Torr. To 
avoid optical heating, laser powers are kept low at 8 μW before enter-
ing the chamber.

Electrostatic calibration of absolute distance between 
membranes
The relative distance between the membranes, d′, is controlled by a 
closed-loop piezo linear stage using a strain-gauge sensor. To calibrate 
the absolute distance between the membranes, d = d′ + d0, a widely 
used method in Casimir force measurements is to make use of the 
unique distance and voltage dependence of the electrostatic effect13,14,16. 
In our experiment, the frequency splitting of the mechanical resonance 
due to electrostatic potentials follows f K d V V VΔ ∝ ( )[( − ) + ]ele E b 0

2
rms
2 , 

with electrostatic strength K d d( ) ∝E
−3. At each distance, the measured 

frequency splitting shows a parabolic dependence on the bias voltage 
(Fig. 4b). We fit the parabola curvatures (electrostatic strength KE(d)) 
with a power law of (d′ + d0)−3, using d0 as the fitting parameter. Using 
this method, we determine the absolute distance between the mem-
branes with a precision of around 5 nm (Extended Data Fig. 3a). From 
the fitting, we also obtain the surface potential, V0, at each distance 
(Extended Data Fig. 3b). The surface potential remains constant at 
different distances, agreeing with the theoretical prediction for a 
parallel-planes configuration31. (A distance dependence in V0 is 
expected for the sphere-plane configuration in other Casimir force 
experiments.)



Thermal feedback control of mechanical frequencies
Without feedback control, the mechanical frequencies typically drift 
at a rate of around 0.3 Hz min−1. During heat-transfer measurement, we 
apply feedback to control the bath temperatures and lock the mechani-
cal resonance to a certain frequency. The frequency mismatch of the 
two modes can be maintained below 2 Hz, which is well below the 
linewidths of the two mechanical modes (4.6 Hz and 9.6 Hz) (Extended 
Data Fig. 8a). The time scale of the feedback loop is 16 s; the frequency 
is measured over 16 s and the heater/cooler power is adjusted at the 
end of this period.

Throughout the measurement, the sample bath temperatures are 
monitored by RTD sensors. Bath temperature fluctuations are unre-
solvable with the 0.01 K sensitivity of our temperature control system 
(Extended Data Fig. 8b). The bath temperature behaves similarly at all 
distances. This gives an upper bound for the temperature fluctuations 
of δTmax = 0.01 K. To get a better estimation, we calculate δT on the basis 
of the fluctuations in the mechanical frequencies (δf = 2 Hz; Extended 
Data Fig. 8a) and the measured frequency-temperature coefficient  
df/dT (2 kHz K−1) of the membrane modes (Fig. 2d). The estimated fluc-
tuation of the bath temperature δT is approximately 0.001 K.

Near-field thermal radiation effects
When the two membranes are brought close together, near-field ther-
mal radiation could induce a deviation of the local temperatures on the 
sample surface from the temperature of the sample holder. This would 
lead to a difference between the actual and measured bath tempera-
tures. At separations greater than 300 nm, the radiation heat transfer 
coefficient between gold surfaces has been measured32 to be less than 
1.4 W m2K−1. Using the thermal conductivities of gold (150 W mK−1 at 
75 nm)37 and silicon nitride (10 W mK−1)38 thin films, we calculate the 
local temperature deviation to be less than 0.02 K.

The local temperature change due to thermal radiation modifies the 
membrane stress and therefore induces a frequency downshift (or 
upshift) of mechanical mode 1 (or 2) when the membranes are close. 
This thermal radiation effect does not depend on the frequency match-
ing of the two modes. To observe this effect, we first offset the frequen-
cies of the two modes by 250 Hz by thermal tuning, and then fix the 
output of the heater and cooler (with feedback turned off). We note 
that the observed frequency shifts (Extended Data Fig. 4a) also include 
a contribution from the Casimir force (see Supplementary Information 
section 1). Such a shift is equal to half of the frequency splitting in the 
Casimir strong coupling regime (see Supplementary Information equa-
tion (S13)). We use the measured frequency splitting (Fig. 4c) to calcu-
late the frequency shift caused by the Casimir force. For distances 
outside of the measured range, gC is extrapolated using the power law 
g d∝C

−4.91. The corrected frequency shifts are less than 40 Hz when d 
is greater than 300 nm (Extended Data Fig. 4b). On the basis of the 
measured frequency-temperature coefficient of 2 kHz K−1 for the 
membrane modes (Fig. 2d), these frequency shifts correspond to 

temperature changes of less than 0.02 K, which agrees with our calcu-
lation.

Stabilities of bias voltage and mechanical damping rates
Throughout the measurement, the bias voltage Vb is applied to com-
pensate for the surface potential V0 at each separation. Vb is sourced 
from a low-noise source meter (Keithley 2400) connected through 
an RC circuit, which serves as a potential divider and low-pass filter 
(see Supplementary Information section 3). We measured the noise 
spectral density of the source meter and estimated that its contribu-
tion to the noise of Vb reaches the thermal noise level at frequencies 
near the membrane resonance (182–194 kHz).

We characterize the mechanical damping rates of the two phonon 
modes (Δγi/γi, where i = 1, 2) at different separations. The damping rates 
remain constant within the measurement error of ± 4% in the whole 
distance range (Extended Data Fig. 9a). We also measure the damping 
rates when the bath temperatures are varied around the setpoints. 
With a temperature change of 0.3 K, the damping rates are constant 
within the measurement error of 4% (Extended Data Fig. 9b). Using the 
estimated bath temperature fluctuations (δT = 0.001 K) obtained above, 
we estimate the temperature-induced fluctuations of mechanical 
damping to be less than 0.01%.
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Extended Data Fig. 1 | Numerical calculations of the Casimir force and its 
heat transfer effect. a, Cross-section of the layered structure used in the 
experiment. b, Calculated correction factor, η, plotted against distance, d. c, 
Calculated coupling rate, gC, plotted against d. d, Calculated mode 

temperatures, T 1
′ and T 2

′ , plotted against d on the basis of experimental 
condition 1 in Extended Data Fig. 2a. e, Ratio between the Casimir pressures 
contributed from thermal fluctuations (Fth) and quantum vacuum fluctuations 
(FCas) plotted against d.



Extended Data Fig. 2 | Additional experimental results obtained from 
different samples and conditions. a, Summary of different experimental 
conditions used. Condition 1 corresponds to the experimental results 
presented in the main text. b–f, Measurement results obtained using 
conditions 2 and 3. In all cases, phonon mode splitting is examined and 
confirms that the Casimir force is dominant over the distance range concerned. 

b, Resonance frequencies versus bath temperature for sample set B (conditions 
2 and 3). c, d, Mode temperatures as functions of distances under different 
resonance-matching conditions. Error bars represent the standard error 
obtained from three hours of continuous measurement. e, f, Heat flux 
transferred across thermal baths as functions of distances. The error bars 
originate from error propagation in the calculation.
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Extended Data Fig. 3 | Electrostatic calibration of the absolute distance between membranes. a, b, Dependence of electrostatic strength (a) and minimum 
splitting voltage V0 (b) on the distance between membranes. In b, the error bars represent the error of the parabolic fit to the frequency splitting versus voltage.



Extended Data Fig. 4 | Near-field thermal radiation effects. a, Frequency 
shifts of the two modes plotted against membrane distance. b, Frequency 
shifts of the two modes with the contribution from the Casimir force excluded. 

Measurements were carried out at bath temperatures T1 = 287.0 K and 
T2 = 312.5 K. The frequencies of the modes are offset by 250 Hz.
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Extended Data Fig. 5 | Device fabrication. a–h, Fabrication process flow for the left (a–d) and right (e–h) samples. i, j, The left (i) and right ( j) samples are attached 
to a custom-made copper plate and a printed circuit board, respectively.



Extended Data Fig. 6 | Parallel alignment of the membranes. a, Schematic 
showing the parallel alignment setup. DAQ, data acquisition system.  
b, c, Transmission optical images of aligned (b) and misaligned (c) membranes. 
d, e, Optical intensity at different locations on the membranes (marked in b, c) 
as a function of the change in separation. Solid lines are sinusoidal fits with an 

attenuation factor. The periodicity of around 230 nm matches well with the 
half-wavelength of the illumination light (460 nm). From the fitting, we find 
that the angle misalignments along the x and y directions are Δθx = 22 ± 25 μrad 
and Δθy = 43 ± 24 μrad for aligned membranes (d), and Δθx = 228 ± 33 μrad and 
Δθy = 179 ± 39 μrad for misaligned membranes (e).
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Extended Data Fig. 7 | Experimental setup. a, Schematic showing the experimental setup. APD, avalanche photodetector; BS, beam splitter; DC PD, DC 
photodetector; L, lens; M, mirror; ND, neutral density filter. b, Optical image of the sample mount assembly and control stages.



Extended Data Fig. 8 | Stability of mechanical frequency and temperature 
during thermal feedback. a, Frequency stability during thermal feedback 
control. The shaded areas represent the linewidths of the mechanical modes.  

b, Bath temperatures read from the temperature controller during feedback 
control of the resonance frequencies.
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Extended Data Fig. 9 | Characterization of mechanical damping rate. a, b, Relative change in damping rate ( )γ γΔ /i i  plotted against distance (a) and temperature 
change (b). Error bars represent the standard deviation of 100 measurements.
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