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Abstract
We discuss the stability of a homogeneous two-dimensional Bose gas at finite temperature
against the formation of isolated vortices. We consider a patch of several healing lengths in
size and compute its free energy using the Euclidean formalism. Since we deal with an open
system, which is able to exchange particles and angular momentum with the rest of the
condensate, we use the symmetry-breaking (as opposed to the particle number conserving)
formalism, and include configurations with all values of angular momenta in the partition
function. At finite temperature, there appear sphaleron configurations associated with isolated
vortices. The contribution from these configurations to the free energy is computed in the
dilute gas approximation. We show that the Euclidean action of linearized perturbations of a
vortex is not positive definite. As a consequence the free energy of the 2D Bose gas acquires
an imaginary part. This signals the instability of the gas. This instability may be identified
with the Berezinskii–Kosterlitz–Thouless transition.

1. Introduction

Below a certain temperature in a three-dimensional bosonic
system, a long-range order is established in an ordered phase
called the Bose–Einstein condensate (BEC). In the two-
dimensional (2D) Bose gas, there does not exist an ordered
state since its existence means that the correlation of its
fluctuations is logarithmically divergent, as proven by Mermin,
Wagner [1], Hohenberg [2] and Coleman [3]. However, it has
been shown by Berezinskii [4] and Kosterlitz and Thouless
[5] (BKT) that there exists a superfluid phase with a quasi-
long-range order below a certain temperature. The superfluid
phase has only the bounded vortex pairs but above the BKT
temperature single vortices proliferate as this is the more stable
configuration [5].

Many theoretical studies on the BKT transition in the
2D Bose gas, including the original theory of BKT, are
based on equilibrium thermodynamics of many-body systems
[6–10]. There have been studies of 2D vortex dynamics,
viewed as massive charged particles in relativistic two-
dimensional electrodynamical systems [11, 12]. This analogy

has been applied to the study of vortex dynamics of 2D
superfluid via a Fokker–Planck equation [13] and using field
theoretical approaches [14–16]. There were also numerical
studies based on the Gross–Pitaevskii equation [17, 18] on the
lifetime of spontaneous decay of a pancake-shaped condensate
with a vortex [19]. There were also studies around the critical
region of the BKT transition with Monte Carlo simulations
[20, 21] with the local density approximation. With the use
of the projected Gross–Pitaevskii equation (PGPE) [22], the
thermal activation of vortex pairs in the presence of a harmonic
trap [23–25] and its emergence of superfluidity [26] were
studied, and the various consequences of the improved mean-
field Holzmann–Chevalier–Krauth (HCK) theory [27] of the
2D Bose gas [28–31] were presented. The non-equilibrium
response of a 2D Bose gas is less understood. One encounters
such a situation when the trap is suddenly turned off, as was
done in recent experiments [32–34] described below.

Recently, a 2D quantum Bose gas has been experimentally
realized by the Dalibard group [32, 33] by slicing a 3D BEC
into pieces of ‘pancakes’ with 1D optical lattices, and by
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the Phillips group [34] through trapping the atoms in a 3D
harmonic potential with a very large frequency in one of the
directions. In both experiments, measurements on the gas are
performed some time after the confining potential is abruptly
turned off. Dalibard group’s experiment showed that there
are more isolated vortices formed at higher temperatures. The
Phillips group measured the density profile after 10 ms time of
flight, and identified different states of the gas. In one regime
the gas develops a bimodal distribution with only thermal
and quasi-condensate components without long-range order,
as different from a superfluid. For a sufficiently long time
of flight, they observe a trimodal distribution with thermal,
quasi-condensate and superfluid components indicative of a
BKT transition.

In this paper, we compute the free energy of a 2D Bose
gas by means of thermal field theory. We consider the
action in the Madelung representation (in terms of density
and phase), and convert it to a Euclidean action by a Wick
rotation in time and in phase. The system that we study
is a patch of a size of several healing lengths within the
larger 2D gas. Because we are dealing with the homogeneous
configuration, we put no confining potential, i.e. V (x) = 0.
Since the vortices form at the centre of the gas patch [28]
at the beginning where the density of the gas is effectively
homogeneous, and the vortex core structure is very small
compared to the size of the gas patch, we expect to reduce
the physically more relevant inhomogeneous situation to the
homogeneous situation discussed here through a local density
approximation. Since particle number and angular momentum
are not conserved for this system, we do not constrain the
former (unlike in the particle number conserving formalism,
see e.g. [35]) and consider configurations with all values of
angular momentum. In particular, we consider configurations
with different numbers of vortices and the fluctuations around
them. Although these configurations are time independent,
they have finite Euclidean action as a consequence of the
compactification of the Euclidean time axis, namely Euclidean
time is periodic with periodicity h̄β. These time-independent
configurations with nonzero angular momentum play in our
problem the same role as the usual sphaleron configurations in
electroweak symmetry breaking [36]. The contribution from
these configurations to the free energy is computed within the
dilute gas approximation.

We find that the Euclidean action for fluctuations around
an isolated vortex is not positive definite. In real time, this
means an instability of the isolated vortex, and we characterize
the direction of greatest instability in configuration space. In
imaginary time the fact that the Euclidean action is not positive
definite means that the partition function must be defined by
an analytic continuation, whereby the free energy becomes
complex. We calculate the imaginary part of the free energy
due to this instability. This is similar to the argument of Langer
who considered the decay of a metastable state due to classical
fluctuations [37, 38], that of Coleman who considered the
quantum fluctuations around the spatially separated instantons
[39–41] and that of Affleck who considered the decay of a
quantum-statistical metastable state using instantons [42, 43].
We find that the canonical 2D Bose gas is indeed unstable at

finite temperature, and the decay rate, which is also the rate of
vortex nucleation, increases with temperature. For T > TBKT,
the gas evolves to a state of isolated vortices.

The paper is organized as follows. In section 2 we
introduce the Gross–Pitaevskii treatment and write it in the
Madelung representation. In section 3 we obtain the Euclidean
action by a Wick rotation and model the density profile of the
gas with a vortex at the origin. In section 4 we introduce
the linear perturbation about the configuration for each q. In
section 5 we outline the formalism of computing the lifetime
of the gas and obtain the BKT transition temperature. In
section 6 we use Bohr–Sommerfeld quantization to show that
the effective energy is complex, indicating the instability of
the 2D Bose gas. We end with conclusions in section 7.

2. The model

The dynamics of a two-dimensional (2D) bosonic atomic
system with a δ-potential inter-atomic interaction is described
by the action [17, 18]

S =
∫

dt d2x
{

ih̄�† ∂�

∂t
− H

}
, (2.1)

where �(x) and �†(x) are respectively the annihilation and
creation operators of an atom at point x. The Hamiltonian is

H = h̄2

2m
∇�†∇� + F [�†�], (2.2)

and

F [ρ] = (V (x) − μ)ρ + 1
2gρ2, (2.3)

where g is the coupling constant due to the δ-potential between
the atoms. In the Madelung representation

� = √
ρ eiθ , (2.4)

the density of atoms in the lowest macroscopically occupied
state ρ and the phase θ are canonical to each other, obeying
the commutation relation [44, 45]

[ρ(x), ϕ(x′)] = −iδ(x − x′). (2.5)

With (2.4), action (2.1) is written as

S =
∫

dt d2x
{
h̄θ

∂ρ

∂t
− H

}
, (2.6)

where

H = ρ

2m
(∇h̄θ)2 + Fq [ρ] , (2.7)

and

Fq [ρ] = F [ρ] +
h̄2

8mρ
(∇ρ)2 . (2.8)

The length scale that characterizes the local alteration of the
gas density healing back to the mean-field density is given by
the healing length, which is

ξ 2 = h̄2

4mμ
. (2.9)

Experimentally there is a harmonic trap to prepare the
initial patch of the Bose gas in two dimensions. At the
time when the trap is turned off, the Bose gas is still highly
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inhomogeneous. However, in recent experiments, the vortex
core structure is very small compared to the patch of the quasi-
two-dimensional Bose gas. Take Phillips group’s experiment
for example. The sodium atom is used and therefore m ∼
3.8 × 10−26 kg. And ω⊥ = 20 Hz and ωz = 1 kHz [34]. It is

known that μ = gρ0, where ρ0 = 4
λ2 [20], λ =

√
2πh̄2

mkBT
being

the thermal de Broglie wavelength. Near the transition point,
T ∼ 100 nK [33, 34], ρ0 ∼ 3×1012 m−2. By g = h̄2

m
a
Lz

(where
a is the scattering length and Lz is the thickness of the gas)
and the fact that for most current experiments a

Lz
∼ 1

30 [46],

g ∼ 9.7 × 10−45 J m2. Then μ ∼ 2.9 × 10−32 J. Then from
(2.9), ξ 2 ∼ 2.5 × 10−12 m2. The area of the gas is given by
the circle of the TF radius, A ∼ πR2

⊥ ∼ 2πμ

mω2
⊥

∼ 1.20 ×
10−8 m2. Hence A � ξ 2, which means that the vortex
structure is very small compared to the size of the gas.
Hence, the experimental situation can be recovered from our
subsequent analysis through local density approximation [21]
that locally the gas is effectively homogeneous at the centre of
the trap [28], which is best described by V (x) = 0.

3. Euclidean action

To compute the partition function of such a system, we perform
a Wick rotation by writing t = −iτ . To preserve the same
canonical relation between the density and the phase (2.5) and
to keep the density real, the phase has to be rotated accordingly
by

χ = −ih̄θ. (3.1)

whence exp
(
i S
h̄

)
becomes exp

(−S
h̄

)
. The action in this

Euclidean space is given by

S =
∫

dτ d2x
{
χ

∂ρ

∂τ
+ H

}
, (3.2)

where the Hamiltonian density is

H = − ρ

2m
(∇χ)2 + Fq[ρ]. (3.3)

Let us introduce the following dimensionless variables:

τ = h̄

μ
s, r = ξy, ρ = μ

g
n, (3.4)

and the Euclidean phase

χ = h̄ζ. (3.5)

With these new variables the Euclidean action (3.2)
becomes

S = h̄μξ 2

g

∫
ds d2y

{
ζ

∂n

∂s
− 2n(∇yζ )2 − n +

n2

2
+

(∇yn)2

2n

}
.

(3.6)

Because � is a single-valued function its value is
unchanged upon having the phase iξ added by 2πq, for any
integer q, so it does not change the value of the field. As a
result, for any integer q,∮

dl · ∇yζ = −2π iq, (3.7)

where the line integral goes around a loop about a point. If
the vorticity q is positive (negative) while the loop is small

enough, there is a vortex (an antivortex) at that point whereas
q = 0 indicates there is no vortex at that point. But if the loop
of the line integral is larger, q is the sum of the vorticities of
all vortices inside the loop, while vortex and antivortex cancel
each other in the integration. The phase may have a curl-
free part even if there is a vortex. The simplest configuration
representing a single vortex at the origin has ζ = −iqϕ. The
Euclidean angular momentum density of the system is given
by

l = ρ
∂χ

∂ϕ
= −ih̄qρ, (3.8)

which is proportional to q. The fact that the angular momentum
commutes with the Hamiltonian and is conserved implies the
conservation of vorticity in the whole system.

Assuming there is a vortex at the origin with the
density profile nq(y), presumed to be rotationally invariant,the
equation of motion is obtained by putting ζ = −iqϕ into (3.6):

1

y

d

dy

(
y

dnq

dy

)
− 1

2nq

(
dnq

dy

)2

+

(
1 − 2q2

y2

)
nq − n2

q = 0.

(3.9)

For q = 0, nq = 1 exactly. In the general case, it is convenient
to introduce a ‘Euclidean wavefunction of the condensate’ by
writing nq = ψ2

q [18, 47]. It then becomes

1

y

d

dy

(
y

dψq

dy

)
+

1

2

(
1 − 2q2

y2

)
ψq − 1

2
ψ3

q = 0. (3.10)

The vortex solution interpolates between the no-vortex
profile ψq = 1 for y �→ ∞ and the trivial solution ψq = 0
for y �→ 0. Equation (3.10) may be solved numerically (see
[18, 47]). For large y, we may expand ψq in inverse powers
of y2:

ψq = 1 − q2

y2
− [8q2 + q4]

2y4
+ O

(
1

y6

)
. (3.11)

Likewise for the density

nq = 1 − 2q2

y2
− 8q2

y4
+ O

(
1

y6

)
. (3.12)

For y � 1, the cubic term in (3.10) can be neglected,
and ψq becomes a Bessel function [48]. For our purposes,
it is enough to keep only the first (linear) term in the Taylor
expansion of ψq . The density profile is then quadratic:

n1 = 0.08 y2. (3.13)

We shall adopt approximation (3.12) for y > 2.7 and (3.13)
otherwise. The matching point and the constant in (3.13) are
chosen so that the approximated density profile is smooth (see
figure 1).

4. Linear perturbation

Consider linear perturbations around a configuration of the 2D
Bose gas with a vortex at the origin:

n = nq(1 + δ), ζ = −iqϕ + ζ1, (4.1)

where δ = δ(y, ϕ, s) and ζ1 = ζ1(y, ϕ, s) are the functions
of the radial and azimuthal coordinates y and ϕ. Define the
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2 6 10
y
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n y

Figure 1. The density profile for an isolated vortex at the origin, as
given by (3.13) for y < 2.7 and (3.11) for y > 2.7.

operator

∇̃2
y = 1

ynq

∂

∂y

(
ynq

∂

∂y

)
+

1

y2

∂2

∂ϕ2
. (4.2)

Note that for q = 0 (i.e. nq = 1), ∇̃2
y = ∇2

y . Putting
perturbation (4.1) in action (3.6), it becomes

S(q) ≈ F0(q) +
h̄μξ 2

g

∫ μβ

0
ds

∫
d2y · nqδ

(
nq

2
− 1

2
∇̃2

y

)
δ

+
h̄μξ 2

g

∫ μβ

0
ds

∫
d2y · ζ1

(
2nq∇̃2

y

)
ζ1

+
h̄μξ 2

g

∫ μβ

0
ds

∫
d2y · nqζ1

(
∂

∂s
− 4iq

y2

∂

∂ϕ

)
δ, (4.3)

where

F0(q) = h̄μξ 2

g

∫ μβ

0
ds

∫
d2y

·
[

2nqq
2

y2
− nq +

n2
q

2
+

1

2nq

(
dnq

dy

)2
]

= −πh̄ξ 2μ2β

g

∫
dy · yn2

q, (4.4)

which is the equilibrium free energy, with the second equality
owing to (3.9). Then the equations of motion are given by

∂ζ1

∂s
= nqδ +

4iq

y2

∂ζ1

∂ϕ
− ∇̃2

y δ, (4.5)

∂δ

∂s
= 4iq

y2

∂δ

∂ϕ
− 4∇̃2

y ζ1. (4.6)

The Fourier transform of the fluctuations can be defined
as

δ(y, ϕ, s) =
∞∑

j=−∞
δj (y, s) eijϕ, (4.7)

ζ1(y, ϕ, s) =
∞∑

j=−∞
ζ1j (y, s) eijϕ. (4.8)

If δ and ζ1 are real, then

δ∗
j = δ−j , ζ ∗

1j = ζ1−j . (4.9)

Representation (4.8) assumes that∮
dl · ∇ζ1 = 0, (4.10)

which means that the fluctuation does not change the total
vorticity. The counterpart of −∇̃2

y in the Fourier representation
is

Ljq = − 1

ynq

∂

∂y

(
ynq

∂

∂y

)
+

j 2

y2
. (4.11)

Action (4.3) becomes

S(q) ≈ F0(q) +
h̄μξ 2

g

∫ μβ

0
ds

∫
dy

· ynq

∞∑
j=−∞

δ−j

(
nq

2
+

1

2
Ljq

)
δj

+
h̄μξ 2

g

∫ μβ

0
ds

∫
dy · ynq

∞∑
j=−∞

ζ1−j (−2Ljq)ζ1j

+
h̄μξ 2

g

∫ μβ

0
ds

∫
dy · ynq

∞∑
j=−∞

ζ1−j

(
∂

∂s
+

4qj

y2

)
δj .

(4.12)

This action can be further simplified. Define

L̂jq =
[
− 1

y

∂

∂y

(
y

∂

∂y

)
+

j 2

y2

]
+

(
q2

y2
− 1 − nq

2

)
. (4.13)

Suppose F and f are related by F = f√
nq

; then Ljq and L̂jq

are related by

LjqF = 1√
nq

L̂jqf. (4.14)

Define the covariant differential operator,

Ds,jq = ∂

∂s
− 4qj

y2
, (4.15)

which can be seen as the time derivative in a frame corotating
with the vortex. With the transformation of the fluctuations,

δj = δ̂j√
nq

, ζ1j = ζ̂1j√
nq

, (4.16)

action (4.12) is then rewritten as

S(q) ≈ F0(q) +
h̄μξ 2

g

∫ μβ

0
ds

∫
dy · y

∞∑
j=−∞

×
[
δ̂−j

nq + L̂jq

2
δ̂j − ζ̂1−j (2L̂jq)ζ̂1j + ζ̂1−jDs,jq δ̂j

]
.

(4.17)

From (4.5) and (4.6), or from action (4.17), the equations of
motion in terms of the new operators are

(nq + L̂jq)δ̂j = Ds,−jq ζ̂1j , (4.18)

4L̂jq ζ̂1j = Ds,jq δ̂j . (4.19)
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5. Lifetime of the condensate

Consider a Bose gas confined to a region of size L. We define as
our system a part of the Bose gas with linear size l smaller than
L but greater than the healing length ξ , i.e. L � l � ξ . The
Bose gas within this system is interacting with other atoms
outside, which act as a reservoir of energy, particle number
and angular momentum. Therefore the total vorticity q of our
system is not conserved. The equilibrium state is described by
the partition function [49]

Z =
∞∑

q=−∞

∫
dδ dζ1

∫
D[δ]D[ζ1] exp

(
−S(q)

h̄

)
, (5.1)

where the periodic boundary conditions [50] δ = δ(0) =
δ(μβ) and ζ1 = ζ1(0) = ζ1(μβ) have been incorporated in the
evaluation of the path integral.

Setting an upper cutoff at y = �, the Euclidean action
(essentially the free energy divided by kBT ) of the system with
no vortex is obtained by putting n0 = 1 in (4.4)

F(0) = −πh̄ξ 2μ2β

g

∫ �

0
dy · y = −πh̄ξ 2μ2β

g

�2

2
, (5.2)

and that with one vortex of vorticity q is obtained after putting
the asympotic expressions (3.11) and (3.13) in (4.4),

F(q) = −πh̄ξ 2μ2β

g

∫ �

0
dy · yn2

q

≈ −πh̄ξ 2μ2β

g

(
�2

2
− 4q2 ln �

)
, (5.3)

as at small y the integral vanishes in both cases. As a result,
adding a vortex means adding an amount of the Euclidean
action

�F(q) = 4πh̄ξ 2μ2βq2

g
ln �. (5.4)

Suppose K0 is the fluctuation factor calculated from the
path integral in (5.1) around the q = 0 configuration, and
K0K1 is that around the q = 1 configuration. If κα

jq
2’s are the

eigenvalues of L̂jq , then the partition function of the q = 0
case is given by [51]

K0 =
∏
α,j

1

2 sinh

√
4κα

j0
2(1+κα

j0
2)μβ

2

. (5.5)

For q = 1, the translation invariance of the vortices gives
rise to the existence of the zero modes [52]. We know that
we can generate solutions with ω = 0 by simply moving the
vortex around. Since the vortex is already rotation invariant, it
is enough to consider a vortex centred at x = R. The displaced
vortex solution is given by n = nq(y

′), ζ = qϕ′, where

y ′ =
√

y2 + R2 − 2yR cos ϕ, y ′ sin ϕ′ = y sin ϕ.

(5.6)

For small R we have

y ′ = y − R cos ϕ, ϕ′ = ϕ +
R

y
sin ϕ, (5.7)

and the deviation from the centred vortex is

ζ̄1 = qR

y
sin ϕ, δ̄ = −R

1

nq

dnq

dy
cos ϕ. (5.8)

Then the zero-mode action S0 is given by

S0 ≈ S[δ̄, ζ̄1]. (5.9)

If �̂0 is the operator for q = 0 and �̂1 for q = 1, then the
fluctuation factor is given by

K1 =
[

det �̂0

det �̂1

] 1
2

=
√

S0

2πh̄

[
det �̂0

det′ �̂1

] 1
2

, (5.10)

where the second equality is due to the existence of a zero
mode because of the translational invariance of the vortices
[41, 42], and det′ is the determinant excluding the zero mode.
The ratio of the determinants is given by the Gelfand–Yaglom
theorem [53, 54].

Now consider the situation where more than one vortex
is formed. In the dilute gas approximation the vortices are
assumed to be far apart so adding n vortices of vorticity q = 1
increases the Euclidean action by n�F(1) [40, 41]. From
a statistical ensemble of different numbers of vortices n, the
partition function is given by

Z ≈ e− F0(0)

h̄

∞∑
n=0

∫
d2y1

∫
d2y2 . . .

∫
d2yn · 1

n!
K0(K1)

n e−n �F
h̄

= K0 exp

(
−F0(0)

h̄
+ �2K1 e− �F

h̄

)
, (5.11)

where the integrations over the space have an upper cutoff
�2, and the factor 1

n! is due to the indistinguishability of
the vortices. The decay probability per unit time of the
configuration from q = 0 to 1 is [40]

� = −2

h̄
ImF = 1

h̄β
Im(K1) e− �F(1)

h̄
+2 ln �. (5.12)

From the expression of the decay probability, the BKT
transition temperature can be read off from the exponential
factor since the formation occurs at a reasonable rate as
e− �F

h̄
+2 ln � ∼ 1. It is given by

TBKT ≈ 2πξ 2μ2

gkB

= πh̄2ρ0

2mkB

, (5.13)

where the definition of the healing length ξ in (2.9) is
used and ρ0 = μ/g [18] is the number density of the
lowest macroscopically occupied state of the homogeneous
configuration n0 = 1. This agrees with the known results
in the original BKT theory [5]4. The correction due to non-
homogeneous configuration in the transition temperature is
given in [27, 55].

Because K1 is given as the square root of the ratio of
the determinants of two differential operators, we expect that
it is of order 1. Then by dimensional analysis, � ∼ 1

h̄β
∼

13.1 ms−1.5 The average time of vortex formation is then
of the order of 0.08 ms. The numerical estimation of the
vortex nucleation rate around the transition temperature with
the estimated numerical parameters listed in section 2 is plotted
as shown in figure 2. The vortex formation is very slow below
the transition temperature but it increases drastically when the
temperature increases past the critical point.

4 Another way of writing the equation is ρ0λ
2 = 4 [20], where λ =

√
2πh̄2

mkBT

is the thermal length.
5 The cutoff is the dimensionless length of the size of the Bose gas, which is

set to be � =
√

R⊥
ξ

∼ 40.
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Figure 2. The rate of vortex nucleation around the BKT transition temperature.

6. Computing the imaginary part of the free energy

The expression for the decay rate in (5.12) shows that
under the dilute gas approximation the stability of the
canonical equilibrium hinges on whether the path integral over
fluctuations around a one-vortex configuration is complex.

Recall that the action for a linearized fluctuation is given
by (4.17), where the L̂jq operators are defined in (4.13). We
perform the Gaussian path integration over ζ1 to obtain

S(q) ≈ F0(q) +
h̄μξ 2

g

∫ μβ

0
ds

∫
dy · y

∞∑
j=−∞

×
[
δ̂−j

nq + L̂jq

2
δ̂j +

1

8

(
L̂−1

jq Ds,−jq δ̂−j

)
(Ds,jq δ̂j )

]
.

(6.1)

If the L̂jq operators are positive definite, it is clear that the path
of steepest descent away from the stationary point corresponds
to real δj , and the path integral is real.

This is indeed so when we are considering fluctuations
around a homogeneous configuration, namely q = 0, nq = 1.
In this case, the eigenvectors of L̂j0 are Bessel functions of
order j . The requirement that the Euclidean action must be
finite means that we only need to consider eigenfunctions
which do not diverge at infinity and are regular at the origin.
The only Bessel functions satisfying these conditions are of
the form Jj [κy] corresponding to a positive eigenvalue κ2.
Thus, we conclude that the no-vortex state is stable at zero
temperature, when the no-vortex configuration is the only finite
action extremal point in the partition function.

Let us see if this argument carries over for nonzero q. For
simplicity, we set q = 1 (however, we shall leave q explicit).
We seek finite action solutions to the equation

L̂jqF
κ
jq(y) = −κ2Fκ

jq(y), (6.2)

with real κ . The further change of variables,

Fκ
jq(y) = f κ

jq(y)
√

y
, (6.3)

2 6 10
y

0.1

0.1

V y

Figure 3. The effective potential (6.5) for j = 1 (upper curve) and
j = 0 (lower curve). We have used the profile in figure 1 to compute
nq . We see that for j = 1 there can be no negative energy state, even
more so for larger values of j . For j = 0, on the other hand, the
potential is negative for large enough values of y. The existence of a
negative energy state is shown by the Bohr–Sommerfeld condition
as in (6.6).

reduces the left-hand side to a Schrödinger operator[
− d2

dy2
+ Vjq(y)

]
f κ

jq(y) = −κ2f κ
jq(y), (6.4)

where

Vjq(y) = j 2 + q2 − 1
4

y2
− 1

2
(1 − nq(y)). (6.5)

Therefore, the question of whether the Euclidean action for
linearized fluctuations around an isolated vortex is positive
definite becomes whether a one-dimensional particle of mass
1/2 in potential (6.5) admits a negative energy state. Now,
the potential happens to be everywhere positive for all j > 0,
so we may discard this possibility outright unless j = 0 (see
figure 3).

In the j = 0 case there is a well-defined potential well,
and we must investigate whether it is deep enough to support a
bound state. One possibility is to check the Bohr–Sommerfeld
condition, namely whether there is a value of κ such that∫ y+

y−
dy

√
−κ2 − V01(y) = π

2
, (6.6)
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where y± are the classical turning points, namely the roots
of κ2 + V01(y) = 0. The answer turns out to be yes
though just barely. Under the approximation given in
figure 1 for the density profile, the Bohr–Sommerfeld
condition is satisfied for κ = 0.024. The turning points are
located at y− = 1.32 and y+ = 21.2. Bohr–Sommerfeld
quantization would also predict bound excited states; however,
these states fall beneath the accuracy of our approximations,
and they may be considered artefacts. For example, according
to Bohr–Sommerfeld quantization the first excited state
appears at κ = 4 × 10−5, with the outer turning point at
y = 12 500. This is beyond the intended size of the original
homogeneous patch, because from the numerical estimation
in section 2, the size of the patch in the dimensionless unit is√

R⊥
ξ

∼40, which is far less than 12 500.6

Observe that not only have we shown that the Euclidean
action for axially symmetric perturbations of the isolated
vortex is not positive definite, but we have also characterized
the eigenvector corresponding to the direction in configuration
space where it becomes negative. Since nq does not commute
with L̂01, this eigenvector does not correspond to an actual
solution of the linearized fluctuations. However, its existence
is enough to show that the free energy acquires an imaginary
part.

7. Summary and discussions

In this work we have calculated the rate of decay of an
effectively homogeneous 2D Bose gas (described by V (x) =
0), in the form of A e− B

T , which complies with the well-
known Arrhenius law. The prefactor A is proportional to
the imaginary part of the fluctuation factor of the free energy
of a one-vortex configuration in the path integral. It is known
that this imaginary part is due to the negative eigenvalue of the
fluctuation operator belonging to the eigenvector that defines
the direction the fluctuation spontaneously grows along (in
real time). The qualitative features are like those in the decay
of a metastable state due to classical fluctuations [38] and
barrier penetration due to quantum fluctuations around the
instanton solution of the Euclidean action [40]. We find that
the imaginary part comes from the axially symmetric modes
for nonzero vorticity configurations. As a result, we conclude
that while at T = 0, the gas without any vortex is stable, the
canonical ensemble of different numbers of vortices of the gas
is unstable at any finite temperature.

Using the fact that at the BKT transition A e− B
T ∼ 1 we

derived the BKT transition temperature TBKT in terms of the
number density of the homogeneous phase given in (5.13).
This expression derived via thermal field theory provides a
more quantitative alternative to that originally derived from

6 This series of excited states is due to the fact that the integral in (6.6) diverges
logarithmically when κ �→ 0. However, the Bohr–Sommerfeld approximation
breaks down in this limit. This can be seen by approximating the density profile
as n1 = 1 − 2/y2 for y >

√
2, n1 = 0 otherwise. In this case the Bohr–

Sommerfeld integral displays the same small-κ behaviour, but (6.4) may be
solved analytically and shows no bound states. The existence of a negative
energy solution to (6.4) depends critically on the effective potential being
deeper than just 1/y2, and may be confirmed by independent perturbative
calculations.

thermodynamics considerations of the competition between
the energy and the entropy of a vortex [5]. It is known that
isolated free vortices are formed in the normal phase above
the BKT temperature. Hence the decay rate calculated here is
also the rate of vortex formation. Our calculations show how
it increases with temperature. The probability of the creation
of vortex pairs in a trapped gas increases with temperature as
well, as indicated by simulation studies with the PGPE [24].

In the experiments, measurements on the gas are made
some time after the confining potential is abruptly turned off.
In Dalibard group’s experiment there are more isolated free
vortices (measured by the dislocation of interference pattern
of two planes of gas) at higher temperature after 20 ms time
of flight (TOF) [32]. Our results are consistent with this
finding in that the rate of isolated vortex formation increases
with temperature. In Phillips group’s experiment [34], they
observed different characteristics on the density profile below
and above the BKT temperature after 10 ms TOF, which is
at a rate slower than the rate of the formation of isolated
vortices. However, since we have assumed a homogeneous,
time-independent configuration as starting point, this should
factor in the comparison of our results with experiments.
Further studies to bridge these gaps are desirable.
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