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Abstract. In this paper we analyze the possibility of detecting nontrivial quantum

phenomena in observations of the temperature anisotropy of the cosmic background

radiation (CBR), for example, if the Universe could be found in a coherent superposition

of two states corresponding to different CBR temperatures. Such observations are sensitive

to scalar primordial fluctuations but insensitive to tensor fluctuations, which are therefore

converted into an environment for the former. Even for a free inflaton field minimally coupled

to gravity, scalar-tensor interactions induce enough decoherence among histories of the scalar

fluctuations as to render them classical under any realistic probe of their amplitudes.

1. Introduction

According to the inflationary paradigm [1, 2], not only primordial cosmological fluctuations

are quantum in origin, but they are also created in a very non-classical state [3, 4, 5, 6].

This raises the tantalizing possibility of uncovering nontrivial quantum behavior through

cosmological observations. However, no known cosmological probe would reveal the actual

quantum state of primordial fluctuations since all known methods of observation focus on

a restricted set of properties of those fluctuations, thus leaving a remainder which must

be traced over. Therefore, to discuss nontrivial quantum behavior we have to consider not

only the quantum features of the cosmological fluctuations, but also the loss of quantum

coherence induced by the partial description appropriate to the observation in question.

In this paper we take as example the observations of the temperature anisotropy

amplitudes of the cosmic background radiation (CBR). The temperature fluctuations are

determined by the scalar cosmological fluctuations. Unlike the case when CBR polarization

is being observed, tensor perturbations affect the result only through their action on the

scalar ones. Therefore in the observation of CBR temperature fluctuation amplitudes, we

must regard tensor fluctuations as an environment coupled to the system of interest, namely

the scalar fluctuations.

http://br.arxiv.org/abs/1103.0188v2


Decoherence in the cosmic background radiation 2

The coupling between the system and its environment induces decoherence in the former

[7, 8]. Adopting the Hartle- Gell-Mann consistent histories approach to quantum mechanics

[9, 10], we ask whether it is possible to observe the coherence between different histories of

the scalar fluctuations, after tracing over the tensor fluctuations. We shall only consider the

coupling between these fluctuations demanded by general relativity. We represent all matter

fields by a single free scalar inflaton field, minimally coupled to gravity. After identifying the

relevant gauge invariant variables and imposing the Newtonian gauge conditions (see below),

the momentum constraints of general relativity relate the inflaton field to the single scalar

degree of freedom in the metric. Thus, there is only one gauge invariant scalar degree of

freedom in the theory. This scalar field is coupled to the graviton field, which after making

the graviton polarization explicit may also be described by two scalar fields. We disregard

vector perturbations.

Our conclusion is that the decoherence induced by tensor perturbations is strong enough

to erase any traces of quantum behavior in the scalar fluctuations, given any realistic

observational scenario by today’s standards. To this extent, our findings are consistent

with other treatments of the issue in the literature. These other approaches are based

either on different system-environment splits or on averaging over the decaying mode of the

cosmological fluctuations [11, 12, 13, 14, 15, 16, 17, 18, 19, 20].

Within the Gell-Mann and Hartle formalism one has the freedom to take any pair of

histories to compute the decoherence functional. We choose these histories to see whether

quantum effects in the CBR spectrum can be detected. According to the present paradigm,

the amplitudes of the temperature fluctuations in the different modes in which the CBR

may be decomposed are the result of a stochastic process. The amplitudes themselves are

independent very nearly gaussian random variables. We regard each realization of this

process as a “history” and ask whether decoherence between different, independent typical

histories may be observed. Since the histories themselves are random, we shall compute the

expectation value of the influence functional between two independent histories. We will

also show that the mean quadratic deviation of the influence functional from its expectation

value is negligible.

To traslate the instantaneous picture of the CBR temperature fluctuations at the time

of last scattering into a history of scalar fluctuations evolving in space-time, we use the

Sachs-Wolfe effect [1, 21, 22, 23]. This allows us to find the amplitudes of the growing

modes in the scalar fluctuations corresponding to given temperature fluctuations. To link

the amplitude of scalar perturbations in the recombination era with the inflationary period

we use Bardeen’s conservation law [24, 25]. Once we have associated a history of the scalar

fluctuations to the given temperature fluctuations, we compute the expectation value and

the standard deviation of the decoherence induced by the gravitons on two independent

histories chosen at random.
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This paper is organized as follows. In Section 2 we give a brief summary of inflation,

gauge invariant cosmological perturbations, their link to CBR temperature and we compute

the interaction between the scalar and tensor modes which is necessary to calculate the

decoherence functional. Section 3 is devoted to decoherence: we first give a brief summary

of the Hartle- Gell-Mann approach (mainly to fix our notation) and and then we compute

the decoherence functional and its standard deviation. Finally, Section 4 contains our

conclusions.

2. Inflation and cosmological perturbations

The aim of this work is to compute the decoherence suffered by the scalar perturbations

due to its interaction with the tensor perturbations in the inflationary stage of the Universe.

For such calculation it is necessary to find the interaction between the perturbations. In

this section we calculate the interaction between scalar and tensor modes using the ADM

formulation of General Relativity [26]. Then, we compute the free action of the tensor

perturbations and the Hadamard propagator [27] associated to them. We will use the

Newtonian gauge to find the invariants cosmological perturbations [25].

Let us begin by describing the cosmological model we have in mind. We shall adopt

natural units in which c = h̄ = kB = 1 and therefore the Plank mass mpl = 1019 GeV.

The present temperature of the Universe is T0 = 10−13 GeV and the present age of the

Universe (which is also essentially the size of the present day cosmological horizon) is

L0 = 1042 GeV−1. Up to that distance the Universe is well described by a spatially flat

Friedmann - Robertson - Walker (FRW) model with a scale factor a (t); we assume a = 1

at the present time. We also assume that the Universe underwent a stage of inflationary

expansion which ended at the time of reheating tr. For concreteness we assume a reheating

temperature of Tr = 1016 GeV. This means that at the time of reheating, and therefore

also during the inflationary era, the Hubble parameter was H = T 2
r /mp = 1013 GeV. The

scale factor at reheating was ar = T0/Tr = 10−29. In terms of conformal time η = −1/aH

this means inflation ends at a time |ηr| = 1016 GeV−1. This represents that our present

horizon crossed the horizon during inflation at the time when the conformal factor was

ai = 1/HL0 = 10−55. Observe that as expected ar/ai = 1026 = e60. At that moment the

conformal time was |ηi| = 1042GeV−1. For all practical purposes, we shall take this event as

the beginning of inflation. We shall be concerned with cosmological modes which crossed the

horizon during inflation sometime between |ηi| and |ηr|. This means their conformal wave

numbers are in the range 10−42 GeV < q < 10−16 GeV. Concretely, the mode q crosses the

horizon at a conformal time |ηe| = 1/q, when 1/a (ηe)H = 1/q.
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2.1. Quick review of Inflation

The necessary condition to achieve an accelerated expansion is p = −ρ. This condition yield

the De-Sitter stage when the scale factor grows exponentially, a ∼ eHt [1, 2, 35]. This stage

of evolution is dominated by a homogeneous scalar field called inflaton (ϕ0). Its energy

density and pressure are given by

ρ =
1

2
ϕ̇2
0 + V (ϕ0) (1a)

p =
1

2
ϕ̇2
0 − V (ϕ0) (1b)

where V (ϕ0) is the potential energy of the inflaton.

In an expanding, homogeneous and isotropic space-time described for the plane FRW

metric - ds2 = −dt2 + a2(t)dx2 - the inflaton follows the field equations,

H2 =
8π

3m2
pl

[
1

2
ϕ̇2
0 + V (ϕ0)] (2a)

0 = ϕ̈0 + 3Hϕ̇0 +
∂V

∂ϕ0
(2b)

where H = ȧ/a is the Hubble factor (approximately constant during inflation) and mpl is

the Planck mass.

The inflationary condition requires a sufficiently flat potential so that the potential

energy dominates over the kinetic energy, ϕ̇2
0 < V (ϕ0). This condition, known as slow-roll,

is satisfied if

ǫ =
m2
pl

16π

(

V,ϕ
V

)2

<< 1 (3a)

ζ =
m2
pl

8π

V,ϕϕ
V

<< 1 (3b)

where ǫ and ζ are the so-called slow-roll parameters.

Using equation (3a) to rewrite V,ϕ in terms of ǫ and neglecting the ϕ̈0 term in (2a), the

first slow roll parameter can be written in terms of the kinetic and potential energies as

ǫ ≈ ϕ̇2
0

V
(4)

Now, using that V = m2
ϕ0
ϕ2 in (3a) the inflaton field results

ϕ0 =
mpl√
ǫ

(5)

and the Hubble factor is

H ∼ mϕ√
ǫ

(6)
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It will be convenient to put the time derivative of the inflaton field (ϕ̇0) in terms of

the conformal time η. A derivative with respect to η is denoted by f ′. We also define

H = a′/a = aH .

Thus, using the conformal time and the slow-roll parameters, equation (2b) becomes

ϕ′
0 ≈

√
ǫ
mpl

η
(7)

We will use those equations in the next subsections and in Section 3 in order to compute

the decoherence functional.

2.2. Invariant cosmological perturbations

Perfectly homogeneous and isotropic space-time is only an idealization. This description

cannot explain the large structures observed in the Universe. One way to achieve a

satisfactory explanation for the structure distribution is to include small perturbations in

the FRW metric.

We will consider only linear perturbations about the fields,

ζ = ζ0(t) + δζ(t, x) (8)

The linear part of the perturbed FRW metric is [25],

ds2 = a2(η)
{

(1 + 2φ)dη2 − 2(Si +B;i)dx
idη

− [(1− 2ψ)γij + Fi;j + Fj;i + 2E;ij + hij ] dx
idxj

}

(9)

where the ; sub index is the covariant derivative respect to the background space-time γij.

In the flat FRW space-time γij = δij and therefore the covariant derivative is the usual one.

The perturbations can be split into scalar, vector and tensor components according to

their transformation properties in the spatial hyper surfaces. The scalar perturbations are

φ, B, ψ and E.

The vector component is given by S and F which satisfy S ;i
i = F ;i

i = 0. The symmetric

tensor hij gives tensor perturbations with the constraints hii = 0 and h;jij = 0.

All those variables are gauge dependent. To describe the inhomogeneities of the universe

through linear perturbations, we must first distinguish which of the quantities have a well

defined physical interpretation and is not related to a change of coordinates or a change in the

system of reference. There is an infinite number of invariant quantities, but two commonly

used are [25]

Φ = φ+
1

a
[(B − E ′)a]′ (10a)

Ψ = ψ − a′

a
(B − E ′) (10b)
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The reason for choosing these quantities is that in the Newtonian gauge, where

B = E = 0, the two gauge invariant quantities coincide with the scalar perturbations in

the metric, Φ = φ and Ψ = ψ. Moreover, when the spatial part in the perturbation of the

energy moment tensor is diagonal, the scalar perturbations φ and ψ are equal and only one

scalar degree of freedom in the metric remains. Furthermore, a scalar quantity that is not

included in the metric is already gauge invariant.

Regarding the tensor perturbations, they are gauge invariant by definition. Having zero

trace and divergence, they do not have quantities that transform as scalars or vectors.

The ADM parameterization of the metric in terms of gauge invariant variables is as

follows. The shift function is

Ni = a2B,i (11)

the lapse function is

N2 −NiN
i = a2 (1 + 2φ)

N2 = a2 (1 + 2φ+B,iB,i)

N ≈ a
(

1 + φ− 1

2
φ2
)

(12)

and the extrinsic curvature tensor is

Kij = a(η)
{

(1− φ)Bij −(3) ΓkijB,k

[

φ′ (1− 2φ)H− φφ′ + φ (1− 2φ)H3

2
φ2H

]

δij

+
(

−1 + φ− 3

2
φ2
)

Hhij +
1

2

(

−1 + φ− 3

4
φ2
)

h′ij

}

(13)

where

Γkij =
1

2
gkl (gil,j + gjl,i − gij,l) (14)

is the spatial part of Christoffel’s coefficients with

gij = −a2(η) [(1− 2φ)δij + hij ] (15)

being the spatial part of the plane perturbed metric without vector perturbations.

So far, we have defined the scalar perturbation in the Newtonian gauge, now we move

on to analyse its dynamics and its link to CBR temperature.

2.3. Free scalar perturbations and CBR temperature

The evolution of φ is obtained from the perturbed Einstein’s equations. Let us write

u = (a/ϕ′
0)φ. Under the slow-roll approximation u obeys the equation [25]

u′′ −∇2u− 2

η2
u = 0 (16)
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The equation for the modes uk results in

u′′k(η) + (k2 − 2

η2
)uk(η) = 0 (17)

As |η| → 0, we see there is a growing mode and a decaying mode. The latter becomes

negligible against the former and is the sole contribution to CBR temperature fluctuations.

We shall assume the φ field is a superposition of growing modes only, namely

φ(x, η) =
∫

d3k

(2π)3
eikxφkFk (η) (18)

where

Fk (η) = cos (kη) + kη sin (kη) (19)

It is readily seen that Fk/η is a solution to equation. (17)

Once the modes cross the horizon, k ∼ aeH , their amplitudes are frozen at the value φk

until they re-enter into the recombination era. At this stage their amplitudes are amplified

and can be related to the inflationary stage through equation [24, 25]

φk ≈ ϕ̇2
0

V (ϕ0)
φk(ηk,rec) (20)

where ηk,rec is the k dependent time of final horizon crossing. Moreover, using the Sachs-

Wolfe effect [1, 21, 22, 23] we can relate the scalar perturbation with anisotropies in the

Cosmic Background Radiation during the recombination period as follows

δTk
T0

=
1

3

V (ϕ0)

ϕ̇2
0

φk (21)

With this last equation we can relate the scalar perturbation modes during inflation

with the CBR anisotropies, which are an observable magnitude.

2.4. Scalar-Tensor interaction

The scalar perturbation φ (in Newtonian gauge) and the perturbation δϕ to the inflaton

field ϕ0 are linked through the equation [25]

φ′ +Hφ = 4πm−2
pl ϕ

′
0δϕ (22)

Then, a single scalar degree of freedom remains in the Newtonian gauge.

We consider now the derivation of the coupling current between the gauge invariant

scalar mode φ and the gravitons. We start with the usual Einstein-Hilbert action written in

ADM form [26] plus the Klein-Gordon action for the inflaton field
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S =
m2
pl

2

∫

d4x
[

Ng1/2(Ki
jK

j
i −K2) +

1

2
(g1/2gijN),i(ln g),jN,i(g

1/2gij),j−

− 1

2
g1/2N (3)Γkijg

ij
,k

]

+
∫

d4x
√
−g

[

1

2
gµνϕ

;µϕ;ν − V (ϕ)
]

(23)

where 2Kij = N−1[Ni;j + Nj;i − g′ij] is the extrinsic curvature tensor, N the lapse function

and N,i the shift function.

The extrinsic curvature tensor does not contribute to the scalar-tensor coupling; neither

do terms containing the trace hii = 0. Keeping terms containing two scalar and one graviton

field we get

1

2
m2
plN,i(g

1/2gij),j 7→ −1

2
m2
pla

2φ,iφ,jhij (24a)

−1

2
m2
pl

1

2
Ng1/2Γkijg

ij
,k 7→ −2m2

pla
2φ,iφ,jhij (24b)

1

2
m2
pl

1

2
(g1/2gijN),i

g,j
g

7→ 3m2
pla

2φ,iφ,jhij (24c)

1

2
Ng1/2gijϕ,iϕ,j 7→ 1

2
a2δϕ,iδϕ,jhij (24d)

We may summarize these equations writing

Sint =
∫

d4xJijhij (25)

where

Jij =
m2
pl

2
a2(η)

[(

1 + 16m2
plH2ϕ′−2

0

)

φ,iφ,j + 16m2
plϕ

′−2
0 φ′

,iφ
′
,j + 32m2

plHϕ′−2
0 φ,iφ

′
,j

]

≈ m2
pl

2
a2(η)φ,iφ,j (26)

This is the coupling current that is used to calculate the decoherence induced on the scalar

tensor modes. To this aim it is also necessary to calculate the Hadamard propagator:

equation. (43) below shows that the decoherence functional is written in terms of the

Hadamard propagator and to compute it requires first to find the free action for the tensor

perturbations.

2.5. Free graviton Hadamard propagator

To second order in hij, the free action of the gravitons is the usual Klein-Gordon action for

tensors hij

Sfree =
m2
pl

4

∫

d4xa2(η)
[

h′ijh
′
ij − hij,khij,k

]

(27)
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The free dynamics of the gravitons is described in terms of their physical degrees of freedom

[12]

hij(x) =
1

a(η)mpl

∫

d3y[G+
ij(x− y)h+(η,y) + (+ ↔ ×)] (28)

where + and × are the graviton polarizations and

G+
ij(x− y) =

∫ d3k

(2π)3
eik(x−y)A+

kij (29)

The matrix Aij verifies

A+
kii = kiA

+
kij = A×

kii = kiA
×
kij = 0 (30)

and h(η, y) obeys

h′′ + 2
a′′

a
h−∇2h = 0 (31)

We assume the scalar field h(y) is in the usual Bunch-Davis vacuum state.

The scalar Hadamard propagator is defined as

G1(y, y
′) = 〈h(y)h(y′) + h(y′)h(y)〉 (32)

It results

G1 (y, y
′) =

∫

d3k

(2π)3
eik(y−y′) 1

k
G1k (η, η

′) (33)

where

G1k (η, η
′) = (1 +

1

k2ηη′
) cos[k(η − η′)] +

1

k
(
1

η
− 1

η′
) sin[k(η − η′)] (34)

Therefore for the gravitons themselves we get

G1ijlm (x, x′) = 〈{hij (x) , hlm (x′)}〉

=
1

a(η)a(η′)m2
pl

∫

d3k

(2π)3
∆kijlme

ik(x−x′)G1k (η, η
′) (35)

where

∆kijlm = A+
kijA

+
klm + A×

kijA
×
klm (36)

In the next Section we compute the decoherence functional using the coupling current

given by (26) and the Hadamard propagator showed in (34). But since we have related

the scalar cosmological perturbations to CBR temperature fluctuations in Section 2.3, this

allows to us to rewrite the decoherence functional in terms of this observable and can analyze

if it is possible to detect nontrivial quantum effects on it.
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3. Decoherence Functional

We use the Hartle Gell-Mann formalism to quantify the decoherence induced by the gravitons

on the scalar perturbations. We first give a brief description of this formalism and then we

compute the decoherence.

3.1. Hartle Gell-Mann formalism

In this section we give a quantitative discussion of decoherence. To calculate the loss

of coherence induced on the scalar tensor modes (which are in the FRW metric) we use

the decoherence functional developed by Gell-Mann and Hartle [9, 10]. We give a brief

description of closed quantum systems including the decoherence term that is related to the

classical sum rule of probabilities for different histories of a closed quantum system.

In the consistent histories description there is a subset of configuration space variables

that are distinguished (ψ, system) while another subset is ignored (ξ, environment). An

individual coarse-grained history is described by the path ψα(t) along with all possible paths

ξα(t).

When the probability of each history can be assigned individually, the system behaves

like a classical one and we say it has decohered. This means that the quantum interference

between any two elements of this set of histories is negligible and the probability of reaching

the same final state through two different stories is the sum of the probabilities of each

history. The interest in finding histories that have undergone decoherence lies in the fact

that these histories will be the ones that describe the classical domains.

One way to measure the decoherence suffered by two histories is through the decoherence

functional (D), which is [9, 10]

D(α, α′) =
∫

α
Dψ1

∫

α′

Dψ2 δ(ψf − ψ′
f )e

iS0(ψ1)ρs(ψi, ψ
′
i)e

−iS0(ψ2)

∫

dξi dξ
′
i

∫ ξ1

ξi
Dξ1

∫ ξ2

ξ′
i

Dξ2 δ(ξ1 − ξ2) ei[SE(ξ1)+SI (ψ
1,ξ1)]ρE(ξi, ξ

′
i)e

−i[SE(ξ2)+SI (ψ
2,ξ2)] (37)

where S0 is the free action of the system, SE is the action of the environment, SI gives

the interaction between the system and the environment and ρ0 and ρE are the system and

environment density matrices respectively. It is assumed that the system and environment

are initially uncorrelated and therefore the density matrix can be factorized.

The influence functional (F ) is obtained through the integration of two final states of

the environment that are the same, ie ξ1 = ξ2 = ξ [27, 28]

F (ψ1, ψ2) = eiSIF
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=
∫

dξ
∫

dξi dξ
′
i

∫ ξ

ξi
Dξ1

∫ ξ

ξ′
i

Dξ2ei[SE(ξ1)+SI (ψ
1,ξ1)]ρE(ξi, ξ

′
i)e

−i[SE(ξ2)+SI (ψ
2,ξ2)] (38)

Therefore, the decoherence functional is

D(α, α′) =
∫

α
Dψ1

∫

α′

Dψ2 δ(ψf − ψ′
f )e

iS0(ψ1)ρs(ψi, ψ
′
i)e

−iS0(ψ2) eiSIF (ψ1,ψ2) (39)

The weak decoherence condition is recovered when[9, 10]

e−Im[SIF (ψ1,ψ2)] << 1 ⇒ Im[SIF (ψ
1, ψ2)] >> 1 (40)

If the interaction between system and environment can be written by a current coupling as

SI(ψ, ξ) =
∫

d4x J(ψ(x))ξ(x) (41)

and the environment corresponds to free fields, then the influence functional can be written

in terms of Jordan and Hadamard propagators as [27]

SIF (ψ
1, ψ2) =

i

4

∫

d4xd4x′
[

J(ψ1)− J(ψ2)
]

(x)
[

J(ψ1) + J(ψ2)
]

(x′)G(x, x′) +

+
i

4

∫

d4xd4x′
[

J(ψ1)− J(ψ2)
]

(x)
[

J(ψ1)− J(ψ2)
]

(x′)G1(x, x
′) (42)

Since the currents J(ψ) are real, all we need to consider to find the real part of the

decoherence functional are propagators: the Jordan propagator (G) is imaginary while the

Hadamard propagator (G1) is real. Considering the factor i before the influence functional,

the imaginary part can be written as,

Im(SIF ) =
1

4

∫

d4x d4x′
[

J(ψ1(x))− J(ψ2(x))
] [

J(ψ1(x′))− J(ψ2(x′))
]

G1(x, x
′) (43)

This is the expression to be computed to determine the decoherence of the scalar

perturbations during inflation. The coupling current between the graviton and scalar

fluctuation is given by (26). In the next subsection we calculate this expression. But before

that we rewrite the decoherence functional using the results of Section 2.3 (to relate the

scalar perturbation whit the CBR temperature) in order to put the decoherence functional

in terms of an observable.

3.2. Decoherence functional computation

The Hartle Gell-Mann formalism lets us choose the histories involved in the decoherence

functional. In this work we wish to choose histories representing different CBR temperature

outcomes. Since nonlinear effects are small, the CBR temperature is determined by the

scalar perturbations, and these evolve as a nearly free field. Therefore we assume histories

where the single gauge invariant scalar perturbation φ(η) (defined in the Newtonian gauge)
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evolves as a free perturbation (as described in Section 2.3) while tensor perturbations are

totally unspecified.

We start the decoherence functional computation by writing equation (43) in terms of

the coupling current given by (26), the Hadamard propagator given by equation (34) and

the polarization tensors of the gravitons given by equation (29). The decoherence functional

results in

Im (SIF ) =
81

16
ǫ4
m2
pl

H2

∫

d3p

(2π)3
d3q

(2π)3
d3p′

(2π)3
d3q′

(2π)3
(2π)3 δ (p+ q+ p′ + q′)

∆(p+q)ijlmpiqjp
′
lq

′
m

∫

dηdη′
1

|p+ q|G1|p+q| (η, η
′) η−1η′−1Fp (η)Fq (η)Fp′ (η

′)Fq′ (η
′)

1

T 4
0

[

δT 1
pδT

1
q − δT 2

pδT
2
q

] [

δT 1
p′δT 1

q′ − δT 2
p′δT 2

q′

]

(44)

Let us assume

1

T 2
0

〈

δT apδT
b
q

〉

=
N

p3
δabδ (p+ q) (45)

where N ≈ 10−10 is the square of the fractional temperature fluctuation of the Cosmic

Background Radiation given by the current observations [1] and the regularization

δ (k)|k=0 = L3
0.

Then

〈Im (SIF )〉 =
81

4 (2π)3
ǫ4
m2
plN

2

H2
L3
0

∫

d3p

(2π)3
d3q

(2π)3
∆(p+q)ijlmpiqjplqm

|p+ q| p3q3
∫

dη

η

dη′

η′
G1|p+q| (η, η

′)Fp (η)Fq (η)Fp (η
′)Fq (η

′) (46)

where ∆(p+q)ijlmpiqjplqm = 4 (p× q)2.

The conformal time integrals may be written as a sum of two squares, I21 + I22 , where

I1 =
∫

dη

η

[

cos (kη) +
sin (kη)

kη

]

Fp (η)Fq (η) (47a)

I2 =
∫

dη

η

[

cos (kη)

kη
− sin (kη)

]

Fp (η)Fq (η) (47b)

where k = |p+ q|. Now
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1

η
Fp (η)Fq (η) =

pqη

2
[cos (p− q) η − cos (p+ q)]

+
p

2
[sin (p+ q) η + sin (p− q) η]

+
q

2
[sin (p+ q) η − sin (p− q) η]

+
1

2η
[cos (p + q) η + cos (p− q) η] (48)

Keeping only the large |η| terms is consistent with assuming that most decoherence

happens when modes are within the horizon. Keeping only the highest powers in conformal

time, we transform this integral into

〈Im (SIF )〉 =
81

(2π)3
ǫ4
m2
plN

2

H2
L3
0

∫

d3p

(2π)3
d3q

(2π)3
(p× q)2

|p+ q| pq
∫

dηdη′ηη′ cos {Ωpq (η − η′)} (49)

where Ωpq = |p+ q| − p− q.

The time integrals may be performed to yield

〈Im (SIF )〉 =
4 81

(2π)3
ǫ4
m2
plN

2

H2
L3
0

∫

d3p

(2π)3
d3q

(2π)3
(p× q)2

pq |p+ q|
|ηi|2
Ω2

pq

sin2 (Ωpqηi) (50)

Observe that the integrand is well behaved as p, q → 0, so we can extend the momentum

integrals all the way to the origin. Also because of the large frequency involved, we may

approximate the sin2 by 1/2. The only dimensioned quantity which remains is the upper

integration limit |ηr|−1, and we get by dimensional analysis

〈Im (SIF )〉 ≈ ǫ4
m2
plN

2

H2
L3
0

|ηi|2

|ηr|5
(51)

which is about 10120ǫ4.

3.3. Quadratic deviation of the influence functional

If we regard ImSIF as a stochastic variable, we may devise a Feynman graph representation

for its moments. These graphs are composed of graviton lines and CBR lines joining at cubic

vertices, according to the Feynman rules

a) a graviton line carries a momentum label k and coordinate labels ij and lm and time

labels η and η′ at each end. It corresponds to the element

1

a(η)a(η′)m2
pl

∆(k)ijlm

|k| G1|k| (η, η
′) (52)
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b) a CBR line carries a momentum p label and also labels time η, η′ and ”history” a, b at

each end. It corresponds to the element

Nǫ2

p3
δabFp (η)Fp (η

′) (53)

c) a vertex joins a graviton line (labels k, ij, η), a CBR line (labels p, i, η, a) and a second

CBR line (labels q, j, η, b). It corresponds to the element

m2
pl

2H2η2
piqjσab3 δ (p+ q+ k) (54)

(for an outgoing line the sign of momentum is reversed). σ3 is the third Pauli matrix

diag (1,−1). Observe that tadpoles vanish identically because of the sum over the history

label.

In this language, 〈ImSIF 〉 is the setting sun graph [27]. The second moment
〈

(ImSIF )
2
〉

corresponds to graphs containing two graviton lines and four vertices. We discard graphs

containing tadpoles and also the disconnected graph, which equals 〈ImSIF 〉2. The remaining

graphs contain three loops and therefore four CBR lines. Since they are connected, there

is a single overall delta function from momentum conservation which contributes a factor of

L3
0 to the final amplitude. From simple power counting, we get

〈

(ImSIF )
2
〉

− 〈ImSIF 〉2 ≈
(

m2
pl

H2

)4 (
1

m2
pl

)2
(

Nǫ2
)4
L3
0H

4J (55)

where J is the remaining momentum and time integration. We analyze this in the same

terms as in the previous section to conclude that J ∝ |ηi|4 |ηr|−7. We therefore find
〈

(ImSIF )
2
〉

− 〈ImSIF 〉2

〈ImSIF 〉2
∝
(

|ηr|
|ηi|

)3

≈ e−180 (56)

This result, together with the result for 〈Im(SIF )〉, shows that the decoherence functional

behaves as a gaussian variable strongly centered around its mean value. Furthemore,

this mean value is large enough to produce an effective decoherence process on the scalar

perturbation, making it impossible to detect quantum effects on the CBR spectrum.

4. Conclusions

In this paper we have computed the decoherence functional between two histories of the

Universe where scalar primordial fluctuations evolve in a prescribed way while tensor

fluctuations are regarded as an environment. This decoherence functional is relevant to

the question of whether it is possible to detect nontrivial quantum behavior in observations

of the CBR temperature alone (that is, blind to CBR polarization). Our result implies
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that such detection is unrealistic by today’s standards. Because of the well known triangle

inequality [30, 31, 32, 33, 34], we expect the same would be obtained if the scalar fluctuations

were regarded as an environment for the tensor ones.

This finding is consistent with earlier analysis of decoherence of cosmological fluctuations

[11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. We hold this paper as an advance with respect to

those earlier analysis because our system-environment split is related to the features of a

realistic observational scheme, rather than just being assumed. Moreover, we make no ad-

hoc assumptions regarding the model, since the only coupling we are considering is demanded

by general relativity. The present work is probably closest to [12], but goes beyond it in that

the proper gauge invariant degree of freedom is identified, rather than just the inflaton field.

Finding tangible proof of the quantum nature of our Universe is one of the most

fascinating challenges faced by Cosmology today. We believe our result should not be read in

a negative way but rather in a positive one, as pointing to the direction in which a successful

scheme could be found. We are continuing our research with this goal in mind.
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