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The behavior of the electrons in a dense electron gas is analyzed
quantum-mechanically by a series of canonical transformations.
The usual Hamiltonian corresponding to a system of individual
electrons with Coulomb interactions is first re-expressed in such a
way that the long-range part of the Coulomb interactions be
tween the electrons is described in terms of collective' fields,
representing organized "plasma" oscillation of the system as a
whole. The Hamiltonian then describes these collective fields plus
a set of individual electrons which interact with the collective
,fields and with one another via short-range screened Coulomb
interactions. There is, in addition, a set of subsidiary conditions
on the system wave function which relate the field and particle
variables. The field-particle interaction is eliminated tOo a high

degree of approximation by a further canonical transformation to
a new representation in which the Hamiltonian describes inde
pendent collective fields, with n' degrees of freedom, plus the
system of electrons interacting via screened Coulomb forces with
a range of the order of the inter electronic distance. The new
subsidiary conditions act only on the electronic wave functions;
they strongly inhibit long wavelength electronic density fluctua
tions and act to reduce the number of individual electronic de
grees of freedom by n'. The general properties of this system are
discussed, and the methods and results obtained are related to the
classical density fluctuation approach and Tomonaga's one
dimensional treatment of the degenerate Fermi gas.

organized oscillation of the system as a whole, the so
called "plasma" oscillation, and _the screening of the
field of any individual electron within a Debye length
by the remainder of the electron gas. In a collective
oscillation, each individual electron suffers a small
periodic perturbation of its velocity and position du~ to
the combined potential of all the other particles. The
cumulative potential of all the electrons may be quite
large since the long range of the Coulomb interaction
permits a very large number of electrons to contribute
to the potential at a given point. The screening of the
electronic fields may be viewed as arising from the
Coulomb repulsion, which causes -the electrons to stay
apart, and so leads to a deficiency of negative .charge
in the immediate neighborhood of a given electron. The
colfective behavior of the electron gas is decisive for
phenomena involving distances greater than the Debye
length, while for smaller distances the electron gas is
best considered as a collection of individual particles
which interact weakly by means of a screened Coulomb
force.

These conclusions were reached by analyzing the
behavior of the electrons in terms of their density
fluctuations. It was found that these density fluctua
tions could be split into two approximately independent
components, ~ssociated with collective and individual·
particle aspects of -the electronic motion. The collective
component is present only for wavelengths greater
than the Debye length and represents the "plasma"
oscillation. It may be regarded as including the effects
of the long range of the Coulomb force which leads to
the simultaneous interaction of many particles. The
individual particles component is associated 'with' the
random thermal motion of the electrons and shows no
collective behavior; it represents a collection of in-
dividual electrons surrounded by co-moving cloud~ of
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1 D. Bohm and D. Pines, Phys. Rev. 82, 625 -(1951).
2 D. Pines and D. Bohm, Phys. Rev. 85, 338 (1952).

I N this paper we wish to develop a collective descrip
tion of the behavior of the electrons in -a dense

electron gas which will be appropriate when a quan
tum-mechanical treatment of the electronic motion is
required, as is the case for the electrons in a metal. Our
collective description is based on the organized be
havior of the electrons brought about by their long
range Coulomb interactions, which act to couple to
gether the motion of many electrons. In the first paper
of this series! hereafter referred to as I, we developed a
collective description of the organized behavior in an
electron gas due to the transverse - electromagnetic
interactions between'the electrons. This was done by
means of a canonical transform~tion to ~ set of trans
verse collective coordinates which were appropriate for
a description of this organized behavior. Here we shall
develop an analogous canonical transformation to a set
of longitudinal collective coordinates which are appro
priate for a description of the organization brought
about by the Coulomb interactions.

In the preceding paper2 hereafter referred to as II,
we developed a detailed physical picture of the elec
tronic behavior (due to the Coulomb interactions).
Although the electron gas was treated classically, we
shall see that most of the conclusions reached, there are
also appropriate (with certain modifications) in the
quantum domain. Let us review briefly the physical
picture we developed in II, since we shall have occasion
to mak~ frequent use of it in this paper.

We found that, in general, the electron gas displays
both collective and individual particle aspects. The
primary manifestations of the collective behavior are
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charge which act to screen their fields as described
above. The individual particles component thus in
cludes the effects of the residual short-range screened
Coulomb force, which leads only to two-body collisions.

A quantum-mechanical generalization of the density
fluctuation method is quite straightforward and is
sketched briefly in Appendix I. However, we do not
choose to adopt this point of view, because although it
is quite useful in establishing the existence of collective
oscillations and describing certain related phenomena,
it does not enable one to obtain a satisfactory over-all
description of the electron gas. Quantum-mechanical
calculations aimed at solving fpr the wave functions
and the energy levels of the system are much more
conveniently done in terms of a Hamiltonian for
malism through the use of appropriate canonical
transformations.

-Our general approach in this series of papers has been
to analyze the collective oscillatory motion first, since
this is associated with the long-range aspects of the
interaction which, in a sense, are responsible for the
major complications in the many-electron problem.
Once the collective motion is accounted for, we then
investigate the aspects of the electronic behavior which
are independent of the collective behavior, and which,
if our method is successful, shoulq. turn out to be simple.'
Thus we are led to seek a canonical transformation to a
representation in which the existence of the collective
oscillations is explicitly recognized, and in which these
oscillations are independent of the individual electronic
behavior. In this representation, which we shall call
the collective representation, we do not expect that the
electron gas can be described entirely in terms of the
collective coordinates which describe the organized
oscillations, since we know that the gas also displays
individual particle behavior. We shall see that in the
collective representation, the individual electronic co
ordinates correspond to the electrons plus their associ
ated screening fields, 'and that as' might be anticipated
from II, these screened electrons interact rather weakly
via a screened Coulomb force.

In this paper we shall be primarily concerned with
obtaining the canonical transformation to the collective
representation. We shall discuss the approximations
involved and, in a general way, the resultant wave
functions of our electron system in the collective repre
sentation. Our development of a quantum-mechanical
description of the electron assembly makes possible a
treatment of the effects of electron interaction in- me
tallic phenomena which utilizes at the outset the sim
plicity brought about by the organized oscillatory be-

< havior. The detailed application of the collective
description to the electrons in a metal is given in the
following paper,3 hereafter referred to as IV.

Historically, the -first utilization of the 'plasma' as
pects of the electron gas in a metal is due to Kronig

3 D. Pines, following paper [Phys. Rev. 92, 626 (1953)].

and Korringa,4 who treated the effect of electron
electron interaction on the stopping power of a metal
for fast charged particles. However, their treatment is
open to objection, in that they describe the electron
gas as a classical fluid, with an artificially introduced
coefficient of internal friction. A more satisfactory
treatment of electron-electron interaction in the stop
ping power problem is due to Kramers4 and Bohr.4

The quantum treatment of this problem from the view
point of the collective description is given in Paper IV.

Tomonaga5 has independently investigated the ex
tent to which a degenerate Fermi gas can be described
in terms of longitudinal oscillations. Tomonaga's treat
ment is, however, confined to a one-dimensional system,
and as we shall see, there are certain essential difficulties
associated with its generalization to a three-dimensional
system which make the direct extension of this ap
proach to three dimensions impossible. The relationship
between our' approach and that of Tomonaga is dis
cussed in Appendix'II.

II.

We consider an aggregate of electrons embedded in
a background of uniform positive charge, whose density
is equal to that of the electrons~, The Hamiltonian for
our system may be written

where the first term corresponds to the kinetic energy
of the electrons, the second to their Coulomb interaction
and the third to a subtraction of their self energy. The
prime in the summations over k denotes a sum in which
k= 0 is excluded, and this takes into account the uni
form background of positive charge, and hence the
over-all charge neutrality of our system. 6 In obtaining
(1) we have used the fact that the Coulomb interaction
between the ith and jth electrons may be expanded as
a Fourier series in a box of unit volume, and is
(e2/lxi-xj/)=41re2Lk(1/k2)eik.(xi-Xi). n is the total

, number of electrons and is numerically equal to the
mean density (since we are working in a box of unit
volume).

Instead of working directly with the ,Hamiltonian
of Eq. (1), we shall find it convenient to introduce an
equivalent Hamiltonian which is expressed in terms of
the longitudinal vector potential of the electromagnetic
field, A(x), where A(x) may be Fourier-analyzed as

A(x) = (47rc2)i LkqkEkeik.X, (2)

4 R. Kronig and ]. Korringa, Physica 10, 406 (1943). See also
H. A. Kramers, Physica 13, 401 (1947); A. Bohr, Kg!. Danske
Videnskab. Selskab, Mat.-fys. Medd. 24, No. 19 (1948); and
R. Kronig, Physica 14, 667 (1949).

- 5 S. Tomonaga, Prog. Theor. Phys. 5, 544 (1950).
6 We shall drop this prime in the remainder of this paper since

we have no further occasion to make explicit use of the fact that
the term with k=O is excluded.
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The subsidiary condition (8) becomes

P-kt/l= 0 (for all k).

If we choose a f which is independent of qk, we may
satisfy the new subsidiary condition identically, the
terms involving Pk in the Hamiltonian will·drop out,
and:fC is seen to be equivalent to (1). We note that the
term -27rne2Lk(1/k2) was included in (6) so that this
Hamiltonian might be numerically equivalent to (1)~

as well as leading to equivalent equations of motion,
since this term is just what is needed to cancel the terms
with i= j in the Coulomb energy.

The introduction of the longitudinal decrees of free
dom, qk, and the subsidiary conditions (7) provides a
convenient means of introducing the concept of inde
pendent collective oscillation within the framework of
the Hamiltonian formalism. The utility of this repre
sentation lies in the fact that (7) introduces in a simple
way a relationship between the fourier components of
the electronic density, Pk= Lie-ik,Xi, and a set of field
variables Pk. We shall see that there is, in consequence,
a very close parallel between the behavior of the Pk,
as analyzed in II, and the behavior of our field co
ordinates. In this representation we find that the field
variables (just as did the Pk) oscillate with a frequency
equal to the plasma frequency, provided we neglect a

,small coupling between the collective motion and the
individual electronic behavior (characterized by their
random thermal motion). Furthermore, just as we
found it ~possible·in II to find a purely oscillatory com
ponent of the density fluctuations, which is approxi
mately independent of the individual electronic be
havior, so we shall here be able to carry out a canonical
transformation to a new set of field variables, which
describe pure collective behavior and do not interact
with the individual electrons to a good degree of ap
proximation. In this section we shall analyze the ap
proximate oscillatory behavior of the (qk, Pk), while in
the next section we carry out the canonical transforma
tion to the pure collective coordinates.

Before beginning our analysis, we find it desirable
to modify somewhat our Hamiltonian (6). We found
in Paper II that in the classical theory there is a mini
mum wavelength Ac (which classically is the Debye
length), and hence a maximum wave vector kc, beyond
which organized oscillation is not possible. We may
anticipate that in the quantum. theory a similar (but
not identical) limit arises, so that there is a corre
sponding limit on the extent to which we can introduce
collective coordinates to describe the electron gas.

(3)

(4)

(8)

(7)Ok<P=O (for all k),
where

+ (27re2/m) L Ek· Elqkqzei(k+l)oxi- Lk!PkP-k
ikl

which using (2) and (3) may be shown to become

'1 This may be contrasted with the customary gauge [corre
sponding to divA= (1/C)dlt'/at], in which the commutator of the
subsidiary condition with H is proportional to the subsidiary
condition itself, and is therefore zero only when the subsidiary
condition is satisfied.

8 See G. Wentzel, Quantum Theory oj Wave Fields (Interscience
Publishers, New York, 1949), p. 131.

With this transformation, we find

'p",--->;S-lpiS= Pi- (47re2) I LkqkEkeikoXi

pk--:;S-lpkS= Pk+ i (47re2/ k2) i Lie ik. Xi,

S=exp[- (1/k) L (4?re2/k2)iqkeik.XiJ. (9)
ki

Our equivalent Hamiltonian is then given by

This Hamiltonian, when used in conjunction with a
set of subsidiary conditions acting on the wave function
of our system,

and tk denotes a unit vector in the k direction. The
electric field intensity, E(x) is

E(x)= - (47r)1 LkqkEke+ikox

= (47r)i LkP_ktkeikox.

To ensure that A(x) and E(x) are real, we, take

qk=-q-k*, Pk=-P-k*.

will lead to the correct electron equations of motion.
12k is proportional to the kth fourier component of
divE(x)-47rp(x), and hence these subsidiary condi
tions guarantee that Maxwell's. equations are satisfied.
It may easily be verified that the subsidiary condition
operator Ok commutes with the Hamiltonian (6), so
that if the subsidiary condition (7) is satisfied at some
initial time, it will be true at all subsequent times.7

The equivalence of our Hamiltonian (6) with the
Hamiltonian expressed by (1) may be. seen by applying
the unitary transformation8 ~=Sif;, where,
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(10)

Since this is the case, rather than introduce the full
spectrum of longitudinal field coordinates (and associ
ated subsidiary conditions) as we do in (6), we might
as well confine our attention to only as many Pk and
qk as we expect to display collective behavior, i.e.,
(Pk, qk) for k<kc• The number of collective coordinates,
n', will then correspond to the number of k values lying
between k=O and k=kc, and so will be given by

411" k 3 k 3
n'=__c_=_c.

3 (211")3 611"2

One might expect that there is a natural upper limit to
n', viz., the total number of longitudinal degrees of
freedom n (for a system of n electrons), since at most
n independent longitudinal degrees of freedom may be
introduced. In practice we find that n' is considerably
less than this theoretical maximum.

The modification of (6) to include only terms involv
ing (pk, qk) with k<kc may be conveniently carried out
by applying a unitary transformation similar to (9),
but involving only qk for :which k> kc• Thus we take
f}>=Sy; where,

s= exp[- (1Ih) L (411"e2/k2)tqkeik.Xi], (9a)
i,k>kc

by U where,

27re2

u=- L £k·£zqkqzei(k+I).Xi. (15)
m ik<kc

l<kc
l¢-k

U is much smaller than (13), for it always depends on
the electron coordinates, and since these are distributed
over a wide variety of positions, there isa strong ten
dency for the various terms entering into U to cancel.
Let us for the time being neglect U, a procedure which
we have called the random phase approximation in our
earlier papers, and which we shall presently justify.

With this approximation we see that the third and
fourth terms in our Hamiltonian (11) reduce to

Hosc=-! L (PkP_k+Wp2qkQ_k) (16)
k<kc

the Ham.iltonian appropriate to a set of harmonic
oscillators, representing collective fields, with a fre
quency W p • The first term in (11) represents the kinetic
energy of the electrons, while the second term,

(17)

and where .,p is chosen to be independent of all qk with
wave numbers greater than kc• We then obtain for our
Hamiltonian

represents a simple interaction· between the electrons
and the collective fields, which is linear in the field
variables. The fifth term,

(18)

represents the short-range part of the Coulomb inter
action between the electrons. If we carry out the indi
cated summation, we find

(11) (19)

The remaining part, for which k+I~O, we shall denote

where we have introduced Wp, the so-called plasma fre
quency, defined by

with the associated set of subsidiary conditions:

flkY;=.O (k<kc). (12)

We shall find it convenient, in dealing with this
Hamiltonian, to split up the third term into two parts.
That part for which k+I=O is independent of the elec
tron coordinates and is given by

Si(y) = 1r/2 for y= 2 and oscillates near 7r/2 for larger
values of y, so that Hs.r . describes screened electron
interaction with a range t'..Jkc• A plot of Hs .r • is given
in Fig. 1.

Thus we see that in using (11) we have redescribed
the long-range part of the Coulomb interactions be
tween the electrons in terms of the collective oscilla
tions (16), which interact with the electrons via HI,
(17). Our problem has now been reduced to one quite
analogous to that encountered in I, viz., a set of par
ticles interacting with collective fields; the only new
complications are the short-range interaction B s.r ., and
the s~bsidiary conditions on the system wave function.
We shall see that as was the case in I with the trans-

j 'JI sinx
Si(y) = dx-.

o x

(14)
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lfo= {exp[- L IPkI 2
/ 2/iwp]}Do(Xl·· ·xn), (22)

k<kc
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FIG. 1. H s~r. (r) compared with (e2/r) and (e2/r) exp (- ker).

then becomes

1/10= exp[-!(L F(Xi- Xj)/nwP)DO(Xl· • ·xn ), (23)
ii

where
F(Xi-Xj)=21re2 L eik ,(Xi-Xj>/k2 (24)

k<kc

represents the long-range part of the Coulomb potential.
F(Xi- Xj)=e2/1 xi-xjl for Ixi- xil»l/kc but ap
proaches a constant 47re2L:k <kc(1/k2), when IXi- Xii

«l/ke• Thus in (23) we have the usual free electron
wave function Do modified by a factor which describes
long-range electron correlation, .such that the proba
'bility that two electrons are found a given distance
apart is less than that calculated by neglecting the
Coulomb interactions or by including .the short-range
interaction H s.r. In fact in consequence of this correla
tion term, each electron tends to keep apart from the
others, in a manner quite similar to that obtained in
the classical treatment of II. A similar result has been

obtained by Tomonaga in his one-dimensional treat
ment.

Let us now consider method· (b), in which we seek to
eliminate n' of the particle variables in terms of the
field variables Pk. As is clear from the form of (12), this
is a much more formidable task, one which we are not
able to carry out explicitly. However, as we shall see
throughout this paper, we can still draw a number of
useful conclusions concerning the effect of such an
elimination without actually solving for the x, in terms
of the Pic. In particular, we shall see in Sec. ill how one
may use a canonical transformation to replace (to
lowest order in the field-particle coupling constant) n'
of the individual particle degrees of freedom by as
many collective degrees of freedom.

We now wish to justify our neglect of U and to in
vestigate to what extent corrections arising from the
inclusion of HI will be of importance. In the remainder
of this section we confine our attention to the lowest
state of the system. We first show that the exact lowest
state eigenfunction 1/10 of our Hamiltonian (11) auto-

(20)

verse collective oscillations, the coupling between the
fields and particles described by HI is not very strong,
so that it is possible to obtain a good qualitative under
standing of the behavior of the system by neglecting
this term. In this section, we shall make this approxi
mation, and then investigate to what extent it applies,
while in Sec. III we will give a more accurate treatment
which includes the effects of the electron-field inter
action.

If we neglect HI, we inay write the stationary state
wave function as

w~ere XO(Xl'" xn) is t4e lowest state electron wave
function.

In general XO will be quite complex. However, just
because the long-range part of the Coulomb potential
is included in the oscillator energy, the remaining part
H s .r . is considerably reduced in effectiveness. In fact
it will often be of so short a range that for many pur
poses the free particle wave functions will constitute
an adequate approximation. In this case, the lowest
state wave function is

where hn is the nth Hermite polynomial, and we are
using the momentum representation of the oscillator
wave functions. X(Xi' • .xn) represents the eigenfunction
for a set of particles interacting through B e•r • For the
lowest state, we then get

,po= [exp-{ L IPkI 2
/ 2nwp}]xo(Xt·· ·xn), (21)

k<kc

where Do is the usual Slater determinantal wave func
tion composed of the free electron wave functions
appropriate to the ground state of the individual elec
trons. Our wave function 1/10 then satisfies the exclusion
principle.

Let us now consider the effects of the subsidiary
conditions (12). In the representation in which Pk and
Xi are diagonal these reduce to n' algebraic relations.
We can view these relations in either of the following
ways:

(a) They permit us to eliminate the Pk in terms of
the Xi.

(b) They permit us to eliminate n' of the Xi in
terms of the Pk.

Let us begin with the first way. Our wave function (22)

,pose represents the wave functions of the collective
fields, and may be written as a product of harmonic
oscillator wave functions like
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corrections arising from U and HI. We estimate these
terms using perturbation theory. With the wave func
tion (22) the average values of U and HI vanish. U, in
fact, has non-vanishing matrix elements only between
the lowest state (with zero quanta) and a two-quantum
state, while HI connects the lowest state and a one
quantum state. From second-order perturbation theory,
we have

matically satisfies the subsidiary conditions (12). For
as we have noted the subsidiary condition operators
Qk commute with the Hamiltonian H, so that the wave
function Yto can, in general, be expressed in terms of a
series of simultaneous eigenfunctions of H and the Qk.
The lowest state of the system is nondegenerate and
hence corresponds to a single eigenvalue of the operator
Qk, which we may call C'tk. To determine the value of
Cik, we consider a space displacement of the entire
system (field plus electrons) through a distance dX,
so that

X~X'+.8X, p~~p/,

x~~x/+dx.

where
2'Tre2 li

UOn=--tk·tZ,
m 2wp

(26)

(27)

(HI)no= (27rn/w p)!(e/m)tk· (pi-lik/2), (31)

if th~ state n has one quantum of momentum k present,
and

if the state n has two quanta of momentum k and I,
respectively; and

h(k+l)2 h(k+l)
E n - Eo= 2liwp+ · Pi, (28)

2m m

Thus flU introduces a fractional change iri the zero
point energy, per oscillator, of (1/48)(n'/n), and since
n' is never greater than n (and is, in fact, often qui~e a
bit smaller), this change is, negligible. Thus, we are
justified in neglecting completely the term ·U.

We may estimate the corrections arising from HI in
similar fashion. We have

(32)

(30)

(29)

IHIOn l2
~HI=-L .,

n En-Eo

= _ (Ftw
p)2 ~ (n')2 = _~(n')n'hwp.

4. n 6liw p 48 n 2

where

if the electron in the initial state has momentum Pi. In
(28) we may, for the purpose of this rough estimate,
approximate E n-Eo=2Ftwp since, as we shall see in
Paper IV, li(k+l)2/2m-[li(k+l)/mJ·Pi is always ap
preciably less than 2nwpas long as k, l<kc• We then find

(

'Tre2/i)2 . ,(£k' £/)2
dU=- - n L--

mw p k <kc 2hw p
l<kc

(25) hk2 hk· Pi
En-Eo=hwp+ '::::..liwpo

2m m
We then find

liwp ne2

= iEo+n'---kc+ (Hs.r.)Av,
2 'Tr

From Eqs. (2) and (3) we see that the effect of this dis
placement on the field coordinates is given by

Pk-+Pk'e- ik . .1x,

qk--+qk'eik •Ax•

The Hamiltonian is thus invariant under this displace
ment, while the subsidiary condition applied to our
lowest state wave function becomes

e- ik .AXQk'y;O= CtkY;O..

However, since the lowest state is nondegenerate, it is
not changed by this displacement, and we must have
Qk''if;o=akt/lo. Thus we find ak=akeikd~X, which can only
be satisfied if ak= o.

Thus, if we could obtain an exact solution for the
lowest state eigenfunction t/!o, we would automatically
satisfy the subsidiary condition Qk1/;O=O. We may, in
general, expect that if we obtain an approximate solu
tion for t/!o, we will not be able to satisfy the subsidiary
condition, but that any error we make in d"etermining
the energy of the lowest state will not be increased by
our failure to satisfy this subsidiary condition, since
an exact solution satisfies the subsidiary condition and
leads to the lowest possible energy state. The situation
with regard to the excited states of the system will be
somewhat different, and we will return to this question
later.

Let us take as our approximate ..po, the wave function
(22). In this approximation the energy of the lowest
state is given by

where Eo is the energy of an electron at the top of the
Fermi distribution, and (H sor.)Av is the exchange energy
arising from the screened Coulomb interaction term,
H s .r ., Eq. (18). We will not be concerned with evalu
ating (Hs.r'>AV at present (reserving this for Paper IV),
as we are here primarily interested in evaluating the

= _ n' fL: pl' ...,.. 9n /i,2k.
2

} •

3nl i 2m 40 m

(33)
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(37)
2 2 ~

--e2k~--e2kol'"V-O.4-,

31r 311" ro

electron,

III.

In this section we wish to consider the effect of the
field particle interaction term HI on the motion of the
electrons and the collective oscillations. We do this
with the aid of a canonical transformation which is
chosen to eliminate HI in first approximation. Thus we
seek· a canonical transformation to a new representa
tion in which the coupling between the fields and the
electrons is described by a term HII, which is appreci
ably smaller than HI, and may consequently be
neglected to a good degree of approximation (com
parable, say, with our neglect of U). We sh~ll then see
that the effects of the coupling between the electrons
and the collective field variables, as described by HI,
are threefold: there is an increase in the electronic
effective mass, the frequency of the collective oscilla
tions is increased and becomes k dependent, and the
effective electron-electron interaction is modified. As
we anticipated on the basis of our perturbation-theo
retic estimate of· HI in the preceding section, none of
these effects is so large as to destroy the qualitative
conclusions we reached there, although the quantitative
estimates of the energy and wave functions of our sys
tem are somewhat altered.

The measure of the smallness of HII, and hence the
extent to which we are successful in carrying out our
canonical· transformation, is the expansion parameter

a not inconsiderable energy. In Paper IV we return to
a more careful estimate of the long-range correlation
energy.

(34)

(35)

where Yo is the interelectronic spacing,· defined by

n= (47rr08/3)-1,

Since, as we shall see, kc$.ko, the wave vector of an
electron at the top of the Fermi distribution, we see
that the second term in the parenthesis in (33) is
generally somewhat smaller than the first, and the first
term corresponds to a fractional correction in the kinetic
energy per electron (and thus in its effective mass) of
r-...;n'/3n. This may be appreciable if n'l'..In but otherwise
is small. This term implies a similar order of magnitude
correction for the frequency of the collective oscilla
tions, since LiPi2/2m and n'hwp/2 are roughly of the
same order of magnitude. Thus we find that we are
justified in neglecting HI in order to obtain a qualitative
and rough quantitative understanding of the behavior
of our system, but that the effects arising from Hr
should definitely be taken into account in a careful
quantitative, treatment. This we shall give in Sec. III.

Thus far we have not specified the value of kc, and
hence the number of collective degrees of freedom we
-find it desirable to introduce in our treatment. We may
obtain a rough qualitative estimate of n' by minimizing
our approximate expression for the lowest state energy
(25) with respect to kc (or n'). For the purpose of this
rough estimate, let us neglect the dependence of
(Hs.r'>AV on kc. We then note-that the second term in
(25) will be negative for those k for which (21rne2/k2)

>hwp/2. Hence we obtain the minimum value for (25)
if we include in this summation, only those k for which
this inequality is satisfied. This criterion yields

k
2_ 411"ne

2
_ k0

2 (ro)!
c - - ,

hwp 2.14 ao

, The energy -j(ne2/7l")k c represents a lqng-range corre
lation energy, i.e., that energy associated with the
long-range correlations in electronic positions described
by the wave function (23). In contrast to the exchange
energy, this term represents ·Coulomb correlations be
tween electrons of both kinds of spin. For Na it is, per

and ao is the Bohr radius. ,For a typical metal like Na,
we have (rs/ao)1'..I4 and hence kcr-...;ko. From (10) we
see that in this case n'l'..In/2. In Paper IV where we
give a more detailed treatment of that choice of kc which
minimizes the energy, including the effects of HI, and
(Hs.r.)AV, we find for Na, k c""O.68ko, and n'l'"Vn/8 in fair
agreement with this rough estimate.

Finally we may remark that with the choice of
k c (34), the energy of the lowest state is

where we average over the particle momenta and the
collective field wave vectors, and w is the frequency of
the collective oscillations. We find

(38)

(39)

(40)

9 1 kc
2P02 ao

O('I_X- ~~,82_,

2S 3 m2wp
2 '8

where we have replaced W by its approximate value Wp

and

I t is clear that by choosing ,8 or kc small enough, our
expansion parameter a may be made as small as we
like. We shall assume throughout the remainder of this
paper that such a choice has been made, i.e., that
a«l. In Paper IV we show that this criterion is satisfied
in that a"'-'1/16 for the electronic densities encountered
in metals, if we take for {3 that value which minimizes
the total energy. Another parameter of whose smallness

(36)
2 ne2

=!Eo-- -kc+(Hs.r.)AV.
3 7r

n'nw p ne2kc

E= iEo+-----+ {Hs.r'>Av
2 1l"
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(46)

(45)

(43)

(44e)

(44c)

(44d)
eik . (Xi-yXi)

H s •r .=27T'e2 L:
k >kc k2

i=;6-j

10 Quantum mechanical transformation theory is developed in,
for instance, P. A. M. Dirac, Principles of Quantum Mechanics
(Oxford University Press, London, 1935), second edition.

where ~ represents that Hamiltonian which is the same
function of the new coordinates as H is of the old, and
H new denotes the Hamiltonian expressed in terms of the
new coordinates.

(with similar equations for Pi, ak, and ak*); (45) may
be viewed as an operator equation, and we may take
S the generating function of our canonical transforma
tion to be a function of the new operators (Xi, Pi,
A k , Ak *) only. The operator relationship between the
old and new Hamiltonians is

We note that H field takes the form (44c), because we
have expanded in terms of creation operators of fre
quency w rather than W p '

We now consider a transformation from our opera
tors (Xi, Pi, ak, ak*) to a new set of operators (Xi, Pi,
A k , A k*), which possess the same eigenvalues and
satisfy the same commutation rules as our original set.l°
The relation between these two sets may be written as

H I = (e/m) L: (21l"ii/w)i{£k' (Pi-hk/2)akeik.Xi
itk<kc

H = H part+Hr+ H field+ H B.r.,

Qk<P=O (k<ka),

where, using (11), (12), and (41) and neglecting U
(Eq. 15),

in virtue of (41). In terms of these variables, we then
write our Hamiltonian and supplementary conditions
schematically as

(42)

(41)

and which possess the commutation properties

[ak, ak'J= [ak*, ak,*J=O,

[ak, ak,*]=okk"

9 W is here unspecified, but will later be chosen to be the fre
quency of the collective oscillations.

we shall have occasion to make use is the ratio of the
number of collective degrees of freedom, n', to the total
number of degrees of freedom, 3n. For most metals,
with the above choice of {1, we find (n'/3n) rvl/25.

We shall make the further approximation of neglect~

ing the effects of our canonical transformation on H s .r .,

the shqrt-range Coulomb interaction between the elec
trons. From Eq. (11), we see that if we neglect H r ,
the collective oscillations are not affected at all by
H s .r .• Thus H s .r . can influence the qk only indirectly
through HI. But, as we shall see, the direct effects of
HI on the collective oscillations are small. Thus, it
may be expected that the indirect effects of H s .r . on
the qk through HI are an order of magnitude smaller
and may be neglected in our treatment which is aimed
at approximating the effects of HI. We will justify this
procedure in greater detail in the following section.

With regard to the subsidiary conditions (11), we
shall find that to order (l, the subsidiary conditions in
our new representation involve only the new particle
coordinates (Xi, Pi). Thus we may write our new wave
function in terms of products like

<PfieldX (Xl· · .Xn),

and the subsidiary conditions will only act on the X (Xi).
The n' subsidiary conditions may thus be viewed as
consisting of n' relationships among the particle vari
ables, which effectively reduce the number of individual
electronic degrees of freedom from 3n to 3n-n'. This
reduction is necessary, since in this new representation
the n' collective degrees of freedom must be regarded
as independent. For the field coordinates no longer
appear in the subsidiary conditions, and hence describe
real collective oscillation, which is independent of the
electronic motion in this new representation.

There is a close resemblance between our Hamiltonian
(11), which describes a collection of electrons interact
ing via longitudinal fields, and the Hamiltonian we
considered in I, which described a collection of elec
trons interacting via the transverse electromagnetic
fields. In fact, we shall see that our desired canonical
transformation is just the longitudinal analog of that
used in Paper I to treat the organized aspects of the
transverse magnetic interactions in an electron gas. In
order to point up this similarity and to simplify the
commutator calculus, we introduce the creation and
destruction operators for our longitudinal photon field,
ak and ak*, which are defined by9

qk= (h/2w)!(ak- a-k*),

Pk= i(hw/2)!(ak*+a-k),
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The problem of finding the proper form of S to
realize our program was solved by a systematic study
of the equations of motion. We do not have space to go
into the details of this study here but confine ourselves
to giving the correct transformation below. We shall
then demonstrate that it leads to the desired results.
Our canonical transformation is generated by

{
Ek· (Pi -hk/2)A k

s= - (ei/m) L (27rhlw)!
ik<kc w- k· Pi/m+hk2/2m

Xexp(ik· Xi)- exp(-:.ik· Xi)A k*

(47)

On comparison with Eq. (45) of I, this generating func
tion may be seen to be just the longitudinal analog of
the "transverse" generating function given there. [The
additional term in hk/2 arises because k· Pi does not
commute with exp(ik· Xi).] Since Hinter and Hfield are
also analogous to the transverse terms encountered in
I, we may expect that many of the results obtained
there maybe directly transposed to this longitudinal
case. The differences in the treatments will arise from a
consideration of Hshort-range and the subsidiary con
ditions.

We find it convenient to write the relationship be
tween ~ny old operator, Oold and the corresponding
new operator Onew as

Oold = exp(-is/h)Onew exp(iS/h)

= Onew+ (i/h) [Onew, S]

- (1/2h2) [[Onew, S], S]+· · ., (48)

and we will classify terms in this series according to the
power of S they contain; i.e., [0, S] is the first-order
commutator of 0 and S. We then find, keeping only
first-order commutators, that

(51)

and we shall use these relationships in determining Hnew.
We now proceed in a manner directly analogous to

that of Paper I. We classify terms in Hnew by consider
ing the corresponding schematic terms in H [Eq. (44a)
(44d)J from which they may be considered to arise.
Every term, 'I", in H, leads to a zero-order (commutator)
term, 'I", which is the same function of the new variables
as it was of the old variables, and in addition, a first
order commutator, + (i/h) ['I", S], a second-order term,
--:.. (1/2h2)[cr, [cr, S]], etc. A convenient grouping of
the terms in H exists which considerably simplifies the
calculation of H new. To demonstrate this grouping, we
consider

H a= LiPl/2m+ :E (nw/2) (ak*ak+akak*).
k<kc

.The first-order COl)1mutator arising from H a- is

+(i/h)[JCa, S]= - (elm) :E (27rhlw)!
i,k<kc

X {Ek· (Pi-hk/2)A k exp(ik· Xi)

+exp(-ik· Xi)Ak*Ek· (Pi - hk/2)}. (52)

XA k exp(ik· Xi)+exp(-ike Xi)A,k*

Ek· (Pi-hk/2) }
X +...,

w-k·Pi/m+hk2/2m
(49)

By Eq. (44c) we see that the above term is just the
negative of HI, expressed in terms of the new variables.
Thus, the first-order commutator of JCa with S cancels
the term arising from the zero-order commutator of
XI. XI and X a are thus "connected" in that, a simple
relationship exists between the various order com
mutators arising from these terms; in fact, the nth
order commutator of aca with S is equal to the negative
of the (n-1)th-order commutator of acI with S. The
terms in Hnew arising from the connected terms Ha+HI,
may consequently be written in the following series:

00 { 1 1}H'=xa+:E [Gel, S]n (i/h)n,
n=l n! (n+l)!

(53)
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where [3CI, S]n is the nth-order commutator of 3Cr
with S.

We shall see that theeffects of the field-particle inter
action (up to order a) are contained in the first correc
tion term to X a, [(i/2h)S, Xl]. The higher-order com
mutators will be shown to lead to effects of order a2 or
a(n'/3n) and may hence be neglected. The evaluation
of our lowest-order term, (i/2h)[S, XI] is lengthy, but
straightforward. We find, after some rearrangement of
terms, that

47re2 (Ii)(i/2h)[XI, S]=-L: -
m ki 4w

X {2w(k. P/m)- (k· P/m)2+ (h2k4j4m2
)}

"~ (w-k· Pi /m)2- (h2k4/4m2)

X {2w(k. P/m)+ (k· P/m)2- (h2k4/4m2)}

(w+k· Pi/m)2- (h2k4/4m2)

X (AkA_k+Ak*A_k*)- (1re2/m2)

: [Ek· (Pi-hk/ 2)][£k·(Pi+lik/ 2)]
xL:

.k.<;kc. w[W-k·Pi/m-lik2/2m]
't,J;'t¢J

Xexp[ik· (Xi - Xj)J+exp[-ike (X i - Xj)]

Ek· (Pi-hk/2)Ek· (P i +hk/2)
X----------

w(w-k· Pi/m-hk2/2m)

2'1rtr. (Ek· P i )2
-- L · (54)

m2 ik<kc (w-hk2/2m)2- (k·Pi/m)2

In obtaining (54) we have neglected a number of terms
which are quadratic in the field variables and are
multiplied by a phase factor with a llonvanishing argu
ment, exp[i(k+1)· Xi]. These are terms like

Such terms are of exactly the same character as those
we considered earlier in U [Eq. (15)J, except that they
are smaller by a factor of rov(I· Pi/mw). Exactly the
same arguments that we applied in showing that U
could be neglected may be applied to terms like (55),
with the result that we find that these terms are also
completely negligible, leading in fact, to an energy
correction which is smaller than that arising from U
by a factor of ex [Eq. (39)].

The remaining lowest-order term in H new is just
the zero-order term from H fie1d - Lk <kc(hw/2) (ak*ak
+akak*) ,

Xfield-! L: (hw/2) (Ak*Ak+AkA k*) = L: (h/4w)
k<kc k<kc

X (wp2~W2)[Ak*Ak+AkAk*-AkA_k-A_k*A"k*]. (56)

We will now show that if we define w by the dispersion
. relation,

4'1re2 1
1=-L: , (57)
- m i (w- (k· Pi/m))2_h2k4/4m2

then the sum of (56) and the first two terms of (54)
vanishes. To see this we note that multiplying (57) by
W2_ Wp2 on both sides, and rearranging terms on the
right-hand side, yields

4n-e2 w2_[w- (k·P i /m)J2+h2k4/4m2
W2_Wp

2=- L: -----------
m i [w- (k- Pi/m)J2-h2k4/4m2

4n-e2 2w(k· Pi/m)+ (h2k4/4m2)- (k- Pi/m)2
=-2: , (58)

m i [w- (k- Pi/m)]2-h2k4/4m2

from which the above statement follows for the (Ak*Ak
+AkAk*) terms in (54). The (AkA_k and Ak*A-k*)
terms likewise go out when we replace k by - k in
(57) and (58) and use the resulting relations to compare
(56) and (54).

'The results in lowest order of our canonical trans
formation on the Hamiltonian may thus be expressed
schematically as follows:

Hnew(O) ="Helectron+Hcoll.+H res part, (59)

where

Pi2 . 21re2 (Ek- P i )2
Helectron =L:--- L

i 2m m2 ik<kc (w-hk2/2m)2- (k· Pi /m)2

exp[ik· (Xi-Xi)] 1
+21re2 L: 2'1rne2 L: -, (60)

, i,jk >kc k2 k<kc k2
i~j

Hcoll.=! L: (hw)(Ak*Ak+AkA k*), (61)
k<kc

and

Xexp[ik- (Xi-Xj)]+exp[-ike (Xi-Xj )]

[Ek· (P i -hk/2)][Ek· (Pi +hk/2)]
X . (62)

w[w- (k· Pj/m)- (hk2/2m)]

The effect of 'our transformation- on the subsidiary
conditions may be obtained in similar fashion_ Our new
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subsidiary conditions are given by orders) the field variables, and is given by

(66)

(67)

w2

(Qk)new1/l=2: --------
i w2-[(k·Pi/m)-hk2j2mJ2

Xexp(ik·X i)1f=O, (k<k c). (65)

and hence

(
k2 P i 2 h2k4

)

w=Wp l+--L-+-- .
2nm2 i w 2 8m2w 2p p

These appropriate dispersion relations are, in fact,
quite sufficient for our p.urpose, since the expansions
involved in obtaining them are the same that we have
used in obtaining H new.

We have treated w as a pure number thus far, al
though we see from (57) or (67) that w is, in fact, an
operator, since it contains Pi. We have ignored this
fact, for instance, in working out our commutation
relations and obtaining H new. This treatment of w as
a pure number is only strictly justified if our system
wave function is an eigenfunction of Pi, which is not
the case. Thus w contains and, in turn, can contribute
to the Hamiltonian, off-diagonal terms which cause
transitions .. between states of different" energy. These
terms could then, in .principle, be eliminated from the-

IV.

The physical consequences of our canonical trans
formation follow from the lowest-order Hamiltonian,
Hnew(O) [Eq. (59)J and the associated' set of subsidiary
conditions on our system wave function [Eq. (65)J.
We discuss these briefly and then show that the
higher-order terms in H new and (flk)new are actually
negligible. We first note that our field coordinates occur "
only in Heoll.,. and thus describe a set of uncoupled
fields which carry out real independent longitudinal
oscillations, since the subsidiary conditions no longer
relate field and particle variables, and since there are
no field-particle interaction terms in H new' The fre-"
quency of these collective oscillations is given by the
dispersion relation [Eq. (57)], which is the appropriate
quantum-mechanical generalization of the classical
dispersion relation derived in II, as well as being the
longitudinal analog of the quantum-dispersion relation
for organized transverse oscillation, which we ob
tained in I.

This dispersion relation plays a key role in our collec
tive description, since it is only for w(k) which satisfy it
that we can eliminate the unwanted terms in the
Hamiltonian [Eq. (54)J and the unwanted field terms
in the subsidiary condition. For sufficiently small k,
we may expand (57) in powers of (k·Pi/mw) and
(hk2/mw) and so always obtain a solution for w(k}.If we
do this, and assume an isotropic distribution of Pi, we
find

1
- 2hJS, [S, n,,']J+ ·· '. (64)

- exp (-il· Xi)A 1*[ 1 _
w-I· Pi/m+1il2/2m+1iI· kim

x{rw+ (I· p/m)+:l2/2m-hl.k/m

1 ]A-z exp[+"i(k-l)· XiJ
w+l·Pi /m+hJ2/2m

i 1
= {n"'-h[S, n,,'J- 2h

2
[S, [S, n,,'JJ+··· }

Xl/; = 0, (k<kc), (63).

where l/; is our new system wave function, andnk' is
the same function of the new variables that Ok was of
the old variables. We find

{Ok)new is considerably simplified when we note that
the first two terms vanish when we apply the dispersion
relation [Eq. (57)J for both plus and minusk. The
fourth term consists of a linear term in the field co
ordinates multiplied by a nonvanishing phase factor,
and the effect of such a term in the subsidiary condition
is the same as that of a term like (55) in the Hamil
tonian. Since there is no point in obtaining the sub
sidiary condition to a higher order of accuracy than is
maiNtained in our Hamiltonian, we may neglect this
term. With this approximation, our subsidiary condi
tion reduces to one which does not involve (in lowest
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Eqs. (47) and (48),

x.=x.- ei L (21rJi)i{ £kwA k

~ ~ m-k<kc w w-k· Pi/m+hk2/2m

Xexp(ik· xi)-exp(-ik· Xi)

(70)

(71)

k2+K2

Xexp[ik· (Xi-Xj )],

£kwA k* }X .
w-k·P i/m+hk2/2m

The Xi thus represents the "bare" electron plus an
associated cloud of collective oscillation; the increased
effective mass may be regarded as an inertial effect
resulting from the fact that these electrons carry such
a cloud along with them.

H res part, in the approximation of small a, may be
written as

Hamiltonian by a further canonical transformation.
However because the dependence of w on Pi is already
or order a, this elimination would produce terms of
order a2 which are truly negligible. We are justified in
neglecting the off-diagonal elements of the operator w.

According to (67), in consequence of the electron
field interaction the frequency of the collective oscilla
tions has become k dependent. We may obtain an order
of-magnitude estimate of the fractional change in this
frequency by averaging the dispersion relation (67)'
over all k<kc and carrying out the indicated sum over
particle momenta. In obtaining this mean value of
LiPi2, we should use the appropriate eigenfunctions of
our new Hamiltonian (59). However, as we shall see
later, the correct particle eigenfunctions can be re
placed for -many applications by plane waves, so that
LiPi2 may be approximately evaluated by assuming a
Fermi distribution of electrons at absolute zero. We
then find

If we combine this with the first term, LiPi2/2m, we
obtain

(72)

where (V2)Av=LiPi2/m2n andK2=wp
2/(V2)Av. If we

assume that the electrons form a completely degenerate
gas, then for most metals,

Thus

H res part thus describes an extremely weak attractive
velocity dependent electron-electron interaction. For if
the summation in (73) were over all k, it would corre
spond to a screened interaction of range "'-'(1/ko); how
ever, the summation is only for k<kc, where kc<ko, so
that we are describing here that part of a screened
interaction beyond the screening length. A more de
tailed analysis confirms that this qualitative estimate,
and justifies our neglecting H r.p. in comparison with
Hs .r . in considering the effects of electron-electron in
teraction.

Let us now consider the effect of the higher-order
terms, such as [8, [8, XI]]. {The higher-order com
mutators arising from Xfield- Lk <kcCftw/2) (A k*A k

+AkA k*) will be of this same type, since the zero-order
commutator from this term cancelled part of [S, XI].}
The calculation of [S, [S, XI]] is quite straightfor
ward, but scarcely worth going into here, since by
comparison of Eqs. (49), (50), (51), and (44), it may
easily be seen that the lowest order non-negligible terms
terms!will resemble HI but will be at least of order
(k· Pi/mw) smaller. These terms ,":hich we earlier de-

(69)m*=mX3n/(3n-n').
where

Thus the "new" electrons behave as if they had an
effective mass m*, which is given by (69), and which is
slightly greater than the "bare" electron mass m. This
increase in the effective electronic mass has a simple
physical interpretation. For we note that according to

pi
2
(3n-n'). PI

Ered+L~ --- =L-,
i 2m 3n - i 2m*

where a is given by (39) and (3 by (40). Since (3~ 1, we
see that the effect of the k4 term is small compared to
the k2 term. This result holds true quite generally, in
that where an expansion in powers of a= «(k· Pi /

11UJJ)2)AV is justified, the terms of order (h2k4/4m2w2) are
negligible. The average fractional increase in the fre
quency is thus of order 3a. As we have remarked, for
the electronic densities encountered In metals, a turns
out to be ~1/16, so that this constitutes at most a 20
percent correction in the collective oscillation frequency.
~~The effect'on the electrons of the elimination (in
lowest order) of the electron-field interaction may be
seen by considering the second term in Helectron and
H res part. We first note that in the approximation of
small a, the second term in H electron becomes
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noted by HII could be eliminated by a further trans
formation. However, since as we have seen, the elimina
tion of HI led to effects of order a (or n'/3n) , the effects
so obtained would then be of order a2, and we may
neglect them entirely in our approximation of small a.
Exactly the same conclusions apply with respect to
the higher-order commutators of the subsidiary con
dition operator, (Qk)new, since it is not fruitful for us to
evaluate (Qk)new to any greater accuracy than that ob':'
taining for H new•

It is interesting to note that included in these higher
order terms is the influence of our effective mass cor
rection, Eq. (69) , on the frequency of the cpllective
oscillations. Thus, on evaluating these terms, one finds

k2 h2k4

W2=Wp
2+_-- L Pi2+--.-,

n (m*)2 i 4(m*)2

instead of the dispersion relation (66). This is, of
course, just what might be expected, since the suc
cessive elimination of the field-particle interaction terms
leads to a mass renormalization, familiar from quan
tum electrodynamics, in that everywhere m appears,
it should properly be replaced by m*.l1 This correction
is here quite negligible, usually leading to a fractional
change in the collective oscillation frequency of less
than 1 percent. For this change is f'o./(an'/n), and for
the electronic densities encountered in metals,

a(n'/n)f'o./(1/16) (3/25) = (3/400).

Our only other approximation has been to neglect
the effect of the canonical transformation on Hs .r .,

which will lead, indirectly, to the effect of Hs .r . on the
collective oscillations. Suppose we consider a typical
first-order term arising from [S, Hs.r.J. This will be like·

(74)

These terms thus consist of a nonvanishing phase
factor multiplying a field variable and a short-wave
length density fluctuation. The structure of (74) is
quite similar to that of U [Eq. (15)], the difference
being that the short-wavelength density fluctuation
Lj exp(-ike Xj) here plays the same role as the col
lective field variable (which is essentially a long
wavelength density fluctuation) did in U. If we had a
term for which k= I, (74) would reduce toa term like
HI, just as the third term in (11) reduced to wp

2Lk
X (QkQ-k/2). Thus we might expect that (74) bears
about the same relationship to HI, as U does to (w p

2/2)
XLkqkq-k. However, it is quite a bit more difficult to
establish the smallness of (74) mathematically than it
was for U, since a perturbation theoretic. estimate in
volves the consideration of intermediate states in which
two electrons are excited. We note that the main effect
of Hs .r . is to produce short-range correlations in par
ticle positions, analogous to the long-range correlations
produced by the long-range part of the Coulomb po
tential, in the sense that the particles tend to keep
apart and thus tend to reduce the effectiveness of Hs .r ••

Because of the analytical difficulties involved in a
justification along these .lines we prefer to justify our
neglect of (74) in a more qualitative and physical
fashion.

We see that (74) describes the effect of the collective
oscillations on the short range collisions between the
electrons, and conversely, the effect of the short-range
collisions on the collective oscillations. We may expect
that these effects will be quite small, since Bs .r . is itself
a comparatively weak interaction. The short-range
electron-electron collisions arising from H s .r . will act
to. damp the collective oscillations, a phenomenon
which has been treated in some detail classically by

Bohm and Gross.12 A test for the validity of our ap
proximation in neglecting terms like (74) is that the
damping time from the collisions be small compared
with the period of a collective oscillation. In this con
nection we may make the following remarks:

(1) Electron-electron collisions are comparatively in
effective in damping the oscillations, since mo
mentum is conserved in such collisions, so that
to a first approximation such collisions produce
no damping. [Such collisions produce damping
only in powers of (k· Pi/mw) higher than the
first. ]

(2) The exclusion principle will further reduce the
cross section for electron-electron collision.

(3) If HI is neglected, collisions have no effect on the
collective oscillations. This means that the major
part of the collective energy is unaffected by these
short-range collisions, since only that part coming
from HI, (which is of order a relative to nwp ) can
possibly be influenced. Thus at most 20 percent
of the collective energy can be damped in a
collision process.

All of these factors combine. to reduce the rate of
damping, so that we believe this rate is not more than
1 percent per period of an oscillation and probably is
quite a bit less. A correspondingly small broadening of
the levels of collective oscillation is to be expected. It
is for these reasons that we feel justified in neglecting
the effects of our canonical transformation on Hs .r ••

11 Note, however, that m is not replaced by m* in our expression
for W p , Eq. (14), since the collective oscillations are not affected
by the field-electron interaction in this order.

12 D. Bohm and E. P. Gross, Phys. Rev. 75, 1864 (1949).
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(75)

v.
The motion of the electrons in our new representation

is considerably more complicated than that of the col
lective fields. The major reason for this complication
is our set of subsidiary conditions (65), which essen
tially act to reduce the number of individual electron
degrees of freedom from 3n to 3n- n', where n' is the
number of collect~ve degrees of freedom and is given by

k c
3 {33ko3 {33n

n'=-=--·=-.
6r 611"2 2

We may obtain a better understanding of the role of
these subsidiary conditions by making use of the den
sity fluctuation concept which we developed in Paper II.
There we saw that classically the collective component,
of the density fluctuation Pk was proportional to

In a quantum-theoretical treatment of the density
fluctuations, the collective component is found to be
proportional to

1
Rkq=L: .. eik . Xi • (76)

i w2-[(k·Pi/m)-nk2/2mJ2

This result may be seen to follow directly from the.
quantum generalization of the methods of II given in
Appendix I. In the preceding expressions, Xi and Pi of
course refer to the "original" position and momentum
of the electron, Le., the Hamiltonian in terms of these
variables is given by Eq. (1). On the other hand, our
"new" electron variables (Xi, Pi) describe electron
motion in the absence of any collective oscillation,
since there are"no terms in our Hamiltonian (59) which
couple the electrons and the collective oscillation. Con
sequently we should expect that the collective com
ponent of the density fluctuation when expressed in
terms of these "new" variables should vanish, since
these variables are chosen to describe "pure" individual
electron motion and are incapable of describing,or
taking part in, collective oscillation. But this is just
what our subsidiary conditions assert, as may be seen
by comparing (76) and (65). Thus, if we carry out a
transformation to "individual" electron variables, we
must expect a set of subsidiary conditions given by
(65), siJ:lce these guarantee that we have developed a
consistent description of the state of the electron gas in
the absence of collective oscillation.

The physical content of the subsidiary condition also
follows from the density fluctuation concept. For we
may rewrite the subsidiary condition, Eq. (65) as

Li exp (+ik· Xi)if;

(k· Pi/m-hk2/2m)2 exp(ik· Xi)
=L: · (77)

i ~2_ [eke Pi/m)-hk2/2mJ2

Since we are dealing with k<kc, for which (k· Pi/mw)2
«1, we see that the subsidiary condition asserts that
in terms of our new coordinates and momenta. the
density fluctuations of long wavelength are gr~atly
reduced. This reduction is due to the fact that the
major portion of the long-wavelength density fluctua
tions is associated with th€. collective oscillations and
described in terms of these in our collective descri~tion.

In our new representation, the subsidiary conditions
(65) continue to commute with the Hamiltonian (59).
This follows since. the commutation relations are un
changed by a canonical transformation; it may easily
be directly verified from (65) and (59) that these com
mute within the approximations we have made. Conse
quently, just as was the case with (11) and (12), if
we correctly solved for the exact lowest state eigen
function of our Hamiltonian H new, we would auto
matically" satisfy the subsidiary conditions (65), since
the ground state of our system is nondegenerate. For
this reason, the energy of the lowest state of our system
is relatively insensitive to whether we satisfy the sub
sidiary conditions or not. For since the lowest state
wave function does satisfy the subsidiary condition,
moderate changes in this wave functio"n, involving cor
responding failures to satisfy the subsidiary conditions
will" provide quite small changes in the energy. Con~
versely, because of this insensitivity of the ground state
energy to the degree of satisfaction of the subsidiary
condition, it will take a quite good approximation to the
lowest eigenfunction of H new to satisfy the subsidiary
conditions to a fair degree of approximation.

It should be noted that the lowest state wave func
tion satisfies the subsidiary condition because of the
effects of the term H r . p • in the Hamiltonian. For as
we have seen, the subsidiary condition describes a long
range correlation in the particle positions which is. "" ,
Independent of the amplitude of· collective oscillation.
In the approximation that we are using, this correlation
has to be due to the residual interaction between the
particles, since the subsidiary conditions will auto
matically be satisfied if we solve for the lowest state
wave function. At first sight, it might be thought that
the short-range potential H s .r • might also play an
important role in establishing these correlations, since
it corresponds to a fairly strong interaction potential
when the particles are close to each other. However,
from the definition of H s .r • in Eq. (18), we see that it
has no Fourier components corresponding to k<kc• As
a simple perturbation theoretical calculation shows,
the only effect of Hs .r . in the first approximation is to
turn a plane wave function.

t/;o=exp(iL: kn·xn),
n

into the function

m,n
k>kc
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(A4)

(A3)

(A2)

[CkU , Ck'u/J+=[Cku*, Ck'u'*]+=O,

[Cku, Ck1ul*J+=Okk'OUO'I,

It is -conven~ent to Fourier-analyze lfu(X) and lfu*(x) by

lfu(X) =L ckueikoX,
k

Y;u*(X) =L: cku*e-ik .x ,
k

where the Cku and Cku* obey the anticommutation
relations

where

in virtue of the anticommutation relations satisfied by
the lfu(X). We also :find

p(x) = LkPkeik.", (AS)

where, using (A2) and (A3),

PK= LkCku*C/c+Ku, (A6)
I~ ter~s of Cku and PK, our Hamiltonian (AI) becomes

h2k2 PkP-k
H=L:Cku*Ckq-+21re2L:--. (A7)

k 2m k ~

14 See, for instance, G. Wentzel, Quantum Theory of Wave
Fields (Interscience Publishers, New York, 1949).

motion, for many purposes the effect of these subsidiary
conditions may be neglected. In Paper IV we examine
the physical conclusions we are led to by the use of the
collective description for the motion of electrons in
metals. We shall see that these are in good agreement
with experiment and enable us to resolve a number of
hitherto puzzling features of the usual one-electron
theory.

One of us (D.P.) would like to acknowledge the sup
port of the Office of Ordnance Research, U. S. Army,
during the writing of this paper.

APPENDIX I

In this appendix we treat the collective fluctuations
in charge density by finding the equations of motion of
the associated operators, thus developing a direct
quantum"'mechanical extension of the methods used in
Paper II~ We use the electron field second-quantization
formalism, in order to facilitate comparison with the
work of Tomonaga and to take into account explicitly
the fact that the electrons obey Fermi statistics.

Following the usual treatments,14 we describe the
electrons by the field quantities if;u(x) which satisfy the
anti-commutation relations [if;u(x), if;u(x')]+= [if;u*(x),
lfO"*(X')]+=O and [lfu(X), lfu'*(X')J+=o(x- x')ouu l • u re
fers to the electron spin and takes on two values corre- .
sponding to the two orientations of the electron spin.
We work in the Heisenberg representation. The Hamil
tonian which determines the equation of motion:of the
If'S is

f
h2

H = - if;*(x)2m.6.if; (x)dx

t?ff.p(x)p(x')+- dxdx', (AI)
2 Ix-x'i

p(x) = Lulfu*(X)lfu(X).

• 13 The additional terms describe correlations in particle posi·
bons.

where emn is a suitable expansion coefficient, which can
be obtained by a detailed calculation.13 But since the
sum is restricted to k> kc, H s .r • introduces only short
range correlations, which have nothing to do with the
subsidiary conditions. On the other hand, H r .p • which
has only long-range fourier components (i:eo, k<kc)

introduces only corresponding long-range correlations.
Thus, in the present approximation, it is Hr •po that
is responsible for the long-range correlations implied by
the subsidiary condition~

On the basis of the above conclusions, we may de
duce the following physical picture. The long range
Coulomb forces· produce a tendency for electrons to
keep apart, as a result of which the Coulomb force
itself tends to be nentralized. Bnt this nentralization
could not be perfect; for if it were, then there would be
no force left to produce the necessary correlations in
particle positions. Our calculations show that Hr .p • is
the small residual part of the Coulomb force which
must remain llnneutralized in order to produce the
long-range correlations needed for agreeing..Because
this force is so small, it will produce only correspond
ingly small changes in the particle,momenta, so that in
most applications a set of plane waves will provide a
good approximation to the particle wave function (in
the new representation, of course).

All of the above applies rigorously only in the ground
state. In the excited states, similar conclusions apply;
but th~ application of the subsidiary conditions is more
difficult, because the wave functions of the excited
states are no longer now degenerate. Here, we could in
general expand an arbitrary eigenfunction of Hnew(O) as
a series of eigenfunctions of (Ok)new' To satisfy the sub
sidiary conditions, we then retain only those terms in
this series for which (Ok)new=O. This reduction in the
number of possible eigenfunctions corresponds to the
reduction in the number of individual electron degrees
of freedom implied by (65). The exact treatment of the
problem of the excited states is quite complex and will
be reserved for a later paper by one of us. However,
we may expect that if the reduction in the number of
individual electron degrees of freedom is comparatively
small [Le., (n'ln)«I], then their effect on the energy
spectrum of the electron gas will be correspondingly
reduced.

We conclude this section by summing up the results
of our canonical transformation to the collective de
scription. We have obtained a Hamiltonian describing
collective oscillation plus a system of individual elec
trons interacting via a screened Coulomb force, with a
screening radius of the order of the inner-electronic
distance. Although the individual electron wave func
tions are restricted by a set of n' subsidiary conditions,
which act to reduce the number of individual electron
degrees of freedom and to inhibit the long-range density
fluctuations associated with the individual electron
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(A13)

The second quantization formalism we are using here
is of course equivalent to the use of an antisymmetrized
many-electron wave function in the usual configuration
space representation (which we use elsewhere in this
paper). For instance, the density fluctuation operator
Pk is equivalent to the configuration space operator
I:i exp(-ike Xi) we introduce earlier. Thus the results
obtained in this appendix may be directly compared to
those obtained in the previous sections of this paper,
and in Paper II.

In Paper II, we saw that classically Pk could be split
into an oscillatory part qk, and an additional part which
represented the charge density of ac set of screened
electrons moving at random. We shaH now show that a
similar qk can be introduced quantum mechanically,
and is proportional to

Ck(f*Ck+K(f

qK="L '. (A8)
letT ()J2- (hk· K-1i2K2/2m)2

We now split the sums over 0: and K into two parts.
In the second term on the right hand side of (A12),
we see that those terms for which o:=K give us a factor
of n, the total number of particles, while the remaining
terms, with a¢K lead to nonlinear contributions, since
there appear here effectively two factors, each of order
PK. It can be shown that the neglect of those terms
for which a~K is equivalent to the "random phase
approximation," as applied for instance in the neglect
of U Eq. (15). Similarly, in the third term on the right
hand side of (A12) we :find the terms for which 0:= - K
give us a factor of n, while those with a~ - K may be
neglected in the random phase approximation.

With these approximations, we then obtain

~K, CfJ+1W~K, CfJ

{
4?re2 Ck(f*CktT I

=PK 1-I: - . ·
k(f m (w-k·Kii)2-h2K4/4m

In the usual coordinate representation, this operator is

1
qK=L: ' exp(-iK·Xi ). (A8a)

i w2-(K·Pi/m-liK2/2m)2

In the limit of Ii~O, this reduces to the qk of Paper II
(Eq. 16).

As in Paper II, Eq. (17) we find it convenient to
introduce the. quantities ~K, CfJ, which are, quantum
mechanically

Cku*CTc+Ku
~K. CfJ= L ,(A9)

k w- (hk· K-hK2/2m)

~K,CfJ+iw~K,CfJ=O, (All)

then it immediately follows on differentiation of (AI0)
that

QK+W2qK=O.

We have ~K'CfJ=(l/ili)[~K,CfJ,HJ.If we use the com
mutation properties [Eq. (A4)], we :find that

~K, Cl)+iW~K,Cl)= L CktT*Ck+KtT
ku

Ck+K-a, uP-a { 1
+27ri'- L Cku*---- -------

aktT a2 w-lik· K+IiK2/2m

1 }+21re2 I:
w-k(k-a)·K+kK2/2m ak(f

PaCk(f*Ck+K+a,(f 1
X--------------

and are related to qK by

qi.= (1/2)[(~K. CfJ-~K.-CfJ)/()JJ.

If the ~K. CfJ satisfy

w-lik·K+hK2/2m

1

w-k(k+a)· K+kK2/2m·

(AI0)

(A12)

Thus we see that ~K, CfJ and hence qK, oscillates har
monically provided w satisfies the dispersion relation

47re2 1
l=-L' , (A14)

m k (w-hk·K)2_h2K4/4m2

where.Lk' here denotes the sum over all occupied elec
tronic states. This dispersion relation is, however,
identical with that we found in Sec. II Eq. (57). Thus
we see that the same· results can be obtained by solving
for the operator equations of motion as can be ob
tained by the ·canonical transformation method.

However, a word of caution should be injected at
this point. For if one naively diagonalizes the terms on
the right-hand side. on (A12), assuming the electrons
occupy a Fermi distribution at T=O, one obtains addi
tional "exchange" terms which apparently contribute
to order k2 in the dispersion relation (Al4). This in
turn introduces an apparent contradiction between the
results herein obtained and the dispersion relation (57).
The resolution of this contradiction lies in the fact that
the electrons in consequence of the Coulomb inter
actions do not behave like a gas of free particles (as is
tacitly assumed in diagonalizing A12), but rather ex
hibit long-range correlations in positions which act to
reduce the long-wavelength density fluctuations. This
reduction in the long-wavelength density fluctuations
has the result that no "exchange" contributions to the
dispersion relation appear up to order k4• Physically this
result follows from the fact that the long-range correla
tions act to keep the particles far apart, so that they
have less chance to feel the effects of the exclusion
principle. This result follows quite simply in our treat
ment in the body of this paper where we take into
account the exclusion principle by antisymmetrizing
the individual electronic wave functions. However, it is
rather difficult to establish the equivalent result in the
above second-quantization formalism, so we do not
enter on this question farther here.
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APPENDIX II

Tomonaga5 has developed a very interesting one
dimensional treatment of the degenerate gas of Fermi
particles in which theexcitations are described in terms
of a Bose field, and in which he obtains plasma oscilla
tions for the degenerate electron gas. His method,
however, appears to be intrinsically restricted to this
one-dimensional case. It also involves the approxima
tion that the wave function of the electron gas is not
very different from that of a collection of free electrons
with a Fermi distribution at absolute zero. In this
appendix we shall exhibit the relationship between
Tomonaga's methods and ours.

To do this let us first find the equation of motion of
the operator PK. We find it convenient to make the
simple transformation16

PKP LkCk*Ck+K= LkCk-K/2*Ck+K/2. (A15)

The equations of motion of PK may be obtained by
commuting it with the Hamiltonian (A7). We find

PK= -i L: (hk·K/m)ck-K/2*Ck+K/2, (A16)
k

d 2pK/dt2= - L: (hk· K/m)2ck-K/2*Ck+K/2-Wp2PK
k

(K·K')
-L: --PK'PK-K'. (A17)
K'~K (K/)2

If we neglect the nonlinear terms on the right-hand side
of the above equation, we see that PK still does not
quite oscillate harmonically. This is because of the
term - Lk(hk· Klm)2ck_K/2*Ck+K/2, which is the quan
tum-analog of the term Li(k· Vi)2e-ik.xi appearing in
Paper II, Eq. (9). As in the classical treatment, this
term arises from the fact that we have a collection of
different electrons, each moving with a different ve
locity and each therefore contributing differently to
pK. Hence, for the same reasons given in Paper II, it is
necessary to seek the function qK [given in (A8) ]
which oscillates harmonically in spite of the random
motions of the individual electrons.

However in the one-dimensional case a considerable
simplification is possible when the wave function is
approximately that associated with a Fermi distribu
tion of electrons at absolute zero. For in this case,
either the operator Ck-K/2* or· the operator Ck+K/2 will
be zero except in a small region of width K at the top
of the distribution. If K is small, then the term (K· k)2
=K 2k2 can be approximated as K 2ko2, where ko is the
wave vector of an electron at the top of the distribution.
We then get,

d2pKjdt2= - (h2K2ko2jm2+wp2)PK, (A18)

and we see that PK oscillates harmonically, which is the
result of Tomonaga.

In the three-dimensional case, such a simplification
is not possible. For the Fermi distribution is now spheri-

15 We here suppress the spin index, since this will play no role
in what follows.

cal, and the factor k· ~koK cos{), where {} is the angle
between k and K for the electrons at the top of,the
Fermi distribution. Thus the various terms Ck-K/2*

XCk+K/2 can no longer be given a common factor, and
the simple result (Al8) can no longer be obtained. The
reason for this change may be given a simple physical
interpretation. In a one-dimensional problem, the elec
trons at the top of the Fermi distribution have only
one velocity, and therefore all electrons contribute
approximately in unison to PK. In the three-dimensional
case, each electron contributes differently, so that the
function PK is altered in time, and a new function is
introduGed which cannot be expressed as a simple
function of 'PK.

It should also be noted that our criterion for the
validity of the collective approximation is different
from that of Tomonaga. For we require the smallness
of a=«(k·P i /mw)2)Av, while Tomonaga requires the
smallness of (dWIhw) where dW is the mean excitation
energy of the electron distribution over the ground
state Fermi energy.

Finally, we shall demonstrate explicitly the relation
ship between Tomonaga's variables and ours. From
(A8) , (A9), and (AIO) we may write for our collective
variables in the one-dimensional case:

Ck-K/2*Ck+K/2Wp2
qK=L ,(A19)

k w2- (hkK/m)2

i Ck-K/2*Ck+K/2
PK=-- L: (hkKj2mw)w p

2• (A20)
w(K) k w2- (hkKjm)2

Now Tomonaga breaks his sums over k into two,parts,
corresponding to positive and negative values of k.
We shall do the same, noting that the only nonzero
contributionsare in a small region of width K near the
top of the distribution. We get

qK=qK++qK-'-= { w
p

2

}

2[w2- (hkoK/m)2J

XL Ck-K/2*Ck+K/2+ L Ck-K/2*Ck+K/2,
+k -k

PK=PK++PK-= {2[w2- ;~~/m)2J}
XL: Ck-K/2*Ck+K/2+L: Ck-K/2*Ck+K/2.

+k -k

If we note from (A18) that w2- (hkoKjm)2=wp
2, we

then obtain for the operators

ak= qK-iwPK= L Ck-K/2*Ck+K/2,
+k

ak*=qK+iwPK=L Ck-K/2*Ck+K/2.
-k

These are just the Eqs. (2.5) of Tomonaga.
Thus, in the one-dimensional case, with Tomonaga's

assumption of an approximate Fermi distribution of free
electron momenta, we obtain the same results as
Tomonag~.


