
 Primordial magnetic field amplification from turbulent reheating

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

JCAP08(2010)007

(http://iopscience.iop.org/1475-7516/2010/08/007)

Download details:

IP Address: 157.92.44.72

The article was downloaded on 27/08/2010 at 16:16

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1475-7516/2010/08
http://iopscience.iop.org/1475-7516
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J
C
A
P
0
8
(
2
0
1
0
)
0
0
7

ournal of Cosmology and Astroparticle Physics
An IOP and SISSA journalJ

Primordial magnetic field amplification

from turbulent reheating

Esteban Calzettaa and Alejandra Kandusb

aDepartamento de F́ısica, FCEyN-UBA and IFIBA-CONICET, Cdad. Universitaria,
Buenos Aires, Argentina

bLATO - DCET - UESC. Rodovia Ilhéus-Itabuna,
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Abstract. We analyze the possibility of primordial magnetic field amplification by a stochas-
tic large scale kinematic dynamo during reheating. We consider a charged scalar field min-
imally coupled to gravity. During inflation this field is assumed to be in its vacuum state.
At the transition to reheating the state of the field changes to a many particle/anti-particle
state. We characterize that state as a fluid flow of zero mean velocity but with a stochastic
velocity field. We compute the scale-dependent Reynolds number Re(k), and the character-
istic times for decay of turbulence, td and pair annihilation ta, finding ta ≪ td. We calculate
the rms value of the kinetic helicity of the flow over a scale L and show that it does not van-
ish. We use this result to estimate the amplification factor of a seed field from the stochastic
kinematic dynamo equations. Although this effect is weak, it shows that the evolution of the
cosmic magnetic field from reheating to galaxy formation may well be more complex than as
dictated by simple flux freezing.
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1 Introduction

The question of the origin of large scale magnetic fields that permeate almost all structures of
the universe is one of the most challenging areas of research in astrophysics. None of the main
lines of investigation, namely primordial origin or in situ generation, succeeded up to now to
explain both the intensity and the topology of the large scale fields. Local generation mecha-
nisms are mainly based on seed field generation by, e.g., a local battery, amplified by a turbu-
lent dynamo in the interstellar or intergalactic medium (see [1] and references therein). The
primordial origin hypothesis, on the other hand, considers that at least the seed field is gen-
erated at some early epoch (inflation, reheating or radiation dominance), and is amplified by
flux conservation and/or turbulent dynamo action during gravitational collapse from z ≈ 100
on [2]. The seed field must be quite intense for gravitational collapse to produce the detected
intensities, and the turbulent dynamo must operate almost since the birth of the galaxy,
i.e., during most of the matter dominated era. The recent detection of regular fields in high
redshift quasars [3–5] however may challenge the in situ generation, or at least the dynamo
mechanism in the form we understand it today, favoring the primordial origin of the fields.

Two obstacles must be overcome by a successful primordial generation mechanism:
breaking the conformal symmetry of a massless gauge field in a spatially flat universe and
building a large coherence length. Sub-horizon processes, like phase transitions [6–9], in
general produce intense fields, but of very small coherence length (see refs. [10] and [11] for
reviews of different magnetogenesis mechanisms). The inflationary epoch of the universe
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(if ever existed) offers a suitable scenario for large scale field generation as in it sub-horizon
scales naturally become super-horizon. Several mechanisms were considered along the years in
which conformal invariance is broken either by coupling the magnetic field to curvature in dif-
ferent ways or addressing non-linear electrodynamics [12–15]. In general the fields produced
are extremely weak, or of marginal intensity, to seed subsequent amplification processes.
The reheating period has also been studied as a magnetogenesis scenario ([16–20]) but in all
scenarios considered so far the obtained fields are too weak to be of astrophysical interest.

Confronted with this situation one wonders if it is possible to have a pre-amplification
(or perhaps full amplification) of a seed field created by one of the above mentioned mecha-
nisms already in the early universe. In this sense the reheating epoch offers a good prospect,
as it is a period where highly non-linear and out of equilibrium processes take place [21–32].
This possibility was explored for the first time some years ago by Finelli and Gruppuso [33]
and by Bassett et al. [34]. In ref. [33] it is analyzed the amplification of a pre-existing mag-
netic field by parametric resonance during the oscillatory regime of a scalar field to which
the magnetic field is coupled. In ref. [34] the amplification during preheating is studied
considering several different models. Another possibility for such pre-amplification process,
and that will be investigated in this paper, could be the operation of a turbulent large scale
dynamo [1, 35–37], similar to the one that acts in the interstellar plasma.

That the matter fields in reheating can be turbulent was pointed out in refs. [22, 28–30]
(see [31] for a theoretical analysis of turbulent reheating). A dynamo requires the presence
of a plasma. As the inflaton is a gauge singlet, it will not decay directly into charged species.
Therefore to have a plasma we must consider an extra, charged, field. The mechanism
by which the plasma is created is particle creation during the transition from inflation to
reheating [21, 38–40].

Suppose that the charged species in question was in its vacuum state during inflation.
The created particles will generate stochastic currents that on one hand induce a seed field [16,
18] and on the other may constitute the turbulent plasma we are looking for. Creation of
spin 1/2 particles such as electrons is suppressed by conformal invariance at the high energies
prevailing during inflation [16], so the charged species must be a scalar. Suitable candidates
can be found in supersymmetric extensions of the standard model [17].

The simplest model for a turbulent large scale dynamo is opne driven by flow veloc-
ities,that does not take into account the back-reaction of the amplified fields. It is known
as a kinematic dynamo [1, 35–37]. The sufficient condition for it to be operational is the
flow to be helical, i.e., that the volume average of the scalar product of the vorticity (curl
of the velocity) and the velocity, known as kinetic helicity [41], does not vanish [42, 43].
Of course this approximation (the neglect of the back reaction of the induced field) is valid
for weak magnetic fields and/or very short times of operation. Mathematically speaking,
the equation for that dynamo can be written as ∂Bi/∂t ≃ −tcorrHcǫijk∂B

k/∂xj , where Bi

is the large scale field (or mean field), Hc the kinetic helicity and tcorr a correlation time.
If ǫijk∂B

k/∂xj ∼ Bi/L, with L the coherence length of the field, then we can estimate

Bi (t) ∼ Bi
0 (0) exp (−tcorrHct/L).

In this paper we shall investigate the possibility of a dynamo action during reheating.
We assume the existence of a charged scalar field, minimally coupled to gravity, that is in
its vacuum state during inflation. To simplify the analysis we consider de Sitter inflation
and thus a de Sitter invariant vacuum for the field [44]. As mentioned above, when the
transition from inflation to reheating takes place, the scalar field is amplified, and stochastic
currents are generated. The characterization of these particles as a fluid is straightforward.
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The hydrodynamic energy and pressure are determined by matching the expectation value
of the energy-momentum tensor of the scalar field to that of a perfect fluid at rest.

The fluid has a stochastic Gaussian velocity, which is found by matching the self-
correlation of the 0i components of the energy momentum tensor of the fluid to the symmetric
expectation value of the corresponding operator for the field. Finally, the viscosity of the fluid
is found by assuming that it is close to saturate the Kovtun, Son and Starinets bound [45].
While initially derived from consideration of the AdS/CFT correspondence, the fact that a
similar bound seems to hold for the strongly coupled quark gluon plasma [46] suggests that
this bound is a good description of field theories in general.

We characterize the turbulence by finding the momentum dependent Reynolds number
Re (k). As for the magnetic Reynolds number, Rm we do not need to estimate it because we
are interested in the kinematic regime, where magnetic fields are too weak to backreact on
the flow. As there are no stirring forces, turbulence will decay eventually. We calculate the
decay time of the turbulence for each mode, td (k). On the other hand, the fluid is made of
particles and antiparticles, which are liable to annihilate. We also estimate the characteristic
time for pair annihilation, ta (k), finding that ta (k) < td (k), i.e., the fluid annihilates before
turbulence decays. This fact allows us to consider that the turbulence is stationary in the
interval 0 ≤ t ≤ ta.

The non-trivial result of our paper is that the rms value of the kinetic helicity of the
fluid, Hc, is not zero. This proves that the kinematic dynamo action mentioned above is
indeed possible. The key ingredient to have Hc 6= 0, is the fact that the plasma is made up
of two scalar fields, Φ and Φ†. We then estimate the amplification factor of the induced field
based on the dynamo equation written above.

We work with signature (−,+,+,+) and with natural units, i.e., ~ = c = kB = 1. Greek
indexes denote space-time coordinates while latin indexes refer to spatial coordinates. To
simplify our analysis we shall consider de Sitter inflation, and define dimensionless variables
and fields as xi = Hri, τ = Ht, and Φ = H−1Ψ, where H is the Hubble constant that
characterizes the de Sitter phase. The mass of the scalar field will combine with H to
produce the dimensionless mass parameter, m/H. In section 2 we make a brief review of
dynamo theory. Section 3 is devoted to the fluid description of a quantum field. In it we
find the velocity correlation function and velocity spectrum as well as the kinetic helicity
correlation function. In section 4 we characterize the turbulence by finding the Reynolds
number, Re (k), and the characteristic times td and ta. In section 5 we find the amplification
factor for the magnetic field. Finally in section 6 we summarize our conclusions. The bulk
of the calculations that lead to these results are shown in the four appendices.

2 Basics of mean field dynamo theory

In this section we briefly sketch the so called first order smoothing approximation (FOSA)
approach to the theory of mean field dynamo. We refer the reader to refs. [1, 35, 47] and ref-
erences therein for details. In FOSA, purely hydrodynamic turbulence is considered, ignoring
higher than second order correlations in the fluctuating velocity field ui. This approach is suit-
able for short times and for magnetic fields that are weak enough to neglect their backreaction
on the turbulent flow. In short, fields are divided in mean and fluctuating components, as

Bi = Bi + bi; U i = U i + vi (2.1)
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where overbar denotes volume average, and that is assumed that satisfies Reynolds rules [48].
In the case that U i = 0, the mean magnetic field satisfies the equation

∂Bi

∂t
= ǫijk

∂Ek

∂xj
+

η0

a2 (τ)
∇2Bi (2.2)

The important quantity here is the mean electromotive force, E , given by

E i = ǫijkvjbk (2.3)

If Bi is sufficiently weak and regular, E i can be expanded as [1]

E i =

∫ t

0

[

αip

(

t, t′
)

Bp
(

t′
)

+ βikp

(

t, t′
) ∂Bp (t′)

∂xk

]

dt′ (2.4)

with αip = ǫijkvj (t) ∂vk (t′) /∂xp and βikp (t, t′) = ǫikpvl (t) vp (t′). Under the hypothesis of
local homogeneity and isotropy, the tensors in the integrand must be proportional to δip and
ǫikp respectively eq. (2.4) can be written as

E i =

∫ t

0

[

α
(

t− t′
)

Bi
(

t′
)

+ β
(

t− t′
)

J i
(

t′
)

]

dt′ (2.5)

where α (t− t′) = − (1/3) v (t) · w (t′), wi = ǫijk∂juk being the vorticity of the velocity fluc-

tuations; β (t− t′) = (1/3) v (t) · v (t′) and J i (t) the mean electric current. If besides it is
assumed that Bi (t) is a slowly varying function of time, then eq. (2.5) turns into

E i = αBi − βJ i (2.6)

with

α = −1

3

∫ t

0
v (t) · w (t′)dt′ ≈ −1

3
tcorrv (t) · w (t) (2.7)

and

β =
1

3

∫ t

0
v (t) · v (t′)dt′ ≈ 1

3
tcorrv2 (t) (2.8)

with tcorr the correlation time. The last approximation in eqs. (2.7) and (2.8) is known as
the “τ approximation” [1]. Observe that α is minus the kinetic helicity, Hc of the flow [41].
A non-null value of this quantity indicates that the flow lacks mirror symmetry. This is a
sufficient condition for dynamo action [35–37]. If Bp is smoothly varying, then the dominant
term in eq. (2.6) is the first one, and eq. (2.2) can be written as

∂Bi

∂t
≃ −1

3
tcorrHcǫijk

∂Bk

∂xj
(2.9)

Taking ǫijk∂Bk/∂xj ∼ Bi/L, with L the scale of coherence of the mean field, eq. (2.9) can be
directly integrated for short times. We shall show below that in our case Hc is a Gaussian
variable of zero mean value and known variance ΣHc

. Taking the ensemble average over all
possible realizations of Hc we obtain that the mean magnetic field is

Bi (t) ∼ Bi
0 exp

(

1

2

〈

1

9
t2corr

Σ2
Hc

L2
t2

〉)

(2.10)

with Bi
0 the initial value of the field. Our task in the next sections is to characterize the

system of cosmological created scalar particles as a turbulent flow, and investigate if it has
a non-zero kinetic helicity.
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3 Fluid description of charged quantum scalar fields

Consider a charged scalar field,
(

Φ,Φ†
)

, minimally coupled to gravity in a spatially
flat Friedmann-Robertson-Walker universe, described by the line element dS2 = −dt2 +
a2 (t)

(

dx2 + dy2 + dz2
)

, with a (t) the expansion factor. We assume that the e.m. field is so
weak that it can be neglected throughout. The action of the field reads

S = −1

2

∫

d4x
√−g

[

gαβ∂αΦ∂βΦ† +
m2

H2
ΦΦ†

]

(3.1)

with gµν the spacetime metric, m/H the dimensionless mass parameter of the field and
H = ȧ (τ) /a (τ) the Hubble constant during inflation. Throughout the paper we consider
m/H ≪ 1 (see e.g. [17]). The stress energy tensor is given by

T µν
Φ =

−2√−g
δS

δgµν
(3.2)

Explicitly

T µν
Φ = H4

[

∂µΦ∂νΦ† − 1

2
gµν∂αΦ∂αΦ† − 1

2
gµν m

2

H2
ΦΦ†

]

(3.3)

The electric current density is

Jµ
Φ = ieH3

[

Φ ∂µΦ† − ∂µΦ Φ†
]

(3.4)

We identify T µν
Φ with the stress energy tensor of a two fluid system. One fluid corresponds to

the positively charged scalar particles, and the other to the negatively charged anti-particles.
Analogously we identify Jµ

Φ with the electric current of the two fluid system. To this purpose
we define the four velocity of the flow as usual, i.e.,

uµ ≡ γ (Uµ + vµ) (3.5)

with Uµ = (1, 0, 0, 0) the four velocity of the fiducial observers at rest with respect to the
radiation field produced by the decay of the inflaton. We define the projector onto the surface
orthogonal to the world lines of fiducial observers in the usual way, i.e., hµν = gµν + UµUν ,
so hµνUν = 0 and hµνvν = vµ. We then write

T 00
Φ ≡ 〈ρ+ p〉 γ2U0U0 + pg00 (3.6)

T
{0i}
Φ ≡ 〈ρ+ p〉 γ2U0vi, vi = vi

+ + vi
− (3.7)

J i
Φ ≡ enγ

(

vi
+ − vi

−

)

(3.8)

where we have symmetrized T
{0i}
Φ =

(

T 0i
Φ + T i0

Φ

)

/2. In eq. (3.7) vi
+

(

vi
−

)

is the stochastic
velocity of the positively (negatively) charged species and in eq. (3.8) n is the number density
of particles. In both equations γ is the Lorentz factor due to the (macroscopic) velocity of
the fluid measured by the fiducial observers. Our flow is made up of gravitationally created
particles during the transition between inflation and reheating. As momentum is conserved
in the particle creation process, in the radiation frame both fluids have zero bulk velocity,
thus we can take γ = 1. Therefore vi

± are stochastic fluctuations around the zero mean
velocity, that must be characterized through their correlation function.

– 5 –
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3.1 Transition from inflation to reheating: particle creation

The stochastic velocity vi introduced at the beginning of this section is the result of random
motions of scalar charges. To understand how those charges appear we observe that a state de-
tected as vacuum by inflationary observers will be detected as a many-particle state by comov-
ing observers in the reheating epoch. Mathematically this is expressed as follows [21, 38–40].

From eq. (3.1) we obtain the evolution equation for the scalar field Φ, the Klein-Gordon
equation,

(

∂2

∂τ2
−∇2 − m2

H2

)

Φ = 0 (3.9)

(and an identical equation for Φ†). The field operators can be written in terms of creation
and annihilation operators as

Φ =
1

(2π)3/2

∫

dκ̄

a3 (τ)

[

φκ (τ) eiκ̄·x̄aκ + φ∗κ (τ) e−iκ̄·x̄b†κ

]

(3.10)

Φ† =
1

(2π)3/2

∫

dκ̄

a3 (τ)

[

φκ (τ) eiκ̄·x̄bκ + φ∗κ (τ) e−iκ̄·x̄a†κ

]

(3.11)

where κ = k/H, is the dimensionless wavenumber, k the physical wavenumber and H the
Hubble constant during inflation. Replacing in eq. (3.9) we obtain the evolution equation for
each mode φκ, i.e.,

φ̈κ +

[

κ2

a2 (τ)
+
(m

H

)2
− 3

2

(

ä

a
+

ȧ2

2a2

)]

φκ = 0. (3.12)

Here κ/a (τ) is the dimensionless physical wavenumber. For simplicity we consider de Sitter
inflation, where an invariant vacuum for a minimally coupled scalar field exists [44], and we
assume that the scalar field is initially in this state. Therefore the positive energy solutions

of eq. (3.12) are the Hankel functions H
(1)
ν [38, 44], i.e.,

φI
κ (τ) =

√
π

2
H(1)

ν

[

κ

a (τ)

]

(3.13)

with ν =
√

9/4 −m2/H2. We follow refs. [49, 50] to the effect that during the reheating
period the scale factor of the Universe scales as t2/3. In this case it is accurate enough to
consider a WKB approximation for the modes, i.e.,

φR
κ (τ) =

exp [−iSκ (τ)]
√

2Ωκ (τ)
(3.14)

with dSκ (τ) /dτ = Ωκ (τ) =
√

κ2/a2 (τ) + (m/H)2. After the transition to reheating the
commoving observers in the new geometry see the state of the scalar field as a many-particle
state, [21, 38–40]. Mathematically this is described as

φI
κ (τ) = ακφ

R
κ (τ) + βκφ

R∗
κ (τ) (3.15)

where φI
κ (τ) (φR

κ (τ)) are the positive frequency solution of the Klein Gordon equation for
inflation (reheating), and ακ and βκ the so called Bogoliubov coefficients [21, 38–40]. If
βκ 6= 0, eq. (3.15) shows that a positive frequency wave during inflation becomes a mixture

– 6 –
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of positive and negative frequency waves during reheating. The details of the calculation of
these coefficients are given in appendix A, here we quote the resulting expressions together
with the physical explanation. The number of created particles in modes with κ < 1, i.e.,
super-horizon ones, is not sensitive to the details of the transition. For κ > 1 that number
does depend on the transition features. We take into account this dependence by assuming
the most simple form for it, i.e., a linear transition that lasts a time τ0. The βκ coefficient
for a linear transition reads

β(s)
κ ≃ −i

(

9

16

)2 1

8

1

τ2
0

1

κ6
ei2τ0S[0] sin (2τ0κ) (3.16)

where τ0 is the duration of the transition from inflation to reheating. (see ref. [51] for a
similar analysis, though for cosmological perturbations). As κ > 1, the modes that are most
amplified are those for which τ0κ is small. For these modes sin (2τ0κ) ∼ 2τ0κ. Hence we take

β(s)
κ ∼ −i

(

9

16

)2 1

4

1

τ0

ei2τ0S[0]

κ5
(3.17)

As for κ < 1 details of the transition do not matter, we have the usual solution from assuming
an instantaneous transition at τ = 0.

β(l)
κ ≃ i (ν − 1) Γ (ν − 1)

π1/2Ω
1/2
κ (0)

1

κν
(3.18)

with ν =
√

9/4 −m2/H2, and Ωκ (0) =
√

κ2 +m2/H2. After the transition an out of
equilibrium plasma is established. It has no bulk velocity with respect to the comoving
observer’s rest frame, but due to the random motions of its constituents, fluctuating velocities
do exist.

3.2 Two point velocity correlation function

One way to characterize a system with fluctuating velocities is to give their spatial two point
velocity correlation function [52]. It is defined as the equal time ensemble average of the
product vi (τ, x̄) vj (τ, x̄′), i.e.,

Rij
(

τ, x̄, x̄′
)

= vi (τ, x̄) vj (τ, x̄′) (3.19)

where supra-indexes indicate the Cartesian components of the turbulent velocity. From
eq. (3.7), we can define a stochastic velocity operator as

vi
Φ =

T
{0i}
Φ (τ, x̄)

〈ρ+ p〉 (τ)
(3.20)

and we assume that it is not relativistic. Observe that this does not mean that the par-
ticles are non-relativistic, they indeed are at such high energy. However their collective
motion can be safely taken as non-relativistic. A state of a quantum field is specified by
its Hadamard two point function, i.e., the vacuum expectation value of the anticommu-
tator of the field at different spacetime points. So from definition (3.20) we can calculate
〈

0
∣

∣

∣

{

T
{0i}
Φ (τ, x̄) , T

{0j}
Φ (τ ′, x̄′)

}∣

∣

∣
0
〉

, and from it obtain the spatial two point correlation func-

tion of the velocity field as

Rij
(

τ, x̄, x̄′
)

= lim
τ ′→τ

〈

0
∣

∣

∣

{

T
{0i}
Φ (τ, x̄) , T

{0j}
Φ (τ ′, x̄′)

}
∣

∣

∣
0
〉

〈ρ+ p〉2 (τ)
(3.21)

– 7 –
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using eqs. (3.10) and (3.11), the Hadamard two point function reads

〈

0
∣

∣

∣

{

T
{0i}
Φ (τ, x̄) , T

{0j}
Φ

(

τ ′, x̄′
)

}∣

∣

∣
0
〉

≃

≃ H8

32π3a6 (τ)

∫∫

dκ̄d ¯̟

[

̟iκj ∂

∂τ
GI+

κ

(

τ, τ ′
) ∂

∂τ ′
GI+

̟

(

τ, τ ′
)

+ κi̟j ∂

∂τ
GI+

̟

(

τ, τ ′
) ∂

∂τ ′
GI+

κ

(

τ, τ ′
)

+̟i̟j ∂
2GI+

κ (τ, τ ′)

∂τ ′∂τ
GI+

̟

(

τ, τ ′
)

(3.22)

+ κiκj ∂
2GI+

̟ (τ, τ ′)

∂τ ′∂τ
GI+

κ

(

τ, τ ′
)

]

ei(κ̄+ ¯̟ ).ξ̄ +
(

τ, ξ̄
)

↔
(

τ ′,−ξ̄
)

with ξ̄ = x̄− x̄′, and where GI+
κ (τ, τ ′) = φI

κ (τ)φI∗
κ (τ ′) is the positive frequency propagator.

Writing the scalar field modes during inflation, φI
κ (τ) in terms of the modes during reheating,

φR
κ (τ) as φI

κ (τ) = ακφ
R
κ (τ) + βκφ

R∗
κ (τ) with ακ and βκ the Bogoliubov coefficients, we find

the positive frequency propagator

GI+
κ

(

τ, τ ′
)

= GR+
κ

(

τ, τ ′
)

+ ακβ
∗
κφ

R
κ (τ)φR

κ

(

τ ′
)

+ α∗
κβκφ

R∗
κ (τ)φR∗

κ

(

τ ′
)

+ |βκ|2
[

GR+
κ

(

τ, τ ′
)

+GR−
κ

(

τ, τ ′
)]

(3.23)

with GR−
κ (τ, τ ′) = φR∗

κ (τ)φR
κ (τ ′) the negative frequency propagator. When replacing

eq. (3.23) in eq. (3.22) there appear three kernels, one with vacuum contributions only,
another with contributions both from the vacuum and from the created particles, and a third
one, built from contributions from the created particles alone. This is the most important
one. Details of the calculations, as well as explanations of the approximations made along
the way, are given in appendix C. Here we quote the main results and discuss the physics
involved. Replacing the propagators and their derivatives, and neglecting rapidly decaying
terms, we obtain

Rij
(

τ, x̄, x̄+ ξ̄
)

≃ lim
τ ′→τ

H8

32π3a6 (τ)

1

〈ρ+ p〉2
∫∫

dκ̄d ¯̟ ei(κ̄+ ¯̟ ).ξ̄ |βκ|2 |β̟|2 (3.24)

×
{

̟i̟j
[

GR+
̟

(

τ, τ ′
)

+GR−
̟

(

τ, τ ′
)]

[

∂2

∂τ ′∂τ
GR+

κ

(

τ, τ ′
)

+
∂2

∂τ ′∂τ
GR−

κ

(

τ, τ ′
)

]

+ κiκj
[

GR+
κ

(

τ, τ ′
)

+GR−
κ

(

τ, τ ′
)]

[

∂2

∂τ ′∂τ
GR+

̟

(

τ, τ ′
)

+
∂2

∂τ ′∂τ
GR−

̟

(

τ, τ ′
)

]}

The quantity 〈ρ+ p〉 is calculated in appendix B, and to obtain it we neglected its fluctua-
tions. This means that we are identifying it with its expectation value. The result is

〈ρ+ p〉 ≃ H4

2 (2π)1/2 a4 (τ)

1

τ2
0

[

3

2

(

H

m

)2

τ2
0 +

(

9

16

)4 1

24

]

. (3.25)

Observe that it depends on two parameters, m/H and τ0 which are related to the contribution
of super-horizon and sub-horizon modes respectively. The velocity spectrum, Φij (ς, τ), is
given by the Fourier transform of eq. (3.24), i.e.,

Φij (ς, τ) =
1

(2π)3/2

∫

d3ξ̄Rij
(

τ, r̄, r̄ + ξ̄
)

e−iς̄·ξ̄ (3.26)
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As shown by Tomita et al [53], eddies larger than the horizon are frozen in the plasma
and decay with the expansion. We shall consider only modes inside the particle horizon,
i.e., modes that are in causal connection, so ς ≥ 1. Further calculations are sketched in
appendix C. The main contribution to the velocity spectrum is due to sub-horizon modes,
almost parallel to ς̄. After performing the calculations eq. (3.26) reads

Φij (ς, τ) ≃
(

9

16

)4 3

512

1

π

a4 (τ)

H3

(

H

m

)4

τ2
0

[

3

2

(

H

m

)2

τ2
0 +

(

9

16

)4 1

24

]−2

×
(

3
ςiςj

ς11
+
δij

ς9

)

(3.27)

The general form of Φij (ς, τ) for isotropic turbulence can be written as [52]

Φij (ς, τ) = [ΦLL (ς, τ) − ΦNN (ς, τ)]
ςiςj

ς2
+ ΦNN (ς, τ) δij (3.28)

where ΦLL (ς, τ) is the longitudinal part of the spectrum and ΦNN (ς, τ) the normal part. By
direct comparison of eq. (3.28) with (3.27) we have

ΦNN (ς, τ) ≃
(

9

16

)4 3

512

1

π

a4 (τ)

H3

(

H

m

)4

τ2
0

[

3

2

(

H

m

)2

τ2
0 +

(

9

16

)4 1

24

]−2
1

ς9
(3.29)

ΦLL (ς, τ) ≃
(

9

16

)4 3

128

1

π

a4 (τ)

H3

(

H

m

)4

τ2
0

[

3

2

(

H

m

)2

τ2
0 +

(

9

16

)4 1

24

]−2
1

ς9
(3.30)

Observe that both functions are of similar amplitude. The energy spectrum is defined as

E (ς, τ) =
H2

2

∫

dΩ (ς̄)
ς2

a2 (τ)
Φii (ς, τ) (3.31)

≃
(

9

16

)4 9

128

a2 (τ)

H

(

H

m

)4

τ2
0

[

3

2

(

H

m

)2

τ2
0 +

(

9

16

)4 1

24

]−2
1

ς7

where dΩ (ς̄) is the solid angle element, and

Φii (ς, τ) = 2ΦNN (ς, τ) + ΦLL (ς, τ) (3.32)

The total energy per mass unit is then

E (τ) =
1

2

〈

v2
〉

≃ H

∫ ∞

1

dς

a (τ)
E (ς, τ) (3.33)

≃
(

9

16

)4 3

256
a (τ)

(

H

m

)4

τ2
0

[

3

2

(

H

m

)2

τ2
0 +

(

9

16

)4 1

24

]−2

We may define the total energy associated to a scale κ ≥ 1 as given by the contribution of
all eddies smaller than κ−1, i.e.,

Eκ (τ) ≡ 1

2

〈

v2
κ

〉

= H

∫ ∞

κ

dς

a (τ)
E (ς, τ) (3.34)

and so

Eκ (τ) ≃
(

9

16

)4 3

256
a (τ)

(

H

m

)4

τ2
0

[

3

2

(

H

m

)2

τ2
0 +

(

9

16

)4 1

24

]−2
1

κ6
(3.35)
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3.3 Kinetic helicity two point correlation function

A sufficient condition to sustain large scale dynamo action is that the turbulence be heli-
cal [35–37]. As stated in section 2, it is defined as the volume average of the scalar product
of the vorticity and the velocity [41], i.e.,

Hc = wivi ≡ 1

V ol

∫

V ol
d (vol) wivi (3.36)

with wi = ǫijk∂jvk the vorticity of the velocity field. A non-null value of this quantity
indicates that the flow lacks of mirror symmetry. Due to conservation of angular momentum
in the particle creation process, the expectation value of the kinetic helicity must vanish.
However the r.m.s. value, or variance, can be different from zero, and this is what we show
in this subsection.

From equation (3.20) we can write a vorticity operator as

wi = ǫijk∂j

[

T
{0k}
Φ

〈ρ+ p〉

]

(3.37)

and define a kinetic helicity operator as

HΦ
c =

ǫijkT
{0i}
Φ ∂jT

{0k}
Φ

4 〈ρ+ p〉2
(3.38)

which in terms of the fields reads

HΦ
c =

H9

8 〈ρ+ p〉2
ǫijk

[

(∂iΦ) Φ̇†
(

∂jΦ̇
)(

∂kΦ
†
)

+
(

∂jΦ̇
)(

∂kΦ
†
)

(∂iΦ) Φ̇† (3.39)

+ Φ̇
(

∂iΦ
†
)

(∂kΦ)
(

∂jΦ̇
†
)

+ (∂kΦ)
(

∂jΦ̇
†
)

Φ̇
(

∂iΦ
†
)]

Observe that in principle it does not vanish identically because there are two fields involved
in its expression. The r.m.s. value of HΦ

c is again given by the vacuum expectation value of
the Hadamard two point function, i.e.,

〈

0
∣

∣

{

HΦ
c (r̄, τ) ,HΦ

c (r̄′, τ ′)
}
∣

∣ 0
〉

from where we obtain
a spatial two point function as

ΞΦ
c

(

τ, x̄, x̄′
)

= lim
τ ′→τ

〈

0
∣

∣

{

HΦ
c (x̄, τ) ,HΦ

c

(

x̄′, τ ′
)}
∣

∣ 0
〉

(3.40)

The calculations are rather long but straightforward; details are given in appendix D. We
quote here the main results. When replacing the fields we obtain, as in the case of the
velocity correlation Rij, several kernels: one with vacuum contributions only, another with
mixed contributions from vacuum and created particles, and a third with contributions from
the created particles only. Terms containing |βk|2 give the main contribution, because, as
was the case for Rij, terms with ακα

∗
̟ . . ., etc. oscillate, and will give negligible contributions

when integrated. In figure (1) we show the dependence of 16π6 [a (τ) /H]2 ΞΦ
c

(

τ, ξ̄
)

on ξ for
fixed m/H = 10−6 and three values of τ0 and in figure (2) the dependence on ξ for fixed
τ0 = 10−9 and three values of m/H.

We can estimate the (dimensionless) coherence length of the kinetic helicity as

Λ2
(m

H
, τ0

)

≡ − ΞΦ
c

(

τ, ξ̄
)

∂2ΞΦ
c

(

τ, ξ̄
)

/∂ξ2

∣

∣

∣

∣

∣

ξ=0

(3.41)
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0.2 0.4 0.6 0.8 1.0
Ξ

2´1014

4´1014

6´1014

8´1014

16 Π6 a2 XC

H2

Figure 1. 16π6 [a (τ) /H ]2 ΞΦ
c

(

τ, ξ̄
)

as a function of ξ, for fixed m/H = 10−6 and τ0 = 0.7 × 10−9

(large dashing), τ0 = 10−9 (medium dashing) and τ0 = 1.3 × 10−9 (tiny dashing).

0.2 0.4 0.6 0.8 1.0
Ξ

5.0´1014

1.0´1015

1.5´1015

2.0´1015

16 Π6 a2 XC

H2

Figure 2. 16π6 [a (τ) /H ]
2
ΞΦ

c

(

τ, ξ̄
)

as a function of ξ, for fixed τ0 = 10−9 and m/H = 0.8 × 10−6

(large dashing), m/H = 10−6 (medium dashing) and m/H = 1.2 × 10−9 (tiny dashing).

In figure (3) we show Λ2 as a function of m/H for τ0 fixed, and in figure and (4) the converse.
From both figures we see that, for the chosen values of the parameters, Λ ∼ 1, i.e. it is of the
order of the particle horizon’s scale.

The r.m.s. value of the kinetic helicity is obtained by volume averaging expression (3.40)
over x and x′, i.e.

Σ2
Hc

=
1

V ol (x)

∫

V ol(x)
d [vol (x)]

1

V ol (x′)

∫

V ol(x′)
d
[

vol
(

x′
)]

ΞΦ
c

(

τ, x̄, x̄′
)

(3.42)

Kinetic helicity is a global quantity, that can depend at most on the dimensionless charac-
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0.2695

0.2700

L2

Figure 3. Λ2 as a function of τ0, and for m/H = 0.8× 10−6 (large dashing), m/H = 10−8 (medium
dashing) and m/H = 1.2 × 10−9 (tiny dashing).

2.´10-6 4.´10-6 6.´10-6 8.´10-6 0.00001

m

H

0.270262

0.270264

0.270266

0.270268

0.270270

L2

Figure 4. Λ2 as a function of m/H , and for τ0 = 0.7 × 10−9 (large dashing), τ0 = 10−9 (medium
dashing) and τ0 = 1.3 × 10−9 (tiny dashing).

teristic scale L < 1 of the integration volume. To evaluate the integrals in eq. (3.42) we can
proceed as follows. As we are considering scales . 1 we can develop eq. (3.40) in Taylor
series to second order in x̄− x̄′,1 then using eq. (3.25) we have

ΣHc
(τ,L) ∼ 8Hτ4

0

πa (τ)

[

3

2

(

H

m

)2

τ2
0 +

(

9

16

)4 1

24

]−2

×A1/2
(m

H
, τ0

)

[

1 − 1

240

L2

Λ2 (m/H, τ0)

]1/2

(3.43)

1It can be seen from eq. (D.6) that this is the next to leading order.
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where L = HL, and with

A
(m

H
, τ0

)

≃ − 2187

2097152

1

τ2
0

[

3

8

(

H

m

)4

+
1

2

(

H

m

)2

+
9477

29360128

1

τ2
0

]

×
{

[

1

12

H

m
− 2187

5242880

1

τ2
0

]2

−
[

3

8

(

H

m

)2

+
2187

4194304

1

τ2
0

]

×
[

3

8

(

H

m

)4

+
1

2

(

H

m

)2

+
9477

29360128

1

τ2
0

]}

(3.44)

the zeroth order in the Taylor expansion of ΞΦ
c

(

τ, ξ̄
)

.

4 Characterizing the turbulence: viscosity, Reynolds number and charac-

teristic decay and correlation times

Turbulence sets in at the inflation-reheating transition, and afterwards, as there is no stirring
forces acting on the flow, it decays. Since the fluid is made of particle - antiparticle pairs,
annihilation also occurs. We have two competing processes, whose characteristic times must
be compared in order to decide which one dominates: the decay time of turbulence and the
time of particle anti-particle annihilation.

To properly characterize the turbulence, we must first calculate the Reynolds number of
the flow. This number is defined as Re = ul/υ, with u and l characteristics velocity and scale
respectively and υ the kinematic viscosity. As it may happen that turbulence is not fully
developed at all scales, we must calculate this number for each scale. The scale dependent
Reynolds number can be written as

Re (κ) =
k−1vκ

υ
(4.1)

where υ = η/ 〈ρ+ p〉 is the dimensionless ratio of the fluid shear viscosity to the energy
density k−1 = a (τ)H−1κ−1 is the scale of interest and vκ ∼

√

2Eκ (τ) the estimate of the
velocity at the corresponding scale. To estimate η we follow the work of Son and collabora-
tors [45], and consider it proportional to the entropy density, i.e., η/s = 1/4π. We take s as
proportional to the quasiparticle number density n, i.e., s ∼ n (τ), with

n (τ) ≃ H3

a3 (τ)

1

τ2
0

[

3

2

H3

m3
τ2
0 +

(

9

16

)4 π

28

]

(4.2)

(see appendix B). Using eq. (3.25) we have that

υ (τ) ≃ 1

(2π)1/2

a (τ)

H

[

(3/2) (H/m)3 τ2
0 + (9/16)4 π/28

]

[

(3/2) (H/m)2 τ2
0 + (9/16)4 /24

] (4.3)

Replacing everything into eq. (4.1) we obtain

Re (κ, τ) ≃ (2π)1/2

(

9

16

)2
√

3

256

a1/2 (τ) (H/m)2 τ0
[

(3/2) (H/m)3 τ2
0 + (9/16)4 π/28

]

1

κ4
(4.4)
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Figure 5. Re (κ, τ) /a1/2 (τ) as a function of κ, for fixed m/H = 10−5 and τ0 = 10−7 (large dashing),
10−8 (medium dashing) and 10−9 (tiny dashing). Re increases as τ0 diminishes.

We see that, for κ ∼ 1, we can have Re≫ 1 if

(2π)1/2 2

3

(

9

16

)2
√

3

256
≫ H

m
τ0 (4.5)

i.e., if the transition between inflation and reheating is very fast. In figure (5) we plot
Re (κ, τ) /a1/2 (τ) as a function of κ for fixed m/H and three values of τ0, it is seen that Re
increases as the duration of the transition inflation/reheating shortens. In figure (6) we plot
the same as in the first figure, but with fixed τ0 = 10−9 and m/H = 10−5, 10−6 and 10−7,
and we observe that Re diminishes with decreasing m/H. In both figures Re is a decreasing
function of κ, hence only the modes near the horizon can be considered as turbulent. In
figure (7) we plot Re (κ = 1, τ) /a1/2 (τ) as a function of τ0 and for m/H = 10−5, 10−6 and
10−7. In this case Re has a peak at certain value of τ0, and this peak is higher and occurs at
shorter values of τ0 as m/H diminishes. As τ0 grows Re decreases monotonically. Finally, in
figure (8) we show Re/a1/2 (τ) as a function of m/H, for κ = 1 and τ0 = 10−7, 10−8 e 10−9.
Again Re peaks at certain values of m/H and the peak is higher and occurs at smaller values
of m/H as τ0 diminishes.

The decay time of each turbulent mode is given by td (k) = 1/υk2 = a2 (τ)H−2/υκ2.
Using eq. (4.3) we can write

td (κ) ≃ (2π)1/2 a (τ)

H

[

(3/2) (H/m)2 τ2
0 + (9/16)4 /24

]

[

(3/2) (H/m)3 τ2
0 + (9/16)4 π/28

]

1

κ2
(4.6)

To estimate the pair annihilation time of each mode, we consider that the particles are
relativistic, according to the result obtained for their energy density. On a dimensional basis,
this time can be estimated as

ta (κ) ∼ 1

n (τ) σκur
(4.7)
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Figure 6. Re (κ, τ) /a1/2 (τ) as a function of κ, for fixed τ0 = 10−9 and m/H = 10−5 (large dashing),
10−6 (medium dashing) and 10−7 (tiny dashing). Re diminishes as m/H diminishes.

1.´10-9 2.´10-9 3.´10-9 4.´10-9
Τ0
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Re

a

Figure 7. Re (κ = 1, τ) /a1/2 (τ) as a function of τ0, and for m/H = 10−5 (large dashing), 10−6

(medium dashing) and 10−7 (tiny dashing). Observe that Re peaks at a certain value of τ0. The peak
is higher and occurs at smaller values of τ0 as m/H diminishes.

with n (τ) the particle density, σκ the annihilation cross-section and ur the relative velocity
between species which we take ur ∼ 1. We make a crude estimation of the cross section, as
being the same as for e+e− annihilation [54] for γ ≫ 1. i.e., σ ≃ πr20/γ, with, r0 = α/m,
α = 1/137 the fine-structure constant, γ = ε/m with m the particles mass and ε ∼ HΩκ =
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Figure 8. Re (κ = 1, τ) /a1/2 (τ) as a function of m/H , and for τ0 = 10−7 (large dashing), 10−8

(medium dashing) and 10−9 (tiny dashing). Observe that Re again peaks at a certain value of m/H .
The peak is higher and occurs at smaller values of m/H as τ0 diminishes.

H
[

κ2/a2 (τ) + (m/H)2
]1/2

the maximum energy of each mode. We then have

σκ ≃ π
α2

mH

a (τ)
√

κ2 + a2 (τ) (m/H)2
(4.8)

replacing in eq. (4.7) we have

ta (κ) ∼ a2 (τ)

πα2

mτ2
0

H2

√

κ2 + a2 (τ) (m/H)2

[

(3/2) (H/m)3 τ2
0 + (9/16)4 /28

] (4.9)

Comparing both times we have

td (κ)

ta (κ)
≃
(

2π3
)1/2

α2

a (τ)

H

mτ2
0

[

(3/2) (H/m)2 τ2
0 + (9/16)4 /24

]

κ2

√

κ2 + a2 (τ) (m/H)2
(4.10)

as H/m ≫ 1 and τ2
0 ≪ 1 we have that td (κ) /ta (κ) ≫ 1, i.e., annihilation occurs before the

end of turbulence.
It can be seen that ta is also much shorter than other time scales pertaining to the flow,

such as the ratio between the radius of the largest turbulent eddy (i.e., the horizon as it is
there where Re (κ) takes its largest value) to the velocity associated to that scale. Therefore
in what follows we take tcorr ≡ ta.

5 Magnetic field amplification due to dynamo action

According to eq. (2.10) we must now evaluate the amplification exponent,
ΣHc

2 (τ,L) t (κ) /La (τ), where La (τ) is the physical coherence scale of the magnetic
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field and L is the (dimensionless) coherent scale of the kinetic helicity. From the discussion
in section III, the shortest time is the annihilation time, which for scales such that
κ ∼ 1/L > m/H reads

ta (L) ∼ a2 (τ)

πα2

mτ2
0

H2

1
[

(3/2) (H/m)3 τ2
0 + (9/16)4 /28

]

1

L (5.1)

Writing L = H−1
L the amplification exponent reads

ΣHc
(τ,L) ta (L)

La (τ)
∼ 8

π3α4
a3 (τ)

m2τ8
0

H2

1

LL2

1
[

(3/2) (H/m)2 τ2
0 + (9/16)4 1/24

]2

× 1
[

(3/2) (H/m)3 τ2
0 + (9/16)4 /28

]2

×A1/2
(m

H
, τ0

)

[

1 − 1

240

L2

Λ2 (m/H, τ0)

]1/2

(5.2)

which by simple inspection is seen to be very small.

6 Discussion and conclusions

In this paper we have studied the possibility of turbulent dynamo action during reheating.
We considered the presence of a charged scalar field minimally coupled to gravity. This field
is in its invariant vacuum state during inflation. When the transition to reheating takes place
the vacuum state turns into a many-particle state. For sub-horizon modes of the field, the
number of created modes depends on the details of the transition. Therefore during reheating,
besides the decay products of the inflaton we also have a plasma of scalar particles which
is at rest in the comoving frame. We characterize the fluctuating velocities of this plasma
giving their spatial two point correlation function and the kinetic energy associated to each
Fourier mode of the stochastic velocity field, eq. (3.34). We evaluate the Reynolds number
associated to each mode, Re (κ), which turns out to depend on the physical parameters of
the problem, namely m, H and the duration τ0 of the transition from inflation to reheating.
If τ0 is small enough, then there is a range of κ for which Re (κ) > 1 and the flow can be
considered as (mildly) turbulent. As there are no stirring forces, the turbulence we refer
to decays, each mode doing so in a characteristic time td (κ) given by eq. (4.6). Besides as
the plasma is a particle anti-particle one, each mode of the scalar field (not to be confused
with modes of the stochastic velocity field) annihilates in a characteristic time ta (κ) given
by eq. (4.9). When comparing both times we find that annihilation dominates over decay,
eq. (4.10) and hence for practical purposes we can consider the turbulence as steady.

The sufficient condition to have a large scale kinematic dynamo is the flow to be endowed
with kinetic helicity [35]. The non-trivial result of this paper is that the scalar plasma does
possess a non null rms kinetic helicity, eq. (3.43). From figures (3) and (4) we see that, for
the parameters for which Re (κ) > 1, the characteristic scale of the kinetic helicity is of the
order of the particle horizon, thus allowing for kinematic dynamo action.

The existence of an rms helicity is due to the presence of the two scalar fields, Φ and
Φ†, as is evident from eq. (3.39). Moreover, though the helicity may have either sign, in the
average the amplification effect dominates. From the simplest model of kinematic dynamo,
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eq. (2.7), we compute the amplification factor of an initial seed field, eq. (5.2), and find
that for the physical parameters of the considered scenario, it is very small. In spite of this
result, we believe our work shows the need for exploring the impact of nonlinear effects in
the early universe. These effects offer the most natural answer to the riddle of the survival
of the primordial magnetic field until the epoch of structure formation, in spite of the 1/a2

damping induced by the Hubble expansion.
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A Bogoliubov coefficients

We assume that during the reheating period the scale factor of the Universe scales as
t2/3 [49, 50], while for inflation we consider a spatially flat de Sitter universe. For large
wavenumbers the Bogoliubov coefficients are sensitive to the details of the transition, while
for small wavenumbers the coefficients can be found assuming an instantaneous transition.
This dependence on the transition details for subhorizon modes was also recently analyzed
by Zaballa and Sasaki [51] in the context of creation of metric perturbations at the end
of inflation.

The Klein Gordon equation for a free field in a FRW Universe is

ψ̈κ +

[

κ2

a2
+
(m

H

)2
− 3

2

(

ä

a
+

ȧ2

2a2

)]

ψκ = 0 (A.1)

It is seen that
3

2

(

ä

a
+

ȧ2

2a2

)

=
1

a3/2

d2a3/2

dτ2
≡ 9

4
f (κ) (A.2)

with x = (τ − τ1) /τ0 where τ0 is the time the transition lasts. We assume τ0 τ1 ≪ 1. In
terms of x eq. (A.2) gives

d2a3/2

dx2
=

9

4
τ2
0 a

3/2f (x) (A.3)

which can be integrated giving

a3/2 (x) = A+Bx+
9

4
τ2
0

∫ x

−x1

dy (x− y) f (y) a3/2 (y) (A.4)

where x1 = τ1/τ0. The constants of integration are obtained by matching to the inflationary
solution at τ = 0. We get A = 1 + τ0x1 and B = τ0, then

a3/2 (x) = 1 + τ0 (x1 + x) +
9

4
τ2
0

∫ x

−x1

dy (x− y) f (y) a3/2 (y) ≡ F (x) + τ0xG (x) (A.5)

with

F (x) = 1 + τ0x1 −
9

4
τ2
0

∫ x

−x1

dyyf (y) a3/2 (y) (A.6)

G (x) = 1 +
9

4
τ0

∫ x

−x1

dyf (y) a3/2 (y) (A.7)
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For x ≥ 1 we have f ∼ 0, hence F and G are constants in that x range. We now write K.G.
equation (A.1) as

d2ψκ

dx2
+ τ2

0 Ω2
κ (x)ψκ = 0 (A.8)

with

Ω2
κ (x) =

κ2

a2
+
m2

H2
− 9

4
f (x) (A.9)

We are interested in the behavior of the solutions equivalent to H
(1)
ν (x) (the positive fre-

quency solutions for a spatially flat de Sitter spacetime) in x = −x1. There are two possible
situations. Given that x = 0 is the middle of the transition, we consider: (a) Ω (0) τ0 < 1:
the details of the transition are not important; (b) Ω (0) τ0 > 1: the details of the transition
matter. For modes inside the horizon (κ ≥ 1) we can consider the WKB solution

ϕκ+ (x) =
eiτ0S[x]

√

2Ωκ (x)
(A.10)

with Ω (x) = dS [x] /dx. The derivatives are

dϕκ+

dx
= −

[

iτ0Ωκ (x) +
1

2

Ω′
κ (x)

Ωκ (x)

]

ϕκ+ (A.11)

d2ϕκ+

dx2
= −

[

τ2
0 Ω2

κ (x) − 1

4

(

Ω′
κ (x)

Ωκ (x)

)2

+
1

2

(

Ω′
κ (x)

Ωκ (x)

)′
]

ϕκ+ (A.12)

and then the equation for ψκ reads

d2ψκ

dx2
+

[

τ2
0 Ω2

κ (x)− 1

4

(

Ω′
κ (x)

Ωκ (x)

)2

+
1

2

(

Ω′
κ (x)

Ωκ (x)

)′
]

ψκ =

[

−1

4

(

Ω′
κ (x)

Ωκ (x)

)2

+
1

2

(

Ω′
κ (x)

Ωκ (x)

)′
]

ψκ

(A.13)

The solution can be expressed as a superposition of positive and negative frequency modes as

ψκ (x) = ϕκ+ (x) +
i

τ0
ϕκ+ (x)

∫ x1

−x1

dyϕκ− (y)

[

−1

4

(

Ω′
κ

Ωκ

)2

+
1

2

(

Ω′
κ

Ωκ

)′
]

ψκ (y)

− i

τ0
ϕκ− (x)

∫ x1

−x1

dyϕκ+ (y)

[

−1

4

(

Ω′
κ

Ωκ

)2

+
1

2

(

Ω′
κ

Ωκ

)′
]

ψκ (y) (A.14)

Whereby we read the Bogoliubov coefficients

ακ = 1 +
i

τ0

∫ x1

−x1

dyϕκ− (y)

[

−1

4

(

Ω′
κ

Ωκ

)2

+
1

2

(

Ω′
κ

Ωκ

)′
]

ψκ (y) (A.15)

βκ = − i

τ0

∫ x1

−x1

dyϕκ+ (y)

[

−1

4

(

Ω′
κ

Ωκ

)2

+
1

2

(

Ω′
κ

Ωκ

)′
]

ψκ (y) (A.16)
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which should satisfy |ακ|2−|βκ|2 = 1. To obtain a simpler expression, we consider an iterative
solution. To lowest order, i.e., ψ (y) ≃ ϕ+ (y), we have

α(0)
κ = 1 +

i

τ0

∫ x1

−x1

dyϕκ− (y)ϕκ+ (y)

[

−1

4

(

Ω′
κ

Ωκ

)2

+
1

2

(

Ω′
κ

Ωκ

)′
]

(A.17)

β(0)
κ ≃ − i

τ0

∫ x1

−x1

dyϕ2
κ+ (y)

[

−1

4

(

Ω′
κ

Ωκ

)2

+
1

2

(

Ω′
κ

Ωκ

)′
]

(A.18)

and
ψκ (x) = α(0)

κ ϕκ+ (x) + β(0)
κ ϕκ− (x) (A.19)

Performing another iteration we obtain

α(1)
κ ≃ exp

[

i

τ0

∫ x1

−x1

dyϕκ+ (y)ϕκ− (y)Qκ (y)

](

1 +
1

2

∣

∣

∣
β(0)

κ

∣

∣

∣

2
)

(A.20)

Observe that it is not necessary to perform another iteration for βk. The normalization

condition |ακ|2 − |βκ|2 = 1 is satisfied up to a term
∣

∣

∣
β

(0)
κ

∣

∣

∣

4
/4, indicating that this coefficient

must be
∣

∣

∣
β

(0)
κ

∣

∣

∣

2
≪ 1 in order to render our expressions valid.

Integrating by parts in eq. (A.16) and neglecting surface terms we have

∫ x1

−x1

dyϕ2
κ+ (y)

1

2

(

Ω′
κ

Ωκ

)′

= −
∫ x1

−x1

dy
Ω′

κ

Ωκ
ϕκ+ (y)ϕ′

κ+ (y) (A.21)

= −
∫ x1

−x1

dy
Ω′

κ

Ωκ
ϕ2

κ+ (y)

[

−iτ0Ωκ − 1

2

Ω′
κ

Ωκ

]

Observe that the first term is suppressed by a factor of τ0, so we shall not consider it further.
We are now at the point where details begin to matter. Write

Ω′
κ

Ωκ
=

1

2Ω2
κ

[−2κ2

a2

a′

a
− 9

4
f ′ (x)

]

(A.22)

The κ2 term may be neglected even when κ2 is large. To see this, observe that

κ2

a2
= Ω2

κ −
(m

H

)2
+

9

4
f (x) (A.23)

so
Ω′

κ

Ωκ
= −

(

a′

a

)

− 1

2Ω2
κ

[

2

(

9

4
f (x) −

(m

H

)2
)

a′

a
+

9

4
f ′ (x)

]

(A.24)

Writing

a′

a
=

2

3

(

a3/2
)′

a3/2
=

2

3

τ0G (x)

(F (x) + τ0xG (x))
(A.25)

we see that this function is suppressed by τ0. Therefore in eq. (A.24) the only term that is
not suppressed is the last one. So we finally have

β(0)
κ ∼ − i

τ0

(

9

16

)2 ∫ x1

−x1

dy

[

f ′ (y)

Ω2
κ (y)

]2

ϕ2
κ+ (y) (A.26)
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We see that βκ is essentially the Fourier transform of (f ′)2. Since this function has a
peak whose width is ∼ 1, by Heisenberg’s principle we expect to get a negligible result for
τ0Ωκ ≫ 1, namely for κ ≫ τ−1

0 . Observe however that this scale can be extremely high. To
give concrete results, let us consider f ′ = const = −1/2 and assume that we can make a
linear approximation in the exponent of eq. (A.10), S [x] ∼ S [0] + Ω [0] x. Assuming x1 ≃ 1
and that Ωκ (y) is a slowly varying function of time to keep only the surface terms in the
integral, we obtain eq. (3.16). We see that the number of created particles with large κ is very
sensitive to the details of the transition between inflation and reheating; it would actually
diverge in the limit τ0 7→ 0, which is therefore unphysical.

For small κ an instantaneous transition can be considered, and the coefficients calculated
by directly matching the inflationary and reheating solutions at τ = 0. Assuming again a
WKB form for the modes during reheating and the usual Hankel function for de Sitter [38].
For this transition the full expression for βκ is

βκ = − π1/2

81/2Ω
1/2
κ (0)

{

κH
(1)
ν−1 (κ) +H(1)

ν (κ)

[

2

3

κ2

Ω2
κ (0)

− ν − iΩκ (0)

]}

(A.27)

with ν =
√

9/4 −m2/H2 ≃ 3/2 −m2/3H2. For κ < 1 the Hankel functions can be approxi-
mated as

H(1)
ν (κ) ≃ − i

π
Γ (ν)

(κ

2

)−ν
(A.28)

Using (ν − 1) Γ (ν − 1) = Γ (ν) and the fact that 2κ2/Ω2
κ (0) 3 − ν ∼ 1 we get eq. (3.18)

B Calculation of 〈ρ + p〉 and n

In terms of the scalar field we have

〈ρ+ p〉 ≈ 4
〈

T 00
Φ

〉

+ 〈T a
Φa〉

3
(B.1)

Using eq. (3.3) we obtain

4
〈

T 00
Φ

〉

+ 〈T a
Φa〉 = H4

[

3
〈

Φ̇Φ̇†
〉

+
1

a2

〈

∇̄Φ · ∇̄Φ†
〉

]

(B.2)

Replacing the decompositions (3.10) and using

[

aκ, a
†
̟

]

= (2π)3/2 a3 (τ) δ (κ̄− ¯̟ ) (B.3)

we obtain

3
〈

Φ̇Φ̇†
〉

+
1

a2

〈

∇̄Φ · ∇̄Φ†
〉

=
1

(2π)3/2 a3 (τ)

∫

dκ̄
{

3φ̇I
κ (τ) φ̇I∗

κ (τ)

−9
ȧ (τ)

a (τ)

[

φ̇I
κ (τ)φI∗

κ (τ) + φI
κ (τ) φ̇I∗

κ (τ)
]

(B.4)

+

[

27
ȧ2 (τ)

a2 (τ)
+

κ2

a2 (τ)

]

φI
κ (τ)φI∗

κ (τ)

}
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Using decomposition (3.15) we identify two different contributions to the integrand: one from
pure vacuum

M0 = 3φ̇R
k (τ) φ̇R∗

k (τ) − 9
ȧ (τ)

a (τ)

[

φ̇R
k (τ)φR∗

k (τ) + φR
k (τ) φ̇R∗

k (τ)
]

+27
ȧ2 (τ)

a2 (τ)
φR

k (τ)φR∗
k (τ) +

κ2

a2 (τ)
φR

k (τ)φR∗
k (τ) (B.5)

and one from the created particles,

M1 = 3
[

αkβ
∗
kφ̇

R
k (τ) φ̇R

k (τ) + α∗
kβkφ̇

R∗
k (τ) φ̇R∗

k (τ)
]

− 18
ȧ (τ)

a (τ)

[

αkβ
∗
kφ

R
k (τ) φ̇R

k (τ) + α∗
κβκφ̇

R∗
k (τ)φR∗

k (τ)
]

+

(

27
ȧ2 (τ)

a2 (τ)
+

κ2

a2 (τ)

)

[

αkβ
∗
kφ

R2
k (τ) + α∗

kβkφ
R∗2
k (τ)

]

(B.6)

+ 2 |βk|2
[

3φ̇R∗
k (τ) φ̇R

k (τ) − 9
ȧ (τ)

a (τ)

(

φ̇R
k (τ)φR∗

k (τ) + φ̇R∗
k (τ)φR

k (τ)
)

+

(

27
ȧ2 (τ)

a2 (τ)
+

κ2

a2 (τ)

)

φR∗
k (τ)φR

k (τ)

]

We are interested in M1 and of it, the contribution from the |βk|2 terms is the most important:
as αk oscillates (see eq, [ A.20]), the terms proportional to αk and α∗

k will give negligible
contributions when integrated. Replacing the WKB form for φR

k (τ), eq. (3.14) we obtain

3
〈

Φ̇Φ̇†
〉

+
1

a2

〈

∇̄Φ · ∇̄Φ†
〉

=
1

(2π)3/2 a3 (τ)

∫

dκ̄ |βk|2
{

3

[

Ωk (τ) +
1

4

Ω̇2
k (τ)

Ω3
k (τ)

]

+
9

2

ȧ (τ)

a (τ)

Ω̇k (τ)

Ω2
k (τ)

+

[

27
ȧ2 (τ)

a2 (τ)
+

κ2

a2 (τ)

]

1

Ωk (τ)

}

(B.7)

Replacing

ȧ

a
=

1

a3/2
,

Ω̇κ (τ) = − 1

a7/2

κ2

Ωκ (τ)
,

Ω̇k (τ)

Ω2
k (τ)

= − 1

a7/2

κ2

Ω3
κ (τ)

,

Ω̇2
k (τ)

Ω3
k (τ)

=
1

a7

κ4

Ω5
κ (τ)

(B.8)

we have that

3
〈

Φ̇Φ̇†
〉

+
1

a2

〈

∇̄Φ · ∇̄Φ†
〉

→ 1

(2π)3/2 a3 (τ)

∫

dκ̄ |βk|2
{

3

[

Ωk (τ) +
1

4

κ4

a7 (τ)Ω5
κ (τ)

]

− 9

2

κ2

a5 (τ) Ω3
κ (τ)

+

[

27

a3 (τ)
+

κ2

a2 (τ)

]

1

Ωk (τ)

}

(B.9)
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By simple inspection we can see that the terms that contribute the most are

3
〈

Φ̇Φ̇†
〉

+
1

a2

〈

∇̄Φ · ∇̄Φ†
〉

≃ 1

(2π)3/2 a3 (τ)

∫

dκ̄ |βk|2
[

3Ωk (τ) +
κ2

a2 (τ)

1

Ωk (τ)

]

(B.10)

because they decay more slowly than the others. We must now replace the Bogoliubov
coefficients and perform the integrations. For long wavelengths, i.e., those in the the interval
(0, 1) we use the expression (3.18). Thus in this case we must evaluate

3
〈

Φ̇Φ̇†
〉

+
1

a2

〈

∇̄Φ · ∇̄Φ†
〉

∣

∣

∣

∣

(0)

≃ (ν − 1)2 Γ2 (1/2)

(2π)3/2 πa3 (τ)

∫ 1

0

dκ̄

Ωκ (0)

1

κ2ν

[

3Ωk (τ) +
κ2

a2 (τ)

1

Ωk (τ)

]

(B.11)

Since m/H ≪ 1 and we are considering a period of time in which a (τ) does not differ very
much from unity, we can take a (τ) ≃ 1 in all the roots, and so we have

3
〈

Φ̇Φ̇†
〉

+
1

a2

〈

∇̄Φ · ∇̄Φ†
〉

∣

∣

∣

∣

(0)

≃ 1

2 (2π)1/2 a4 (τ)

×
∫ 1

0
dκ

[

3

κ2ν−2
+

κ4−2ν

(κ2 +m2/H2)

]

(B.12)

And finally the contribution from long wavelengths reads

3
〈

Φ̇Φ̇†
〉

+
1

a2

〈

∇̄Φ · ∇̄Φ†
〉

∣

∣

∣

∣

(0)

≃ 1

(2π)1/2 a4 (τ)

3

4

(

H

m

)2

(B.13)

To evaluate the contribution from the short wavelengths we use eq. (3.17) in eq. (B.10), so
we have to compute

3
〈

Φ̇Φ̇†
〉

+
1

a2

〈

∇̄Φ · ∇̄Φ†
〉

∣

∣

∣

∣

(∞)

≃
(

9

16

)4 1

16

1

τ4
0

2

(2π)1/2 a4 (τ)
(B.14)

×
∫ ∞

1
dκ

1

κ8

[

3
(

κ2 + a2 (τ)m2/H2
)1/2

+
κ2

(κ2 + a2 (τ)m2/H2)1/2

]

As in this case m/H ≪ κ, we can neglect that term and so the contribution from short
wavelengths reads

3
〈

Φ̇Φ̇†
〉

+
1

a2

〈

∇̄Φ · ∇̄Φ†
〉

∣

∣

∣

∣

(∞)

≃
(

9

16

)4 1

24

1

τ2
0

π

(2π)3/2 a4 (τ)
(B.15)

Gathering expressions (B.13) and (B.15), approximating ν−1 ≃ 1/2 and using that Γ (1/2) =
π1/2 we arrive at expression (3.25).

For n, the number density of created particles, we have [38–40]

n =
H3

a3 (τ)

∫ ∞

0
dκ̄ |βκ|2 (B.16)

Using again eqs. (3.18) and (3.17) in the appropriate momentum intervals we obtain eq. (4.2).
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C Calculation of the velocity correlation spectrum

We start by replacing eq. (3.23) into (3.22) and noting that three kernels build the correlation
function: one with the vacuum contributions

N ij
(00)

(

κ,̟, τ, τ ′
)

= ̟iκj ∂

∂τ
GR+

κ

(

τ, τ ′
) ∂

∂τ ′
GR+

̟

(

τ, τ ′
)

+ κi̟j ∂

∂τ
GR+

̟

(

τ, τ ′
) ∂

∂τ ′
GR+

κ

(

τ, τ ′
)

(C.1)

+̟i̟j

[

∂2

∂τ ′∂τ
GR+

κ

(

τ, τ ′
)

]

GR+
̟

(

τ, τ ′
)

+ κiκj

[

∂2

∂τ ′∂τ
GR+

̟

(

τ, τ ′
)

]

GR+
κ

(

τ, τ ′
)

another with mixed contributions from the vacuum and the created particles,

N ij
(01)

(

κ,̟, τ, τ ′
)

= ̟iκj |βκ|2
[

∂

∂τ
GR+

κ

(

τ, τ ′
)

+
∂

∂τ
GR−

κ

(

τ, τ ′
)

]

∂

∂τ ′
GR+

̟

(

τ, τ ′
)

+̟iκj |β̟|2 ∂

∂τ
GR+

κ

(

τ, τ ′
)

[

∂

∂τ ′
GR+

̟

(

τ, τ ′
)

+
∂

∂τ ′
GR−

̟

(

τ, τ ′
)

]

(C.2)

+̟i̟j |βκ|2
[

∂2

∂τ ′∂τ
GR+

κ

(

τ, τ ′
)

+
∂2

∂τ ′∂τ
GR−

κ

(

τ, τ ′
)

]

GR+
̟

(

τ, τ ′
)

+̟i̟j |β̟|2
[

∂2

∂τ ′∂τ
GR+

κ

(

τ, τ ′
)

]

[

GR+
̟

(

τ, τ ′
)

+GR−
̟

(

τ, τ ′
)]

+̟iκjα̟β
∗
̟

∂

∂τ
GR+

κ

(

τ, τ ′
)

g̟ (τ)
∂

∂τ ′
g̟

(

τ ′
)

+̟iκjα∗
̟β̟

∂

∂τ
GR+

κ

(

τ, τ ′
)

g∗̟ (τ)
∂

∂τ ′
g∗̟
(

τ ′
)

+̟iκjακβ
∗
κ

∂

∂τ
gκ (τ) gκ

(

τ ′
) ∂

∂τ ′
GR+

̟

(

τ, τ ′
)

+̟iκjα∗
κβκ

∂

∂τ
g∗κ (τ) g∗κ

(

τ ′
) ∂

∂τ ′
GR+

̟

(

τ, τ ′
)

+̟i̟jακβ
∗
κ

[

∂2

∂τ ′∂τ
gκ (τ) gκ

(

τ ′
)

]

GR+
̟

(

τ, τ ′
)

+̟i̟jα∗
̟β̟

[

∂2

∂τ ′∂τ
GR+

κ

(

τ, τ ′
)

]

g∗̟ (τ) g∗̟
(

τ ′
)

+̟i̟jα∗
κβκ

[

∂2

∂τ ′∂τ
g∗κ (τ) g∗κ

(

τ ′
)

]

GR+
̟

(

τ, τ ′
)

+̟i̟jα̟β
∗
̟

[

∂2

∂τ ′∂τ
GR+

κ

(

τ, τ ′
)

]

g̟ (τ) g̟

(

τ ′
)

+ (̟ ↔ κ) ,
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and a third kernel with contributions from the created particles,

N ij
(11)

(

κ,̟, τ, τ ′
)

= ̟iκj |βκ|2 |β̟|2
(

∂

∂τ
GR+

κ

(

τ, τ ′
)

+
∂

∂τ
GR−

κ

(

τ, τ ′
)

)

×
(

∂

∂τ ′
GR+

̟

(

τ, τ ′
)

+
∂

∂τ ′
GR−

̟

(

τ, τ ′
)

)

+̟i̟jακβ
∗
κ |β̟|2

(

∂2

∂τ ′∂τ
gκ (τ) gκ

(

τ ′
)

)

×
(

GR+
̟

(

τ, τ ′
)

+GR−
̟

(

τ, τ ′
))

+̟iκj

[

ακβ
∗
κα̟β

∗
̟

∂

∂τ
gκ (τ) gκ

(

τ ′
)

g̟ (τ)
∂

∂τ ′
g̟

(

τ ′
)

+ · · ·
]

(C.3)

+̟i̟j

[

α∗
κβκα̟β

∗
̟

(

∂2

∂τ ′∂τ
g∗κ (τ) g∗κ

(

τ ′
)

)

g̟ (τ) g̟

(

τ ′
)

+ · · ·
]

+ (̟ ↔ κ)

where the dots in square brackets indicate more terms with combinations of ακ, β∗κ, α̟,
β∗̟. Of the three kernels, N ij

(11) (κ,̟, τ, τ ′) gives the main contribution, because it has no

vacuum contribution. Observe that as the coefficient ακ is oscillatory (see eq. [ A.20] in ap-
pendix A), the terms with coefficients with ακ and α̟ will give negligible contributions when
integrated. Therefore in what follows we shall analyze only the terms in |βκ|2 |β̟|2. From
direct inspection of eq. (3.22) we see that the only terms that can survive after integrating
are those proportional to ̟i̟j and to κiκj . Thus we have to evaluate

〈

0
∣

∣

∣

{

T
{0i}
Φ (xµ) , T

{0j}
Φ

(

x′ν
)

}∣

∣

∣
0
〉

β
=

H8

32π3a6 (τ)

∫∫

dκ̄d ¯̟ ei(κ̄+ ¯̟ ).(r̄−r̄′) |βκ|2 |β̟|2 (C.4)

×
{

̟i̟j
[

GR+
̟

(

τ, τ ′
)

+GR−
̟

(

τ, τ ′
)]

[

∂2

∂τ ′∂τ
GR+

κ

(

τ, τ ′
)

+
∂2

∂τ ′∂τ
GR−

κ

(

τ, τ ′
)

]

+ κiκj
[

GR+
κ

(

τ, τ ′
)

+GR−
κ

(

τ, τ ′
)]

[

∂2

∂τ ′∂τ
GR+

̟

(

τ, τ ′
)

+
∂2

∂τ ′∂τ
GR−

̟

(

τ, τ ′
)

]}

The modes during reheating are of the WKB form, and thus the GR+
k (τ, τ ′) reads

GR+
k

(

τ, τ ′
)

=
1

2
√

Ωk (τ)Ωk (τ ′)
exp

[

−i
∫ τ

τ ′

Ωk (σ) dσ

]

(C.5)

The velocity spectrum is defined in eq. (3.26), so taking the coincidence limit τ = τ ′ of
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eq. (3.24) and transforming Fourier we obtain

Φij (ς, τ) =
H5

32π3a3 (τ)

1

〈ρ+ p〉2
ςiςj

∫

dκ̄ |βκ|2 |βς−κ|2

×
[

GR+
ς−κ (τ, τ) +GR−

ς−κ (τ, τ)
]

[

∂2

∂τ ′∂τ
GR+

κ (τ, τ) +
∂2

∂τ ′∂τ
GR−

κ (τ, τ)

]

+
m4H4

32π3a6 (τ)

1

〈ρ+ p〉2
δij

3

∫

dκ̄ |βκ|2 |βς−κ|2 κ2 (C.6)

×
{[

GR+
ς−κ (τ, τ) +GR−

ς−κ (τ, τ)
]

[

∂2

∂τ ′∂τ
GR+

κ (τ, τ) +
∂2

∂τ ′∂τ
GR−

κ (τ, τ)

]

+
[

GR+
κ

(

τ, τ ′
)

+GR−
κ

(

τ, τ ′
)]

[

∂2

∂τ ′∂τ
GR+

ς−κ

(

τ, τ ′
)

+
∂2

∂τ ′∂τ
GR−

ς−κ (τ, τ)

]}

where we used the isotropy of the Bogoliubov coefficients to replace

κiκj 7→ 1

3
κ2δij (C.7)

as those terms are the ones that give non null contributions. After replacing the propagators
and their derivatives, the velocity correlation can be written as

Φij (ς, τ) = Φij
(1) (ς, τ) + Φij

(2) (ς, τ) (C.8)

with

Φij
(1) (ς, τ) =

H5

32π3a (τ)

1

〈ρ+ p〉2
ςiςj

∫

dκ̄ |βκ|2 |βς−κ|2 (C.9)

×
[

|κ̄− ς̄|2 + a2 (τ)
(m

H

)2
]−1/2 [

κ2 + a2 (τ)
(m

H

)2
]−1/2

×
{

1

4

κ4

a3 (τ)

[

κ2 + a2 (τ)
(m

H

)2
]−2

+
1

a2 (τ)

[

κ2 + a2 (τ)
(m

H

)2
]

}

and

Φij
(2) (ζ, τ) =

H5

32π3a (τ)

1

〈ρ+ p〉2
δij

3

∫

dκ̄κ2 |βκ|2 |βκ−ς |2 (C.10)

×
[

|κ̄− ς̄|2 + a2 (τ)
(m

H

)2
]−1/2 [

κ2 + a2 (τ)
(m

H

)2
]−1/2

×
{

1

4

κ4

a3 (τ)

[

κ2 + a2 (τ)
(m

H

)2
]−2

+
1

a2 (τ)

[

κ2 + a2 (τ)
(m

H

)2
]

+
1

4

|κ̄− ς̄|4
a3 (τ)

[

|κ̄− ς̄|2 + a2 (τ)
(m

H

)2
]−2

+
1

a2 (τ)

[

|κ̄− ς̄|2 + a2 (τ)
(m

H

)2
]

}

Here we must replace the Bogoliubov coefficients eqs. (3.17) and ( 3.18). We are interested
in short wavelength velocity modes, i.e., those inside the particle horizon for which q ≥ 1.
However, care must be taken when κ̄ approaches ς̄ as in this case the Bogoliubov for long
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wavelengths must be used. After long but straightforward calculations we obtain that the
full expressions for the contribution of long wavelengths to the velocity spectrum is

Φij
(1)(l) (ς, τ) ≃ π

16

(

9

16

)4 1

τ2
0

(

H

m

)2 H5

32π3a4 (τ)

1

〈ρ+ p〉2
ςiςj

ς13
(C.11)

×
[

3

2
a2 (τ) +

1

16a5 (τ)
+

1

8a2 (τ)
+

3

2a (τ)
− 3

2a (τ)

(am

H

)m2/H2
]

Φij
(2)(0) (ς, τ) ≃ 1

16

(

9

16

)4 1

τ2
0

H5

32π2a4 (τ)

1

〈ρ+ p〉2
δij

6ς11
(C.12)

×
[

1 + 3

(

H

m

)2
(

1 −
[

a (τ)m

H

]m2/H2
)]

while for short wavelengths we have

Φij
(1)(s) (ς, τ) ≃ H5

8π2a3 (τ)

1

τ4
0

1

〈ρ+ p〉2
(

9

16

)8 1

(16)2
1

11

19!

9!

[

1

10!10
−

9
∑

n=1

(9 − n)!

(20 − n)!

]

ςiςj

ς11

+
3H5

32π2a4 (τ)

(

H

m

)4 1

τ2
0

1

〈ρ+ p〉2
1

4

(

9

16

)4 1

16

ςiςj

ς11

+
H5

64π2a3 (τ)

220

3

[

1

4
−

9
∑

n=1

(9 − n)!

(12 − n)!

]

(

9

16

)4 1

16

(

H

m

)2 1

τ2
0

1

〈ρ+ p〉2
ςiςj

ς11

≃ 3H5

128π2a4 (τ)

(

9

16

)4 1

16

(

H

m

)4 1

τ2
0

1

〈ρ+ p〉2
ςiςj

ς11
(C.13)

Φij
(2)(s) (ς, τ) ≃ H5

8π2a3 (τ)

1

τ4
0

1

〈ρ+ p〉2
(

9

16

)8 1

(16)2
1

11

17!

7!





1

10

1

10!
−

n−1
∑

p=1

(7 − p)!

(18 − p)!





δij

3ς9

+

(

9

16

)4 1

64

H5

64π2a4 (τ)

(

H

m

)4 1

τ4
0

1

〈ρ+ p〉2
δij

ς9

+
H5

128π2a3 (τ)

(

H

m

)2 1

τ2
0

1

〈ρ+ p〉2
(

9

16

)4 72

16

4

3

[

1

4
−

7
∑

n=1

(7 − n)!

(10 − n)!

]

δij

3ς9

≃
(

9

16

)4 1

16

H5

128π2a4 (τ)

(

H

m

)4 1

τ2
0

1

〈ρ+ p〉2
δij

ς9
(C.14)

As ς > 1 the main contribution comes from term whose inverse power of ς is the
smallest, so we shall keep only them. Observe that they come from the contribution of
short wavelengths, and therefore depends strongly on the details of the transition inflation-
reheating. The two contributions to the velocity spectrum are then

Φij
(1) (ς, τ) ≃

(

9

16

)4 3

16 × 128

H5

π2a4 (τ)

(

H

m

)4 1

τ2
0

1

〈ρ+ p〉2
ςiςj

ς11
(C.15)

Φij
(2) (ς, τ) ≃

(

9

16

)4 1

16 × 128

H5

π2a4 (τ)

(

H

m

)4 1

τ2
0

1

〈ρ+ p〉2
δij

ς9
(C.16)

Replacing eq. (3.25) we obtain eq. (3.27).
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D Calculation of the kinetic helicity

We start from eq. (3.40) and replace decomposition (3.10) of the fields, thus obtaining

ΞΦ
c

(

τ, x̄, x̄′
)

=
4H18

(2π)18 16 〈ρ+ p〉4 a30 (τ)

∫

d ¯̟ dς̄dκ̄dσ̄d ¯̟ ′dς̄ ′dσ̄′dκ̄′

× ǫijkκiςj̟kǫijkκ′iς ′j̟′k

×
{

ei(κ̄+ ¯̟ +ς̄+σ̄)·x̄e−i(κ̄′+ ¯̟ ′+ς̄′+σ̄′)·x̄′

φ̇I∗
σ′ φ̇I∗

ς′ φ
I∗
κ′ φI∗

̟′φ̇I
σφ̇

I
ςφ

I
κφ

I
̟ (D.1)

× [aσbςbka̟ − bσaςbκa̟]
[

a†σ′b
†
ς′b

†
κ′a

†
̟′ − b†σ′a

†
ς′b

†
κ′a

†
̟′

]

+ ei(κ̄
′+ ¯̟ ′+ς̄′+σ̄′)·x̄′e−i(κ̄+ ¯̟ +ς̄+σ̄)·x̄φ̇I∗

σ φ̇
I∗
ς φ

I∗
κ φ

I∗
̟ φ̇

I
σ′ φ̇I

ς′φ
I
κ′φI

̟′

× [aσ′bς′bκ′a̟′ − bσ′aς′bκ′a̟′ ]
[

a†σb
†
ςb

†
κa

†
̟ − b†σa

†
ςb

†
κa

†
̟

]}

Noting that to avoid an odd integrand, we must contract σ′ with σ, we are left with

ΞΦ
c

(

τ, x̄, x̄′
)

=
4H18

(2π)33/2 16 〈ρ+ p〉4 a27 (τ)

∫

dσ̄φ̇I
σ (τ) φ̇I∗

σ

(

τ ′
)

×
∫

d ¯̟ dς̄dκ̄d ¯̟ ′dς̄ ′dκ̄′ǫijkkiςj̟kǫijkκ′iς ′j̟′k

× ei(κ̄+ ¯̟ +ς̄+σ̄)·x̄e−i(κ̄′+ ¯̟ ′+ς̄′+σ̄)·x̄′

× φ̇I∗
ς′
(

τ ′
)

φI∗
κ′

(

τ ′
)

φI∗
̟′

(

τ ′
)

φ̇I
ς (τ)φI

κ (τ)φI
̟ (τ) a̟bκ (D.2)

×
[

bςb
†
ς′ + aςa

†
ς′

]

b†κ′a
†
̟′

+ x̄↔ x̄′

where we used
[

aκ, a
†
̟

]

= (2π)3/2 a3 (τ) δ (κ̄− ¯̟ ). Considering all possible combinations of

the remaining moments, we finally have

ΞΦ
c

(

τ, ξ̄
)

=
4H18

16 (2π)12 〈ρ+ p〉4 a18 (τ)

∫

dσ̄d ¯̟ dς̄dκ̄

× ei(κ̄+ ¯̟ +ς̄+σ̄)·ξ̄
(

ǫijkκiςj̟k
)2 ∣
∣

∣
φ̇I

q (τ)
∣

∣

∣

2 ∣
∣φI

̟ (τ)
∣

∣

2
(D.3)

[

φ̇I
ς (τ) φ̇I∗

ς (τ)φI
κ (τ)φI∗

κ (τ) − φI
κ (τ) φ̇I∗

κ (τ) φ̇I
ς (τ)φI∗

ς (τ)
]

+ ξ̄ ↔ −ξ̄

with ξ̄ = x̄ − x̄′. Replacing φI
k (τ) = αkφ

R
k (τ) + βkφ

R∗
k (τ) we obtain, as in the case of the

velocity correlation Rij , several kernels: one with only the vacuum contribution, another
with mixed contributions from vacuum and from the created particles, and a third one with
the contribution of only the created particles. The expressions are rather long, but they are
straightforwardly obtained. Of the one due to the created particles, the part with |βk|2 gives
the main contribution, because as was the case for Rij, terms with ακα

∗
̟ . . ., etc. oscillate,
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and will give negligible contributions when integrated. Therefore we shall consider

ΞΦ
c

(

τ, ξ̄
)

≃ H18

8 (2π)12 〈ρ+ p〉4 a18 (τ)

∫

dσ̄d ¯̟ dς̄dκ̄ |βσ |2 |β̟|2 |βς |2 |βκ|2

× ei(κ̄+ ¯̟ +ς̄+σ̄)·ξ̄
(

ǫijkκiςj̟k
)2 ∣
∣

∣
φ̇R

σ (τ)
∣

∣

∣

2 ∣
∣φR

̟ (τ)
∣

∣

2
(D.4)

×
{

φ̇R
ς (τ) φ̇R∗

ς (τ)φR
κ (τ)φR∗

κ (τ) − φR
κ (τ) φ̇R∗

κ (τ) φ̇ς (τ)φR∗
ς (τ)

}

+ ξ̄ ↔ −ξ̄

Replacing the WKB form for the modes and keeping only the slowly decaying terms we can
express eq. (D.4) as

ΞΦ
c

(

τ, x̄, x̄′
)

≃ H18

(2π)12 8 〈ρ+ p〉4 a18 (τ)

∫

dσ̄d ¯̟ dς̄dκ̄ |βσ|2 |β̟|2 |βς |2 |βκ|2

× ei(κ̄+ ¯̟ +ς̄+σ̄)·ξ̄
(

ǫijkκiςj̟k
)2 Ωσ (τ)

Ω̟ (τ)

[

Ως (τ)

Ωκ (τ)
− 1

]

(D.5)

+ ξ̄ ↔ − ξ̄

Working in spherical coordinates and performing the angular integrals for each mode we are
left with

ΞΦ
c

(

τ, ξ̄
)

c
≃ − 4H18

(2π)8 〈ρ+ p〉4 a18 (τ)

1

ξ
I1 (ξ)

∂2

∂ξ2

[

1

ξ
I2 (ξ)

]

(D.6)

×
{

∂2

∂ξ2

[

1

ξ
I1 (ξ)

]

∂2

∂ξ2

[

1

ξ
I2 (ξ)

]

−
(

∂2

∂ξ2

[

1

ξ
I3 (ξ)

])2
}

where

I1 (ξ) =

∫

dκκ sin (κξ) |βκ|2 Ωκ (τ) (D.7)

I2 (ξ) =

∫

dκκ sin (κξ) |βκ|2
1

Ωκ (τ)
(D.8)

I3 (ξ) =

∫

dκκ sin (κξ) |βκ|2 (D.9)
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These integrals can be performed straighforwardly using the same approximations as for
Φij, obtaining

1

ξ
I1 (ξ) ≃ 1

4

3H2

2m2
[cos (ξ) − 1] +

(

9

16

)4 1

16

1

τ2
0

×
{

1

7!

[

6! − 4!ξ2 + 2!ξ4 − ξ6
] sin (ξ)

ξ

− 1

7!

[

−5! + 3!ξ2 − ξ4
]

cos (ξ) +
1!

7!
ξ6Ci (ξ)

}

(D.10)

1

ξ
I2 (ξ) ≃ 1

4

(

H

m

)2 [

−1

ξ
sin (ξ) + 1 +

3H2

2m2
[cos (ξ) − 1]

]

− H2

m2

1

ξ2
[cos (ξ) − 1] + 1 − 1

ξ
sin (ξ) +

∫ 1

m/H
dp

cos (pξ)

p

+

(

9

16

)4 1

16

1

τ2
0

{

1

9!

[

8! − 6!ξ2 + 4!ξ4 − 2!ξ6 + ξ8
] 1

ξ
sin (ξ) (D.11)

+
1

9!

[

7! − 5!ξ2 + 3!ξ4 − ξ6
]

cos (ξ) − 1

9!
ξ8Ci (ξ)

}

and

1

ξ
I3 (ξ) ≃ 1

4

{

−H
m

sin (ξ)

ξ
+
H

m
− 1

2

sin (ξ)

ξ
+

1

2

H2

m2

1

ξ
sin
(m

H
ξ
)

− 1

2

H

m
sin
(m

H
ξ
)

+
1

2
ξ

}

(D.12)

+

(

9

16

)4 1

16

1

8!

1

τ2
0

{

[

7! − 5!ξ2 + 3!ξ4 − ξ6
] sin (ξ)

ξ

+
[

6! − 4!ξ2 + 2!ξ4 − ξ6
]

cos (ξ) + ξ7
[π

2
− Si (ξ)

]}
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