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Renormalization-Group Method for Vibrational Behavior in Mixed Diatomic Crystals
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The renormalization-group method has been applied to investigate vibrational proper-
ties of a diatomic mixed crystal. It has been found that there exists a fixed point which
separates the one-mode behavior from the two-mode behavior. This transition depends
on concentration, force constants, and mass ratios.

PACS numbers: 63.20.Dj, 63.50.+x

It has been shown that a fixed point exists which
separates the extended mode behavior from a
localized one which is interpreted as a transition
from the one-mode to two-mode behavior.' Sev-
eral models have been developed in order to find
a criterion which separates the one-mode behav-
ior from the two-mode one.' Among these the
coherent-potential approximation (CPA),? the
modified random-element-isodisplacement model,
(MREI),? the # —0 trick,* and the recursion meth-
od® have been applied. We propose here a new
eriterion based on the renormalization-group®
(RG) method, which is in agreement with experi-
mental' work and also with existing criteria®?
(Fig. 1).

Our RG transformation consists in comparing |

the eigenvalues, coupling constants, and probabil-
ity distribution of the initial lattice with those of
a new one of spacing S (§>1) times larger than
the original. We choose to describe the given
chain of atoms with randomly distributed masses
myg and m, first as a chain of cells with two at-
oms, and afterwards as a chain of cells of four
atoms. We are interested in the long-wave opti-
cal mode. Therefore, after computing the eigen-
value and the eigenvector for each basic cell, we
preserve only the long-wave optical phonons,
drop out the acoustical mode, and obtain our ini-
tial Langrangian with S=1 which is given in Eq.
(2d). Then we will write the coupling between at-
oms in different cells as a coupling between cells,

The Lagrangian of the chain of two-atom cells
is given by

£O:.%[(ely_2)x12+(1f—.2)x22+4x1x2]+xz{xs—xl)Jr%["'s | ()

where

r=w?/(K,*/m,), €=myl)/m,, 1=1,2,3,

w is the frequency, m , is the constant mass, and m,(l) is m , with probability z and m . with probabili-
ty 1 -z. [€, takes two values; my/m, =€, mg/m =¢€(1l -0) with 0<8<1,]
We have two mass configurations, o,={m,, m,} and 0,={m, m,}, and, respectively, two eigenval-

ues, 7, and 7,, and two eigenvectors, Yo, and Yo,:

¥, =2(l+€)/e, Yo, =(1+ eg}'lh (x, — €x,); (2a)
7,=2[1+€(1=0)]/€e(1-8), ¥o,=[1+€*(1=06)*]"2[x, —€(l=0)x,]. (2b)
The probability distribution of the eigenvalues is
P(r)=26, ,,+(1-2)5, ,.. (2¢)
The nondiagonal term written using Eqgs. (2a), (2b), and (1) becomes
N2 .
£= 2 {z[r=vo(a@)]¥(a)+t oo 1 (a)¥(a + 1)} (24d)
a=1

a is the cell index, v/(«) is the diagonal term depending on the configuration, and ¢, . “*“"! is the
coupling term between the cells o and a + 1 which depends on the configuration o0,, 0,.
The Lagrangian given in Eq. (1) is then written in a form of four atoms per cell and is given by

Lo=2[(€,7=2)x.%+ (¥ = 2)x,% + (€ 7 = 2)x" + (7 = 2)x,% + 200, X, + 20,25+ 2X3%, + 2%, %, ]

+x—1{x5-x1}+%[“'v {3)
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We have now four configurations:
g, E{ml =m3=m3}; O, E{ml. =m3=mc}; UsE{m1 =Mp; My= mc}§ 04 E{ml Mg, ms=ms} .

In order to perform our RG transformation we are going to keep, in the four-atom cell, only the
mode corresponding to the configuration of two optical modes in the two-atom cells. This choice cor-
responds to calculating the optical mode from the two optical modes in the two-atom cells. The spac-
ing of the new problem is S=2. We obtain the following configurations for the chosen optical mode:

7, =2(1+€)/e, Yo, =[2(1+ ez}]'llz(xl-ex2+x3—ex4); (4a)
_2[1+€(1-0)] X —€(1=0)x,+x,— €(1 =0)x, |
72 i E{l - 6) ] 'I’Ua" s [1 + E2(21 = %)2]1/2 4 ’ (4b)

el (e (e

(4c)

Yo, =(1+a®+ 20%) 'l/zl(ax1 +bx,+ x,+bx,), a=l+€dr,/(2-7€), b=1- 56?‘3(1 - 0);

V=7, W0,=(1+a%+20%) "V 4(x, + bx, + ax,+bx,). (4d)
The probability distribution in this case is given by

P’(?”) = 226,.;'.'.1 + (1 - Z)zﬁr;.fz + Z(]. - .Z}G,.;.,.s+ Z(l - Z)ér!.rd . {48)
As in the case with two atoms we obtain

£'= Lz —ve (@)X a)+ () g,00 " W (@)’ (a)]. (4f)

=1

We replace.r to.o'a' “*!and (t')u,u'a’ s by teffa‘(“l =4 | to.o'a,or-n | ).P and (t')effa'c”l =( E(t')o,u'“'u+l
X |) pe. By replacing t, 5. “*! by .4, the randomness in the Lagrangian is reduced so that the “true”
randomness is probably larger than what our estimate will yield. Computing f.¢¢ and /. we obtain

~ €(2-6)2(1 - Z§ € €(1-6)z(1-2)
lett S TTr (1 =071+ &) 17 ¢ 2 e(1-0)® (6a)
, [[2labl+21b] €(l-06)+€ ” 5 €
ess _[( T+a2+ 2027 2(1 + e2)V?[1 + €2(1 —6}2]‘E)Z (1-2) +(1+ e”')zq
€(1-06) 4 2|bl+e(lal+1)
2T+ e -op] L~ D" Tra s e[ s e 211 - 2)
21bl+e(l=08)lal+1) .
AT o0h) 21 + €)1 = o7 Z(I‘Z)]' (Bb)
We define E () and E /(a):
Efa)=[r=-va)]/tes; Eo'(a)=[r=v,'(a)]/tes . (6)
The Lagrangians ¢ and £’ become
£= Nf) [ZE fa)¥*(a)+ ¥(a)¥(a+1)], (7)
NA
L= };} [LE ()9 (a) + ¥ (a) ¥’ (o +1)]. (8)

It has been shown®'® that the density of states is related to (InZ),. (where Z is expressed as a func-
tional integral of the Lagrangian). Assuming that the density of states is invariant, we have

i (2252 ()um (520,
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Performing the configurational average we obtain

Nizyn

] NE
£‘;et'f = E ['%E (‘I‘(Q))z +\Po:(r)\y(o(+1)(r)]_ )Lz Z:

U=1,r =1 o=l

In calculating Eq. (10) we use a cumulant expan-
sion, neglecting terms higher than ¥*, This ap-
proximation is equivalent with a Gaussian dis-
tribution of the masses. The parameter X is the
root-mean-square deviation of the optical fre-
quencies normalized to the effective coupling be-
tween the cells.

Respectively, we obtain £.¢;’ with £/ and A’

E=y—-(E (a))p, E'=r=(E (a))p:;
A=[(EAa))p — (E ()] Y2,
A =[{E o(a))pr = {E ' (a))ps2] V2,

In order to analyze our results we perform a
numerical calculation, We consider a simple
cubic lattice in which there is a decoupling be-
tween motion in the x, v, and z directions, We
assume that we have three force constants acting
between nearest neighbors. K,* is the stretching
force constant acting in the direction of propaga-
tion of the optic wave; K, * and K,* are the bend-
ing force constants and satisfy

(K,*+K, *)/K,*<1,

(11)

This problem might be approximated in the
case of the optical wave by only a one-dimension-
al problem. Each three-dimensional cell of b*
atoms transforms to a system of b* chains of b
atoms; K,* and K,* transform to forces acting
between chains, so that K,*"") =bK * and K, *®")
=bK,*, In the next step, we decouple the chains
by approximating the intercell force constant
K,* by K,*+b(K,*+K,*). Such a transformation
preserves the energy for long waves, but it is
not valid in the case of strong disorder with cor-
relation length comparable to b,

moWoa o
T

-

FIG. 1. Mode behavior € = € (6) for Z = 0.5. Dash-
dotted line, CPA; solid line, MREI; plusses, RG.
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q,(r) 2j|2
Z (@) ) (10
| According to this approximation, we obtain

tess ™) =ty TU[L+0(K, T+ K, ¥ /K, YY) (12)

and the disorder parameter is replaced for b=2
by

A=A00") \EV [ 4K ¥ 4K, %) /K]0 (132)
and for b =4 by
A=) =z amN] ] s 4(K* +K VKT, (13b)
We define the function R()\):

R(A)=x"=x. (14)

The function R()) describes the transition from
one-mode to two-mode behavior [using Eq. (11),
we obtain for the one-dimensional case R(A) >0].
We can physically explain this claim as follows:
The appearance of a localized mode is the condi-
tion for a two-mode behavior, For a localized
mode, distant regions are uncoupled for our ef-
fective chain (the correlation function decreases
exponentially). We calculate the coupling con-
gtant between distant cells as a coupling of ad-
jacent cells in a given state of the RG transforma-
tion; increasing the size of the cell during the
transformation, we obtain a decrease of f.¢(%™*),
an increase of A, and therefore R()) >0, For a
one-mode behavior (one type of oscillation) a
long correlation exists and . (4**) decreases
slowly relative to the decrease of the root-mean-
square deviation of the oscillation frequencies,
A’ decreases, and R(A) < 0.

The fixed points R(x) =0 occur at A =0, x ==
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FIG. 2. Mode behavior for Z =Z (6) for € = 1.
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(one mode, two mode) and the unstable fixed point
at A=x.#0 [R(}) >0 for A>x, and R(A) <O for x
<A,], which describes the point of transition
from one-mode to two-mode behavior.

We choose a typical® ratio K,* /K, *=~0.25K_*/
K,*=~0.,25. For a given Z and €, we find A, for
which R(1.) =0 and, respectively, the value of &,
[r=x(z, ¢ 6)]. We plot a graph of € vs 6 (6=2,)
for constant Z and a graph of Z vs 6 (8=20,) for
constant €, Figure 1 plots our results for Z=0,5
in comparison with those from MREI (Ref. 1) and
CPA (Ref. 2). Figure 2 plots the results for €=1,
which might explain the behavior of the crystal
InSb,As,_, where €=1.06 and 6=0.38 and which
has been found to behave as one mode for Z =0.25
and two mode for Z =0.85.

We mention that our approximation might change
the value of the unstable fixed point A =), (to
smaller 2.) and as a result the function Z =Z(0)
(Fig. 2) appears to be shifted upwards for 6 close

to 1, as this approximation involves less dis-
order.
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