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Abstract. The way in which the branch cuts of the Lindhard dielectric tensor are located in
the complex-wavenumber plane is shown. Some of its physical implications are discussed.

1. Introduction

The infinite and uniform electron-gas system is an important model when trying to
understand a large number of physical processes such as the optical properties of simple
metals (Kliewer and Fuchs 1968, Fuchs and Kliewer 1969, Mukhopadhyay and Lund-
qvist 1978) or the slowing down of a charged particle when passing through a metal
(Lindhard 1954). The dielectric tensor e, j(k, ») of the electron gas is of crucial importance
in many of these discussions. For a homogeneous and isotropic system this tensor can
be written as

€k, ©) = d,€; + (kikj/kz)(e,_ — €, (1)

where €, (the longitudinal dielectric function) and e, (the transverse dielectric function)
are functions of the wavenumber |k| and frequency w.

In this paper we shall take ¢ . to be the Lindhard dielectric tensor (Lindhard 1954).

iy

We shall consider ¢, and ¢, as analytical functions in the complex k plane and we will
show how the branch cuts of these functions move in the k plane when the frequency
o 1s varied. In particular, we will find that there is a discontinuous change in one of these
branch cuts when w changes from w. — 0" to w, + 0%, where w_ is the Fermi frequency
of the electron gas.

2. The branch cuts of € and €,

Let k. be the Fermi wavenumber and w_ the Fermi frequency of an electron gas at zero
temperature. We define
q = k/kg and Q = o/wy.

The Lindhard dielectric tensor is given by equation (1) with

w,\* 1 1
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where

F=(q—a)g+alg—>b)(g+ b In[(g — alg + b)/ig + alg — b)]
+{g—a)q+a)q—"0b)(qg+b)Inl(g —a)g + b)g + a)(g - b)]

Where (4)
a= -1+ (1+ Q)2 =1+ (1 + Q)

Ky oo = == 1/2
O 1)} N

b =1+iQ -2

a=-1-(1-Q) .
=1 (1 Q)2 ifQ < 1.

w, in equations (2) and (3) is the plasma frequency.

In these formula it should be implicitly understood that Q = Q + 10" and that the
In function is the principal branch of the logarithmic function. The €, and e, functions
are considered as analytical functions in the complex g plane. Assocmted with the first
In function in equation (4) will be one branch cut from g = a to ¢ = b and another from
q = —atoqg = —b. The second In function gives one branch cut fromg = a'tog = b’
and another fromg = —a'togq = —Pb'. Since a, b, @’ and b’ are functions of Q, it follows
that these branch cuts will move around in the g plane when ( is varied.

Let us denote the branch cut from g = a to g = b by .# and the branch cut from &’
to b’ by A" (figure 1). We now discuss in detail how .# and 4" are located in the g plane
and how they move when Q is varied. For all Q the branch cut .# is a straight line be-
tween g = a and g = b, located just above the Re(g) axis (for technical reasons we have
drawn .# a finite distance above the Re(g) axis in all figures). The ‘length’ of .# is equal
to b —a =2 and is independent of Q. When Q — o then ¢ » —1 + /Q and b —
1 + ,/Q so that the centre of .# is located very far from g = 0. When Q decreases .#
will move towards ¢ = 0 and when Q = 0, then it is a Jine segment fromgq = 0tog = 2.

The branch cut .4~ behaves in a slightly more complicated manner. Assume first
that Q > 1. Since Re(a’) = —1 and Re(b’) = 1 for Q > 1, it follows that 4" will have
one endpoint located on the line Re(q) = — 1 and another on Re(g) = 1. However, .4~
is not a straight line between &’ and b’ but instead a segment of a circle with its centre at
g = 0. The radius of the circle is |a'| = [b'| = \/Q. It follows that when Q — oo then A~
will also move towards infinity while it looks more and more like a straight line. When
Q- lthena’ » —1and b’ - 1 and A" becomes a half circle with radius |g| = 1. It is
most interesting that when Q changes from 1 + 0% to 1 — 0™ then .4” makes a discon-
tinuous change of shape. The half circle with endpoints at ¢ = +1 will change into a
straight line between the same endpoints (figure 1). For Q < 1 then b’ — a’ = 2 so that
A" has the same length as .# for these Q). When Q — 0 then 4" moves to the left in the
g plane and when Q = 0itis a line segment from g = —2to g = 0. Obviously, forQ = 0
then .# + A" constitute one single line segment from ¢ = —2 to g = 2 (figure 1),

The movement of branch cut .# when Q is varied is usually shown as in figure 2.

In many applications there are integrals of the following type

Q= J e(q w) )
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Figure 1. The branch cuts of Lindhard dielectric tensor are shown for four different frequen-
cies @, All the ‘straight line’ branch cuts are located an infinitesimal distance from the Re(g)
axis.

where € could be either ¢, or €, and where
F*(g) = F(g*) and  F(q) = F(—q).

If it is assumed that F is a ‘well-behaved function’, then it is possible to close the integra-
tion contour in the upper half-plane. From the theory of analytical functions it then
follows that we can replace the integral in equation (5) with an integral around all branch
cuts and poles of the integrand

[ _Fl) F(g) L i

Q= ﬂ)d - § d + (pole contribution from F and €~?).
Ly 1 g 0) i 4 e(g, w) (P

Letusassume that Q > 1. The branch cut .4"is located in the g plane as shown in figure 1.

Let us denote by A" and 4" _ respectively those parts of 4" which are located in the

half-planes Re(g) > 0 and Re(g) < 0. We then have (note #°_ — —.4", when g —» —g¥)

il
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Flo) [ 4,F@ 3g F(q) ﬂg ( F(q) F*(q)
jé,v 4 elg, w) (#4 : € e / € Ve 1 e o e* )

_ zmﬂ; dq @ (6)

Consequently, the integral around the branch cut .4” is a real number when Q > 1. The
integral around the branch cut .#, however, is a complex number, Physically we may say
that energy dissipation, due to excitation of electron-hole pairs. can take place (for
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Figure 2. Electron -hole pairs can be excited (for a fixed Q) with wavenumber a(Q)) < g < b(Q).

Q > 1) at the branch cut .# but not at the branch cut A", When Q < 1 then the integral
around .4 is also complex. Note, however, that when Q = 0 then .# + 4" 1s a line
segment from g = —2to g = 2 and it follows that the integral around .# + /" is a real
number. From a physical point of view this result is trivial: it just states that no energy
dissipation can take place when @ = 0.

3. A simple application

Assume that we have an oscillating monopole located at x = 0 in an infinite electron gas.
Using the Maxwell equation

V. €E = 4nqd(x) exp(—iw?)
it can be shown that the induced charge density is given by

g exp(—iwt) (= , ( 1 )
= dk k exp(ik|x -1
4ni|x| on pliklx) €, (k, @)

and so

— it i ik|x|
A= g exp(—iwt) (({;ﬂdkkw + E{; dkkw + R cxp(ikplxb) (7)
o it J&'

47| x| € .
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where

1 1 Je

€ (kp, ) =0 and el
Rk ok|,_,,

The last term in equation (7) is the plasmon part of the induced charge density. The

asymptotic behaviour (for large |x]] of the integrals around the branch cuts .# and .4~

is determinated by the endpoints of .# and .4":

L

4; - iﬁ ~ (1/|xI*)[# | exp(ia|x]) + ., exp(ib|x|) + A", exp(ia’|x| + A", exp(ib'|x])]
M v

as x| = o

where # , .M ,, /" and A", are functions of w. It is now possible to give a qualitative
discussion of the spatial behaviour of Ap as function of w:

(i) @ = 0. As we have shown above, .# + A" is a line segment from k = —2k_ to
k = 2k; and so

Ap (from .4 + A7) ~ (1/|x]*) cos 2k|x]|

i.e. the branch cut contribution to Ap, when w = 0, correspond to the ordinary Friedel
oscillations in the electron gas,

(i) 0 < @ < w,. We now have oscillations in the electron gas density with four
different wavelengths 2r/a, 2n/b, 2n/a’ and 2n/b’. The envelope to these oscillations
decreases as |x|~* with increasing |x|.

(1ii) @ > wg. The branch cut .# again gives an oscillatory contribution to Ap but the
branch cut 4" will now make a contribution which is both oscillatory and exponential
decaying (because a’ and b’ are complex when w > ) with increasing |x|.
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