We apply divergence-type theory (DTT) dissipative hydrodynamics to study the $2+1$ space-time evolution of the fireball created in Au+Au relativistic heavy-ion collisions at $\sqrt{s_{NN}} = 200$ GeV. DTTs are exact hydrodynamic theories that do not rely on velocity gradient expansions and therefore go beyond second-order theories. We numerically solve the equations of motion of the DTT for Glauber initial conditions and compare the results with those of second-order theory based on conformal invariance (Baiyer-Romatschke-Son-Starinets model) and with data. We find that the charged-hadron minimum-bias elliptic flow reaches its maximum value at lower p_T in the DTT, and that the DTT allows for a value of η/s slightly larger than that of the BRSS. Our results show that the differences between viscous hydrodynamic formalisms are a significant source of uncertainty in the precise extraction of η/s from experiments.

I. INTRODUCTION

The heavy-ion collision experiments performed at BNL’s Relativistic Heavy Ion Collider (RHIC) create a hot and dense medium, the quark-gluon plasma (QGP). One of the most important discoveries at RHIC is the large elliptic flow in the QGP thermalizes on times $\lesssim 2.5$ fm/c and behaves as a fluid with one of the lowest viscosity-to-entropy ratios observed in nature, $\eta/s \lesssim 0.5$ [1–3].

In recent years, relativistic hydrodynamics has become an efficient tool for describing the evolution of the fireball created at RHIC (there is a vast literature on this subject; see, for instance, Refs. [1,4–15]). Ideal hydrodynamics has been partly successful in explaining the observed collective flow at low transverse momentum and in central collisions [16]. Nevertheless, one should notice that when using a realistic equation of state (including a crossover phase transition) and allowing for separate kinetic and chemical freeze-outs, it seems difficult to fit the data with ideal hydrodynamics [1,17–21]. Moreover, if one aims eventually to derive the QGP viscosity from experimental data, one must start from a theoretical framework that allows for such effects.

When one attempts to formulate a relativistic real hydrodynamics one finds that there is simply no equivalent to the nonrelativistic Navier-Stokes equations. A straightforward relativistic generalization of the Navier-Stokes equations yields the so-called first-order theories. These theories are plagued with causality and stability problems [6,15,22]. One is therefore led to consider the so-called second-order theories (SOTs). These theories are presented as an expansion of the viscous tensor in velocity gradients, neglecting all orders higher than the second. They are unreliable in situations where these gradients are strong, and indeed they are known to fail, for example, in the description of strong shocks [23,24]. It is then valuable to develop alternative theories, not limited to weak velocity gradients, to provide at least an estimate of the expected accuracy of the gradient expansion.

With this in mind, in Ref. [25] the present authors developed a hydrodynamical description of a conformal field within the framework of the so-called divergence-type theories (DTTs) developed by Geroch [26] (see also Refs. [27–29]). DTTs do not rely on velocity gradient expansions and, in this sense, they go beyond second-order theories. The purpose of this work is to present numerical results obtained from solving the equations of the DTT in $2+1$ dimensions. We use the equations to simulate Au+Au collisions and compare the results both to experimental data and to a representative SOT. As was done in previous studies by other groups, we limit ourselves to boost-invariant longitudinal expansion in flat space-time.

In past years, there have been numerous theoretical studies of viscous hydrodynamics in $2+1$ dimensions applied to heavy-ion collisions [9,11,20,21,30–33]. Most previous works employ Israel-Stewart formalism or some variation of it in order to simulate the evolution of the fireball. Very recently, Luzum and Romatschke [20,21] performed detailed simulations of Au+Au collisions based on the conformal hydrodynamical equations. The consistent picture that emerges from these diverse studies is that it is possible to match viscous hydrodynamics results to experimental data, provided $\eta/s \lesssim (5–6) \times 1/(4\pi)$ [3,5,20,21]. See also [34,35].

In this paper we shall choose as the prototype SOT the one developed by Baiyer et al. [36] (see also Bhattacharyya et al. [37] and Natsuume et al. [38]). For simplicity we will refer to this hydrodynamic theory as BRSS (Baier-Romatschke-Son-Starinets). The BRSS theory is based on conformal invariance and extends the well-known Israel-Stewart (IS) formalism [22] in that it contains all second-order terms that can appear in the stress-energy tensor of a conformal fluid [6,39]. The reason to study conformal field hydrodynamics is that it is relevant to the QGP since, as shown by lattice calculations [40], QCD is approximately conformal at high temperatures. In addition, a wealth of information of the strongly interacting plasma
such as transport coefficients (inaccessible to kinetic theory) can be obtained from the anti–de Sitter conformal field theory correspondence [10,36–38].

The main results we arrive at are (i) the momentum anisotropy is smaller in the DTT than in the BRSS theory, (ii) the charged-hadron minimum-bias elliptic flow reaches its maximum value at lower p_T in the DTT, and (iii) the matching of DTT results to data allows a viscosity-to-entropy ratio slightly larger than that of the BRSS theory.

We should note here that in any hydrodynamic simulation there are numerous sources of uncertainty, such as those coming from the initial conditions, from the freeze-out procedure, and from hadron dynamics (just to mention a few), which unfortunately prevent a precise determination of η/s. Ours is not the exception, and here we merely intend to show that, until these uncertainties are under control, care should be taken when attempting to extract η/s from hydrodynamic simulations. In this sense, the values for η/s presented in this work should be regarded as rough estimates.

This paper is organized as follows. In Sec. II we present the $2 + 1$ hydrodynamic equations of the BRSS and of the DTT, and describe the initial conditions, the equation of state (EOS), and the freeze-out prescription employed in the simulations. In Sec. III we present and discuss the results obtained, and in Sec. IV we present our conclusions. In Appendix A we evaluate the sensitivity of the results on the values of second-order transport coefficients, and on the spatial mesh used in the simulations. In Appendix B we give a brief overview of divergence-type theories and derive Eq. (8).

II. THEORETICAL SETUP

A. Hydrodynamic equations

In this section we present the hydrodynamic equations of the BRSS theory and of the DTT for boost-invariant flow in $2 + 1$ dimensions. We employ Milne coordinates defined by proper time $\tau = \sqrt{t^2 - z^2}$ and rapidity $\psi = \arctanh(z/t)$, and, as mentioned in the Introduction, work in flat space-time. In these coordinates the metric tensor reads $g_{\mu\nu} = (1, -1, -1, -1)$. It is convenient to use Cartesian coordinates (x, y) in the transverse plane (instead of polar coordinates) since in this way the only nonvanishing Christoffel symbols are $\Gamma^x_{\psi\psi} = \tau$ and $\Gamma^\psi_{\psi\psi} = 1/\tau$. The fluid velocity is $\vec{u} = (u^x, u^y, u^0, 0)$ and is normalized as $u_\mu u^\mu = 1$.

The stress-energy tensor for dissipative relativistic hydrodynamics is

$$T^{\mu\nu} = \rho u^\mu u^\nu - p g^{\mu\nu} + \Pi^{\mu\nu} \text{ with } \Delta^{\mu\nu} = g^{\mu\nu} - u^\mu u^\nu,$$

(1)

where ρ and p are the energy density and the pressure in the local rest frame, and $\Pi^{\mu\nu}$ is the viscous shear tensor that is transverse ($u_\mu \Pi^{\mu\nu} = 0$), traceless, and symmetric. The tensor $\Delta^{\mu\nu}$ is the spatial projector orthogonal to u^μ. For a conformal fluid we have $T^\mu_\mu = 0$, so $\rho = 3p$ and the bulk viscosity vanishes.

In what follows, Latin indices stand for transverse coordinates (x, y), D^{μ} is the geometric covariant derivative, $D = u_\mu D^{\mu}$ and $\nabla^{\mu} = \Delta^{\mu\nu} D_\nu$, are the comoving time and space derivatives, respectively, and (\cdots) denotes the spatial, symmetric, and traceless projection of a tensor:

$$A^{\mu\nu} = \left(\frac{1}{2} \Delta^{\rho\sigma} \Delta^{\gamma\nu} + \frac{1}{2} \Delta^{\nu\sigma} \Delta^{\mu\gamma} - \frac{1}{3} \Delta^{\mu\nu} \Delta^{\gamma\sigma} \right) A_{\gamma\sigma}. \tag{2}$$

The hydrodynamic equations are the conservation equations for the stress-energy tensor together with the evolution equation for the shear tensor $\Pi^{\mu\nu}$. The former reads

$$\rho u^\mu + \Pi^{\mu\nu} u_\nu = \frac{4}{3\tau} u^\mu \nabla_{\nu\nu} \Pi^{\alpha\beta} - \frac{\lambda_1}{2\tau \eta^2 u^\mu} \nabla^\alpha \nabla^\beta \Pi_{\alpha\beta} + \Gamma^\alpha_{\beta\gamma} \Pi^{\beta\gamma} + \Gamma_{\beta\gamma}^{\alpha} \Pi^{\beta\gamma}.$$ \tag{3}

In the BRSS theory, the evolution of the shear tensor is given by [36]

$$\partial_\tau \Pi^{\alpha\beta} = -\frac{4}{3\tau} \Pi^{\alpha\beta} \nabla_{\nu\nu} u^\mu - \frac{1}{\tau} \nabla^{\mu}_{\nu\nu} \Pi^{\alpha\beta} + \frac{\eta_\tau}{\tau} \sigma^{\alpha\beta},$$

$$-\frac{\lambda_1}{2\tau \eta^2 u^\mu} \nabla^\alpha \nabla^\beta \Pi_{\alpha\beta} + \frac{u^\mu}{u^\tau} \frac{2}{\tau^2 \Pi^{\alpha\beta}} \Pi_{\alpha\beta} u^\mu - \frac{u^\mu}{u^\tau} \nabla^\alpha \Pi^{\alpha\beta} - \frac{u^\mu}{u^\tau} \nabla^\alpha \Pi^{\alpha\beta} + \frac{\lambda_1}{2\tau \eta^2 u^\mu} \nabla^\alpha \nabla^\beta \Pi_{\alpha\beta} + \Gamma^\alpha_{\beta\gamma} \Pi^{\beta\gamma} + \Gamma_{\beta\gamma}^{\alpha} \Pi^{\beta\gamma}.$$ \tag{4}

where η is the shear viscosity, (τ_π, λ_1) are second-order transport coefficients,

$$\sigma^{\mu\nu} = \nabla^{\mu} u^{\nu}$$ \tag{5}

is the first-order shear tensor, and

$$\nabla^\mu u^\mu = \partial_\tau u^\mu + \partial_\nu u^\mu + \frac{u^\mu}{\tau},$$

$$\nabla_\nu u_{\nu} = \Delta^{\pi\pi} \partial_\pi u^\pi + \Delta^{\pi\tau} \partial_\tau u^\pi - \frac{1}{3} \Delta^{\pi\pi} \nabla_{\nu\nu} u^\mu,$$

$$\nabla_\nu u_{\nu} = \frac{1}{2} \Delta^{\pi\pi} \partial_\pi u^\pi + \frac{1}{2} \Delta^{\pi\tau} \partial_\tau u^\pi + \frac{1}{2} \Delta^{\pi\tau} \partial_\tau u^\pi + \frac{1}{3} \Delta^{\pi\pi} \nabla_{\nu\nu} u^\mu,$$

$$\nabla_\nu u_{\nu} = \tau^4 \Delta^{\psi\psi} \nabla_{\nu\nu} u^\mu + \frac{1}{3} \tau^4 \Delta^{\psi\psi} \nabla_{\nu\nu} u^\mu.$$ \tag{6}

We note that in Eq. (5) we have neglected terms involving the fluid vorticity, which would be multiplied by additional second-order transport coefficients λ_2 and λ_3 [36,37]. The reason is that, for two-dimensional flow, it can be shown (see Refs. [20,21] and references therein) that if the vorticity is zero initially (as it is here), it will remain negligible throughout the evolution up to terms that are third order in velocity gradients (therefore, beyond the scope of second-order theory).

054905-2
As already mentioned in the Introduction, the IS formalism is contained in the BRSS equations, as can be seen by setting \(\lambda_1 = 0 \).

In a DTT, the description of nonequilibrium hydrodynamic states requires the introduction of a new tensor \(\xi^{\alpha\gamma} \), which is symmetric and traceless and vanishes in equilibrium [26]. For a conformal fluid, \(\xi^{\alpha\gamma} \) must be transverse as well. The DTT provides an equation of motion for \(\xi^{\alpha\gamma} \) (see Ref. [25] for details). For a conformal fluid in 2 + 1 dimensions the evolution is given by

\[
\partial_t \xi^{\alpha\gamma} = -\frac{2}{3\tau_\mu} \xi^{\alpha\mu} \nabla_\mu \xi^{\gamma\mu} - \frac{1}{\tau_\mu u^\mu} \xi^{\alpha\mu} + \frac{1}{\tau_\mu} \sigma^{\alpha\mu} - \frac{\lambda_1}{3\tau_\mu \eta u^\mu} \xi^{\gamma(\mu} u^{\nu)} - \frac{u^i \xi^{\gamma\mu} + u^\mu \xi_{\mu}^{\gamma}}{u^\gamma} D u^\mu
\]

The shear tensor is calculated from the nonequilibrium tensor \(\xi^{\alpha\gamma} \) as follows (see Appendix B):

\[
\Pi^{\alpha\gamma} = \eta \xi^{\alpha\gamma} - \frac{\lambda_1}{3\eta} \tau T \left(\xi^{\alpha\mu} \xi^{\gamma\mu} - \frac{1}{3} \Delta^{\alpha\gamma} \xi^{\nu\nu} \right). \tag{9}
\]

The transport coefficients of the BRSS theory and the DTT are the same because the DTT goes over to BRSS at second order in velocity gradients. Note, however, that we are ignoring (possible) higher-order corrections to the transport coefficients of the DTT.

As independent variables we choose \((\rho, u^\tau, u^i, \Pi^{xx}, \Pi^{xy}, \Pi^{yy})\) for the BRSS and \((\rho, u^\tau, u^i, \xi^{xx}, \xi^{xy}, \xi^{yy})\) for the DTT. The \(\tau \) component of the velocity follows from normalization, \(u^\tau = \sqrt{1 + u_i^2 + u_z^2} \), while the other nontrivial components of \(\Pi^{\alpha\gamma} \) (and of \(\xi^{\alpha\gamma} \)) follow from the transversality and tracelessness conditions.

In order to solve the hydrodynamic equations, we employ the method described in Ref. [41] (see also Ref. [20]). The set of six coupled differential equations is cast into a linear system for the six independent variables. This linear system is solved using a finite-difference method described in Ref. [41] (see also Ref. [20]). The initial conditions for the six independent variables. For the initial transverse velocity and shear tensor we use \(u^x = u^z = 0 \), which implies vanishing initial vorticity, and \((\Pi^{xx}, \Pi^{xy}, \Pi^{yy}) = 0 \) or \((\xi^{xx}, \xi^{xy}, \xi^{yy}) = 0 \). It has been shown in several works [20,21,30,31] that the evolution of the shear tensor \(\Pi^{\alpha\gamma} \) is quite insensitive to the initialization values, the difference being appreciable only at very early times. We have verified that the elliptic flow shows very little sensitivity to the initialization of the shear tensor as well. In what follows, we take the initialization time to be \(\tau_0 = 1 \text{fm}/c \).

The initial energy-density profile is calculated using a simple Glauber model [42], in which for impact parameter \(b \) we have

\[
\rho(x, y, b) = C \times \sigma T_A \left(x + \frac{b}{2}, y \right) T_A \left(x - \frac{b}{2}, y \right), \tag{11}
\]

where \(\sigma = 40 \text{mb} \), \(C \) is a constant chosen such that \(\rho(0, 0, 0) \) corresponds to a given initialization temperature \(T_0 \) (via the equation of state), and \(T_A \) is the nuclear thickness function given by

\[
T_A(x, y) = \int_{-\infty}^{\infty} \delta_A(x, y, z) \, dz. \tag{12}
\]

The function \(\delta_A \) is the Woods-Saxon density distribution for gold nuclei,

\[
\delta_A(x, y, z) = \frac{\delta_0}{1 + \exp\left(\frac{|x| - R_0}{\chi}\right)} \tag{13}
\]

with \(x = (x, y, z), R_0 = 6.4 \text{fm}, \) and \(\chi = 0.54 \text{fm} \). The parameter \(\delta_0 \) is chosen such that \(\int d^3x \delta_A(x) = 197 \) as appropriate for Au nuclei. We note that in all calculations we use a 7.5 fm \(\times 7.5 \text{fm} \) transverse plane (we have used a 13 fm \(\times 13 \text{fm} \) transverse plane and found that there is no significant change in our results).

Unless otherwise stated, we use values for the second-order transport coefficients corresponding to a strongly coupled \(N' = 4 \) super-Yang Mills (SYM) plasma [10,36–38]:

\[
\tau_\sigma = 2(2 - \ln 2) \frac{\eta}{4T} \text{ and } \lambda_1 = \frac{\eta}{2\pi T} \tag{14}
\]

where \(s \) is the entropy density. We will show in Appendix A that our results depend only weakly on the precise value of second-order transport coefficients.

C. Equation of state

The set of hydrodynamic equations must be closed with an equation of state (EOS). Since we are interested in computing elliptic flow of the produced particles we must use an EOS including hadronization. We employ the EOS by Laine and Schröder [43] that connects a high-order weak-coupling perturbative QCD calculation at high temperatures to a hadron resonance gas at low temperatures, via an analytic crossover (as suggested by lattice QCD calculations [18,44]). We notice that this EOS is the same as that used in Ref. [20], so that the comparisons we make are meaningful (see also Ref. [18]).
D. Freeze-out

In order to compute the elliptic flow of produced particles, the freeze-out process must be simulated. To do so, we use the corresponding modules of the UVH2+1 code, which is described in detail in Refs. [20,21]. For completeness, we give here a brief overview of the Cooper-Frye freeze-out prescription [45] implemented in UVH2+1. For the isothermal freeze-out we use here, the conversion from hydrodynamic to particle degrees of freedom takes place in a three-dimensional hypersurface. The spectrum for a single on-shell particle with momentum $p^\mu = (E, \vec{p})$ and degeneracy d is

$$E \frac{dN}{d^3p} = \frac{d}{(2\pi)^3} \int p_\mu d\Sigma f(x^\mu, p^\mu),$$

(15)

where $d\Sigma$ is the normal vector on the hypersurface, and f is the nonequilibrium distribution function, customarily given by Grad’s ansatz (see [15,20,21,39,46] for details)

$$f(x^\mu, p^\mu) = f_0(x^\mu, p^\mu) + \delta f(x^\mu, p^\mu) = f_0(x^\mu, p^\mu) + f_0(x^\mu, p^\mu)[1 + \frac{p_\mu p_\nu \Pi_{\mu\nu}}{2T^2(p + \rho)}] \approx \exp \left(\frac{-p_\mu p_\nu \Pi_{\mu\nu}}{T} + \frac{p_\mu p_\nu \Pi_{\mu\nu}}{2T^2(p + \rho)}\right).$$

(16)

The approximation in the second line holds when $\rho \gg T$, and it is used in our simulations. It has been shown in Refs. [20,21] that the systematic error of this approximation is very small at low transverse momentum $p_T \lesssim 2.5$ GeV, so we do not expect our results to have a significant error coming from this approximation.

The UVH2+1 freeze-out module calculates the spectra for particle resonances with masses up to 2 GeV and then determines the spectra of stable particles including feed-down contributions [47]. For this last step it uses the AZHYDRO package [48]. In this paper we will focus on the minimum-bias elliptic flow coefficient v_2 at central rapidity, which is given by

$$v_2(p_T) = \frac{\int d\phi v_0(p_T, b)v_2(p_T, b)}{\int d\phi v_0(p_T, b)},$$

(17)

where the coefficients v_0 and v_2 are related to the particle spectra (including feed-down contributions) by

$$E \frac{dN}{d^3p} = v_0(p_T, b)[1 + 2v_2(p_T, b)\cos(2\phi)],$$

(18)

where $\phi = \arctan(p_y/p_x)$ and $p_T = (p_x^2 + p_y^2)^{1/2}$. We note that kinetic and chemical freeze-out occur at the same temperature, which represents a simplification of the real process (see, for instance, Ref. [49] and references therein).

We may obtain an internal consistency check of the hydrodynamical approximation by computing elliptic flow (18) with the left-hand side given by Eq. (15) with the distribution function (16), or else with only the equilibrium distribution function. The difference between these two results is the so-called nonequilibrium contribution to elliptic flow δv_2.

It has been shown by Song and Heinz [31], by Chaudhuri [11,50], and by Dusling and Teaney [30] that, beyond $p_T \sim 2$–3 GeV, the nonequilibrium correction to the momentum distribution function becomes comparable to the equilibrium contribution, thus rendering Grad’s ansatz unreliable. A way to estimate the value of p_T at which this happens is to compare δv_2 to the total v_2. We note that this way of determining when Grad’s ansatz becomes unreliable may miss corrections to the particle distribution function that are independent of azimuthal angle. However, it still provides an estimate that gives an idea of how large are the nonequilibrium corrections to the distribution function.

In Fig. 1 we show $\delta v_2/v_2$ as a function of transverse momentum, calculated with the BRSS theory and the DTT with $\eta/s = 0.08$ and $b = 7$ fm. In this calculation, we set $T_i = 333$ MeV and $T_f = 140$ MeV in both models. It is seen that, both in the BRSS theory and in the DTT, the nonequilibrium contribution to v_2 is significant even at low p_T. In the BRSS model δv_2 is always smaller than in the DTT, indicating that, in the latter, dissipative corrections to the nonequilibrium distribution function are larger. The difference between $\delta v_2/v_2$ calculated with the DTT and the BRSS grows with p_T, in particular, for $p_T > 3$ GeV, where $\delta v_2/v_2$ in the DTT starts growing faster. We can estimate the value of p_T at which Grad’s ansatz becomes unreliable as that at which $-\delta v_2/v_2 \sim 0.5$, which is indicated by a horizontal line in the figure. In the DTT the value of p_T at which Grad’s ansatz becomes unreliable turns out to be $p_T \sim 3.3$ GeV instead of $p_T = 4$ GeV as inferred in the BRSS model.

III. RESULTS

In this section we go over to our main goal in this paper, namely, to compare the results obtained with the DTT to RHIC data and to the BRSS results. We start by comparing the entropy production and the spatial and momentum anisotropies in both hydrodynamic models, and then proceed to compare particle multiplicity, $\langle p_T \rangle$, and elliptic flow to data in order to constrain the values of η/s.

![FIG. 1. (Color online) Nonequilibrium contribution to the total elliptic flow $-\delta v_2/v_2$ calculated with the BRSS and DTT with $\eta/s = 0.08$ and $b = 7$ fm. The initial and freeze-out temperatures are $T_i = 333$ MeV and $T_f = 140$ MeV in both models. The horizontal line indicates the (estimated) breakdown of Grad’s ansatz.](image-url)
with η/s as a function of h, in a collision with impact parameter $b = 7$ fm.

Equation (19) gives the evolution of σ in the DTT. It is seen that the entropy production is significantly larger in the DTT than in the BRSS. However, at very early times $\tau - \tau_0 < 1 \text{ fm/c}$ the entropy production is the same in both models.

We now compare the spatial (ϵ_x) and momentum (ϵ_p) anisotropies, defined as

$$
\epsilon_x = \frac{\langle y^2 - x^2 \rangle}{\langle y^2 + x^2 \rangle}, \quad \text{and} \quad \epsilon_p = \frac{\langle T^{xx} - T^{yy} \rangle}{\langle T^{xx} + T^{yy} \rangle},
$$

where $\langle \cdots \rangle$ denotes an average procedure over the transverse plane with the energy density ρ as a weighting factor. In Fig. 3 we show ϵ_p calculated with the same value of $\eta/s = 0.08$, $T_i = 333$ MeV, and $T_f = 140$ MeV for the BRSS and the DTT. This allows us to determine the differences between both hydrodynamic formalisms. It is seen that ϵ_p is slightly smaller in the DTT, indicating that the DTT leads to larger shear stress and thus to larger dissipation. This is consistent with the fact that, as already discussed, more entropy is produced in the DTT.

We now allow the values of η/s to vary. In Fig. 4 we show the evolution of ϵ_x and ϵ_p for the BRSS and the DTT with $b = 7$ fm, $T_i = 333$ MeV, $T_f = 140$ MeV, and several values of η/s. The values of η/s correspond to those that will be suitable for matching kaon multiplicity and $\langle p_T \rangle$ to data, as will be shown later.
Appendix A we will show that the results for elliptic flow are only weakly dependent on the values of second-order transport coefficients \((\tau_\pi, \lambda_1)\). For this reason, in the remainder of this section we will use coefficients appropriate for a SYM plasma as given in Eq. (14).

We start by presenting the results for total Kaon multiplicity and \(\langle p_T \rangle\) obtained in both models with \(\eta/s = 0.08\), \(T_\pi = 333\) MeV, and \(T_f = 140\) MeV, compared to PHENIX data [51]. As in the case of spatial and momentum anisotropies, this allows us to evaluate the differences in both hydrodynamic formalisms for the same values of \(\eta/s\), \(T_\pi\), and \(T_f\). We also show the results for the DTT with \(\eta/s = 0.12\) and \(T_f = 328\) MeV (which, as shown later, is the value of \(T_f\) that gives, for this value of \(\eta/s\) in the DTT, the best matching to data).

As in the case of spatial and momentum anisotropies, this allows us to evaluate the differences in both hydrodynamic formalisms for the same values of \(\eta/s\), \(T_\pi\), and \(T_f\). We also show the results for the DTT with \(\eta/s = 0.12\) and \(T_f = 328\) MeV (which, as shown later, is the value of \(T_f\) that gives, for this value of \(\eta/s\) in the DTT, the best matching to data).

We now proceed to find \(T_f\) by matching total kaon multiplicity and \(\langle p_T \rangle\) to data. We note that we fix \(T_f = 140\) MeV in both models. Figures 7 and 8 show the total multiplicity and \(\langle p_T \rangle\) calculated in the BRSS model and the DTT. By performing this combined matching to multiplicity and \(\langle p_T \rangle\), we confirm the fact that the DTT leads to stronger dissipation and consequently larger entropy production.

Figure 5 shows the total multiplicity. The two sets of data points correspond to \(K^+\) and \(K^-\), which cannot be distinguished in our model since the EOS corresponds to zero net-baryon density. It is seen that, in order to achieve the same multiplicity as in the BRSS model, we must take \(\eta/s = 0.12\) in the DTT. Figure 6 shows \(\langle p_T \rangle\) obtained in both models. It is seen that \(\langle p_T \rangle\) is larger in the DTT than in the BRSS, indicating that the DTT leads to larger transverse flow. Larger shear stress leads to larger transverse flow, so the results obtained for \(\langle p_T \rangle\) confirm the fact that the DTT leads to stronger dissipation and consequently larger entropy production.

Figure 7 shows the total multiplicity. The two sets of data points correspond to \(K^+\) and \(K^-\), which cannot be distinguished in our model since the EOS corresponds to zero net-baryon density. It is seen that, in order to achieve the same multiplicity as in the BRSS model, we must take \(\eta/s = 0.12\) in the DTT. Figure 6 shows \(\langle p_T \rangle\) obtained in both models. It is seen that \(\langle p_T \rangle\) is larger in the DTT than in the BRSS, indicating that the DTT leads to larger transverse flow. Larger shear stress leads to larger transverse flow, so the results obtained for \(\langle p_T \rangle\) confirm the fact that the DTT leads to stronger dissipation and consequently larger entropy production.

Figure 8 shows the total multiplicity. The two sets of data points correspond to \(K^+\) and \(K^-\), which cannot be distinguished in our model since the EOS corresponds to zero net-baryon density. It is seen that, in order to achieve the same multiplicity as in the BRSS model, we must take \(\eta/s = 0.12\) in the DTT. Figure 6 shows \(\langle p_T \rangle\) obtained in both models. It is seen that \(\langle p_T \rangle\) is larger in the DTT than in the BRSS, indicating that the DTT leads to larger transverse flow. Larger shear stress leads to larger transverse flow, so the results obtained for \(\langle p_T \rangle\) confirm the fact that the DTT leads to stronger dissipation and consequently larger entropy production.
and \(\langle p_T \rangle \) data, we find for the DTT that \(T_i = 328 \text{ MeV} \) (323 MeV) at \(\eta/s = 0.12 \) (0.18) gives a reasonable fit to data, comparable to that obtained by the BRSS with \(T_i = 333 \text{ MeV} \) (327 MeV) at \(\eta/s = 0.08 \) (0.16) [20].

With the values for \(T_i \) and \(T_f \) obtained before, we now calculate the charged-hadron minimum-bias elliptic flow with the DTT and the BRSS and compare the results to data. In Figure 9 we show the elliptic flow calculated in the DTT and the BRSS with \(\eta/s = 0.08 \) and \(T_i = 333 \text{ MeV} \), and in the DTT with \(\eta/s = 0.12 \) and \(T_i = 328 \text{ MeV} \), compared to experimental data from the STAR Collaboration [52]. We note that in order to estimate the removal of nonflow contributions to the elliptic flow, we reduce the STAR data by 20% (see Refs. [20,52]). It is seen that using the DTT with \(\eta/s = 0.08 \) provides a poor fit to data, specially at intermediate and large transverse momentum.

Figure 10 shows the charged-hadron minimum-bias elliptic flow of the BRSS model and the DTT for different values of \(\eta/s \) and \(\langle p_T \rangle \), as sources of uncertainty in the determination of \(\eta/s \), we can estimate this theoretical uncertainty as \(\pm0.07 \). Taking into account the uncertainty in the removal of nonflow contributions to the measured charged-hadron \(v_2 \) (minimum bias) by STAR [52], we can, following Ref. [20], estimate the experimental uncertainty as \(\pm0.1 \). Therefore, we conclude that the DTT model favors \(\eta/s \leq 0.35 \). We emphasize that our estimate for \(\eta/s \) does not contemplate the uncertainty coming from several other factors such as bulk viscosity [53,55,56], different temperatures for kinetic and chemical freeze-out [49], precise knowledge of the EOS and of the initial conditions [18,20,21,31], which are expected to have a significant influence on the value of \(\eta/s \).

For this reason, our estimate for \(\eta/s \) should be regarded as a conservative one. One should note, however, that both the DTT and the BRSS are consistent with experimental data, although none of the models can reproduce the saturation of the measured minimum bias elliptic flow. Recent studies [54–57] suggest that the origin of this failure of viscous hydrodynamics to reproduce saturation of the elliptic flow is Grad’s quadratic ansatz for the nonequilibrium correction to the thermal distribution function given by Eq. (16).

Finally, we note that this result for \(\eta/s \) is in good agreement with the upper bound found in several other works [3,20,21] by similar matching of viscous hydrodynamics to data, and supports the notion that the matter created at RHIC exhibits almost perfect fluidity.

IV. SUMMARY AND CONCLUSIONS

We have studied the space-time evolution of a conformal plasma in 2 + 1 dimensions using second-order as well as divergence-type dissipative hydrodynamics. In the simulations, we employed a simple Glauber model to calculate the initial energy-density distribution, a model equation of state with an analytic crossover, and the Cooper-Frye prescription...
for isothermal freeze-out (the latter implemented in the code UVH2+1 [20,32]).

We have made a comparison of the calculated kaon total multiplicity and $⟨p_T⟩$ with experimental data by the PHENIX Collaboration [51], as well as of the elliptic flow with experimental data by the STAR Collaboration [52]. We have found that the difference between the BRSS and the DTT elliptic flows starts to become significant when $p_T > 2$ GeV; the elliptic flow calculated with the DTT reaches its maximum at lower values of p_T. Including an estimate for the uncertainty in the determination of $η/s$ from data, we find that the DTT can be matched to RHIC data provided $η/s \lesssim 0.35$, in good agreement with previous studies based on Israel-Stewart or BRSS equations. The results we obtain also show that the differences between hydrodynamic formalisms are a significant source of uncertainty in the precise extraction of $η/s$ from data.

We note that neither the DTT nor the BRSS model is able to reproduce the experimental saturation of elliptic flow at $p_T \gtrsim 2.5$ GeV, possibly pointing to the incorrectness of Grad’s ansatz for the nonequilibrium distribution function [Eq. (16)]. A related aspect that surely deserves further investigation is the inclusion of bulk viscosity in the hadronic stage of the fireball’s evolution and during the deconfinement crossover. In this respect, it should be noted that recent work [55] has raised concern about the validity of Grad’s ansatz for a reliable computation of freeze-out when bulk viscosity is present (see also Ref. [56] for a different treatment of bulk viscosity). It was found in Ref. [55] that the nonequilibrium corrections due to bulk viscosity to the distribution function are considerably larger than those coming from shear viscosity, rendering the application of Grad’s moment method doubtful when bulk viscosity is taken into account. Moreover, Luzum and Ollitrault [54] have found that even for a conformal plasma Grad’s ansatz is disfavored by data on $v_2/⟨v_2⟩^2$, while Dusling, Moore, and Teaney [57] have calculated the momentum dependence of the nonequilibrium contribution to the distribution function in a weak coupling setting and found it proportional to $p_T^{3/2}$.

It would therefore be interesting to study this point within the framework of DTTs. In order to further investigate this issue, the relation between the DTT and microscopic theory must be precisely determined.

ACKNOWLEDGMENTS

We are grateful to Paul Romatschke, Tomoi Koide, and Akihiko Monnai for useful comments and interesting discussions. We thank Roy Lacey for bringing Ref. [2] to our attention, and A. Poskanzer for providing data from the STAR Collaboration. This work has been supported in part by ANPCyT, CONICET, and UBA (Argentina).

APPENDIX A: DEPENDENCE ON TRANSPORT COEFFICIENTS AND GRID

In this appendix we will evaluate the dependence of the results obtained with the DTT on the spatial mesh and on the values for second-order transport coefficients. The parameters used for this evaluation are $η/s = 0.08$, $τ_0 = 1$ fm/c, $T_i = 333$ MeV, and $T_f = 140$ MeV in both cases.

In Fig. 11 we show the evolution of spatial anisotropy $ε_x$ for a collision with $b = 7$ fm and a time step $∆τ = 0.002$ fm/c for different values of the space grid $∆x = 0.1$, 0.06, and 0.04 fm. It is seen that the dependence of $ε_x$ on $∆x$ is very small and only significant at late times. There is practically no difference between the results obtained with $∆x = 0.06$ fm and 0.04 fm, and, for this reason, we employ $∆x = 0.06$ fm in all the simulations shown in this work. We have also checked that diminishing the time step did not change the results appreciably, and therefore use $∆τ = 0.002$ fm/c throughout.

A convenient quantity to measure the influence of second-order coefficients on final hadron observables is the elliptic flow coefficient v_2 [see Eq. (18)]. In Fig. 12 we show the...
charged-hadron elliptic flow calculated in the DTT with \(\eta/s = 0.08 \) and \(b = 7 \) fm for two sets of second-order coefficients, namely, those of a SYM plasma given in Eq. (14) and those corresponding to weakly coupled Israel-Stewart formalism (\(\tau_e = 6\eta/sT \) and \(\lambda_1 = 0 \)). It is seen that the difference between \(v_2 \) calculated with both sets of coefficients is negligible for \(p_T < 1.5 \) GeV and small for higher \(p_T \). It is interesting to note that, although both curves are very similar, the elliptic flow calculated for the SYM plasma reaches its maximum at a lower value of \(p_T \). We conclude that the results depend only weakly on the precise values of \(\tau_e \) and \(\lambda_1 \), at least for low values of \(\eta/s \). This is in agreement with the findings of Ref. [20].

APPENDIX B: DIVERGENCE-TYPE THEORIES

In this appendix we give a brief summary of DTTs. Detailed discussions can be found in Refs. [26,28,29].

According to Geroch and Lindblom [26], the hydrodynamical description of a nonequilibrium state requires, besides the particle current \(\rho \) and the stress-energy tensor \(\tau_{\mu\nu} \), a new third-order tensor \(A_{\mu\nu\rho} \) obeying an equation of motion of divergence type. The dynamical equations are the conservation laws of \(N_{\mu} \) and \(T_{\mu\nu} \), together with an equation describing the dissipative part,

\[
D_\mu A^{\mu\nu} = I^{\nu}, \tag{B1}
\]

where \(A^{\mu\nu} \) and \(I^{\nu} \) are algebraic local functions of \(N^\mu \) and \(T^{\mu\nu} \) and symmetric in the indices \((\nu, \rho)\), and \(D_\mu \) is the covariant derivative. The entropy current is extended to

\[
S^\mu = \Phi^\mu - \beta_\nu T^{\mu\nu} - \alpha N^\mu - A^{\mu\nu\rho}(\xi^{\nu\rho}), \tag{B2}
\]

where \(\beta_\nu = u_\nu/T \) is the temperature vector, \(\alpha = \mu/T \) is the affinity, \(\Phi^\mu \) is the thermodynamic potential, and \(\xi^{\nu\rho} \) is symmetric and traceless and vanishes in equilibrium.

We now require that the entropy and the thermodynamical potential be algebraic functions of \((\alpha, \beta_\mu, \xi^{\nu\rho})\). If the entropy production is to be nonnegative, then

\[
\frac{\partial \Phi^\mu}{\partial \alpha} = N^\mu; \quad \frac{\partial \Phi^\mu}{\partial \beta_\nu} = T^{\mu\nu}; \quad \frac{\partial \Phi^\mu}{\partial \xi^{\nu\rho}} = A^{\mu\nu\rho}. \tag{B3}
\]

Thus, as a consequence of the equations of motion, the entropy production rate is

\[
D_\mu S^\mu = -I^{\nu}\xi^{\nu\rho}. \tag{B4}
\]

Since the stress-energy tensor is symmetric, we must also have

\[
\Phi^\mu = \frac{\partial \chi}{\partial \beta_\mu}, \tag{B5}
\]

where \(\chi(\alpha, \beta_\mu, \xi^{\nu\rho}) \) is the so-called generating function of the theory. This means that every DTT is completely determined once \(\chi \) and \(I^{\nu} \) are specified as algebraic functions of \((\alpha, \beta_\mu, \xi^{\nu\rho})\). The theory thus constructed satisfies the principles of relativity and entropy, and fully exploits the latter [28].

Introducing the symbols \(\xi^\alpha \) to denote the set \((\alpha, \beta_\mu, \xi^{\nu\rho})\), \(A^{\mu}_B \) the set \((N^\mu, T^{\mu\nu}, A^{\mu\nu\rho})\), and \(I_B \) the set \((0, 0, I_{\mu\nu})\), the theory is summed up in the following equations:

\[
A^{\mu}_B = \frac{\partial \Phi^\mu}{\partial \beta^B}, \\
D_\mu S^\mu = -I_B^B, \tag{B6}
\]

We will now review the main results of Ref. [25] where a quadratic DTT for a conformal fluid in \(d = 4 \) dimensions was developed. The most general generating function \(\chi \) that is quadratic in \(\xi^{\mu\nu} \) is

\[
\chi = \chi_0(T) + \chi_1(T)\xi^{\mu\nu}u^\mu u^\nu + \frac{1}{2T^4}(A_{\mu\rho}T^{\rho\sigma}T^{\mu\nu} + B_{\xi^{\mu\nu}}, \tag{B7}
\]

where \((\alpha, A, B)\) are coefficients to be determined.

For a conformal field, \(T^{\mu\nu} \rightarrow e^{6\omega(x)}T^{\mu\nu} \) under a Weyl transformation \(g_{\mu\nu} \rightarrow e^{-2\omega(x)}g_{\mu\nu} \) and \(\xi_{\mu\nu}T^{\mu\nu} = 0 \). These constraints pose no problem for \(\chi_0(T) \) and \(\chi_1(T) \) and, in combination with the second equation of \((B3) \), lead to

\[
\chi_0(T) = \frac{a}{6}T^2, \quad \chi_1(T) = \frac{\eta}{2}T^{-2}, \tag{B8}
\]

where the energy density is \(\rho = aT^4 \).

For the quadratic part of \(\chi \), it is necessary to redefine the temperature in order to satisfy both constraints. To ensure that \(T^{\mu\nu} \) has the correct conformal weight we need \(\alpha = 6 \). The quadratic stress-energy tensor obtained from \(\chi \) then reads

\[
T^{\mu\nu} = \frac{1}{2}T^{-4}[B(30\mu/\rho - 6\Delta\mu\nu\xi^{\rho\nu}/(\xi^{\rho\nu}) + 2A\xi^{\mu\nu}\xi^{\rho\nu}], \tag{B9}
\]

To get \(T^{\mu\nu}_{2,\mu} = 0 \) we need \(A = 24B \). The idea is to put

\[
T^{\mu\nu}_{2} = \Pi^{\mu\nu} + \delta T^{\mu\nu}_{2}, \tag{B10}
\]

with \(\Pi^{\mu\nu} \) traceless and transverse, and \(\delta T^{\mu\nu}_{2} \) traceless. We get

\[
\Pi^{\mu\nu} = AT^{-4}[\xi^{\mu\nu}T^{\rho\nu} - \frac{1}{3}\Delta\mu\nu\xi^{\rho\nu}], \tag{B11}
\]

and

\[
\delta T^{\mu\nu}_{2} = \frac{3}{8}T^{-4}A\mu/\rho + \frac{1}{3}\Delta\mu\nu\xi^{\rho\nu}. \tag{B12}
\]

Defining the physical temperature \(T_p \) by \(2T^4 = T_p^4 + \sqrt{T_p^8 - (5A/2a)\xi^{\rho\nu}\xi^{\rho\nu}} \) we obtain

\[
T^{\mu\nu}_p = \rho_p\mu/\rho + \rho_p\Delta\mu/\nu + \Pi^{\mu\nu}, \tag{B13}
\]

with

\[
\Pi^{\mu\nu} = \frac{\eta}{2}\xi^{\mu\nu} + \frac{\eta}{aT^4}(\xi^{\mu\nu}\xi^{\rho\nu} - \frac{1}{3}\Delta\mu\nu\xi^{\rho\nu}). \tag{B14}
\]

and \(\rho_p = aT_p^4 \).

The source term is written as \(I^{\mu\nu} = I_{1}^{\mu\nu} + I_{2}^{\mu\nu} \), where \(I_{1,2}^{\mu\nu} \) are linear and quadratic in \(\xi^{\rho\nu} \), respectively. \(I_{1}^{\mu\nu} \) is obtained by requiring the DTT to reproduce Eckart’s theory at first order in velocity gradients, while \(I_{2}^{\mu\nu} \) is obtained by requiring that the quadratic DTT satisfy the second law exactly. The result is

\[
I^{\mu\nu} = -\frac{\eta}{2T}\xi^{\mu\nu} + gT^{-8}\Delta\mu\nu\xi^{\rho\nu}, \tag{B15}
\]
whereby the entropy production reads

\[D_\mu S^\mu = \frac{\eta}{2T} \xi_{\rho\sigma} \xi^{\rho\sigma}. \]

(B16)

By requiring the DTT to reproduce the BRSS when \(\xi^{\mu\nu} \) is expanded at second order in velocity gradients, the relation between \((A, g) \) and \((\tau_\alpha, \lambda_1) \) is found to be

\[A = -\frac{\lambda_1 \tau_\alpha}{3\eta} T^8 \]

(B17)

The equation of motion for the third-order tensor

\[D_\mu A^{\mu\nu\rho} = I^{\nu\rho} \]

renders an evolution equation for \(\xi^{\mu\nu} \). In \(2 + 1 \) the evolution is given by Eq. (8). We note that in Ref. [25] we have set \(T = T_p \) since the extra terms arising when using \(T_p \) are of higher order (i.e., are terms that would be obtained from a cubic generating function \(\chi \)). We have numerically checked that these extra terms are negligible; thus one can use \(T = T_p \) without appreciable change in the results.