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On the theory of the Franz—Keldysh effect
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Abstract, The excitonic optical absorption in the presence of a static electric field
has been evaluated by solving the effective mass equation numerically. The results
are compared with a previous approximate calculation and some experimental
measurements. A certain degree of agreement has been found with experiment,

1. Introduction

A theory of optical absorption near the gap energy by insulating crystals in the presence
of static electric field was first developed by Franz (1958) and Keldysh (1958). Using
Houston (1940) wave functions they found that the absorption threshold is moved to lower
energies, and that the absorption curve on the low-energy side of the zero-field threshold
has the form of an exponential tail.

Callaway (1963, 1964) and Tharmalingam (1963) have extended these calculations, using
known properties of the Airy function, to obtain the form of the absorption curve over as
much of the spectrum as is well described by the effective mass approximation. They found
the exponential tail already known and some oscillations above the zero-field threshold.
Penchina (1965) has extended Tharmalingam’s calculations to cover the case of indirect
absorption. Callaway’s calculations have been extended by Callaway and Viswanathan
(1966) who have discussed the dielectric constant near the threshold while Seraphin and
Bottka (1965) have discussed the effect of an electric field on the refractive index and have
applied their results to the change in reflectivity. Phillips (1966) has discussed the effect of
an electric field near saddle-point edges.

All these calculations have assumed that the independent particle approximation holds,
and so are applicable only to the situation where the energy of the electron-hole pair in the
field is much larger than the maximum exciton binding energy. Because of the large dielec-
tric constants and the small effective masses often met partlculariv in semiconductors, a
field sufficiently large to fulfil this condition is easﬂy obtained. It is, however, of interest to
analyse the system when the energy of the pair in the field is of the same order as their
mutual energy.

The first attempt to take account of the electron-hole interaction seems to have been
made by Duke (1965, see also Duke and Alferieff 1966) who finds an analytic solution to an
equation which is similar to the effective mass equation with both a field term and a Cou-
lomb term.

It should be mentioned here that a perturbation expansion in powers of the field cannot
be expected to give the correct results because the width T of an absorption line for small
fields is given by

I Aexp(?) (1)

using the WKB approximation where F is the field strength and A and B are constants and
cannot be expressed in a Taylor series expansion in F about zero field.

2. Optical absorption in the effective mass approximation

The expression for the absorption coefficient K has been set down many times (e.g.
Elliott 1963);

K, = |L(0 )|?| {ckole . plvko >2|S(Av) (2a)
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for the allowed case and

KF=
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for the forbidden case where U(r) is the solution of the effective mass equation in relative
coordinates r, k, is the point in k space where the minimum energy gap between the
conduction band ¢ and the valence band v occurs, S(hv) is the density of excited states at the
photon energy sv above the ground state, 7 is the real part of the refractive index function
at the frequency v, and e, m and ¢ have their usual meetings. M is the operator

< (pli>dile.p €. plix<ilp
M= (ﬂ- + - ) 2
2\"E-E *TE-E 4
where € is the polarization, and the sum is over all bands except ¢ and v.
The effective mass equation is
h? e?
(__ vi-f er) Ulr) = EU(r) (3)
21 KY ;

where p is the reduced effective mass mgmy [(m, + my), E is the energy from the bottom of the
conduction band, « is a dielectric constant and F is the field strength. If units are chosen so
that both the exciton rydberg

ue?
20 )
and the exciton Bohr radius
e 4b
i == m—
2 (45)
are unity, the effective mass equation (3) becomes
2 . -
(-—T;'2——+fz)b'=EU 5)
r

where the field strength f is measured in rydberg$ per Bohr radius.

Because of the removal of spherical symmetry by the introduction of the electric field,
equation (5) is not separable in spherical polar coordinates, but it is still separable in para-
bolic coordinates defined by
- ¥+
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(65)
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These coordinates are well discussed in standard textbooks (e.g. Morse and Feshbach
1953). The solution of the effective mass equation (5) may be written in the form
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where the y; are solutions of the equations
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where £ is a separation parameter.
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These equations are in a convenient form for numerical integration using Numerov’s
method (e.g. see Hartree 1958).

The solutions can be classified using the energy, the angular quantum number m and
the number of zeros p — 1 in the function y,(£). It is easy to see that the only wave functions
which have a finite value at the origin have m zero and those with a finite slope have m one
or zero. Solutions with large values of p give small contributions to the optical absorption
because they correspond to a large value of the separation constant # for which a large barrier
develops in the potential of equation (85) preventing the particle from penetrating to the
origin. Experience shows that only a very few solutions are needed.

The solution of equation (8a) defines values of 7 and p with which the function y, may
be found. The asymptotic form of y, is

© » resinli(22) 4 ©)
for some constant A4 as { approaches 1nﬁmty, where » varies only logarithmically with .
The density of states is found by assuming that the function is zero at some point { = L,
where the argument of the sine must then be n7. The density of states turns out to be

S(E dnl L2 "
()_dE“;(éf) S
for large L.
The normalization constant / is easily evaluated from
= [|Ul27 d¢ d ag (11)
where the Jacobian J is
= $(é+0). (12)

The integral (11) has two terms from (12), the first of which is the less divergent and may be
neglected giving for the normalization constant

o 2
P2 = nA%(d)ye | Xge, (13)

o €

The power series expansion of the y; about the origin are
= gameval - ——+0(2) 14
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so that the wave function from equation (7) becomes
(1 2t)z -7

Ulr) = (x*+)7 ‘“"{1+ T

0(2)} eimo, (15)

The value of U at the origin is unity if m is zero, and zero otherwise, giving for the allowed
absorption coefficient from equations (2a), (10) and (15)

2me? (ck,le . plvk, |2
K, = | {ckole . p|vko )| - (16)
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In the forbidden case there are two possibilities with the light polarization either parallel
or perpendicular to the field. For the states with m zero U(r) has a slope only in the =
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Figure 1. Plot of the function {A2m2%fY2[ (x.%/€) d&} ~* of equation (16) for various
values of the field strength parameter f. Energy measured relative to gap energy.
Zero-field curve included for reference.
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direction
eU
—|=(1-2t), m=0 (17a)
and the states with m unity have a slope only perpendicular to the x direction:
oU
0x Iy

With equations (256), (10), (15) and (17) this gives for the forbidden coefficient with the
parallel and perpendicular polarization respectively

~1,  m|=1. (175)

Kep=—— » (18a)
Y] A?m2f 12 fu (x:2/£) d¢
and
2me’h? (cko|M|vk, >|?
Kp o = [<ekoMvka )1” (18b)
] A?m2f112 f: (x:2€) d¢

3. Numerical integration

Equations (8) have been integrated numerically by Numerov’s method using a device
given by Cooley (1961) to obtain allowed values of the separation constant 2. Because of the
different position of ¢ in equation (8a) from that of the energy Cooley’s equation, (3.15)

T

l

g
w
—Q'O-OS— ‘
- I
f
17205
7=0-4
=05 k
f=0-2
=0l
Plaze?™ e
14 12 10 08

Figure 2. Plot of the function (22 —1)2/{A?m%f12[ 5 (x:?/€) dé} of equation (18a) near

the position of the 1s resonance for various values of field strength parameter f, Energy

measured relative to gap energy. The oscillator strength is seen to grow as the field
strength increases,
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becomes

(' Ym—1+2Ym'— Ym+1)h_2+ DT(I)Pm
2 P?[(ih)
i=1

The accuracy of the calculation was checked by working out some of the points to a much
greater accuracy and the error was estimated to be about 2% or less, except for high
energies (> §) and small fields ( <0-1) for which it may have been as much as 5%,. From the
numerically evaluated solutions the quantities 42 and [(y,%/¢) d¢ were calculated and the
absorption coefficients found by substituting into equations (16) and (18). The results of
the calculations are shown in figures 1 and 2.

The time required to integrate the equations increased rapidly with decreasing field and
it was found to be impracticable to obtain curves at fields so small that the forbidden
absorption became interesting. A method of solving the equations by approximating the
solutions by a polynomial may be more successful in those cases.

D(2) = (19)

4. Discussion

For the allowed absorption curve at a field of 0-06 where the calculations start the 2s
and 2p states are already very broad. A second-order perturbation calculation gives the

energies of these lines as
Ey* = —}£3f—42f* (20)

and the peaks seen at —0-1 and —0-37 are presumably these. For larger fields the position
of the 1s peak follows the second-order position of

Ei=-1-— (21)
8
fairly well until it reaches about —1-1 where it remains until the field has increased to
about 0-5 after which it again moves to higher energies and finally becomes so broad that it
cannot be distinguished for E, greater than 0-5 which occurs for f about 1-5.

There are some marked differences between the results shown here and those obtained
by Duke and Alferieff (1966) for a model potential. Compared with the present results, the
curves of Duke and Alferieff show too little broadening, too little shift from the zero-field
position and the wrong sign for the shift in the case of the 1s resonance.
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Figure 3. Plot of position of 1s resonance with field strength. Crosses mark position
from numerical calculation; full line marks position from second-order perturbation
theory.

The reduced broadening of the 1s resonance with their model potentials may be easily
understood. Crudely, the resonance becomes broad when the potential barrier in the {
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direction becomes as low as the energy of the 1s state. In the model potential the barrier
is much larger than it should be. This presumably also partly accounts for the decrease in
the shift of the line.

Little experimental work seems to have been done at fields so low that the excitonic
effects are important. Vrehen (1966) has studied the effects of a small electric field and the
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Figure 4. Allowed absorption curve in the absence of the Coulomb interaction for
various field strengths. Scaling of ordinates corresponds to that of figures 1 and 2.
Energy measured relative to gap energy.

absorption in germanium, If the broad peak at the band edge is assumed to be associated
with the heavy hole giving a reduced mass of 0-036m then taking the dielectric constant of
Ge to be 16 gives the exciton rydberg as 0-0019 ev and the exciton Bohr radius as 235 A.
The theoretical curves show that the peak should disappear for a field of about 1-5 rydbergs
per Bohr radius or about 1200 vem™. Vrehen’s curves show the exciton disappearing at
about 1000 vcm ™. Considering that the elementary theory does not take into account
the zero-field broadening, the complex form of the valence band or the central cell correc-
tion which are normally considered to be important the discrepancy is not significant.

Before the peak is extinguished Vrehen finds that it moves to higher energies as predicted
by the theory.

Many experiments have been carried out using cuprous oxide in which forbidden
absorption is seen. It is, therefore, rather unfortunate that it was not possible to analyse the
forbidden case.

One interesting feature, however, does occur in the forbidden absorption at com-
paratively high fields when the light is polarized parallel to the field (figure 2). As the field
increases the 1s state gets an admixture of the 2p state and therefore exhibits forbidden
absorption. This is exactly analagous to an effect seen in cuprous oxide by Nikitine ef al.
(1962) who observed forbidden absorption by the s and d states in the presence of an
electric field.

5. Conclusion

The available experimental evidence indicates that, when a crystal exhibits a good sharp
exciton series, this theory may describe its behaviour in an electric field well though since
the evidence is scanty it is hard to draw a firm conclusion. It would be very interesting to
see the results of some more experiments on these materials.

Acknowledgments
The author would like to express his thanks to Dr. R. J. Elliott under whose supervision



386 H. 1. Ralph

this work was carried out. Numerical work was facilitated by use of the KDF9 at the Oxford
University Computing Laboratory. The author would also like to thank the Science
Research Council for financial support.

References

Carraway, J. C., 1963, Phys, Rev., 130, 549-53,

1964, Phys. Rev., 134, 998-1000,

Carraway, J. C., and Viswanaruax, K. S., 1966, Phys, Rev,, 143, 564-8,

CooLEy, J. W., 1961, Math. Tabl, Comput., 15, 363-74.

Duvke, C. B., 1965, Phys. Rev. Lett., 15, 625-8,

Duke, C. B., and ALrFeRIEFF, M. E., 1966, Phys. Rev., 145, 583-92,

Erriort, R. J., 1963, Polarons and Excitons, Eds C. G. Kuper and G. D. Whitfield (Edinburgh:
Oliver and Boyd), pp. 269-93,

Fraxz, W., 1958, Z. Naturforsch., 13a, 484-9,

Hartreg, D. R., 1958, Numerical Analysis (Oxford: Clarendon Press).

HoustoN, W. V., 1940, Phys. Rev., 57, 184-6.

Keroysy, W. L., 1958, Sov. Phys.~JETP, 7, 788-90.

Mogsg, P. M., and FesuBach, H., 1953, Methods of Theoretical Physics (New York: McGraw-Hill).

NIKITINE, S., et al., 1962, Proc. Int. Conf. Phys. Semicond., Exeter, 1962 (London: Institute of
Physics and Physical Society), pp. 431-40,

PexcHINA, C. M., 1965, Phys. Rev., 138, A924-6.

PairLips, J. C., 1966, Phys. Rev., 146, 584-9.

SeraprHIN, B. O., and Bortka, N. B., 1965, Phys. Rev., 139, A560-3,

THARMALINGAM, M., 1963, Phys. Rev., 130, 2204-6.

VreHeN, Q. H. F., 1966, Phys, Rev., 145, 675-88,






