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Macroscopic thin liquid films are entities that are important in biophysics, physics, and engineering, as
well as in natural settings. They can be composed of common liquids such as water or oil, rheologically
complex materials such as polymers solutions or melts, or complex mixtures of phases or components.
When the films are subjected to the action of various mechanical, thermal, or structural factors, they
display interesting dynamic phenomena such as wave propagation, wave steepening, and development
of chaotic responses. Such films can display rupture phenomena creating holes, spreading of fronts,
and the development of fingers. In this review a unified mathematical theory is presented that takes
advantage of the disparity of the length scales and is based on the asymptotic procedure of reduction
of the full set of governing equations and boundary conditions to a simplified, highly nonlinear,
evolution equation or to a set of equations. As a result of this long-wave theory, a mathematical
system is obtained that does not have the mathematical complexity of the original free-boundary
problem but does preserve many of the important features of its physics. The basics of the long-wave
theory are explained. If, in addition, the Reynolds number of the flow is not too large, the analogy
with Reynolds’s theory of lubrication can be drawn. A general nonlinear evolution equation or
equations are then derived and various particular cases are considered. Each case contains a
discussion of the linear stability properties of the base-state solutions and of the nonlinear
spatiotemporal evolution of the interface (and other scalar variables, such as temperature or solute
concentration). The cases reducing to a single highly nonlinear evolution equation are first examined.
These include: (a) films with constant interfacial shear stress and constant surface tension, (b) films
with constant surface tension and gravity only, (c) films with van der Waals (long-range molecular)
forces and constant surface tension only, (d) films with thermocapillarity, surface tension, and body
force only, (e) films with temperature-dependent physical properties, (f) evaporating/condensing
films, (g) films on a thick substrate, (h) films on a horizontal cylinder, and (i) films on a rotating disc.
The dynamics of the films with a spatial dependence of the base-state solution are then studied. These
include the examples of nonuniform temperature or heat flux at liquid-solid boundaries. Problems
which reduce to a set of nonlinear evolution equations are considered next. Those include (a) the
dynamics of free liquid films, (b) bounded films with interfacial viscosity, and (c) dynamics of soluble
and insoluble surfactants in bounded and free films. The spreading of drops on a solid surface and
moving contact lines, including effects of heat and mass transport and van der Waals attractions, are
then addressed. Several related topics such as falling films and sheets and Hele-Shaw flows are also
briefly discussed. The results discussed give motivation for the development of careful experiments
which can be used to test the theories and exhibit new phenomena.
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I. INTRODUCTION

Thin liquid films are ubiquitous entities in a variety of
settings. In geology, they appear as gravity currents un-
der water or as lava flows (Huppert and Simpson, 1980;
Huppert, 1982a). In biophysics, they appear as mem-
branes, as linings of mammalian lungs (Grotberg, 1994),
or as tear films in the eye (Sharma and Ruckenstein,
1986a; Wong et al., 1996). They occur in Langmuir films
(Gaines, 1966) and in foam dynamics (Bikerman, 1973;
Edwards et al., 1991; Schramm and Wassmuth, 1994;
Wasan et al., 1994; Wong et al., 1995). In engineering,
thin films serve in heat and mass transfer processes to
limit fluxes and to protect surfaces, and applications
arise in paints, adhesives, and membranes.

Thin liquid films display a variety of interesting dy-
namics. Since the interface between the liquid and the
surrounding gas is a deformable boundary, these films
display wave motion; the waves can travel and steepen
under certain conditions for high flow rates, and the
waves can make transitions into quasiperiodic or chaotic
structures. The film can rupture, leading to holes in the
liquid that expose the substrate to the ambient gas. The
connectedness of the film changes in this case, as it does
if droplets of liquid are dislodged from the film (frag-
mentation). Changes in structure occur in flows having
contact lines leading to fingered patterns.

Liu et al. (1995) performed an experimental study of
three-dimensional (3D) instabilities of falling films on an
Rev. Mod. Phys., Vol. 69, No. 3, July 1997
inclined plane driven at the upstream end (x50) in or-
der to understand the transition from two-dimensional
(2D) waves to complex disordered patterns. Because 2D
disturbances are found to grow more rapidly initially
than 3D ones, 2D waves with straight wave fronts are
excited first. Nonlinear evolution of the waves depends
on the value of the frequency of small perturbations
driving the flow. Three-dimensional patterns develop at
sufficiently high Reynolds numbers of the flow, and two
examples of such patterns are displayed in Fig. 1. Figure
1(a) shows an example of a ‘‘synchronous’’ instability
when the deformations of the neighboring wave fronts
are in phase. When a 2D wave first becomes large in
amplitudes, transverse modulations appear and grow
downstream. At x'40 cm, nearly periodic spanwise
modulations are visible. As the waves travel further
downstream (x.50 cm), the two-dimensional wave
fronts begin to break. Subsequently, the flow becomes
disordered. Another type of instability is displayed in
Fig.1(b). This is a subharmonic mode when the deforma-
tions of the neighboring wave fronts are out of phase,

FIG. 1. Photographs of 3D patterns arising in falling films. The
film flows on an inclined plane and is perturbed at the up-
stream end (x50). Visualization is by fluorescence imaging;
the film thickness is proportional to the brightness, i.e., the
thick region is bright and the thin region is dark. The direction
of the flow is from the left to the right. Lines seen on the
photograph are of equal heights: (a) synchronous 3D instabil-
ity of 2D periodic waves. A snapshot taken at the inclination
angle of 6.4°, Reynolds number of 72, and imposed perturba-
tion frequency of 10.0 Hz; (b) a herringbone (or checkerboard)
pattern due to 3D subharmonic instability. A snapshot taken at
the inclination angle of 4.0°, Reynolds number of 50.5, and
imposed perturbation frequency of 14 Hz. Reprinted with the
permission of the American Institute of Physics from Liu,
Schneider, and Gollub (1995).



933Oron, Davis, and Bankoff: Long-scale evolution of thin liquid films
FIG. 2. The various forms of sheet flow
down an inclined plane. The marked hori-
zontal lines in each photograph are 5 cm
apart: (a) the flow of silicone-oil MS 200/
100 of initial cross-sectional area 1.8 cm 2,
down a slope of 12°, 185 s after release,
showing a well-developed wave form; (b)
the flow of glycerine of initial cross-
sectional area 7.3 cm2, down a slope of
12°, 62 s after release, showing a well-
developed wave form with characteristic
straight edges aligned directly downslope.
Reprinted with permission from Huppert
(1982b). Copyright © 1982 Macmillan
Magazines Ltd.
i.e., the transverse phase of the modulations differs by
p for successive wave fronts, and the streamwise period
is doubled. These herringbone patterns usually appear
in patches, and their locations fluctuate in time. Phe-
nomena such as these will be discussed in Sec. VI.

Figure 2, reproduced from Huppert (1982b), presents
various patterns that emerge when a fluid sheet is re-
leased on an inclined plane. Some time after the release,
the flow front, a contact line, spontaneously develops a
series of fingers of fairly constant wavelength across the
slope. In the case shown in Fig. 2(a) the front of a
silicone-oil layer consists of periodic triangular-shaped
waves. The flow of a glycerine layer is shown in Fig.
2(b), where the front displays a periodic structure of fin-
gers with extremely straight contact lines, which are di-
rected down the slope. Phenomena such as these will be
discussed in Sec. VI.
Rev. Mod. Phys., Vol. 69, No. 3, July 1997
Figure 3, reproduced from Fermigier et al. (1992), dis-
plays a layer of a silicone oil on the underside of a hori-
zontal plane and overlying a fluid of lower density (gas).
Gravity causes the planar interface to become unstable,
a Rayleigh-Taylor instability, leading to the creation of
fingers. Shown is an isolated axisymmetric pattern that
has evolved from an initial disturbance. When the thick-
ness of the layer becomes too large, the fluid is opaque
and the screen is invisible, as in the center of the drop.
Such phenomena are discussed in Sec. II.

Figure 4, reproduced from Burelbach et al. (1990),
shows two pictures of a layer of silicone oil on a rigid,
horizontal surface. The surface is nonuniformly heated
and the interface dimples at points where the tempera-
ture of the substrate is elevated. Thermocapillarity pro-
duces the dimple when the heat flux is sufficiently small,
Fig. 4(a), and a dry spot when the heat flux exceeds a
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critical value, Fig. 4(b). Such effects will be discussed in
Sec. III.

If one wishes to give mathematical descriptions of
such phenomena, one must face the fact that the inter-
faces of the film are, in part, free boundaries whose con-
figurations must be determined as parts of the solutions
of the governing equations. This renders the problem
too difficult to treat exactly, which may lead researchers
to rely on computing only. Even this becomes formi-
dable when there are many parameters in the problem.
If a rupture is to be described in which a film of unit
depth is driven to zero depth, it will not suffice to study
the corresponding linearized equations, for which well-
known and widely employed mathematical tools are
available. One must also deal with strongly nonlinear
disturbances to the film. Finally, if one is required to
deal with coupled phenomena, one must be able to de-
scribe, in compact form, simultaneous instabilities that
interact in complex ways. This compact form must be
tractable and, at the same time, still complex enough to
retain the main features of the problem at hand.

One means of treating the above complexities is to
analyze long-scale phenomena only, in which variations
along the film are much more gradual than those normal
to it, and in which variations are slow in time. Such theo-
ries arise in a variety of areas in classical physics:
shallow-water theory for water waves, lubrication theory
in viscous films, and slender-body theory in aerodynam-
ics and in fiber dynamics. In all these, a geometrical dis-
parity is utilized in order to separate the variables and to
simplify the analysis. In thin viscous films, it turns out
that most rupture and instability phenomena do occur
on long scales, and a lubrication-theory approach is, in
fact, very useful. This is explained below.

The lubrication-theory or long-wave-theory approach
is based on the asymptotic reduction of the governing
equations and boundary conditions to a simplified sys-
tem which often consists of a single nonlinear partial

FIG. 3. A snapshot of the Rayleigh-Taylor instability of a
silicone-oil layer on the underside of a horizontal plane. The
locally axisymmetric perturbation is revealed by the distortion
of a ruled screen observed through the interface. The wave-
length of the screen is 0.8 mm. Copyright © 1992 Cambridge
University Press. Reprinted with the permission of Cambridge
University Press from Fermigier, Limat, Wesfreid, Boudinet,
and Quilliet (1992).
Rev. Mod. Phys., Vol. 69, No. 3, July 1997
differential equation formulated in terms of the local
thickness of the film. The rest of the unknowns, i.e., the
fluid velocity, fluid temperature, etc., are then deter-
mined via functionals of the solution of that differential
equation. The notorious complexity of the free-
boundary problem is thus removed. However, a result-
ing penalty is the presence of the strong nonlinearity in
the governing equation(s) and the higher-order spatial
derivatives appearing there. A simplified linear stability
analysis of the problem can be carried out based on the
resulting evolution equation. A weakly nonlinear analy-
sis of the problem is also possible through that equation.
However, the fully nonlinear analysis that allows one to
study finite-amplitude deformations of the film interface
must be performed numerically. Still, numerical solution
of the evolution equation is considerably less difficult
than numerical solution of the original, free-boundary
problem.

There has been a great deal of progress in the analysis
of thin (macroscopic) liquid films. In the present review
such analyses will be unified into a simple framework
from which the special cases will naturally emerge. By
means of long-scale evolution equations, many interest-
ing cases will be discussed, giving the reader both an
overview and representative behaviors typical of thin
films. In particular, coupled dynamics and instabilities

FIG. 4. Photographs of a silicone-oil film on a nonuniformly
heated plate: (a) a dimpled film when the heat flux is suffi-
ciently low; (b) the nearly bare region that results at larger
heat fluxes. Reprinted with the permission of the American
Institute of Physics from Burelbach, Bankoff, and Davis
(1990).
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will be addressed. Despite the experimental observa-
tions mentioned above, there is a critical lack of care-
fully controlled experiments devoted to uncovering and
quantifying phenomena. This review stands as a call for
such experiments.

The first topic to be addressed in Sec. II will be
bounded films, which have one free surface and one in-
terface with a solid phase. The physical effects discussed
will be viscous, surface-tension, and body forces, ther-
mocapillarity, evaporation/condensation, and the pres-
ence of van der Waals attractions. The effect of curva-
ture of the solid wall and that of film rotation will be
also examined. In Sec. III, bounded films with spatial
(geometric and dynamic) nonuniformities will be consid-
ered. In Sec. IV, free films in which both interfaces of
the films are free boundaries will be considered. Films
with interfacial viscosities and internal mass transfer
(e.g., surface-active agents) are also discussed. These
cases are ones in which systems of evolution equations
are needed to describe the dynamics. In Sec. V, the re-
lated problem of the spreading of liquid drops on sub-
strates is considered. Here, moving contact lines are
present and it is shown how the same long-scale formal-
ism can be applied to describe spreading. Since this topic
has been frequently treated in the literature, our discus-
sion will be brief. Section VI will consider the case in
which the substrate is inclined to the horizontal and
gravity drives a mean flow. Flows in a narrow gap be-
tween planes (Hele-Shaw flows) will also be addressed.
Finally, in Sec. VII an overview will be given.

II. BOUNDED FILMS

A. Slipper bearing

The long-scale methods that will be used to describe
interfacial instabilities have their origins in the lubrica-
tion theory of viscous fluids. This theory can be most
simply illustrated by considering a fluid-lubricated slip-
per bearing.

Fluid-lubricated bearings are machine parts in which
viscous fluid is forced into a converging channel. The
flow creates vertical pressure forces that can be used to
support large loads and hence reduce wear. In his pio-
neering work Reynolds (1886) laid the foundations for
the theory of lubrication. He applied hydrodynamics of
slow viscous flow and derived the fundamental differen-
tial equation of the field, found approximate solutions
for this equation, and compared his theoretical results
with experiments performed earlier. This idea is illus-
trated below where the structure called a slipper bearing
is displayed. Many more details related to Reynolds’s
and others’ work can be found in Dowson (1979).

In Fig. 5, a (solid) bearing is shown in which a plate at
z50 moves in the positive x direction at constant speed
U0 driving fluid into the converging channel. In steady
flow, the lower boundary of the bearing (the upper
boundary of the channel) is at z5h(x). The fluid is
Rev. Mod. Phys., Vol. 69, No. 3, July 1997
taken to be an incompressible, Newtonian viscous fluid
of viscosity m , density r , and kinematic viscosity
n5m/r .

When the length of the plate L is large, the liquid is
able to support a load due to the large pressures gener-
ated under the bearing. For a fixed channel narrowing
Dh5h(0)2h(L), the tilt angle

a[
dh

dx
(2.1)

is small in this limit. Under this condition and in two
dimensions, the Navier-Stokes and continuity equations
can be reduced (Schlichting, 1968) to the simplified
forms

m]z
2u2]xp50, (2.2a)

2]zp50, (2.2b)

]xu1]zw50, (2.2c)

where the velocity vector is v¢5(u ,w), and p is the pres-
sure in the fluid. Equation (2.2a) tells us that since a is
small, the flow is locally parallel. Equation (2.2b) states
that the pressure is vertically uniform (or, if gravity were
to be included, hydrostatic). Equation (2.2c) is the con-
tinuity equation.

The boundary conditions below the bearing,
0,x,L , are

u~0 !5U0 , w~0 !50, (2.3a)

u~h !50. (2.3b)

Beyond the bearing, x<0 and x>L , the pressure is at-
mospheric, and in particular

p~0 !5p~L !5pa . (2.3c)

Given that p depends on x only, one can solve the sys-
tem (2.2), (2.3) directly to find that

FIG. 5. Slipper bearing. The plate moves with the constant
velocity U0. The lower boundary of the bearing, located at
z5h(x), is static and tilted at small angle a . The external
pressure is pa .
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mu~z !5
1
2

]xp~z22hz !1mU0S 12
z

h D ; (2.4)

the flow is a linear combination of plane Poiseuille and
plane Couette flows. Of course, p(x) is not yet known.

Given that the flow is steady, the flow rate Q (in the
x direction),

Q5E
0

h~x !

u~z !dz , (2.5)

must be constant, which gives

mQ52
1
12

h3]xp1
1
2

mU0h . (2.6)

Alternatively, one can write the derivative of this equa-
tion,

]xS 2
1
12

h3]xp1
1
2

mU0h D50. (2.7)

Equation (2.7) is the Reynolds lubrication equation.
Given h(x), it is an ordinary differential equation for
p . In Eq. (2.6) the flow rate Q and the integration con-
stant are determined by conditions (2.3c). In Eq. (2.7)
both constants of integration are then determined.

In either case one finds (Schlichting, 1968) that the
pressure distribution is given by

p~x !5pa16mU0F E
0

xdx

h2 2

E
0

L
dx/h2

E
0

L
dx/h3

E
0

xdx

h3G , (2.8)

as shown in Fig. 6. Note that the maximum pressure
pm;1/a , so that the upward force Fv exerted by the
fluid flow scales as Fv;1/a2. The important fact is that
the lubrication pressure behaves like O(1/a) as a→0.

It is possible to extend the theory to situations in
which h depends (slowly) on time t . In this case Eq. (2.7)
would have the form

FIG. 6. Distribution of the dimensionless pressure P at the
lower boundary of the bearing as a function of the coordinate
x/L along the channel. P[(p2pa)/6mU0.
Rev. Mod. Phys., Vol. 69, No. 3, July 1997
m] th1]xS 2
1
12

h3]xp1
1
2

mU0h D50, (2.9a)

or in the case of three-dimensional flow, h5h(x ,y ,t),

m] th1¹W 1•S 2
1
12

h3¹W 1p1
1
2

mUW 0h D50. (2.9b)

Here

¹W 15S ]

]x
,

]

]y D , UW 05~U0,V0!.

We now turn to the main subject of the review, start-
ing with the basics of the long-scale methods. The reader
will notice the similarity between the time-dependent
Reynolds lubrication equation (2.9) and the general evo-
lution equations for thin, bounded liquid films, Eqs.
(2.27) and (2.28) derived below. Thus the slipper-
bearing theory carries one to the more general cases of
films with free surfaces, and so to the phenomena of
wave propagation, free-surface instability, and film rup-
ture.

B. The evolution equation for a bounded film

The lubrication approximation will now be applied to
a viscous-liquid flow, bounded below by a horizontal
plate and above by an interface between the liquid and a
passive gas, as shown in Fig. 7. Here one allows the pos-
sibility on the interface of external normal PW and tan-
gential t¢ stresses, slowly varying in space and time. Fur-
ther, a conservative body force with potential f is
allowed.

The Navier-Stokes and continuity equations in two di-
mensions have the form

r~] tu1u]xu1w]zu !52]xp1m¹2u2]xf , (2.10a)

r~] tw1u]xw1w]zw !52]zp1m¹2w2]zf ,
(2.10b)

]xu1]zw50, (2.10c)

where ¹25]2/]x21]2/]z2.
The classical boundary conditions between the liquid

and the plate are those of no penetration, w50, and no
slip, u50. These conditions are appropriate for the con-
tinuous films to be considered here. However, we wish
to derive equations now that will apply not only in this
case but also to the case in which a contact line (or

FIG. 7. Sketch of a bounded liquid film. The body force is ¹W f,
and the imposed normal and tangential stresses are P and t ,
respectively.



937Oron, Davis, and Bankoff: Long-scale evolution of thin liquid films
trijunction) exists and liquid on a solid substrate spreads
and displaces the surrounding fluid (say, gas). The clas-
sical conditions then lead to a nonintegrable singularity
at the contact line (Huh and Scriven, 1971; Dussan V.
and Davis, 1974), which can be relieved by allowing a
relative motion, slip, between the liquid and the solid
near the contact line. In order to include such cases,
discussed in Sec. V, we generalize the conditions. The
condition of no penetration is retained and tangential
relative motion is allowed. A Navier model that assumes
slip proportional to the shear stress gives

at z50: w50,u2b]zu50. (2.11)

Here b is the slip coefficient, which will be taken to be
zero for the case of continuous films.

On z5h(x ,t):

w5] th1u]xh , (2.12a)

T•n¢52ksnW1
]s

]s
t¢1 f¢, (2.12b)

where T is the stress tensor of the liquid, n¢ is the unit
outward vector normal to the interface, t¢ is the unit vec-
tor tangential to the interface, f¢ is the prescribed forcing
at the interface, whose normal and tangential compo-
nents are PW and tW , respectively, k is the mean curvature
of the interface, and s is the arc length along the inter-
face, such that

n¢5
~2]xh ,1!

@11~]xh !2#1/2 , t¢5
~1,]xh !

@11~]xh !2#1/2 , (2.12c)

k52¹W 1•n¢5
]x

2h

@11~]xh !2#3/2 . (2.12d)

Equation (2.12a) is the kinematic boundary condition
(in the absence of interfacial mass transfer) that bal-
ances the normal component of the liquid velocity at the
interface with the speed of the interface. Equation
(2.12b) has two components. Its tangential component
states that the shear stress on the interface is balanced
by the sum of tW and the surface gradient of the surface
tension s . Its normal component states that the normal
stress minus PW exhibits a jump equal to the surface ten-
sion times the mean curvature. When the external force
PW is zero, and the fluid has zero viscosity, then
T•n¢•n¢52p , and this component equation reduces to
the well-known Laplace equation, which describes the
excess pressure in an air bubble, compared to the exter-
nal pressure, as twice the surface tension divided by the
bubble radius (see, for example, Landau and Lifshits,
1987).

Let us now introduce scales for thin films that are
motivated by the arguments and scalings used in the
analysis of the slipper bearing of Sec. II. Consider length
scales in the x direction defined by wavelength l on a
film of mean thickness h0. Consider the distortions to be
of long scale if
Rev. Mod. Phys., Vol. 69, No. 3, July 1997
e5
2ph0

l
!1. (2.13)

It is natural to scale z to h0; then the dimensionless z
coordinate is

Z5z/h0 (2.14a)

and x to l , or equivalently, h0 /e . Then the dimension-
less x coordinate is given by

X5
ex

h0
. (2.14b)

Likewise if there are no rapid variations expected as
e→0, then

]

]X
,

]

]Z
5O~1 !. (2.14c)

If u5O(1), the dimensionless fluid velocity in the x di-
rection is

U5
u

U0
, (2.14d)

where U0 is the characteristic velocity of the problem.
Then continuity requires that the dimensionless fluid ve-
locity in the z direction be

W5
w

eU0
. (2.14e)

Time is scaled to l/U0 so that the dimensionless time is

T5
eU0t

h0
. (2.14f)

Finally, one expects, as in the slipper-bearing example,
locally parallel flow in the liquid so that ]xp;m]z

2u and
hence the dimensionless stresses, body-force potential,
and pressure are

~tW ,PW !5
h0

mU0
~tW 0 ,ePW 0!, (2.14g)

~F ,P !5
eh0

mU0
~f ,p !. (2.14h)

Notice that ‘‘pressures’’ are large due to the lubrica-
tion effect. If these forms are substituted into the gov-
erning system (2.10)–(2.12), the following scaled system
is obtained:

eRe~]TU1U]XU1W]ZU !

52]XP1]Z
2 U1e2]X

2 U2]XF , (2.15a)

e3Re~]TW1U]XW1W]ZW !

52]ZP1e2~]Z
2 W1e2]X

2 W !2]ZF , (2.15b)

]XU1]ZW50. (2.15c)

At Z50,

W50, U2b0]ZU50. (2.16)

Here b05b/h0 is the dimensionless slip coefficient.
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At Z5H ,

W5]TH1U]XH , (2.17a)

~]ZU1e2]XW !@12e2~]XH !2#24e2~]XH !~]XU !

5t0@11e2~]XH !2#1]XS@11e2~]XH !2#1/2,

(2.17b)

2P2P01
2e2

@11e2~]XH !2#
{]XU@e2~]XH !221#

2]XH~]ZU1e2]XW !}5
C21e3]X

2 H

@11e2~]XH !2#3/2 ,

(2.17c)

where H5h/h0 is the dimensionless thickness of the film
and S5es/mU0 is the dimensionless surface tension.
The Reynolds number Re and capillary number C are
given, respectively, by

Re5
U0h0

n
, (2.18)

C5
U0m

s
. (2.19)

Before taking limits, we integrate the continuity Eq.
(2.15c) in Z from 0 to H(X ,T), use integration by parts,
Eq. (2.17a), and the boundary conditions (2.16) to ob-
tain

]TH1]XS E
0

H
UdZ D 50. (2.20)

This equation constitutes a more convenient form of the
kinematic condition and ensures conservation of mass
on a domain with a deflecting upper boundary.

Finally, we seek the solution of the governing Eqs.
(2.10)–(2.12) as a perturbation series in powers of the
small parameter e :

U5U01eU11e2U21••• ,

W5W01eW11e2W21••• , (2.21a)

P5P01eP11e2P21••• .

One lubrication approximation of the governing sys-
tem is obtained by letting Re ,C5O(1) as e→0. In the
former case the inertial terms, measured by eRe , are one
order of magnitude smaller than the dominant viscous
terms, consistent with the local-parallel-flow assumption.
In the latter case, the surface-tension terms, measured
by C21e3, are two orders of magnitude smaller and
would be lost. It will turn out to be essential to retain
surface-tension effects at leading order, so that one
writes

C̄ 5Ce23 (2.21b)

and takes another lubrication limit Re , C̄ 5O(1) as
e→0. The latter is applied when surface-tension effects
are strong relative to the others. At leading order in e
the governing system becomes, after omitting the sub-
script 0 in U0 ,W0, and P0,
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]Z
2 U5]XP1]XF , (2.22a)

05]ZP1]ZF , (2.22b)

]TH1]XS E
0

H
UdZ D 50. (2.22c)

At Z50,

U2b0]ZU50, (2.23)

and, at Z5H ,

]ZU5t01]XS , (2.24a)

2P02P5C̄ 21]X
2 H . (2.24b)

For our purposes, there is no need to find W , although it
can be obtained by solving Eq. (2.15c) with the first con-
dition of (2.16). Note the similarity to Eqs. (2.2) and
(2.3) for the slipper bearing when b0[h0b50 in Eq.
(2.23). Again, there is locally parallel flow, but now the
upper boundary has prescribed shear stress, normal
stress, and surface tension, and there is a conservative
body force.

In order to solve these equations it is convenient to
introduce a reduced pressure P̄ ,

P̄ 5P1F . (2.25a)

It follows from Eqs. (2.22b) and (2.24b) that

P̄ 5FuZ5H2C̄ 21]X
2 H2P0 . (2.25b)

In this case

U5~t01]XS!~Z1b0!1]XP̄ S 1
2

Z22HZ2b0H D ,

(2.26)

as follows from Eqs. (2.22a) and (2.25). If form (2.26) is
substituted into the mass conservation condition of Eq.
(2.22c), one obtains the appropriate evolution equation
for the interface,

]TH1]XF ~t01]XS!S 1
2

H21b0H D G
2]XH S 1

3
H31b0H2D ]XP̄ J 50. (2.27)

In three dimensions one can show that the evolution
equation has the form

]TH1¹W 1•F ~t¢01¹W 1S!S 1
2

H21b0H D G
2¹W 1•F S 1

3
H31b0H2D¹W 1P̄ G50, (2.28)

where now t¢0 is the vector shear stress imposed on the
interface. Equations (2.27) and (2.28) are the appropri-
ate Reynolds lubrication equations for the present sys-
tem. Whereas in the slipper-bearing problem H is
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known and P is determined by this equation, here H is
unknown and P is a functional of H determined by Eq.
(2.25b) (due to surface tension and the body forces).
This distinction is associated with the presence of either
a fixed solid boundary or a free gas-liquid interface.
Equation (2.27) is a generalization of the evolution
equation presented by Sharma and Ruckenstein (1986a)
in the case of no slip on the solid and no external forces
(b05t05P050).

The physical significances of the terms is revealed
when Eqs. (2.27) and (2.28) are written in the original
dimensional variables:

m] th1]xF ~t1]xs!S 1
2

h21bh D G2]xF S 1
3

h31bh2D
3]x~fuz5h2s]x

2h2P!G50, (2.29)

m] th1¹W 1•F ~t¢1¹W 1s!S 1
2

h21bh D G
2¹W 1•F S 1

3
h31bh2D¹W 1~fuz5h2s¹1

2h2P!G50.

(2.30)

In many of the examples discussed below, all forces are
isotropic in the horizontal dimensions x and y , and so
only two-dimensional cases will be examined. Further,
unless specified, only disturbances periodic in x will be
discussed. Thus l is the wavelength of these distur-
bances and 2ph0 /l is the dimensionless wave number.

C. Constant shear stress and constant surface
tension only

Suppose that the gas exerts a ‘‘wind’’ stress on an in-
terface that exhibits constant surface tension. In this
case b05P5f50, and t and s are constant. Equation
(2.29) becomes

m] th1th]xh1
1
3

s]x~h3]x
3h !50. (2.31)

In the absence of surface tension (s50), Eq. (2.31) is a
first-order nonlinear wave equation whose solutions are
waves that travel in the direction of the shear and they
steepen as they go. No instability is present. When sur-
face tension is present, the steepening is retarded. Our
numerical study of the nonlinear equation (2.31) shows
that the amplitude of its periodic solutions decays to
zero with time.

One can investigate the behavior of small distur-
bances to the uniform film h5h0 by perturbing it with a
small disturbance h8, periodic in x : h5h01h8. If one
substitutes this into Eq. (2.31) and linearizes in primed
quantities, then one has the linear stability equation for
h8. Since this equation has coefficients independent of
t and x , one can seek separable solutions of the form

h85h08exp~ ikx1st !, (2.32)
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which is a complete set of ‘‘normal modes’’ that can be
used to represent any disturbance. If these are substi-
tuted into the linearized disturbance equation, one ob-
tains the following characteristic equation for s :

ms52ik8t2
s

3h0
k84, (2.33)

where k85kh0 is the nondimensional wave number and
s is the growth rate of the perturbation. The amplitude
of the perturbation, therefore, will decay if the real part
of the growth rate Re(s) is negative and will grow if
Re(s) is positive. Purely imaginary values of s corre-
spond to translation along the x axis and give rise to
traveling-wave solutions. Finally, zero values of s corre-
spond to neutral, stationary perturbations. The phase
speed is thus

ImS s

k D52
h0t

m
(2.34)

and the growth rate is

Re~s !52
1

3h0m
sk84, (2.35)

and as shown in Fig. 8, no instability exists in the long-
wave regime. However, there are unit-order wave-
number disturbances that do grow, as shown by Miles
(1960) and Smith and Davis (1982).

D. Constant surface tension and gravity only

Consider perhaps the simplest film in which gravity is
present and surface tension is constant. Here

b05]xs5P5t50 and P̄ 5rgh2s]x
2h , (2.36)

so that Eq. (2.29) becomes

m] th2
1
3

rg]x~h3]xh !1
1
3

s]x~h3]x
3h !50, (2.37a)

FIG. 8. Characteristic equation given by Eq. (2.35).
s85Re(s)h0m/s is the dimensionless growth rate of the per-
turbation with the dimensionless wave number k8. Negative
growth rate corresponds to the decay of a perturbation; there-
fore there is no instability (s8.0) in the system.
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and its dimensionless variant is obtained from Eq.
(2.27),

]TH2
1
3

G]x~H3]XH !1
1
3

C̄ 21]X~H3]X
3 H !50,

(2.37b)

where G is the unit-order gravity number,

G5
rgh0

2

mU0
. (2.37c)

In the absence of surface tension, Eq. (2.37) is a nonlin-
ear (forward) diffusion equation so that no disturbance
to h5h0 grows in time. Surface tension acts through a
fourth-order (forward) dissipation term so that no insta-
bilities would occur in the full Eq. (2.37b) for G.0. If
Eq. (2.37a) is linearized about h5h0, the characteristic
equation is

ms52
1

3h0
@rgh0

21sk82#k82. (2.38)

This equation describes film leveling since s,0; if at
time t50 a small bump is imposed on the interface, Eq.
(2.38) governs how it will relax to h5h0.

Equations (2.37a) and (2.37b) also apply to the case of
a film on the underside of a plate, the Rayleigh-Taylor
instability of a thin viscous layer, as shown in Fig. 9.
Here one replaces g by 2g in Eq. (2.38) and finds that

ms52
1

3h0
@2ruguh0

21sk82#k82.

As shown in Fig. 10, the layer is linearly unstable if

k82,kc8
2[

ruguh0
2

s
[Bo , (2.39)

i.e., if the perturbations are so long that the (nondimen-
sional) wave number is smaller than the square root of
the Bond number Bo , which measures the relative im-
portance of gravity and capillary effects. The value of
kc8 is often called the (dimensionless) cutoff wave num-
ber for neutral stability. It is emphasized that Eq. (2.37)
constitutes the valid limit to the governing set of equa-
tions and boundary conditions when the Bond number
Bo is small. This follows from the relationships
G5Bo/C , G5O(1), and the smallness of C , as as-
sumed in Eq. (2.21).

The case of Rayleigh-Taylor instability was studied by
Yiantsios and Higgins (1989, 1991) for the case of a thin

FIG. 9. Sketch of a liquid film lying on the underside of a
horizontal plane and subject to Rayleigh-Taylor instability.
Rev. Mod. Phys., Vol. 69, No. 3, July 1997
film of a light fluid atop the plate and overlain by a large
body of a heavy fluid and by Oron and Rosenau (1992)
for the case of a thin liquid film on the underside of a
rigid plane. It was found that evolution of an interfacial
disturbance of small amplitude leads to rupture of the
film, i.e., at a certain location the local thickness of the
film becomes zero. Figure 11 shows a typical example of
such an evolution. Yiantsios and Higgins showed that
Eqs. (2.37a) and (2.37b) with g,0 admit several steady
solutions. These consist of various numbers of sinusoidal
drops separated by ‘‘dry’’ spots of zero film thickness, as
shown in Fig. 8 in Yiantsios and Higgins (1989). The
examination of an appropriate Lyapunov functional
(Yiantsios and Higgins, 1989) suggests that multiple-

FIG. 10. Characteristic equation given by Eq. (2.38) for the
Bond number Bo51, as defined by Eq. (2.39).
s853sm/ruguh0 is the dimensionless growth rate of the pertur-
bation with the dimensionless wave number k8. Positive
growth rate corresponds to the growth of a perturbation,
whereas negative growth rate indicates decay. Therefore the
unstable domain is 0,k8,kc8 .

FIG. 11. Film profile close to rupture for Rayleigh-Taylor in-
stability for G520, C̄ 2154, D52p , and the initial condition
H(X ,T50)5110.005sinX. The arrow indicates the direction
of gravity.



941Oron, Davis, and Bankoff: Long-scale evolution of thin liquid films
drop states are energetically less preferred than a one-
drop state. These analytical results were partially con-
firmed by numerical simulations. As found in the long-
time limit, the solutions can asymptotically approach
multihumped states with different amplitudes and spac-
ings as well. This suggests that terminal states depend
upon the choice of initial data (Yiantsios and Higgins,
1989). It was also found that if the overlying semi-
infinite fluid phase is more viscous than the thin liquid
film, the process of the film rupture slows down in com-
parison with the single-fluid case.

It is interesting to note that Eqs. (2.37a) and (2.37b)
were also derived and studied by Hammond (1983) in
the context of capillary instability of a thin liquid film on
the inner side of a cylindrical surface (see Sec. II.J.1).
The three-dimensional version of the problem of
Rayleigh-Taylor instability was considered by Fermigier
et al. (1992). Formation of patterns of different symme-
tries and transition between patterns were observed.
Axially symmetric cells and hexagons were found to be
preferred. Droplet detachment was observed at the final
stage of the experiment. Figure 3 shows the growth of an
axisymmetric drop.

Saturation of Rayleigh-Taylor instability of a thin liq-
uid layer by an imposed advection in the longitudinal
direction was discussed by Babchin et al. (1983). Simi-
larly, capillary instability of an annular film saturates
due to a through flow (Frenkel et al., 1987).

The problem of leveling of a film under the action of
capillary force on a corrugated substrate at z5l(x) was
considered by Stillwagon and Larson (1988). Using the
approach described above, they derived the evolution
equation, which for the case of zero gravity reads

m] th1
1
3

s]x@h3]x
3~h1l !#50. (2.40)

Numerical solutions of Eq. (2.40) showed a good agree-
ment with experimental data (Stillwagon and Larson,
1988). At short times there is film deplanarization due to
the emergence of capillary humps, but these relax at
longer times.

E. Van der Waals (long-range molecular) forces
and constant surface tension only

Van der Waals forces can be important when the film
thickness is in the range of several hundreds of Ang-
ströms, 100–1000 Å. Such forces in general compete
with others of electrical or entropic origin (e.g., excess
interfacial surface charge or electrical double layers),
which exist on both longer and shorter scales than do
the van der Waals attractions. At a given thickness of
the layer, one or another of these can dominate. Only
the h23 forces will be considered here.

Dzyaloshinskii et al. (1959) derived a theory for van
der Waals attractions in which an integral representation
is given for the excess Helmholtz free energy of the
layer as a function of the frequency-dependent dielectric
properties of the materials in the layered system.
Rev. Mod. Phys., Vol. 69, No. 3, July 1997
In the special case of a film with parallel boundaries
and nonretarded forces in the absence of ionic species,
f5fr1A8h23/6p , where fr is a reference value for the
body-force potential and A8 is the dimensional Ha-
maker constant. When A8.0, there is negative disjoin-
ing pressure and a corresponding attraction of the two
interfaces (solid-liquid and liquid-gas) for each other.
When the disjoining pressure is positive, A8,0, the in-
terfaces repel each other.

Consider negative disjoining pressure in a film with
constant surface tension only, so that
b05]xs5P5t50. When A8.0, instabilities occur, as
shown below. When A8,0, the planar film persists.
Equation (2.29) then becomes (Williams and Davis,
1982)

m] th1
A8

6p
]xS ]xh

h D1
1
3

s]x~h3]x
3h !50. (2.41a)

Its dimensionless version reads

]TH1A]XS ]XH

H D1
1
3

C̄ 21]X~H3]X
3 H !50, (2.41b)

where

A5
A8e

6prn2h0
(2.41c)

is the scaled dimensionless Hamaker constant. Here the
characteristic velocity was chosen as U05n/h0. Alterna-
tively, one can regard the disjoining pressure as an im-
posed normal stress P in which P5A8/(6ph3), leading
to the same equations.

Linearization of Eq. (2.41a) around h5h0 yields the
characteristic equation

ms5
k82

h0
2 S A8

6ph0
2

1
3

sh0k82D . (2.42a)

It follows from Eq. (2.42a) that there is instability for
A8.0, driven by the long-range molecular forces and
stabilization is due to surface tension. The cutoff wave
number kc8 is then given by

kc85
1
h0

S A8

2ps D 1/2

, (2.42b)

which reflects the fact that an initially corrugated inter-
face has its thin regions thinned further by van der
Waals forces while surface tension cuts off the small
scales. Instability is possible only if 0,k8,kc8 , as seen
by combining Eqs. (2.42a) and (2.42b):

ms5
sk82

3h0
~kc8

22k82!. (2.43)

On the periodic domain of wavelength l52p/k , the lin-
earized theory predicts that the film is always unstable
since all wave numbers are available to the system. In an
experimental situation the film resides in a container of
finite width, say L . Solution of the linear stability theory
for 0<X<L would show that only corrugations of small
enough wavelength could ‘‘fit’’ in the box, i.e., l,L . No
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instability would then occur by this estimate, if
2ph0 /L.kc8 . One sees from this theory that it is inap-
propriate to seek a critical thickness from the theory but
only a critical thickness for a given experiment, since the
condition depends on the system size L .

The evolution of the film interface as described by Eq.
(2.41) with periodic boundary conditions and an initial
corrugation leads to the rupture of the film in a finite
time TR . This breakup manifests itself by the fact that at
a certain time the local thickness of the film becomes
zero. Figure 12, reproduced from Fig. 4 in Burelbach
et al. (1988), displays a typical example of film evolution.
Moreover, the rate of film thinning, measured as the rate
of decrease of the minimal thickness of the film, in-
creases with time and becomes much larger than the
disturbance growth rate given by the linear theory ex-
trapolated ti break up. This fact can be seen in Eq.
(2.41). Notice that the ‘‘effective’’ diffusion coefficient,
proportional to h21, in the backward diffusion term in-
creases indefinitely as the film becomes thinner, h→0,
while the local stabilization effect provided by surface
tension weakens, proportionally to h3.

Sheludko (1967) observed experimentally spontane-
ous breakup of thin, static films and proposed that nega-
tive disjoining pressure is responsible for that. He also
used a stability analysis in order to calculate a critical
thickness of the film below which breakup occurs, while
neglecting the presence of electric double layers.

Burelbach et al. (1988) used numerical analysis to
show that, near the rupture point, surface tension has a
minor effect. Therefore the local behavior of the inter-
face is governed by the backward diffusion equation

]TH1A]XS ]XH

H D50. (2.44)

Looking for separable solutions of the form
H(X ,T)5T(T)X(X), Burelbach et al. (1988) found that

FIG. 12. Film profiles at different times as given by Eq. (2.41b)
for A5C̄ 2151 solved in the domain 2p/kM<X<p/kM with
the initial condition H(X ,T50)5110.1sin(kMX). The
fastest-growing linear mode has a wave number kM , 2kM

2 51.
Copyright © 1988 Cambridge University Press. Reprinted with
the permission of Cambridge University Press from Burelbach,
Bankoff, and Davis (1988).
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T(T);(TR2T). The spatial component X(X) can be
found by solving the ordinary differential equation

d2y

dX2 5exp~y !, with X~X !5exp~y !. (2.45)

Solving Eq. (2.45) in terms of X(X) yields

X~X !;
b2

2
sec2S bX

2 D ,

where b is an arbitrary constant whose value can be
determined from the numerical solution of Eq. (2.41b).
The separable solution for Eq. (2.44) can be thus written
in the form

H~X ,T !5A
b2

2
~TR2T !sec2S bX

2 D . (2.46)

The minimal thickness of the film close to the rupture
point is therefore expected to decrease linearly with
time. This allows the lubrication analysis to be extrapo-
lated very close to the point where adsorbed layers
and/or moving contact lines appear. The behavior of so-
lution (2.46), as T→TR , is shown in Fig. 13, reproduced
from Fig. 5 in Burelbach et al. (1988).

Several authors (Kheshgi and Scriven, 1991; Mitlin,
1993; Sharma and Jameel, 1993; Jameel and Sharma,
1994; Mitlin and Petviashvili, 1994; Oron and Bankoff,
1997) have considered the dynamics of thin liquid films
in the process of dewetting of a solid surface. The effects
important for a meaningful description of the process
are gravity, capillarity, and, if necessary, the use of a
generalized disjoining pressure, which contains a sum of
intermolecular attractive and repulsive potentials. The
generalized disjoining pressure is destabilizing (attrac-
tive) for the film for larger thicknesses and stabilizing
(repulsive) for larger (smaller) thicknesses still within
the range of several hundreds of Angströms (see, for
example, Israelachvili, 1992). Equations (2.28) and
(2.29) may be rewritten, respectively, in the form

FIG. 13. Local behavior near rupture point for the solution
shown in Fig. 12. Copyright © 1988 Cambridge University
Press. Reprinted with the permission of Cambridge University
Press from Burelbach, Bankoff, and Davis (1988).
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]TH2
1
3

]X@H3]X~GH2C̄ 21]X
2 H1F!#50, (2.47a)

m] th2
1
3

]x@h3]x~rgh2s]x
2h1f!#50. (2.47b)

Different forms for the potential f are encountered in
the literature. Teletzke et al. (1988) expressed the gen-
eralized disjoining pressure as

f5(
i51

4

aih
2i, (2.48a)

where ai are coefficients determined by specific intermo-
lecular forces brought into consideration. In particular,
the disjoining pressure corresponding to the van der
Waals forces used by Williams and Davis (1982),

f5a3h23, (2.48b)

is obtained from Eq. (2.48a) for a3 Þ 0,ai50,i Þ 3. Mitlin
(1993) and Mitlin and Petviashvili (1994) used the
6212 Lennard-Jones potential for solid-liquid interac-
tions

f5a3h232a9h29. (2.48c)

Polar and apolar (van der Waals) intermolecular inter-
actions give rise to the generalized disjoining pressure
expressed by

f5a3h232l1expS 2
h

l2
D , (2.48d)

where l1 and l2 are dimensional constants (Williams,
1981; Sharma and Jameel, 1993; Jameel and Sharma,
1994; Paulsen et al., 1996) representing the strength of
the repulsive and attractive forces, respectively, and de-
cay lengths. Oron and Bankoff (1997) used

f5a3h232a4h24 (2.48e)

to model the simultaneous action of the attractive
(a3.0) long-range and repulsive (a4.0) short-range
intermolecular forces and their influence on the dynam-
ics of the film.

Linearizing Eq. (2.47b) around h5h0, one obtains

ms52
1
3

k82h0F rg1
df

dhU
h5h0

1
sk82

h0
2 G . (2.49)

It follows from Eq. (2.49) that the necessary condition
for linear instability is

df

dhU
h5h0

,2rg , (2.50)

i.e., the destabilizing effect of the van der Waals force
has to be stronger than the leveling effect of gravity.

Kheshgi and Scriven (1991) studied the evolution of
the film using Eq. (2.47a) with the potential (2.48b) and
found that smaller disturbances decay due to the pres-
ence of gravity leveling while larger ones grow and lead
to film rupture. Mitlin (1993) and Mitlin and Petviashvili
(1994) discussed possible stationary states for the late
Rev. Mod. Phys., Vol. 69, No. 3, July 1997
stage of solid-surface dewetting with the potential
(2.48c) and drew a formal analogy between the latter
and the Cahn theory of spinodal decomposition (Cahn,
1960). Sharma and Jameel (1993) and Jameel and
Sharma (1994) followed the film evolution as described
by Eqs. (2.47) and (2.48d) and concluded that thicker
films break up, while thinner ones undergo ‘‘morpho-
logical phase separation’’ that manifests itself in creation
of steady structures of drops separated by ultrathin flat
liquid films. Similar patterns were also observed by
Oron and Bankoff (1997) in their study of the dynamics
of thin spots near film breakup. Figure 14 (Oron and
Bankoff, 1997) shows typical steady-state solutions of
Eq. (2.47a) with the potential (2.48e) for different sets of
parameters.

F. Thermocapillarity, surface tension,
and body force only

The thermocapillary effect (see, for example, Davis,
1987) accounts for the emergence of interfacial shear
stresses, owing to the variation of surface tension with
temperature q . This shear stress is expressed by ¹W ss . In
this case b5P5t50, s5s(q). In order to incorporate
the thermocapillary effect into the equations, one needs
to add to the governing system (2.10)–(2.12) an energy
equation and the appropriate boundary conditions re-
lated to heat transfer. The energy equation and the
boundary conditions have the form

rc~] tq1u]xq1w]zq!5k th¹
2q , (2.51)

where for z50

q5q0 , (2.52a)

and for z5h(x ,t)

k th¹W q•n¢1a th~q2q`!50. (2.52b)

FIG. 14. Steady-state solutions for a film under the simulta-
neous action of attractive and repulsive intermolecular forces,
as described by Eq. (2.47a) with G50 and F05H232 ā 4H24

[the dimensionless version of Eq. (2.48e)]. Curve 1,
ā 450.1,C̄ 2151; Curve 2, ā 450.1,C̄ 2150.05; Curve 3
ā 450.05,C̄ 2151.
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Here c is the specific heat of the fluid, k th is its thermal
conductivity, and q0 is the temperature of the rigid
plane, assumed to be uniform. The boundary condition
(2.52b) is Newton’s cooling law and a th is the heat trans-
fer coefficient describing the rate of heat transfer from
the liquid to the ambient gas phase at the constant tem-
perature q` .

Scaling the temperature by

Q5
q2q`

q02q`
(2.53)

and substituting scales (2.14) into Eqs. (2.51) and (2.52)
yields

eRePr~]TQ1U]XQ1W]ZQ!5e2]X
2 Q1]Z

2 Q ,
(2.54)

where for Z50:

Q51, (2.55a)

and Z5H :

]ZQ2e2~]XQ!~]XH !1BQ(11e2~]XH !2)1/250.
(2.55b)

Here Pr and B are, respectively, the Prandtl and Biot
numbers

Pr5
rcn

k th
, B5

a thh0

k th
. (2.56)

Let us expand the temperature Q in a perturbation
series in e , along with the expansions (2.21a), and sub-
stitute these into system (2.54) and (2.55). Again assume
that Re5O(1) and further let Pr ,B5O(1), so that the
convective terms in Eq. (2.54) are delayed to next order,
i.e., conduction in the liquid is dominant and the heat
flux there balances the heat lost to the environment.

At leading order in e the governing system for Q0
consists of condition (2.55a),

]Z
2 Q50, (2.57)

and

]ZQ1BQ50 for Z5H , (2.58)

where the subscript ‘‘zero’’ has been dropped. The solu-
tion to this system is

Q512
BZ

11BH
and Q i5

1
11BH

, (2.59)

where Q i5Q(X ,H ,T) is the surface temperature.
From Eq. (2.27) or (2.29), it is now required that the

thermocapillary stress ]XS or ]xs be determined. By
the chain rule

]XS5M
dS

dQ
@]XQ1~]XH !~]ZQ!#

[2M
g~H !]XH

~11BH !2 , (2.60a)

where

g~H !52
dS

dQ U
Q5Q i

. (2.60b)
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The sign change is inserted because ds/dq is negative
for common materials. The shear-stress condition, Eq.
(2.24a), to leading order in e has the form

]ZU1M
g~H !]XH

~11BH !2 50 for Z5H , (2.61)

where

M5S Ds

mU0
D e

is the Marangoni number. Here Ds is the change of
surface tension over the temperature domain between
the characteristic temperatures, usually q0 and q` . To
be more precise, if q`,q0 (heating at the bottom of the
layer), then Ds.0 for standard fluid pairs with surface
tension decreasing with temperature. For heating at the
interface side q`.q0 and Ds,0.

Thus, in the case t05F5P05b050, Eq. (2.27) be-
comes

]TH1
1
2

MB]XFH2g~H !]XH

~11BH !2 G1
1
3

C̄ 21]X@H3]X
3 H#

50. (2.62)

If gravity forces are to be included, F5gZ and Eq.
(2.62) reads

]TH1]xH F2
1
3

GH31
1
2

MB
H2g~H !

~11BH !2G]XHJ
1

1
3

C̄ 21]X@H3]X
3 H#50. (2.63)

For the standard, linearly decreasing function
s5s(q), the value ]QS is constant and g(H)51.
Equations (2.62)–(2.63) with g(H)51 appeared in pa-
pers of Davis (1983) for B!1, Kopbosynov and Pukh-
nachev (1986), Bankoff and Davis (1987), Burelbach
et al. (1988), Deissler and Oron (1992), and Oron and
Rosenau (1992).

For B!1, Eq. (2.63) in dimensional form becomes

m] th1
a thDs

2k th
]x~h2]xh !2

1
3

rg]x~h3]xh !

1
s

3
]x~h3]x

3h !50. (2.64)

Linearization of Eq. (2.64) around the state h5h0 yields
the characteristic equation

ms5S 2
1
3

rgh01
a thDs

k th
2

s

3h0
k82Dk82. (2.65)

Equation (2.65) shows that if g.0 (gravity acting to-
wards the base of the film) gravity has a stabilizing effect
(similar to that described in Sec. II.D), while thermocap-
illarity has a destabilizing effect on the interface. It is
clear from Eq. (2.65) that the thicker the film, the stron-
ger the gravitational stabilization. The dimensionless
cutoff wave number kc8 is given in this case by
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kc85S 3B
Ds

s
2Bo D 1/2

. (2.66a)

Thermocapillary destabilization is explained by exam-
ining the fate of an initially corrugated interface in the
linear temperature field produced by thermal condition.
Where the interface is depressed, it lies in a region of
higher temperature than its neighbors. Hence, if surface
tension is a decreasing function of temperature, interfa-
cial stresses [proportional to the surface gradient of the
surface tension (see, for example, Levich, 1962; Landau
and Lifshits, 1987)] drive interfacial liquid away from
the depression. Since the liquid is viscous, it is dragged
away from the depression, causing the depression to
deepen further. Hydrostatic and capillary forces cannot
prevent this deepening, and as shall be seen, the film will
proceed to zero thickness locally.

Studies of Eq. (2.62) with g(H)51 reveal that evolu-
tion of initial data of small amplitude usually results in
rupture of the film qualitatively similar to that displayed
in Fig. 11 (Oron and Rosenau, 1992). In the case of
negative gravity, g,0, the Rayleigh-Taylor instability
(heavy fluid overlying light fluid) enhances the ther-
mocapillary instability and broadens the band of linearly
unstable modes:

kc85S 3B
Ds

s
1Bo D 1/2

. (2.66b)

Stabilization of the Rayleigh-Taylor instability by
thermocapillarity was discussed by Oron and Rosenau
(1992) and Deissler and Oron (1992) for two- and three-
dimensional cases, respectively. It was found that nega-
tive thermocapillarity, i.e., Ds,0, corresponding to
heating at the interface side or cooling at the rigid wall,
in conjunction with surface tension may lead to satura-
tion of Rayleigh-Taylor instability and to formation of
steady drops.

It has been recently discovered that dilute aqueous
solutions of long-chain alcohols exhibit nonmonotonic
dependence of surface tension on temperature (Legros
et al., 1984; Legros, 1986). This dependence can be ap-
proximated quite well by the quadratic polynomial

s~q!5d~q2qm!2, (2.67a)

where d is constant and qm is the temperature corre-
sponding to the minimal surface tension. In this case,

g~H !;
qm2q`

q02q`
2

1
11BH

. (2.67b)

The instability arising from the variation of surface ten-
sion, given by Eq. (2.67a), has been called ‘‘quadratic
Marangoni (QM) instability’’ and studied by Oron and
Rosenau (1994). In contrast with the case of the stan-
dard thermocapillary instability, described by Eq. (2.62)
with g(H)51, the evolution of QM instability may re-
sult in a nonruptured steady state. Figure 15, taken from
Fig. 4 in Oron and Rosenau (1994), displays such a state
along with the streamlines of the flow field. It results
from solving Eq. (2.62) with g(H) given by Eq. (2.67b).
The intersections of the Q0 line with the film interface in
Rev. Mod. Phys., Vol. 69, No. 3, July 1997
Fig. 15 correspond to the locations of the minimal sur-
face tension. This creates surface shear stress acting in
opposite directions, as shown by the arrows on the
graph, and leads to film stabilization.

G. Temperature-dependent physical properties

The temperature variation across a thin film is usually
small enough that without appreciable error an average
temperature can be used in evaluating the physical prop-
erties. However, for liquids of high viscosity, the error
may be significant, since viscosities can vary with an
Arrhenius-type exponential temperature dependence.
Reisfeld and Bankoff (1990) considered this problem
with a linear dependence of viscosity on the tempera-
ture. Here we generalize the problem for the viscosity as
an arbitrary function of the dimensionless temperature.

Let m5m0f(Q), where f(Q) is a smooth dimension-
less function, 0<Q<1, ]Qf,0,f.0, and

Q5
u2u i

u02u i
5Q~Z !, 0<Q<1. (2.68)

Here, the subscript i denotes the interfacial value of the
corresponding variable. Let us consider the limiting case
of large Biot numbers B . Since Q(0)51 and
Q(H)50, it follows from Eq. (2.57) that

Q512
Z

H
. (2.69)

Define g(Z)5f(Q). Equation (2.22a) is now modified,
using forms (2.25), to read

m0]Z@g~Z !]ZU#5]XP̄ []X~FuZ5H2C̄ 21]X
2 H2P0!,

(2.70)

where m 51 in dimensionless form.

FIG. 15. The steady state obtained from the evolution of a film
subject to quadratic Marangoni instability. Dashed lines repre-
sent streamlines of the flow field. The periodic domain consists
of four convective cells contained between the extremal points
of the interface and the points of minimal surface tension. The
arrows indicate the direction of the flow at the stagnation
points. Copyright © 1994 Cambridge University Press. Re-
printed with the permission of Cambridge University Press
from Oron and Rosenau (1994).
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Integrating once from Z to H yields

2g~Z !]ZU5]XP̄ ~H2Z !2g~H !@t01]XS# . (2.71)

Integrating again yields,

U5]XP̄ E
0

Z s2H

g~s !
ds1g~H !~t01]XS!E

0

Z ds

g~s !
.

(2.72)

From the continuity Eq. (2.20)

]TH52]X@]XP̄ I11~t01]XS!g~H !I2# , (2.73)

where

I15E
0

HE
0

Z H2s

g~s !
dsdZ , (2.74a)

I25E
0

HE
0

Z ds

g~s !
dZ . (2.74b)

These can be simplified by reversing the order of inte-
gration

I15E
0

HE
s

H H2s

g~s !
dZds5E

0

H~H2s !2

g~s !
ds , (2.75a)

and similarly

I25E
0

H H2s

g~s !
ds . (2.75b)

Equations (2.73), (2.75a), and (2.75b) constitute the gen-
eralized evolution equations for arbitrary viscosity-
temperature dependence.

For a linear approximation (Reisfeld and Bankoff,
1990)

g~Z !512aQ512aS 12
Z

H D . (2.76)

If only long-range molecular forces and constant surface
tension terms are retained, Eq. (2.27) becomes

]TH1VA]XS ]XH

H D1
1
3

VC̄ 21]X~H3]X
3 H !50,

(2.77)

where

V52
3
2

a23@a212a12ln~12a!# for B@1

(2.78a)

and

V51 for B!1. (2.78b)

Equation (2.77) is identical in form to the isothermal
equation (2.41) and actually reduces to it by rescaling
time, T→VT . Hence linear and nonlinear stability re-
sults obtained by Williams and Davis (1982) can be ap-
plied directly to this case. Figure 16 shows the graph of
function V(a) as given by Eq. (2.78a). The acceleration
factor V increases with an increase in the temperature
dependence of the viscosity. Thus the effect of variable
viscosity is to reduce the time scale for the process, lead-
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ing to a more rapid rupture of the film. However, for
vanishing Biot numbers B the film is effectively isother-
mal and the resulting Eq. (2.77) reduces to Eq. (2.41),
with V51. For larger ranges of temperature variation,
an exponential function of the form

g~Z !5f~Q!5exp~2aQ!, (2.78c)

along with Eqs. (2.69) and (2.75), allows the evolution
Eq. (2.73) to be explicitly evaluated. Reisfeld and
Bankoff (1990) showed that for mineral oil with a tem-
perature difference of 10 K, a 20% decrease in the rup-
ture time is obtained with respect to the constant-
viscosity model with a temperature-averaged viscosity.

H. Evaporating/condensing films

1. Formulation

We now consider the two opposing cases of (a) an
evaporating thin film of a pure, single-component liquid
on a heated plane surface at constant temperature q0
that is higher than the saturation temperature at the
given vapor pressure and (b) a condensing thin film of a
pure, single-component liquid on a cooled plane surface
at constant temperature u0 that is lower than the satura-
tion temperature at a given vapor pressure. The speed of
vapor particles is assumed to be sufficiently low that the
vapor can be considered to be an incompressible fluid.

Let us first formulate boundary conditions appropri-
ate for phase transformation at the film interface z5h .
The mass balance at the interface is given by

j5rg~v¢g2v¢i!•n¢5r f~v¢f2v¢i!•n¢ , (2.79)

where j is the mass flux normal to the interface, which is
positive for evaporation and negative for condensation.
rg and r f are, respectively, the densities of the vapor and
the liquid, v¢g and v¢f are, respectively, the vapor and liq-
uid velocities at z5h , and v¢i is the velocity of the inter-
face.

Since rg /r f!1, typically ;1023, Eq. (2.79) shows
that, relative to the interface, the magnitude of the nor-
mal velocity of the vapor at the interface is much greater
than that of the corresponding liquid. Hence the phase
transformation creates large accelerations of the vapor
at the interface, where the back reaction, called the va-

FIG. 16. The function V(a) as given by Eq. (2.78a).
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por thrust (or vapor recoil) represents a force on the
interface. The dynamic pressure at the gas side of the
interface is much larger than that at the liquid side,

rgvg ,e
2 5

j2

rg
@r fv f ,e

2 5
j2

r f
, (2.80)

where vg ,e and v f ,e are the normal components of vapor
and liquid velocity relative to the interface. Consider a
corrugated interface during evaporation/condensation.
Points on the trough are closer to the hot/cold plate than
are points on the crest, and so they have greater
evaporation/condensation rates j . Momentum fluxes are
thus greater at the troughs than at the crests of surface
waves. As seen from Eq. (2.80), vapor thrust is destabi-
lizing for either evaporation (j.0) or condensation
(j,0) (Burelbach et al., 1988). Vapor thrust is only im-
portant for cases of very high heat fluxes.

As noted above, vapor thrust exerts a reactive down-
ward pressure on a horizontal evaporating film. Bankoff
(1961) introduced the vapor thrust effect in analyzing
the Rayleigh-Taylor instability of an evaporating liquid-
vapor interface above a hot horizontal wall (film boil-
ing). In this case the vapor thrust stabilizes the film boil-
ing, since the reactive force is greater for the wave crests
approaching the wall than for the troughs. Later,
Bankoff (1971) extended the linear stability analysis of
Yih (1955, 1963) and Benjamin (1957) to the instability
of an evaporating thin liquid film on a hot, inclined wall.
A critical heat flux was found above which the vapor
thrust dominates the inertial effects.

The energy balance at z5h is given by

jS L1
1
2

vg ,e
2 2

1
2

v f ,e
2 D1k th¹W q•n¢2k th,g¹W qg•n¢

12mef•n¢•v¢f ,e22mgeg•n¢•v¢g ,e50, (2.81a)

where L is the latent heat of vaporization per unit mass,
k th,g , mg , and qg are, respectively, the thermal conduc-
tivity, viscosity, and temperature of the vapor, and
ef ,eg are the rate-of-deformation tensors in the liquid
and the vapor (Burelbach et al., 1988).

The stress balance boundary condition that general-
izes Eq. (2.12b) in the case of phase transformation is
given by

j~v¢f ,e2v¢g ,e!2~T2Tg!•n¢5ks~q!n¢2¹W ss , (2.81b)

where ¹W ss is the surface gradient of interfacial tension
and Tg is the stress tensor in the vapor phase.

One needs to pose a constitutive equation relating the
dependence of the interfacial temperature q i and the
interfacial mass flux (Palmer, 1976; Plesset and Prosper-
etti, 1976; Sadhal and Plesset, 1979). Its linearized form
is

K̃ j5q i2qs[Dq i , (2.82)

where

K̃ 5
qs

3/2

ârgL
S 2pRg

Mw
D 1/2

,
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qs is the absolute saturation temperature, â is the ac-
commodation coefficient, Rg is the universal gas con-
stant, and Mw is the molecular weight of the vapor
(Palmer, 1976; Plesset and Prosperetti, 1976). Note that
the absolute saturation temperature qs serves now as
the reference temperature q` in the nondimensionaliza-
tion, Eq. (2.53). When Dq i50, the phases are in thermal
equilibrium with each other, i.e., their chemical poten-
tials are equal. In order for net mass transport to take
place, a vapor pressure driving force must exist, given
for ideal gases by kinetic theory (Schrage, 1953), and
represented in the linear approximation by the param-
eter K̃ (Burelbach et al., 1988). Departure of the param-
eter K̃ from ideal behavior is addressed by an accommo-
dation coefficient depending on interface/molecule
orientation and steric effects, which represents the prob-
ability of a vapor molecule’s sticking upon hitting the
liquid-vapor interface.

The balances discussed give rise to a ‘‘one-sided’’
model for evaporation or condensation (Burelbach
et al., 1988) in which the dynamics of the vapor are ig-
nored, except that mass is conserved and one retains the
effects of vapor thrust and the kinetic energy it pro-
duces. It is assumed that the density, viscosity, and ther-
mal conductivity of the liquid are much greater than
those in the vapor. Therefore the boundary conditions
(2.81) are significantly simplified.

The energy balance relation (2.81a) becomes

2k th]zq5jL , (2.83)

meaning that all the heat conducted to the interface in
the liquid is converted to latent heat of evaporation.

Next, the normal and tangential stress conditions at
the free surface, given by Eq. (2.81b), are reduced to

2
j2

rg
2T•n¢•n¢5ks~q!, (2.84a)

T•n¢• t¢5¹W s• t¢. (2.84b)

Finally, the remaining boundary conditions (2.79) and
(2.82) are unchanged.

We now consider the nondimensional formulation for
the two-dimensional case. The dimensionless mass bal-
ance Eq. (2.20) is modified by the presence of the non-
dimensional evaporative mass flux J ,

EJ5~2]TH2U]XH1W !@11~]XH !2#21/2, (2.85a)

or at leading order of approximation

]TH1]XQ1EJ50, (2.85b)

where

Q~X ,T !5E
0

H
UdZ (2.85c)

is the scaled volumetric flow rate per unit width parallel
to the wall, J5(h0L/k thDq)j , Dq[q02qs , and
r5r f . The parameter E is an evaporation number

E5
k thDq

rnL
, (2.85d)
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which represents the ratio of the viscous time scale
tv5h0

2/n to the evaporative time scale, te5(rh0
2L/

k thDq) (Burelbach et al., 1988). The latter is a measure
of the time required for an initially stationary film to
evaporate to dryness on a horizontal wall. For low
evaporation rates E is small. The dimensionless versions
of Eqs. (2.82) and (2.83) are

KJ5Q at Z5H , (2.86a)

]ZQ52J at Z5H , (2.86b)

where

K5K̃
k th

h0L
. (2.86c)

Equations (2.25), (2.26), (2.57), (2.85c), (2.86a), and
(2.86b) constitute the problem to be solved, whose solu-
tion is then substituted into Eq. (2.85b) to obtain the
desired evolution equation. The general dimensionless
evolution Eq. (2.27) will then contain an additional term
EJ , stemming from the mass flux due to evaporation/
condensation, which is expressed via the local film thick-
ness H . This will be done below.

2. Mass loss/gain only

We first consider the case of an evaporating/
condensing thin liquid layer lying on a rigid plane held
at a constant temperature. Mass loss or gain is retained,
while other effects are neglected.

Solving first Eq. (2.57) along with boundary condi-
tions (2.55a) and (2.86) and eliminating the mass flux J
from the latter yields the dimensionless temperature
field and the evaporative mass flux through the interface

Q512
Z

H1K
, J5

1
H1K

. (2.87)

An initially flat interface will remain flat as evaporation
proceeds and if surface tension, thermocapillary, and
convective thermal effects are negligible, i.e.,
M5C̄ 215eRePr50, it will give rise to a scaled evolu-
tion equation of the form

]TH1
Ē

H1K
50, (2.88)

where Ē 5e21E and K , the scaled interfacial thermal
resistance, is equivalent to the inverse Biot number
B21. Physically, KÞ0 represents a temperature jump
from the liquid surface temperature to the uniform tem-
perature of the saturated vapor, qs . The conductive re-
sistance of the liquid film is proportional to H , and, as-
suming infinite thermal conductivity of the solid, the
total thermal resistance is given by (H1K)21. For con-
stant superheat temperature q0–qs , Eq. (2.88) repre-
sents a volumetric balance, whose solution, subject to
H(0)51, is

H52K1@~K11 !222Ē T#1/2. (2.89a)

For K Þ 0 the film vanishes in finite time
Rev. Mod. Phys., Vol. 69, No. 3, July 1997
Te5
2K11

2Ē
(2.89b)

and the rate of disappearance of the film at T5Te re-
mains finite:

dH

dT U
T5Te

52
Ē

K
. (2.90)

The value of ]TH remains finite because as the film thins
the interface temperature q i , nominally at its saturation
value qs , increases to the wall temperature. If K50,
q i5qs and the temperature gradient (q02qs)/h→` ,
the thermal resistance vanishes and hence the mass flux
will go to infinity as h→0. However, for large evapora-
tion rates the interfacial temperature jump becomes sig-
nificant, so that nonzero K is significant. Further, when
the film gets very thin, a thermal disturbance develops in
the solid substrate, reflecting the fact that the thermal
conductivity of the solid is finite (see Sec. II.1). Hence
the two thermal resistances, acting in series, prevent the
evaporation rate from becoming infinite.

From Burelbach et al. (1988), the interfacial thermal
resistance K510 for a 10-nm-thick water film. Since K is
inversely proportional to the initial film thickness,
K;1 for h05100 nm, so that H/K;1 at this point.
However, H/K'1021 at h0530 nm, so the conduction
resistance becomes small compared to the interfacial
transport resistance shortly after van der Waals forces
become appreciable.

Another contribution to the surface shear stress oc-
curs when the vapor is flowing. Vapor molecules leaving
the interface must be accelerated to the bulk vapor ve-
locity vg from the interfacial velocity component parallel
to the wall. Similarly, the liquid molecules entering the
interface have been accelerated from the bulk liquid ve-
locity v f to the interfacial tangential velocity. Thus the
velocity profile in the base-state liquid film is given by

mu5Ft i2
1
2

j~vg2v f!Gz1~2]xp1r fg !S h0z2
1
2

z2D .

The split in the evaporative shear stress between the
bulk liquid and vapor is not readily determined and has
been equally apportioned in the above equation (Wallis,
1969; Chung and Bankoff, 1980). The total interfacial
shear stress is therefore continuous, but less than it
would be in the absence of evaporation and greater than
it would be in the absence of condensation. Here j is
positive for evaporation and negative for condensation,
and vg and v f are the tangential bulk velocity compo-
nents. Often the convective shear stress, the first term on
the right-hand side, is small, and we shall omit it in the
subsequent discussion.

3. Mass loss/gain, vapor thrust, capillarity,
and thermocapillarity

The dimensionless vapor thrust gives an additional
normal stress at the interface, P052 3

2Ē
2D21J2, where

D is a unit-order scaled ratio between the vapor and
liquid densities
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D5
3
2

e23
rg

r

and can be calculated using Eq. (2.87). The resulting
scaled evolution equation for a film evaporating on an
isothermal horizontal surface is obtained by using the
combination of Eqs. (2.27) and (2.88) with b05t050,
]XS50 (Burelbach et al., 1988):

]TH1Ē ~H1K !211]XF Ē 2D21S H

H1K D 3

]XH

1
1
3

C̄ 21H3]X
3 H G50. (2.91)

Since usually te@tv , Ē can itself be a small number and
then can be used as an expansion parameter for slow
evaporation compared to the nonevaporating base state
(Burelbach et al., 1988) appropriate to very thin evapo-
rating films.

Taking into account van der Waals forces, Burelbach
et al. (1988) gave the complete evolution equation for a
heated or cooled thin film on a horizontal plane surface
in the form

]TH1Ē ~H1K !211
1
3

C̄ 21]X~H3]X
3 H !

1]X$@AH211Ē 2D21H3~H1K !231KMPr
21

3~H1K !22H2#]XH%50. (2.92)

Here the first term represents the rate of volumetric ac-
cumulation, the second the mass loss, the third the sta-
bilizing capillary term, and the fourth, fifth, and sixth the
van der Waals, vapor thrust, and thermocapillary terms,
respectively, all destabilizing. This is the first full state-
ment of the possible competition among various stabiliz-
ing and destabilizing effects on a horizontal plate, with
scaling to make them present at the same order. Joo
et al. (1991) extended the work to an evaporating liquid
film draining down a heated inclined plate or a condens-
ing one on a cooled inclined plate. Figure 17 presents
typical examples of the evolution of the film on the hori-
zontal plane when all of the effects in Eq. (2.92) are
taken into account. Figure 17(a) shows the case of an
evaporating film, while Fig. 17(b) displays the case of
condensation. The film evolution presented in Fig. 17(a)
illustrates film rupture that occurs when all the liquid is
driven out of the thin spot. In the case shown in Fig.
17(b) the stabilizing effects of mass gain (condensation)
and thermocapillarity are considered. However, the de-
stabilizing actions of the vapor thrust and the van der
Waals forces are strong enough to lead to film rupture.

I. Liquid film on a thick substrate

The ideas described in the previous sections can be
easily implemented in the case of a liquid film lying on
top of a solid slab of thickness small compared to the
characteristic wavelength of the interfacial disturbance
(Oron et al., 1996). A schematic of this configuration is
Rev. Mod. Phys., Vol. 69, No. 3, July 1997
shown in Fig. 18. In this case the thermal conduction
equation in the solid has to be solved simultaneously
with the energy equation in the liquid. This coupled
thermal problem is written at leading order in e as

]Z
2 Qw50, 2

dw

h0
<Z<0, (2.93a)

]Z
2 Q50, 0<Z<H , (2.93b)

FIG. 17. Film profiles at different times: (a) quasiequilibrium
evaporation, when vapor recoil and mass loss are both impor-
tant, A51,C̄ 2151,K50,Ē 51,D51; (b) nonequilibrium con-
densation including mass gain, vapor recoil, and thermocapil-
larity, Ē 520.1, Ē 2D2151, MPr

21521, A51, C̄ 2151
K50.1. Copyright © 1988 Cambridge University Press. Re-
printed with the permission of Cambridge University Press
from Burelbach, Bankoff, and Davis (1988).

FIG. 18. Sketch of the liquid film on a thick substrate.
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with the boundary conditions

Qw5Q , 2k th,w]ZQw52k th]ZQ at Z50, (2.94a)

Qw51 at Z52
dw

h0
, (2.94b)

where Qw and dw /h0 are the dimensionless temperature
and thickness, respectively, of the solid slab and k th,w is
its thermal conductivity. Equation (2.94a) expresses the
conditions of continuity of both the temperature and
heat flux at the solid-liquid boundary, while Eq. (2.94b)
prescribes a uniform temperature at the bottom of the
solid substrate. Further boundary conditions have to be
taken at the vapor-liquid interface. At leading order
they can be either Eq. (2.58) in the nonvolatile case or
the combination of Eqs. (2.86) in the case of a volatile
liquid.

In the former case, the solution of Eqs. (2.93) and
(2.94) results in

Q512
B~ k̄ Z1dw /h0!

k̄ ~11BH !1Bdw /h0

,

Qw512
B~Z1dw /h0!

k̄ ~11BH !1Bdw /h0

, (2.95a)

with k̄ 5k th,w /k th , which implies an interfacial tempera-
ture in the form

Q i5F11BS H1
dw /k th,w

h0 /k th
D G21

. (2.95b)

Comparing the expressions for the interfacial tempera-
tures Q i as given by Eqs. (2.59) and (2.95b), one notices
that, in addition to the thermal resistances due to con-
duction and convection at the interface in the former
case, the latter contains a thermal resistance owing to
conduction in the solid. The evolution equation, analo-
gous to Eq. (2.62), will have the same form, except for
the obvious change in the denominator of the second
term.

In the case where evaporation is also considered, the
scaled interfacial thermal resistance K appears in the
results:

Q512
k̄ Z1dw /h0

k̄ ~K1H !1dw /h0

,

Qw512
Z1dw /h0

k̄ ~K1H !1dw /h0

,

Q i5
K

K1H1
dw /k th,w

h0 /k th

. (2.96)

The resulting evolution equation then has the form of
Eq. (2.91), where the denominators of the second and
third terms contain an additional additive term
a[(dw /k th,w)/(h0 /k th). This additional term represents
the ratio between the thermal conductive resistances of
the solid and the liquid. Figure 19 displays the interfaces
Rev. Mod. Phys., Vol. 69, No. 3, July 1997
and the corresponding mass fluxes close to the moment
of rupture for two values of the parameter a , a50 and
a51. In the case of a50, the flux J→` in the vicinity of
the rupture point, indicating the emergence of a singu-
larity. For a Þ 0, the flux J remains bounded everywhere.

Using Eqs. (2.96) one can derive the expressions for
the temperatures along the gas-liquid (GL) and solid-
liquid (SL) interfaces: QGL[Q(H) and QSL[Qw(0).
When the film ruptures, i.e., H50, the values for QGL
and QSL are equal, if K21 is finite or if

a5
dw

k̄ h0

Þ0, (2.97)

independent of the value of K . However, the tempera-
ture singularity QGL Þ QSL emerges at the rupture point
when both K→0 and a50. Equation (2.97) is the suffi-
cient condition to be satisfied in order to relieve this
singularity (Oron et al., 1996a). Indeed, if it is satisfied

lim
H→0

$ lim
K→0

QGL%5 lim
H→0

$ lim
K→0

QSL%50,

and the singularity is removed. The problematic case of
K→0 arises if quasiequilibrium evaporation is present.

FIG. 19. Film profiles for rupture with evaporation. (a) The
film interface at rupture for a50 and a51, as given by Eq.
(2.91) with A51,K50,Ē 50.5,C̄ 2151, (b) the evaporative
mass flux J5Ē (H1a)21 along the film interface, as calculated
for the two cases shown in (a).
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This case corresponds to the situation in which tempera-
ture at the free interface is effectively specified as the
saturation temperature qs (Burelbach et al., 1988). Such
a situation leads to temperature singularities at rupture
if condition (2.97) is not satisfied. In the evaporative
case, an additional singularity of an infinite evaporative
mass flux Ē J5Ē (H1a)21 emerges at the rupture point
if a50.

J. Flows in a cylindrical geometry

In many technological applications, including coating
of wires (e.g., creation of an insulator layer on a wire,
protecting optical fibers, painting textile fibers, etc.),
cooling of heated columns by falling liquid films, and
others, one encounters a situation in which a thin liquid
layer rests or flows on a cylindrical surface, which in-
duces an extra component of curvature on the interface.
This situation is similar to the one studied by Rayleigh
(1894) in which thin liquid jets and liquid columns are
subject to breakups driven by surface tension. Long-
wave methods presented above can be applied in order
to study the nonlinear evolution of these physical sys-
tems. Disintegration of liquid columns into drops was
studied by Eggers (1993, 1995), Shi et al. (1994), and Eg-
gers and Dupont (1994). In contrast to the case of liquid
columns, the presence of a solid surface causes signifi-
cant shear stress which can introduce some changes into
the dynamics of the film, thus motivating the investiga-
tion of the cylindrical case. Long-wave methods dis-
cussed earlier can be applied here as well.

1. Capillary instability of a liquid thread

A problem of axisymmetric flow of two concentric flu-
ids in a pipe was considered by Hammond (1983). If one
neglects gravity and assumes that the outer film is much
thinner and more viscous than the inner one,

e[
R2a

R
!1, e

m i

mo
!1, (2.98)

then the two flows are decoupled. The equations can
first be separately solved for the outer film, and an evo-
lution equation can then be derived for the interface
between the fluids:

r5R02h~x ,t !.

Here r and x are the radial and the axial directions of
the cylindrical coordinates, R0 is the radius of the pipe,
r5a is the undisturbed radius of the interface, and sub-
scripts i and o denote the properties of the inner and
outer layers, respectively.

Take the characteristic velocity as

U05
s

mo
,

and scale the variables as follows:

x5R0X , r5R0~12eZ !, t5e23R0U0
21T ,

h5eR0H , u5e3U0U , w5e4U0W , (2.99)
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p5sR0
21~211eP !, (2.100)

where u , w , and p are, respectively, the axial and radial
components of the flow field and the pressure in the
outer layer. Upon introducing Eqs. (2.99) and (2.100)
into the governing equations (2.10)–(2.12) written in cy-
lindrical coordinates, with F50, and writing the depen-
dent variables in perturbation series in e , one obtains at
leading order Eqs. (2.22). The boundary conditions, Eqs.
(2.23) and (2.24) with b05t05S50 and a modified Eq.
(2.24b) with P050, give

P52H2]X
2 H , (2.101)

where C̄ 2151 due to the chosen scaling of the variables.
The interfacial curvature in cylindrical coordinates is
given by

k5
1

R0
S 12

h

R0
2R0]x

2h D1higher-order terms.

(2.102)

Equation (2.102) shows that the curvature of the film
interface is proportional to the sum of the curvature of
the cylindrical substrate, the deflection of the interface
in the radial direction, and its deformation in the axial
direction. As a result, two terms appear in the expres-
sion for the capillary pressure in Eq. (2.101).

Solution of the Eqs. (2.22)–(2.24a) and (2.101) results
in the evolution equation

]TH1
1
3

]X@H3]X~H1]X
2 H !#50 (2.103a)

or in dimensional form

mo] th1
s

3R0
]x@h3]x~h1R0

2]x
2h !#50. (2.103b)

Comparison between Eqs. (2.37) and (2.103) reveals
similarities, although they describe different physical ef-
fects. Owing to the thinness of the outer layer the axi-
symmetric dynamics is similar to that of a two-
dimensional film, with one exception: the action of the
additional term in the capillary pressure is analogous to
that of the unstable density stratification in the gravity
field leading to Rayleigh-Taylor instability. The capillary
instability is generated by the curvature of the cylindri-
cal interface. For the linear and nonlinear stability
analyses the reader is referred to Sec. II.D and Ham-
mond (1983). Figure 20 illustrates quasi-steady states
obtained from the solution of Eq. (2.103a). It follows
from Eq. (2.101) that the lobes with wave number larger
than unity are at positive pressure, while those with
wave number smaller than unity are at negative pres-
sure. Therefore there is drainage from a narrow lobe to
a wide one. If the gap between them does not thin too
rapidly, the liquid will drain completely from the small
lobe. However, if the thinning is fast, then at the final
state both lobes will coexist (Hammond, 1983).

An evolution equation similar to Eq. (2.103), for a
thin isothermal liquid film undergoing capillary instabil-
ity on a surface of a cylinder, was derived by Yarin et al.
(1993)
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FIG. 20. Quasisteady long-time behavior of
an annular film, Eq. (2.103a): (a) D523/2p ;
(b) D56p and Z52X/D . Initial disturbances
are represented by the dashed lines. The pres-
sure within each of the lobes is almost con-
stant; the small lobes are slowly draining into
their larger neighbors. Only half a period is
shown. Copyright © 1983 Cambridge Univer-
sity Press. Reprinted with the permission of
Cambridge University Press from Hammond
(1983).
m] th1
s

6R0
]x$h2]x@h21R0

2]x
2~h2!#%50. (2.104)

The dynamics of the interface, as described by Eqs.
(2.103) and (2.104), are similar in most parametric re-
gimes. The differences between the equations is due to
the use of different methods for their derivation. [A
method of control volumes was employed to derive Eq.
(2.104).] The similarity of the solutions suggests that
both methods preserve the main features of the flow.
Yarin et al. (1993) also considered the influence of
temperature-dependent viscosity on the evolution of a
thin film on a cylindrical surface while solving the
coupled thermal-hydrodynamic problem.

2. Flow on a horizontal cylinder

Lubrication theory can also be applied to the drainage
of a thin, initially uniform film on a horizontal cylinder.
This case is important in extrusion of pipe or wire coat-
ings and film flow over tubes in heat transfer devices.
Goren (1962) examined the linear instability of an iso-
thermal annular coating on a wire, and found, when the
film is very thin, that the most rapidly growing distur-
bance satisfies the condition 2pR0/l50.707. Xu and
Davis (1985) studied the linear instability of capillary
jets with thermocapillarity. They found that capillary
breakup of the jet can be retarded or even suppressed
for small Prandtl numbers Pr and large Biot numbers
B . In the limiting case of B→` the jet becomes isother-
mal subject to the axial shear stress at the interface. In
this case the capillary breakup can be entirely elimi-
nated. Reisfeld and Bankoff (1992) developed the non-
linear evolution equation for a draining thin film on a
horizontal cylinder, taking into account gravity, surface
tension, thermocapillarity, and long-range molecular
forces. The possibility of steady states for the film under
a variety of thermal conditions, for both heating and
cooling, was examined. The early-time dynamics of the
film were also investigated. The roles of surface tension
and gravity in determining the azimuthal location of lo-
cal thinning and the influence of intermolecular forces in
promoting rupture of these thin regions gave some un-
expected film shapes. The problem geometry is shown in
Fig. 21. Symmetry conditions are applied as

]uH~0,T !50, ]uH~p,T!50, (2.105)
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where u is the azimuthal angle.
Conservation of fluid volume requires that

E
0

2p

H~u ,t !du5V0 , (2.106)

where V0 is the initial volume per unit width. Viscous
scales are used for the radial and azimuthal velocities,
n/R0 and n/h0, respectively, where R0 is the cylinder
radius and h0 is the initial film thickness. The aspect
ratio is

e5h0 /R0!1. (2.107)

The derivation of the evolution equation follows
along the same general lines as for a horizontal plane
wall, with the added complication of the gravity force’s
being azimuthally position dependent. The evolution
equation thus obtained is

]TH1]u$H3@Grsinu1S̄ ~]uH1]u
3H !#

1BMPr
21H2]uH~11BH !221AH21]uH%

50. (2.108)

Here

FIG. 21. Schematic representation of the problem of a film on
a horizontal cylinder. Copyright © 1992 Cambridge University
Press. Reprinted with the permission of Cambridge University
Press from Reisfeld and Bankoff (1992).



953Oron, Davis, and Bankoff: Long-scale evolution of thin liquid films
S5
sh0

rn2 S h0

R0
D 3

,

S5S̄ e23 in order to retain the effects of thermocapillary
forces and surface tension at leading order. A compila-
tion is given of the magnitudes of the various parameters
for water and for mercury on a thin wire and a large
tube. The gravity number Gr ,

Gr5
gh0

3

3n2 ,

can be removed from Eq. (2.108) by rescaling the time
variable. The Bond number Bo then appears in the
equation

Bo5
rgR0

3

3h0s
.

For unit-order Bond number Bo and A50, one ob-
tains by integrating and applying the symmetry condi-
tion (2.105)

]u
2H1H5Bocosu1const, (2.109)

which has no 2p-periodic solutions, unless the gravity
forces are negligible compared to surface tension,
Bo50. For Bo.0, one can obtain pendant-drop solu-
tions. However, these are not well described by the lu-
brication approximation. For large Bond number and
stabilizing van der Waals forces (A,0), a steady state is
possible, as intermolecular forces counter the deforma-
tion due to gravity. If van der Waals forces are negli-
gible, with Bo21→0, the isothermal equation becomes

1
Gr

]TH1]u~H2sinu!50. (2.110)

Solution by the method of characteristics gives

H~u ,T !5~112GrT !21/2 for u5u050,

H~u ,T !5~122GrT !21/2 for u5u05p ,

H~u ,T !5S sinu0

sinu D 1/3

for 0,u,2p ,uÞp ,

where u5u(GrT),u0[u(T50), and the time depen-
dence is given implicitly by

F(g~u!,sin75°)2F(g~u0!,sin75°)

1481/4~sinu0!2/3GrT50. (2.111)

Here F(f ,k) is an incomplete elliptic integral of the first
kind,

F~f ,k !5E
0

f dx

A12k2sin2x
,

and

g~u!5arccosS A3211~sinu!2/3

A3112~sinu!2/3D .

Figure 22 shows the time dependence of the local film
thickness in this case. Equation (2.109) predicts that the
Rev. Mod. Phys., Vol. 69, No. 3, July 1997
film profile becomes singular at u5u05p as
GrT→0.5, so that the lubrication approximation is ap-
propriate only for smaller times (approximately up to
GrT50.47).

A cusp arises because the fourth-order spatial deriva-
tive term has been omitted when Bo2150, so that a
boundary layer develops at u5p . Using singular pertur-
bation theory, one finds that the boundary layer thick-
ness D5O(Bo21/4) gives an indication of the region
over which surface tension affects the shape of the thin
layer. For small, but nonzero, Bo21 Fig. 23 shows the
expected unsteady film flow with a pendant-drop shape,
where the weight of the fluid in the drop is balanced by
the force of surface tension. With A50.1, van der Waals
forces cause rupture at a locally thin region whose azi-
muthal position depends on the Bond number. When
the cylinder is heated, thermocapillary forces generate a
flow that augments that due to gravity, while these same
forces generate an opposing flow when the cylinder is
cooled. These cause the film to thin at a location farther
from or closer to the top of the cylinder for a given
Bond number (Fig. 24), with Bo2150.1,M̄ /PrGr55,
and B51. Thus a wide variety of interfacial behavior is
possible with a heated cylinder. For large Marangoni
number, the film thickness can become very small lo-
cally, and for A.0, rupture occurs. However, by varying
the physical properties of the fluid (Bo ,M/PrGr) it is
possible to prevent or promote film rupture. With a
cooled cylinder, thermocapillary forces oppose the
drainage, and it is possible to restrain the flow even for
large Bond numbers.

K. Flow on a rotating disc

The centrifugal spinning of volatile solutions has been
found to be a convenient and efficient means of coating

FIG. 22. Unsteady film flow for an isothermal film on a hori-
zontal cylinder, Bo2150,A50. Copyright © 1992 Cambridge
University Press. Reprinted with the permission of Cambridge
University Press from Reisfeld and Bankoff (1992).
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planar solids with thin films. This process, known as spin
coating, has been widely used in many technological
processes. Two important phases of the process are usu-
ally considered. Phase one occurs shortly after the liquid
volume is delivered to the disk surface. At the outset of
this phase the liquid film, assumed to be flat, is relatively
thick (greater than 500 mm) so that the Reynolds num-
ber for the flow is appreciable. The film thins due to
radial drainage and solvent evaporation. Inertial forces
are important and may lead to the appearance of insta-

FIG. 23. Unsteady film flow for an isothermal film on a hori-
zontal cylinder, Bo2150.25,A50. Copyright © 1992 Cam-
bridge University Press. Reprinted with the permission of
Cambridge University Press from Reisfeld and Bankoff (1992).

FIG. 24. Unsteady film flow and rupture for a heated film with
Bo2150.1,M/PrGr55. Copyright © 1992 Cambridge Univer-
sity Press. Reprinted with the permission of Cambridge Uni-
versity Press from Reisfeld and Bankoff (1992).
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bilities of the spinning film. Phase two occurs when the
film has thinned to the point where inertia is no longer
important (film thickness less than 100 mm), but corru-
gations to the fluid interface may still be present due to
the instabilities that were generated during phase one.
The film continues to thin due to radial drainage and
evaporation until the solvent becomes depleted and the
film ceases to flow.

The isothermal, axisymmetric flow of an incompress-
ible viscous liquid on a horizontal rotating disk was con-
sidered by Reisfeld et al. (1991). The fluid, consisting of
dissolved or suspended solute in a volatile solvent, is
evaporating due to the difference in the vapor pressure
between the solvent species at the fluid-vapor interface
and that present in the gas phase. The appropriate
physical configuration is shown in Fig. 25. Cylindrical
polar coordinates (r ,u ,z) are used in a frame of refer-
ence rotating with the disk.

The liquid-vapor interface is located at z5h(r ,t). In
the coordinate system chosen the outward unit normal
vector n¢ and unit tangent vector t¢ are

n¢5
~2]rh ,0,1!

@11~]rh !2#1/2 , t¢5
~1,0,]rh !

@11~]rh !2#1/2 . (2.112)

The equations of motion analogous to Eqs. (2.10) and
including the centripetal forces and Coriolis acceleration
are written in the vector form as

¹W •v¢50, (2.113a)

r~v¢1v¢•¹W vW !52¹W p1m¹2v¢2r

3@g¢12W¢ 3v¢1W¢ 3~W¢ 3v¢!# . (2.113b)

Here W¢ is the angular velocity vector with the compo-
nents (0,0,V). The boundary condition are given by
Eqs. (2.12b) with ]ss50 and f¢50 and Eq. (2.85), all
written in cylindrical polar coordinates.

The characteristic length scale in the horizontal direc-
tion is chosen as the radius of the rotating disk L and
the velocity scale is taken as U05V2Lh0

2/n . A small pa-
rameter e is defined in accord with Eq. (2.13a) as
e5h0 /L .

The dimensionless parameters of the problem are the
Reynolds number Re , as given in Eq. (2.18), the Froude
number F ,

F5S U0
2

gh0
D 1/2

, (2.114)

FIG. 25. Schematic representation of rotating liquid film. Re-
printed with the permission of the American Institute of Phys-
ics from Reisfeld, Bankoff, and Davis (1991).



)

955Oron, Davis, and Bankoff: Long-scale evolution of thin liquid films
and the evaporation number, which for a prescribed
evaporative mass flux j (Levich, 1962) is defined as

E5
3j

2eU0r
. (2.115)

In contrast to the above discussions, two terms of the
velocity are retained in the perturbation expansion.
When these are substituted into the mass conservation
Eq. (2.113a), one obtains the following evolution equa-
tion:

]TH1
2
3

E1
1
3rF r2H31eReS 5

12
Er2H42

34
105

r2H7D G
1

e

3
]rH ReS 2

5
r3H62rF22H3D ]rH

1rC̄ 21H3]rF1
r
]r~r]rH !G J 50. (2.116)

If the order-e terms were dropped in Eq. (2.116), only
local mass loss and centripetal drainage would be mod-
eled and no instabilities would result. When the order-
e terms are retained, inertia is included and kinematic
waves can be amplified. See also Sec. VI for further dis-
cussions of such analyses.

For most spin coating applications, both C̄ 21 and
F22 are very small, although they may be very impor-
tant in planarization studies, in which the leveling of liq-
uid films on rough surfaces is investigated. Equation
(2.116) can be thus simplified

]TH1
2
3

E1
1
3r

]rF r2H31eReS 5
12

Er2H42
34

105
r2H7

1
2
5

r3H6]rh D G50. (2.117)

This simplified equation can then be used for further
analysis. Looking for flat basic states H5H̄ (T), one de-
rives from Eq. (2.117) the ordinary differential equation

]TH̄ 1
2
3FE1H̄ 31eReS 5

12
EH̄ 42

34
105

H̄ 7D G50,

(2.118)

augmented with the initial condition H̄ (0)51.
For the case where evaporation is negligible (E50),

the film thins due to centrifugal drainage, and the
leading-order in e solution is

H̄ 5S 11
4
3

T D 21/2

, (2.119)

which predicts a decrease of the thickness to zero as
T→` .

In the case of E.0, both evaporation and drainage
cause thinning of the layer. Equation (2.118) predicts a
film that thins monotonically to zero thickness in a finite
time, Td , as shown in Fig. 26. Explicit expressions for
H̄ (T) and for Td(E) are given in Reisfeld et al. (1991).
In the case of absorption or condensation, E,0, drain-
age competes with absorption and inertia to thin the
Rev. Mod. Phys., Vol. 69, No. 3, July 1997
film. Initially, the film thins due to drainage, until the
rate of mass gain due to absorption and the inertial con-
tribution balances the rate of mass loss due to drainage.
At this point the basic state reaches a steady state (Fig.
26). Far from the steady state, the film thins monotoni-
cally. Once the steady state is reached, the position of
the basic state interface H̄ s satisfies the equation

H̄ s
32uEu2eReH̄ s

4S 5
12

uEu1
34

105
H̄ s

3D50. (2.120

For small values of e the approximate solution is

H̄ s;uEu1/3. (2.121)

Linear stability analysis of flat base states is given in
Reisfeld et al. (1991).

Stillwagon and Larson (1990) considered the spin
coating process and leveling of a non-volatile liquid film
over an axisymmetric, uneven solid substrate. For a
given local dimensionless height of the substrate, l (r),
their equation, deduced from the Cartesian version valid
for capillary leveling of a film in a trench, resembles Eq.
(2.116) with E50, where eRe is formally set to zero

]TH1
1
3r

]r@r2H31rC̄ 21H3~]r
3H1]r

3l !#50. (2.122)

Stillwagon and Larson (1990) calculated steady-state so-
lutions for Eq. (2.122) for two different initial profiles, a
flat film and one with a constant film thickness consistent
with the unevenness of the substrate. These initial con-
ditions led to the same final steady solutions. Experi-
ments with liquid salt mixture films reported in Still-
wagon and Larson (1990) demonstrated quantitative
agreement between measured film profiles and those ob-
tained from Eq. (2.122). The results of their experiments
with volatile fluids showed that film shrinkage occurred,
because of evaporation, and the final stage of film level-
ing was affected. Therefore it was suggested that the
evolution of an evaporating spinning film be divided into
two stages with fluid flow dominating the first stage and
solvent evaporation dominating the second.

FIG. 26. Basic-state film thickness for principal values of the
evaporation number E for rotating liquid films. Reprinted with
the permission of American Institute of Physics from Reisfeld
et al. (1991).
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L. Summary

In this section we have presented the basics of the
long-wave approach to the hydrodynamics of thin,
bounded liquid films. The approach is shown to be inti-
mately connected to that used in the theory of hydrody-
namic lubrication. Using the long-wave approach we
have derived a general evolution equation governing the
spatiotemporal behavior of the interface of a thin liquid
film subjected to several physical effects, such as surface
tension, gravity, van der Waals attractions, thermocapil-
larity, temperature dependence of physical properties of
the liquid, evaporation/condensation, finite thermal re-
sistance of the solid substrate, rotation of the substrate,
and an additional component of the interfacial curvature
induced by the curvature of the solid substrate. The dy-
namics of the velocity, pressure, and temperature (in the
case of nonisothermal films) within the fluid are shown
to be directly determined from that of the interface. In
each particular case considered here the appropriate
evolution equation is derived from the general case, and
its typical solutions are discussed. Linear stability analy-
sis of various base-state solutions of these evolution
equations is presented.

III. SPATIAL NONUNIFORMITIES AT THE BOUNDARIES

The full set of governing equations and boundary con-
ditions can also be reduced to an evolution equation
when the conditions specified at the boundaries vary
slowly in space (or time).

A. Van der Waals forces, surface tension,
thermocapillarity, and nonuniform
temperature at the bottom

Here b05P050,F5Fr1AH231GH , and t050,
where G is given by Eq. (2.37c). We also assume that
the dimensionless temperature at the rigid boundary
Z50 is prescribed by a periodic function slowly varying
with X ,

Q5Qb~X ! at Z50. (3.1)

Then, solving Eqs. (2.57), (2.58), and (3.1), one obtains
the temperature distribution in the film

Q5Qb~X !F12
BZ

11BH G2
BdZ

11BH
, (3.2)

and at the interface,

Q i5
Qb~X !2BdH

11BH
. (3.3)

Here d is the ratio of the difference between the average
bottom and the gas-phase temperatures, and the varia-
tion of the temperature along the bottom,
Dqb[qb ,max2qb ,min . Therefore the dimensionless in-
terfacial shear stress ]XS is given by

]XS52Mg~H !]XFQb~X !2BdH

11BH G (3.4)
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and the resulting evolution equation (2.27) reads

]TH1]XF S AH212
1
3

GH3D ]XH G
1

M

2
]XH H2g~H !]xFQb~X !2BdH

11BH G J
1

1
3

C̄ 21]X@H3]X
3 H#50. (3.5)

Note that H5const is not a solution of Eq. (3.5) due to
spatial nonuniformity of Qb . In Eq. (3.4), and conse-
quently in Eq. (3.5), the d term represents the contribu-
tion of the temperature drop across the layer, while the
term containing Qb is due to the nonuniform tempera-
ture at the bottom. Equation (3.5) was obtained by Tan
et al. (1990) for the case of surface tension linearly de-
creasing with temperature, g(H)51. They investigated
possible steady states of Eq. (3.5) for B!1. It was found
that in the absence of van der Waals forces continuous
steady states could be sustained only if the dynamic
Bond number Bdyn

Bdyn5

3S 2
]s

]q DDqb

2rgh0
2 (3.6)

did not exceed a certain value depending on the tem-
perature distribution Qb(X). This predicts well the ex-
perimental observations of Burelbach et al. (1990; see
Fig. 4 and Sec. VII below). The value of the dynamic
Bond number Bdyn describes the relative magnitude of
the destabilizing thermocapillary and stabilizing gravity
terms proportional to M and G , respectively. Figure 27
reproduced from Fig. 3 in Tan et al. (1990) displays pos-
sible steady states for a fixed value of C̄ 21/G and vari-

FIG. 27. Dimensionless steady layer profile H(X) for various
values of Bdyn , for a fixed value of C̄ 21/G50.6174, calculated
from Eq. (3.5) with Qb(X)5

1
2cosX and B50; dashed line,

Bdyn50.627; dotted line, Bdyn51.255; solid line Bdyn51.445.
Reprinted with the permission of the American Institute of
Physics from Tan et al. (1990).
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ous values of Bdyn calculated for Qb(X)5 1
2cosX. The

minimal thickness of the film in its steady state decreases
when Bdyn increases.

B. Van der Waals forces, surface tension,
thermocapillarity, evaporation, and nonuniform heat flux
at the bottom

The heat flux per unit length of the bottom plane is
now prescribed as a smooth, slowly varying function
qQ(X), where Q(X) is a dimensionless function and
q is a characteristic value of heat flux, such as its ampli-
tude. The temperatures in the governing set of equations
and boundary conditions can then be scaled in units of
qh0 /k th . The thermal part of the problem consists of
Eq. (2.57) with the boundary conditions (2.86a) and
(2.86b),

]ZQ52Q~X ! at Z50. (3.7)

The solution for both the temperature field and the
evaporative mass flux is given by

Q5Q~X !@H2Z1K# , J5Q~X !. (3.8)

Following the steps outlined in the derivation of Eqs.
(2.91) and (2.92) with ]XS52(MK/Pr)]XQ(X) and
P052E2D21Q2 accounting for the thermocapillary ef-
fect and vapor recoil, respectively, one obtains (Oron
et al., 1997)

]TH1EQ~X !1
1
3

C̄ 21]X~H3]X
3 H !

1]XF S AH212
1
3

GH3D ]XH G2
MK

2Pr
]X~H2]XQ !

2E2D21]X@H3]X~Q2!#50. (3.9)

In the particular case of a spatially uniform heat flux
Q5const at the bottom. Equation (3.9) reduces to the
one appearing in Burelbach et al. (1988),

]TH1EQ1
1
3

C̄ 21]X~H3]X
3 H !

1]XF S AH212
1
3

GH3D ]XH G50. (3.10)

In this particular case the interfacial temperature and
the evaporative mass flux are uniform, Q i5KQ ,J5Q ,
as given by Eq. (3.8), and therefore both vapor thrust
and thermocapillary effect are absent. The heat flux uti-
lized was chosen as

Q~X !5expF2aS X2
1
2

D D 2G , (3.11)

where D is the length of the periodic domain and a is a
positive constant. The trough is generated around the
location of the maximum heat flux where the rate of
evaporation is the largest. In the simplest case of no
vapor thrust and no thermocapillarity, there is mono-
tonic thinning of the film, which resembles topologically
the pattern shown in Fig. 12. The emergence of a satel-
Rev. Mod. Phys., Vol. 69, No. 3, July 1997
lite drop or drops at the late stage of evolution for mod-
erate a , as shown in Fig. 28, is due to the thermocapil-
larity (mainly) and vapor thrust.

C. Summary

In this section we have considered physical problems
associated with slowly varying spatial nonuniformities at
the boundaries. The long-wave approach has been ap-
plied to these problems, and typical solutions of the re-
sulting evolution equations have been discussed. The ex-
amples discussed include the cases of spatially
nonuniform temperature and heat flux.

IV. PROBLEMS REDUCING TO SETS
OF EVOLUTION EQUATIONS

A. Free films

1. Evolution equation

Free films of liquid are bounded by two interfaces be-
tween liquid and gas or liquid and two other liquids.
Examples of such a configuration may be provided by
two bubbles in a liquid or two drops of different liquids
suspended in a third liquid. A liquid film confined be-
tween these is then a free film. Therefore, in order to
study the behavior of such a free film, one needs to for-
mulate the interfacial boundary conditions at both the
interfaces, given by z5h(1)(x ,t) and z5h(2)(x ,t). The
governing equations (2.10) in the bulk, however, remain
unchanged. The boundary conditions read, at z5h(i)

3(x ,t),

w5] th
~ i !1u]xh ~ i !, (4.1)

T•n¢ ~ i !52k~ i !s~ i !n¢ ~ i !1~]ss
~ i !!t¢~ i !1 f¢~ i !, (4.2)

where the index i refers to the ith interface. The unit
vectors n¢ (i) and t¢(i) are given by

FIG. 28. Evolution of the dimensionless layer profile H(X)
for a film heated by spatially nonuniform heat flux. The evo-
lution is described by Eqs. (3.9) and (3.11), with
E50,A51,G50,C̄ 2151,a51. D2150,MKPr

21/2540. A sat-
ellite drop splits into two partially coalesced drops.
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n¢ ~1 !5
~2]xh ~1 !,1!

@11~]xh ~1 !!2#1/2 , t¢~1 !5
~1,]xh ~1 !!

@11~]xh ~1 !!2#1/2,

(4.3a)

n¢ ~2 !5
~]xh ~2 !,21 !

@11~]xh ~2 !!2#1/2 , t¢~2 !5
~1,]xh ~2 !!

@11~]xh ~2 !!2#1/2 .

(4.3b)

Going to the long-wave limit of the governing set of
dimensionless equations and boundary conditions, as
in Sec. II, yields the system consisting of Eqs. (2.15)
and the following boundary conditions. At Z
5H(1)(X ,T)[h(1)/h0,

]TH ~1 !1U]XH ~1 !5W , (4.4a)

$~UZ1e2]XW !@12e2~]XH ~1 !!2#24e2~]XH ~1 !!]XU%

5t0
~1 !@11e2~]XH ~1 !!2#

1~]XS~1 !!@11e2~]XH ~1 !!2#1/2, (4.4b)

2P2P0
~1 !1

2e2

@11e2~]XH ~1 !!2#
$]XU@e2~]XH ~1 !!221#

2]XH ~1 !~]ZU1e2]XW !%5
C1

21e3]X
2 H ~1 !

@11e2~]XH ~1 !!2#3/2 ,

(4.4c)

and at Z5H(2)(X ,T)[h(2)/h0,

]TH ~2 !1U~]XH ~2 !!5W , (4.5a)

$~]ZU1e2]XW !@12e2~]XH ~2 !!2#24e2~]XH ~2 !!]XU%

52t0
~2 !@11e2~]XH ~2 !!2#

2~]XS~2 !!@11e2~]xH ~2 !!2#1/2, (4.5b)

2P2P0
~2 !1

2e2

@11e2~]XH ~2 !!2#
$~]XU !@e2~]XH ~2 !!221#

2~]XH ~2 !!~]ZU1e2]XW !%5
C2

21e3]X
2 H ~2 !

@11e2~]XH ~2 !!2#3/2 ,

(4.5c)

where the

Ci5
U0m

s0
~ i ! (4.6)

are the corresponding capillary numbers.
Let

C̄ i5Cie
23, i51,2 (4.7)

with C̄ i5O(1),i51,2 and e→0, which yields a system
analogous to Eqs. (2.22)–(2.24):

]Z
2 U5]XP1]XF , (4.8a)

05]ZP1]ZF , (4.8b)

]XU1]ZW50, (4.8c)

at Z5H(1)(X ,T):

]TH ~1 !1U]XH ~1 !5W , (4.8d)
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]ZU5t0
~1 !1]XS~1 !, (4.8e)

2P0
~1 !2P5C̄ 1

21]X
2 H ~1 !, (4.8f)

at Z5H(2)(X ,T):

]TH ~2 !1U]XH ~2 !5W , (4.8g)

]ZU52t0
~2 !2]XS~2 !, (4.8h)

2P0
~2 !2P5C̄ 2

21]X
2 H ~2 !. (4.8i)

This set of equations can, in principle, be solved and
further reduced to a single (or a set of) evolution equa-
tion(s), as shown in Sec. II. Several particular cases are
discussed next.

2. Van der Waals forces and constant surface tension
in a free film

A planar film of liquid with van der Waals attractions
and interfaces of constant surface tension is a simple
model of the bridge between two gas bubbles which at
rupture results in the coalescence of the bubbles. Here
t0

(i)50, P0
(i)50, ]XS(i)50, and F5Fr1A(H(1)

2H(2))23.
To simplify the problem given by Eqs. (4.8) one may

consider the varicose or ‘‘squeeze’’ mode, where
H[H(1)52H(2) along with symmetric interfacial trac-
tions. Then, instead of boundary conditions at one of the
interfaces, one formulates the symmetry conditions at
the midplane Z50 (Prevost and Gallez, 1986; Erneux
and Davis, 1993),

W50, ]ZU50 at Z50. (4.9)

The problem is thus governed by the set of Eqs. (4.8a)–
(4.8f) and (4.9).

Prevost and Gallez (1986) solved the problem of the
evolution of a free film in the squeeze mode, assuming
that the interface is immobile. This condition replaces
Eq. (4.8e) by

U50 at Z5H , (4.10)

where H[H (1). Equations (4.8a)–(4.8d), (4.8f), (4.9),
and (4.10) are then solved and the resulting evolution
equation reads

]TH2
1
3

]X@H3]XP̄ #50, (4.11)

where P̄ is again given by Eq. (2.25).
Erneux and Davis (1993) studied the varicose mode of

evolution of a free film, relaxing the immobility condi-
tion (4.10) at the interfaces employed by Prevost and
Gallez (1986). The solution of these equations does not
provide us with the value of the tangential velocity
U5U(X ,T), leaving it unknown at this stage:

]TH1]X~UH !50. (4.12a)

Closure is not achieved by using only the leading-order
terms, and so has to proceed to the next order of ap-
proximation. Assume small Reynolds number

Re5eR̄ e , R̄ e5O~1 ! (4.12b)
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and small capillary number

C5eC̄ , C̄ 5O~1 !. (4.12c)

The set of governing equations is next solved at order
e to obtain the needed closure. As a result, the evolu-
tionary set comprises Eq. (4.12a) and

H@R̄ e~]TU1U]XU !1]XF2C̄ 21]X
3 H#

54]X~H]XU !. (4.12d)

Prevost and Gallez (1986) studied a special case of this
problem, in which the surface viscosity of the film inter-
face is much more important than the viscosity of the
liquid, and the set of evolution equations (4.12a) and
(4.12d) derived by Erneux and Davis (1993) reduces to
Eq. (4.11). On the other hand, when the surface viscosity
of the film interface is negligible, Eqs. (4.12a) and
(4.12d) reduce to Eq. (2.41b) for a bounded film, as de-
rived by Williams and Davis (1982).

Linearization of Eqs. (4.12a) and (4.12d) around the
state U50,H51/2 yields a characteristic equation of the
form

R̄ ev214k82v1k82~C̄ 21k8223A !50, (4.13)

which implies that instability is possible only if the last
term in Eq. (4.13) is negative. It thus follows that, as in
the case of the bounded film (Sec. II.C), surface tension
stabilizes the film, whereas the negative disjoining pres-
sure A.0 destabilizes it, and the cutoff wave number is
given by

kc85A6AC̄ . (4.14)

Weakly nonlinear analysis of Eqs. (4.12a) and (4.12d)
by Erneux and Davis reveals that, as in the case of the
free film, nonlinear effects accelerate the rupture pro-
cess of the film. The degree of augmentation was also
estimated. Sharma et al. (1995) considered the role of
various nonlinearities on rupture of free thin films based
on Eqs. (4.12a) and (4.12d). Inertial and nonlinear vis-
cous corrections were found to have minor effects on the
evolution of a film perturbed with the small-amplitude,
fastest-growing mode. When k8.kc8 , linearized theory
shows that the film is stable to infinitesimal disturbances.
However, weakly nonlinear theory shows that if distur-
bances have large enough amplitude, then subcritical in-
stabilities (see, for example, Seydel, 1988) are still pos-
sible when k8.kc8 . When the threshold amplitude is
exceeded, there is a sudden change from the planar film
to the ruptured film.

Ida and Miksis (1996) solved Eqs. (4.12a) and (4.12d)
numerically and determined that the film evolves toward
rupture. In the neighborhood of the rupture point they
found a similarity solution in the form

H5~TR2T !mf1~j!, U5~TR2T !nf2~j!,

where j5X(TR2T)2p. By balancing the viscous and
van der Waals (F) terms in Eq. (4.12d), they found
m51/3 and n5p21. The values of n and p remain un-
Rev. Mod. Phys., Vol. 69, No. 3, July 1997
determined, presumably determined by an asymptotic
matching to the solution far from the point of rupture.

B. Thermocapillarity in a free film

Oron (1997) considered the nonlinear dynamics of a
free liquid film subject to the thermocapillary effect in-
duced by the transverse temperature gradient applied to
the film. The varicose mode of the instability was
handled in a way similar to that used by Erneux and
Davis (1993) in the case of the isothermal film. The ther-
mal part of the problem was treated similarly to what
has been shown in Sec. II.F.

The resulting set of evolution equations is (Oron,
1997)

]TH1]X~HU !50, (4.15a)

H~]TU1U]XU2C̄ 21]X
3 H !

54]X~H]XU !1
MPr

21B

2
]XH

~11BH !2 . (4.15b)

Numerical solutions of Eqs. (4.15) suggest that evolu-
tion of the film leads to rupture. In many cases a thin
neck is formed in the film prior to rupture.

C. Bounded films with interfacial viscosities
and van der Waals forces

If one has a fluid/fluid interface that is ‘‘clean,’’ then
there is little or no measurable interfacial resistance to
shear or dilation. However, if the interface is contami-
nated or else is intentionally covered with a surface-
active material, then such resistances are present. These
then result in new interfacial properties such as surface
viscosities. Consider the case P0

(1)50, ]XS(1)50, and
F5Fr1AH23.

In the presence of interfacial viscosities, and in two
dimensions, the shear stress balance, Eq. (2.24), has a
component which reads at leading order as (Rucken-
stein and Jain, 1974; Jain and Ruckenstein, 1976; Ed-
wards and Oron, 1995)

t05Bq]X
2 U , (4.16)

where Bq is the total Boussinesq number measuring the
relative magnitude of the total interfacial and liquid vis-
cosities,

Bq5
~ms1ks!h0

m
, (4.17)

and where ms and ks are, respectively, interfacial shear
and dilatational viscosities.

Integrating Eqs. (2.22a) and (2.23) with b050 and
(4.16) yields the X component of the flow field, U ,

U5
1
2

Z2]XP̄ 1FZ , (4.18)

and an equation that relates two unknown functions,
F(X ,T) and H (Edwards and Oron, 1995):
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H]XP̄ 1F5
1
2

BqH2]X
3 P̄ 1BqH]X

2 F . (4.19a)

The kinematic condition (2.22c) provides upon substitu-
tion of Eq. (4.18) the closure of the problem (Edwards
and Oron, 1995),

]TH1
1
2

]X~FH2!1
1
6

]X~H3]XP̄ !50. (4.19b)

Thus the evolutionary system is given by Eqs. (4.19) for
F and H , provided that P̄ is determined by Eq. (2.25).

As in the problem considered in Sec. IV.A, a set of
two coupled differential equations has arisen from the
full governing equations and boundary conditions. In
the limiting case of zero interfacial viscosity, Eqs. (4.19)
lead to a single evolution equation (2.41b), derived by
Williams and Davis (1982). On the other hand, the lim-
iting case of infinitely large interfacial viscosity, causing
immobility of the interface (U50 at Z5H), leads again
to a single evolution equation,

]TH2
1
12

]X@H3]XP̄ #50. (4.20)

Linearization of Eqs. (4.19) around H5H0 results in
the characteristic equation given by Edwards and Oron
(1995) in the form

v5
1

4H0
k82S A2

1
3

C̄ 21H0
4k82D F41BqH0k82

11BqH0k82G .

(4.21)

Equation (4.21) shows that interfacial viscous stress does
not alter the stability properties of the modes in com-
parison to the case with zero interfacial viscosity, but
only the growth rate of the perturbations. In the limit of
infinite Boussinesq number, it follows from Eq. (4.21)
that interfacial viscosity has at most a fourfold damping
effect (Jain and Ruckenstein, 1976).

Numerical solutions of Eqs. (4.19) show that the
damping effect caused by interfacial viscous stress is
much larger than the maximum fourfold damping effect
predicted by the linear theory. Moreover, the rate of
film thinning is strongly dependent on the value of the
Boussinesq number. Figure 29, taken from Edwards and
Oron (1995), presents the spatiotemporal evolution of
the film interface, as described by Eqs. (4.19) and
(2.25b) for C̄ 2150.01,A51/2p , and for two different
values of the Boussinesq number Bq . Figure 30 displays
the time evolution of the minimal film thickness for dif-
ferent values of Bq , along with the evolution predicted
by the linear theory, corresponding to the fastest-
growing mode for a fixed value of C̄ 21,C̄ 2150.01 and
A51/2p . The curve corresponding to a pure interface
with no interfacial viscosity, Bq50, represents the result
of Williams and Davis (1982). In the presence of inter-
facial viscous stress, the film rupture process is retarded
from the beginning of the evolution. This retardation
effect increases with increasing Bq .
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D. Surfactants

Consider a situation in which the presence of a
surface-active agent (surfactant) affects the local surface
tension of the interface. The local concentration of the
adsorbed surfactant is unknown and is part of the solu-
tion of the mathematical problem. The situation is com-
plicated by the fact that all surfactants exhibit some
solubility in the bulk liquid. Hence there is an equilib-
rium balance between the adsorbed surfactant at the
surface and the dissolved concentration in the bulk liq-
uid at the surface, given by a partition coefficient, rep-
resenting the ratio of the forward and backward rate
constants @k1 and k2 in Eq. (4.24) below]. If equilibrium
is not established immediately, the sorption kinetics
must be taken into account. Thus, in the general case,
such as soap and water, three coupled evolution equa-

FIG. 29. Spatiotemporal evolution of a film with interfacial
viscous stress, as described by Eqs. (4.19) and (2.25b) for
C̄ 2150.01 and A51/2p .: (a) the Boussinesq number
Bq50.1. The lowest curve is topologically similar to the steady
solution; (b) Bq51.0. The curves correspond to the interfacial
shapes calculated with a uniform time step. Diminution of the
rate of film rupture can be clearly seen. Copyright © 1995
Cambridge University Press. Reprinted with the permission of
Cambridge University Press from Edwards and Oron (1995).
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tions are required for the determination of the interfa-
cial concentration, the bulk concentration, and the local
film thickness (Jensen and Grotberg, 1993).

1. Soluble surfactants

Consider the case of a finite-area soluble surfactant
placed on a thin liquid film resting on a horizontal sub-
strate. The spreading coefficient S is the difference be-
tween the surface tension of the gas-liquid interface with
no surfactant and that with an adsorbed monolayer of
surfactant (see de Gennes, 1985). The depth of the layer,
h0, can be taken to be small compared to the horizontal
extent of the surfactant distribution (Jensen and Grot-
berg, 1993), of magnitude h0 /e where e!1, for the
spreading problem. For a perturbation to the film with
an initially uniform surface distribution, the characteris-
tic length in the horizontal direction is l5h0 /e , where
l is the wavelength. Instead of a thermocapillary effect,
there is now a solutocapillary effect, owing to the varia-
tion of surface tension with adsorbed concentration:

s5s02sGG , (4.22a)

where sG52(]s/]G) at G50. Usually (G.0, although
there are cases, such as with dissolved salts, where
(G,0. Define G(X ,T)5G/G0, where G0 is the initial ad-
sorbate concentration at the surface and S5s/(G0sG).
The adsorbate concentration and surface-tension gradi-
ents are related and in dimensionless form give

]XS52]XG. (4.22b)

By neglecting capillarity one can derive [similarly to Eq.
(2.62) with g(H)51 and B!1] the evolution equation

FIG. 30. Temporal evolution of the minimum film thickness
Hmin for C̄ 2150.01 and for various values of Bq : solid curves,
nonlinear evolution as described by Eqs. (4.19); dashed curves,
linear evolution in accordance with Eq. (4.21) for the fastest-
growing mode; dotted curves, stage of evolution that is beyond
the range of validity of the long-wave theory. Copyright ©
1995 Cambridge University Press. Reprinted with the permis-
sion of Cambridge University Press from Edwards and Oron
(1995).
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]TH2
1
2

]X~H2]XG!50. (4.23)

If one assumes that the surfactant is initially deposited
on the interface as a monolayer, there is a transient pe-
riod during which surfactant enters the bulk liquid. First-
order kinetics are employed for the forward and back-
ward reactions:

j~G ,cs!5k1cs2k2G , (4.24)

where j is the net flux of dissolved surfactant at the in-
terface with concentration cs into the adsorbed mono-
layer of concentration G , and k1 and k2 are constants. If
the flux were controlled by diffusion at the surface, then

j52Db~n¢•¹W !c ,

where Db is the bulk diffusion coefficient. When j→0,
indicating balancing of the adsorptive and desorptive
fluxes,

G5Kcs , K5k1 /k2 ,

where K is the equilibrium partition coefficient. This oc-
curs after a time period of O(K21), where K5k2ts ,
which is the ratio of the time scale of the flow,
ts5e22h0mS21, to the time scale for desorption. When
one scales the solute concentration C5c/c0
5(k1 /k2G0)C , Eq. (4.24) becomes at Z5H

J5K~Cs2G!52
1

K0
S d

e2]ZC2d~]XH !~]XC ! D ,

(4.25)

where

J5jts /G0 , d5mDb /~Sh0!, K05G0 /~h0c0!5K/h0 .
(4.26)

Note that K has dimensions of length, since G is the
concentration per unit area, while c is the concentration
per unit volume. The parameter d is an inverse Peclet
number, and K0 is a dimensionless partition coefficient
reflecting the solubility of the surfactant in the bulk liq-
uid and the film thickness.

The dimensionless transport equations then become

]TG1]X~UsG!5D8]X
2 G1J , (4.27)

where D85mDs /(Sh0),Ds being the surface diffusivity,
Us the tangential component of the flow field at the in-
terface, and

]TC1]X~UC !1]Z~WC !5d]X
2 C1de22]Z

2 C . (4.28)

Conservation of surfactant per unit width, with an im-
permeable wall and zero bulk mean flow, requires that

E
0

l

dXS G1dE
0

H
CdZ D

be constant with time.
By assuming e2d21!1, so that vertical diffusion acts

rapidly, Jensen and Grotberg (1993) decomposed the
bulk concentration into a component independent of Z
and a small fluctuation:
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C~X ,Z ,T !5C0~X ,T !1e2d21C1~X ,Z ,T !,

where

C̄ 1[
1
HE

0

H
C1dZ50.

With the further simplification that d5O(1) and ne-
glecting terms of O(e2), they obtained three coupled
equations for the local film thickness, surface, and bulk
concentrations:

]TH2
1
2

]X~H2]XG!50, (4.29a)

]TG2]X~HG]XG!5D8]X
2 G1K~C02G!, (4.29b)

]TC02
1
2

H~]XG!~]XC0!

5
d

H
]X~H]XC0!2

Kd

H
~C02G!2

ap

H
C0 , (4.29c)

where ap is a measure of the permeability of the sub-
strate wall at Z50:

ap5S e2

d
C D 21

]ZCuZ50 .

For ap50 the wall is impermeable. Thus, if K50, no
sorption occurs and Eq. (4.29b) describes the transport
of a passive scalar by a surfactant-driven flow (Jensen
and Grotberg, 1993). If K→` ,G5C0(X ,T) to leading
order, which requires a fast diffusive flux between sur-
face and bulk in order to maintain local equilibrium.
When the flux terms are eliminated between the surface
and bulk transport equations, Eqs. (4.29) become to
leading order

]TH2
1
2

]X~H2]XC0!50, (4.30a)

HF]TC02
1
2

H~]XC0!22
d

H
]X~H]XC0!1

ap

H
C0G

1K0@]TC02]X~HC0]XC0!2D8]X
2 C0#50.

(4.30b)

When K0→` , Eq. (4.30b) reduces to the transport
equation for an insoluble surfactant (Gaver and Grot-
berg, 1992; Jensen and Grotberg, 1992). For smaller val-
ues of K0 the influences of advection and diffusion in the
substrate manifest themselves. For K050 the surface
flow becomes unimportant compared to the bulk flow
for transport of a passive scalar and hence can be
equally well used to describe heat transport from a line
source at the free surface.

Consider now the case of a finite strip of surfactant
placed on a clean interface. Immediately after this place-
ment the fronts spread rapidly. For small D8 and
K0→` , the width of the spreading monolayer strip
grows proportionally to T1/3 (Jensen and Grotberg,
1993). This scaling also turns out to be convenient when
Rev. Mod. Phys., Vol. 69, No. 3, July 1997
the surfactant is soluble. Similarity solutions for Eqs.
(4.30) are sought in the form

j5
X

T1/3 , t5T , H~j ,t!5H~X ,T !,

F~j ,t!5C0~X ,T !T1/3. (4.31)

One sees that the effects of horizontal diffusion grow
with time and ultimately dominate the advection terms.
Figure 1 in Jensen and Grotberg (1993) shows numerical
solutions of Eqs. (4.30) and (4.31) for an insoluble sur-
factant (K0→`) and small surface diffusion
(D850.01), with initial condition of H(j ,1)51 and

F~j ,1 !5
1
2F12tanhS j2jm

jN
D G , (4.32)

where jm50.5 and jN50.1. A shock in the film height
occurs at the leading edge of the monolayer, which ad-
vances to a nearly stationary position in the transformed
frame. The shock is smoothed by surface diffusion on a
length scale proportional to D8T1/3, so that with advanc-
ing time the shock widens and decays. The small-slope
requirement of lubrication theory can thus be met.

A large amount of literature has been developed for
simplified models, particularly for insoluble surfactants,
obtained by considering limiting values of the param-
eters. Besides the spreading-strip problem noted above,
Grotberg and co-workers have made extensive studies
relevant to the delivery of surfactants and drugs in the
human lung. Interesting phenomena are predicted and,
in some cases, experimentally verified. These include
similarity solutions giving the time behavior of spreading
for planar semi-infinite initial film distributions, kine-
matic shock waves at the surfactant front, possible film
rupture owing to depletion of surfactant at the center,
development of a leading-edge hump behind the front,
reverse flow when gravity is important, reduction of
wave-front magnitude due to surface diffusion and pre-
existing surfactant, and fingering due to front instability.
A synopsis of this work is given by Grotberg and Gaver
(1996).

2. Insoluble surfactants

de Witt et al. (1994) considered the evolution of a free
film with insoluble surfactants and subject to long-range
molecular forces. The interfacial shear stress arises due
to the spatial variation of the surfactant concentration
G along the interfaces.

Surface tension is assumed to decrease linearly with
surfactant concentration, S5S02MsG, where S0 is the
surface tension at equilibrium concentration and Ms is
the solutal version of the Marangoni number, propor-
tional to G0]s/]G . The set of governing equations and
boundary conditions consists of Eqs. (4.8a)–(4.8f) and
(4.9) with t0

(1)50,P0
(1)50,]XS(1)52Ms]XG, F5Fr

1A(2H)23, and the surface diffusion Eq. (4.27) with
J50.

The same scalings are used here that led to the deri-
vation of the set of evolution equations (4.12a) and
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(4.12d) in the case of a free film subject to van der Waals
forces (see Sec. IV.A). The desired set of three evolu-
tion equations is obtained upon resolving the governing
equations to zeroth and first orders of approximation in
e in terms of three unknown functions—the thickness
H , the surfactant concentration G , and the velocity U :

]TH1]X~UH !50, (4.33a)

H@R̄ e~]TU1U]XU !1]XF2C̄ 21]X
3 H#

5]X~2MsG14H]XU !, (4.33b)

]TG1]X~GU !5D8]X
2 G. (4.33c)

Linear stability analysis of the motionless steady state
H51/2,G51, and U50 reveals that the cutoff wave
number kc8 is given by Eq. (4.14), which coincides with
the results of Erneux and Davis (1993) for the film de-
void of surfactant. The cutoff wave number is found to
be independent of the Marangoni number Ms , although
the growth rate of the perturbations decreases with in-
crease of Ms .

Nonlinear solutions of Eqs. (4.33) evolve to rupture.
The surfactant concentration at rupture points is zero
due to its transport by the induced flow in the direction
of the interfacial crests [Fig. 3 in de Witt et al. (1994)].

The dynamics of a thin liquid film with insoluble sur-
factants was considered by Paulsen et al. (1996) in the
context of bubble/particle flotation. The authors consid-
ered the coupled evolution of the film thickness and the
surfactant concentration when the film was subjected the
action of both van der Waals and hydrophobic attraction
forces. In this case the dimensionless potential for the
disjoining pressure is given by

P05Pr1AH231l1exp~2H/l2!, (4.34)

where A is the dimensionless Hamaker constant, Eq.
(2.41c), Pr is the reference value, and l1 and l2 are, re-
spectively, the magnitude of the hydrophobic attractive
force and its length of decay, both dimensionless. The
coupling between the hydrodynamics and the surfactant
concentration is due to the surface boundary condition
(4.22). A set of governing equations in this case consists
of Eqs. (2.27) and (2.25b) with b05t05F50,
]XS52]XG,

]TH1
1
2

]X~H2]XG!1Al]X@H3exp~2H/l2!]XH#

1A]X~H21]XH !1
1
3

C̄ 21]X~H3]X
3 H !50,

(4.35)

and the transport equation for the insoluble surfactant,
Eq. (4.27) with J50. Here the value of the constant Al
is

Al5
l1

3l2
. (4.36)

It is possible now to evaluate the tangential component
of the flow field Us at the interface Z5H using Eq.
(2.26),
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Us52H]XG2
1
2

H2]XP̄ . (4.37)

By substituting Eq. (4.37) into Eq. (4.27), one obtains

]TG2]X~HG]XG!1
1
2

C̄ 21]X~GH2]X
3 H !

2
3
2

A]X~GH22]XH !2
3
2

Al]X

3@Gexp~2H/l2!]XH#5D8]X
2 G. (4.38)

The set of evolution equations (4.35), (4.38), which de-
termines the spatiotemporal behavior of the local film
thickness H and the surfactant concentration G, was not
actually solved by Paulsen et al. (1996). Instead, they
considered the case of a zero-stress interface with con-
stant S , which leads to decoupling of Eq. (4.35) from
Eq. (4.38). Equation (4.35) without the G term is then
solved in order to study the process of film rupture.

Dagan and Pismen (1984) studied the waves on the
surface of a thin liquid film driven by the solutal Ma-
rangoni effect and induced by chemical reaction of an
insoluble surfactant, subject to a specified longitudinal
concentration gradient. Following the steps of the deri-
vation of the evolution equations, similar to those de-
scribed above for Eqs. (4.29), they obtained (in different
units)

]TH2
1
2

]X~H2]XG!50, (4.39a)

]TG2]X@H~G1c8!]XG#5D8]X
2 G1F~G!, (4.39b)

where c8 is the normalized concentration gradient and
F(G) is the chemical-reaction term. They showed that if
surface tension decreases with concentration G then the
film becomes thinner when the wave propagates in the
direction of higher concentrations and thicker when it
propagates in the direction of lower concentrations.

Schwartz et al. (1995, 1996) studied the process of lev-
eling of thin liquid films with surfactant and discussed
the implications of the results to coating of surfaces. A
dimensional set of evolution equations was found to be

] th1
1

3m
]x@h3]x~s]x

2h !#2
sG

2m
]x~h2]xG!50,

(4.40a)

] tG1
1

2m
]x@Gh2]x~s]x

2h !#2
sG

m
]x~hG]xG!

2Db]x
2G2Ds~12G!50. (4.40b)

A linear theory based on Eqs. (4.40) showed that the
base state G51,h5h0 is stable to sinusoidal perturba-
tions, which decay with time. This decay, called leveling,
was studied with respect to the ‘‘surfactant strength’’
proportional to sG. The main result is that a decrease of
sG would not necessarily lead to an increase in the rate
of the leveling of the film, as would be expected. The
reason for such unusual behavior is the presence of
surface-tension gradients induced by the variation of the
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surfactant concentration G . A nonlinear study of Eqs.
(4.40) with no surface diffusion, Ds50, and with con-
stant surface tension, s5const, in both of the second
terms of Eqs. (4.40a) and (4.40b), was carried out by
Schwartz et al. (1996), and the results were compared
with the solutions of the full governing equations found
numerically by using the finite-element method. A sub-
stantial agreement over a range of parameters was es-
tablished among the solutions found by different meth-
ods.

E. Summary

The long-wave approach has been applied to a class of
physical problems that do not reduce to a single evolu-
tion equation but rather to a set of two or three equa-
tions. Among problems of this class we have considered
free films, bounded films with interfacial rheological vis-
cosities, and the dynamics of surfactants in bounded and
free films. Typical solutions of the nonlinear evolution
equations have been discussed. Results of the linear sta-
bility analysis have also been presented.

V. SPREADING

A. The evolutionary system

In Sec. II lubrication asymptotics were used to convert
the system governing interfacial instabilities of thin films
to a single evolution equation, thereby bypassing the
free-boundary nature of the problem. This was possible
to do because the instabilities that occur in this system
all have long-scale forms. Precisely the same scheme can
be used to describe the spreading of liquid drops on
solid surfaces. Here the parameter is the static contact
angle us which, if small, will guarantee that the slopes
everywhere on the drop will likewise be small, for rea-
sonable initial conditions.

Consider a drop as shown in Fig. 31. The contact lines
at X56A(T) move and, if the no-slip condition is ap-
plied at the liquid-solid boundary, the contact line will
be the site of a nonintegrable shear-rate singularity
(Dussan V. and Davis, 1974). The presence of this sin-
gularity makes it impossible to enforce a boundary con-

FIG. 31. Sketch of the problem geometry. Copyright © 1991,
Cambridge University Press. Reprinted with the permission of
Cambridge University Press from Ehrhard and Davis (1991).
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dition at the contact line relating the slope of the inter-
face and the (given) contact angle.

A number of measures have been used in the litera-
ture to overcome this deficiency of the model. The first
and the most common is to introduce on the solid-liquid
interface near the contact line apparent slip through the
posing of an ad hoc model. For example, if one sets at
z50,

u5b]zu , w50, (5.1)

where the solid is impermeable, and the slip velocity u is
proportional to the shear stress through the scalar b . In
this Navier slip model, b is taken to be numerically
small, and so the slip is negligible except near the con-
tact lines where ]zu is large.

The evolution equation in two dimensions for the
spreading drop will again be Eq. (2.27), with
F05t05]XS50 and with P̄ given by Eq. (2.25b),

C̄ m]TH1]XF S 1
2

H21b0H D ~t01]XS!G
2]XF S 1

3
H31b0H2D ]XP̄ G50. (5.2)

In three dimensions the evolution equation has the form

C̄ m]TH1¹W 1•F S 1
2

H21b0H D ~t¢01¹W 1S!G
2¹W 1•F S 1

3
H31b0H2D¹W P̄ G50, (5.3)

where the mobility capillary number C̄ m appears as

C̄ m5
mKCL

s0us
32m . (5.4)

The mobility coefficient KCL of the contact line is either
KA or KR , defined below in Eqs. (5.8), as is the mobility
exponent m .

The appearance of the coefficient C̄ m in Eqs. (5.2) and
(5.3) is due to the use of a different time scale from that
employed in Eqs. (2.27) and (2.28), as discussed below.
Equation (5.2) should be augmented by a gross mass
balance and by contact-line conditions that describe the
mechanics of spreading:

E
2A

A
HdX51. (5.5)

The conditions of contact are

H@6A~T !,T#50, (5.6)

which give compatibility between H , the nondimen-
sional interface shape, and the time-dependent contact-
line position A5A(T).

Finally, one poses contact-angle conditions of the
form

]XH~6A ,T !57tanu . (5.7)
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Remark: It is the choice of the slip law, here Eq. (5.1),
and the function u , which relates the angle to the contact
line speed, say, that models the small-scale physics near
the contact line, such as the roughness and the chemical
inhomogeneity of the substrate. Equations (5.1) and (5.7)
then relate the small scales to the macroscopic behavior of
the system.

When contact angles are measured through a light mi-
croscope, it is found that the data are well described by
the relations (Dussan V., 1979)

uCL5KA~u2uA!m, u.uA , (5.8a)

uCL52KR~uR2u!m, u,uR , (5.8b)

where KA ,KR , and m are positive and uA and uR are
called the advancing and receding contact angles, re-
spectively, each measured in the liquid. These data,
shown in Fig. 32 for various m , display a monotonically

FIG. 32. Typical measurements of contact angle after Dussan
V. (1979). ]TA[uCL is the speed of the contact line. Symbols
represent experimental data, solid lines correspond to various
mobility exponents m in the model of Eqs. (5.8): (a) m51; (b)
m53; (c) m5` . Copyright © 1991 Cambridge University
Press. Reprinted with the permission of Cambridge University
Press from Ehrhard and Davis (1991).
Rev. Mod. Phys., Vol. 69, No. 3, July 1997
increasing dependence of the angle on the speed uCL of
the contact line. When liquid displaces gas, ]TA.0, the
front steepens as the speed increases, and when gas dis-
places liquid, ]TA,0, the angle decreases with speed.
Further, the data display contact-angle hysteresis, which
means that for u in the interval @uR ,uA# the contact-line
speed is zero and hence the static angle depends on the
history of the motion.

A major contribution of Dussan V. and her co-
workers was to argue and show both theoretically and
experimentally that measured angles, given by Eq. (5.8),
are not material constants but are affected by the outer
flows and hence the geometries of the systems. The de-
partures of measured angles from the microscopic angles
are due to viscous bending of the interface near the con-
tact line. For capillary numbers C5UCLm/s small, these
departures are small. In order to obtain a geometry-
invariant u , one has to go to smaller scale and use the
intermediate angle uI . Ngan and Dussan V. (1989) and
Dussan V. et al. (1991) excise a small neighborhood of
the contact line and on the arc of the sector prescribe
the flow at r5R and u5uI , which results from an
asymptotic theory for b0→0.

In all the descriptions, the local region near the con-
tact line supplies the outer field with a one-parameter
family of solutions. They can be named by the value of
slip length b0 or by the angle uI at r5R .

De Gennes (1985) and Troian et al. (1989) envision
the existence of a precursor film on the solid ahead of
the front. Then in effect one has macroscopic spreading
over a prewetted surface. The precursor film may have
finite or infinite extent but in either case its existence
removes from view the problem of a contact line. Thus,
rather than a slip coefficient b0, one has a precursor film
thickness d that names the local solution at the front.
Comparable outer fields result from the two approaches
if b0'd (Spaid and Homsy, 1996).

The results from these approaches will be discussed
below. In what follows it will be supposed that the ap-
parent and microscopic contact angles have similar func-
tional forms of contact-line speed and hence Eqs. (5.8)
will be used for the discussion. Of course, the coeffi-
cients KA ,KR , and m are not directly known but have
to be inferred. Hocking (1983) assumes that the micro-
scopic contact angle contains hysteresis but is indepen-
dent of speed uCL and deduces forms like Eqs. (5.8) for
the apparent angle. His model can be obtained as a lim-
iting case, KCL→` , in form (5.8).

Recently, there has been some evidence to suggest
that the microscopic contact angle depends on speed. Jin
et al. (1996) used molecular dynamics to show this. Will-
son (1995) finds a similar result by measurement of the
liquid/vapor interface shape within 20 microns of the
contact line and fitting to the analytic model for that
shape (Rame, Dussan, and Garoff, 1991). That model
connects parameters derived from the experiment to the
microscopic contact angle of any slip model. For a series
of polymer melts spreading on glass, his results are not
compatible with a constant microscopic angle and sug-
gest that the capillary number which is appropriate for
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scaling the contact line velocity further from the contact
line is not appropriate for scaling the velocity in the slip-
ping region.

The scaling used in system (5.1)–(5.8) follows Ehrhard
and Davis (1991), Ehrhard (1993), and Smith (1995).
From Eq. (5.5) the fixed volume per unit width V0 is
unity. The longitudinal scale L is given by
L5(V0us)

1/2. The vertical length scale is usL and so the
small parameter is us . Time is scaled on L/KCLus

m ,
(u ,w) is scaled on KCLus

m(1,us), and pressure is scaled
on mKCLus

m22/L , where for a spreading drop us5uA ,
for a receding drop us5uR , and KCL5KA or KCL5KR
depending on u . The exponent m can be determined
empirically (Hoffman, 1975; Ehrhard and Davis, 1991)
or by theoretical arguments (De Gennes, 1985) and is
found to be about m53.

The evolutionary system (5.2) and (5.4)–(5.8) for
spreading has altered the free-boundary nature of the
interface (described by H), but it remains a free-
boundary problem because A5A(T) is a priori un-
known.

The constant C̄ m is a scaled ratio of speeds, contact-
line spreading versus s0 /m associated with capillary
pressures driven by changes in curvature of the inter-
face. As Rosenblat and Davis (1985) have discussed, the
spreading results from two phenomena. There is ‘‘capil-
lary push’’ associated with a noncircular interface gener-
ating pressure gradients and viscous flow that drive the
bulk drop. And there is ‘‘contact-line pull’’ associated
with the difference between the static and actual contact
angles driving local spreading. The mobility capillary
number measures the relative importance of these.
When C̄ m is small, the interface is a circle that quasi-
statically evolves due to contact-line pull. When C̄ m is
large, there are significant distortions of the interface
and u5us always.

B. Constant surface tension only

The simplest spreading problem involves a viscous
fluid with constant physical properties. In this case
P05F05t050. Equation (5.2) then becomes

C̄ m]TH1]XF S 1
3

H31b0H2D ]X
3 H G50. (5.9)

If the functional b05b* H21, where b* is a constant,
this equation becomes that first formulated by
Greenspan (1978). With any form for b0, one can seek
approximate solutions for C̄ m→0. In this case

]X
2 H52k~T !, (5.10)

which shows that the interface is the arc of a parabola
(the lubrication limit of a circle) and k is the curvature.
This ‘‘circle’’ develops quasistatically as time progresses.
Here C̄ m!b0;1.

When one solves Eq. (5.10) subject to conditions (5.5)
and (5.6), one obtains

H5
3

4A3~A22X2! . (5.11)
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Finally, form (5.11) is substituted into the contact-angle
condition (5.8) with Ȧ5uCL to obtain a differential
equation for the contact-line position A(T),

Ȧ5KAF S 3
2A2D m

2uA
mG , u.uA , (5.12a)

Ȧ52KRFuR
m2S 3

2A2D mG , u,uR , (5.12b)

where KA ,KR.0. Equations (5.12) can be used to
monitor drops that expand, contract, or a combination
of both. For example, when there is pure spreading
u>uA.0, a drop will equilibrate at A5A` , where
A`5A3/2uA. By examining the equation at long times
one can determine the rate of approach to the steady
state.

For pure spreading with uA50, Eq. (5.12a) gives a
simple power law for long times,

A;Tq. (5.13)

For example, for uA50 and m53, one obtains q51/7.
A list of such theoretical and experimental power laws is
given in Table I. The theory and experiment agree well
in terms of the exponents, though the multiplicative con-
stant in Eq. (5.13) is not well tested.

An alternative approach is that of Hocking (1983) in
which u is taken to be either uA or uR but in either case
is independent of uCL . This corresponds to C̄ m→` in
Eqs. (5.2) and (5.3), which is accomplished by rescaling
T to C̄ m

21T . The result is Eqs. (5.2) and (5.3) with C̄ m set
to unity and

u5uA , Ȧ.0, (5.14)

u5uR , Ȧ,0.

For constant b0→0,C̄ m5O(1), i.e., b0!C̄ m , Hocking
(1995a) finds that the apparent angle u satisfies

u35u0
31uCL@KA

2119C̄ mln~hm /b0!# . (5.15)

This is obtained at second order in b0 through matched
asymptotic expansions with a double boundary layer
near the contact line. Thus, if KA

21@9C̄ mln(hm /b0), then
the results given above hold since then the effects of slip
appear only as a first correction and spreading is con-
trolled by the angle versus speed characteristic. On the
other hand, if KA

21!9C̄ mln(hm /b0), the Hocking theory
applies and the spreading is controlled by slip.

If the Hocking model is used, it is found that the
power laws (5.13) for large T correspond to the expo-
nents in Table I for m53. Only the constant multipliers
differ between the predictions of the two theories.
Hocking (1995a) argues that the multiplier for spreading
oils is numerically closer to that of the Hocking theory.

If one takes the view that the local physics near the
contact line is ‘‘unknown’’ as seen by the macroscopic
viewer, one can ‘‘excise’’ a neighborhood of the contact
line and instead match an outer solution, which solves
the evolution equation with a local (singular) wedge
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TABLE I. Isothermal spreading results. The symbols ST and G denote surface tension and gravity
dominance, respectively. The asterisk indicates that error bars were not given. Copyright © 1991
Cambridge University Press. Reprinted with the permission of Cambridge University Press from
Ehrhard and Davis (1991).

Plane, A;Tq Axisymmetric, A;Tq

Reference q q Dominant force

Experiments:

Tanner (1979) 0.148 0.106-0.112 ST

Cazabat and Cohen Stuart (1986) 1
10 * ST

1
8 * G

Chen (1988) 0.080-0.135 ST

Theory:

Lopez et al. (1976) 1
5

1
8 G

Tanner (1979) 1
7

1
10 ST

Starov (1983) 1
10 ST

Greenspan (1978), m51 1
3

1
4 ST

Ehrhard and Davis (1991), m51 1
3

1
4 ST

1
2

1
3 G

Ehrhard and Davis (1991), m53 1
7

1
10 ST

1
4

1
7 G
flow that has the additional information of uI5uI(R).
Here the angle uI is an intermediate angle inferred from
the asymptotics of Hocking for b0→0 as a function of
distance R from the contact line. Ngan and Dussan V.
(1989) obtained this relation in the form

uI;us1CF 2sinus

us2sinuscosus
S ln

R

b
11 D1l~us!G1••• ,

(5.16)

where b is the slip length scale, R/b→` , l(us) depends
directly on the form of the slip boundary condition, and
C is capillary number

C5
muCL

s
. (5.17)

Note that Eq. (5.16) is valid in the limit of b0!C!1.
Dussan V. et al. (1991) show good agreement with pre-
dictions from this theory by measurements in mutual
displacement systems.

Another approach to spreading for uA50 is that of
De Gennes (1985), who wished to examine the small-
scale physics of contact lines. He reasoned that with
‘‘perfect’’ spreading there should be a nearly uniform
., Vol. 69, No. 3, July 1997
precursor foot ahead of the droplet in which attractive
van der Waals forces are effective. In such a ‘‘foot’’ he
takes

f5fr1
A8

6ph3 , A8,0, (5.18a)

as the potential for these forces. He analyzes the thick
drop that smoothly blends into the foot, which extends
far forward along the substrate. On the one hand there
is no longer a contact line nearby to consider, and, on
the other hand, the actual contact line at the edge of the
foot is not considered. This model is able to predict an
apparent contact angle u satisfying Eq. (5.8a) with
uA50 and m53.

When uA.0, the model (5.18a) no longer holds and
one must use a van der Waals model appropriate to a
wedge-shaped region. Hocking (1995a) showed that in
this case

f5fR1
A8

6ph3 @~]xh !42uA
4 # , A8,0, (5.18b)

where A8 is a modified Hamaker constant. In Hocking’s
theory uA is constant, and when he solves the spreading-
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drop problem with such a force potential, he finds that
the contact-angle condition emerges as a natural bound-
ary condition; the power laws (5.13) remain unchanged,
though the multipliers do change slightly. His conclusion
is that the presence of the van der Waals potential does
not have a significant effect on the spreading process for
uA.0.

As discussed above, the macroscopic dynamics of
spreading drops, and hence spreading in general, is con-
nected to the microscale physics and chemistry of the
system by the conditions at the contact line, namely, the
slip condition (5.1) and the contact-angle condition
(5.7). Great progress has been made in recent years, be-
ginning with the work of de Gennes (1985), on the un-
derlying mechanisms present in a small region near the
contact line. This work was recently reviewed by Leger
and Joanny (1992), who carefully discuss the origin of
contact-angle hysteresis by roughness (defects) and
chemical inhomogeneity of the surface including the
possibility of irregular jump motions of the contact line.
They further discuss the possibility of ‘‘layered’’ poten-
tials for the van der Waals forces [see for example, Eq.
(2.48e)] in complete spreading. Such studies are essen-
tial for understanding the macroscale dynamics, since
they supply the bases for the slip models and
u5u(uCL).

There is quite an interesting effect of gravity on the
spreading of droplets. Assume that gravity acts vertically
downward as shown in Fig. 31. Ehrhard and Davis
(1991) and Smith (1995) derive the evolution equation

C̄ m]TH1]XF S 1
3

H31b0H2D ]X~]X
2 H2GH !G50,

(5.19)

where the Bond number G is

G5
rgL2

s
. (5.20)

When the drop is initially ‘‘thick,’’ hydrostatic pressure
will of course tend to flatten the drop and enhance its
spreading rate. When the drop thins as it spreads, hydro-
static effects become negligible. However, at yet later
times, as shown by Ehrhard and Davis (1991), hydro-
static effects reemerge as being important, since at very
long times the curvature ]X

2 H→0 more quickly than
H→0. This is in agreement with the observations of
Cazabat and Cohen-Stuart (1986). These power laws are
also given in Table I.

Brenner and Bertozzi (1993) showed that the similar-
ity solution given by Starov (1983) is linearly stable with
respect to perturbations vanishing outside the area of
the drop. By doing this they showed why the experimen-
tal spreading law, Eq. (5.13), given by Tanner (1979) and
Lopez et al. (1976) is observed. They also showed that
the spreading time scale exhibits a dependence on the
microscopic length scale in the vicinity of the contact
line.

C. Thermocapillarity

Consider now the case of a spreading droplet on a
uniformly heated plate. Here P05t050, b0 is constant,
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but s5s(q). Thermocapillarity creates a flow in the
drop that can augment or retard the spreading. As in
Sec. II.F one can solve first for the temperature q as a
functional of H and hence determine the thermocapil-
lary shear stress ]XS on the interface. One can then
obtain the evolution equation (2.63) with g(H)51, ex-
cept that now slip must be retained. Ehrhard and Davis
(1991) found that

C̄ m]TH1]XF S 1
3

H31b0H2D ]X~]X
2 H2GH !G

1]XF M̂

~11BH !2S 1
2

H21b0H D ]XHG50, (5.21)

where M̂ is the effective Marangoni number. The
contact-line conditions are identical to those given
above.

Ehrhard and Davis (1991) showed that, for C̄ m→0,
heating retards the spreading; even if uA50, the heated
drop will cease spreading at a finite width. Of course,
this final state is a dynamical one involving circulation of
the liquid. Figure 33, taken from Fig. 8 of Ehrhard and
Davis (1991), shows how heating, M̂.0, retards spread-
ing, while cooling, M̂,0, promotes spreading. In neither
case does the spreading follow a power law. Transient

FIG. 33. Final spreading: final drop widths A` as functions of
Marangoni number M̂ for G50 and B!1, for two different
advancing contact angles: (a) uA50; (b) uA50.5. The curves
are obtained from Eq. (5.21). Copyright © 1991 Cambridge
University Press. Reprinted with the permission of Cambridge
University Press from Ehrhard and Davis (1991).
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behavior for M̂.0 is shown in Fig. 34. The evolution to
the final shape involves the spreading flow along a
heated substrate and a counterflow up the interface
driven by thermocapillarity.

D. Evaporation/condensation

If a droplet is composed of a volatile liquid, the
spreading and mass loss can compete to determine the
dynamics of the drop.

The governing evolution equation is Eq. (2.92), but
with slip retained:

]TH1
E

H1K
1]XF C̄ m

21S 1
3

H31b0H2D ]X
3 H G

1]XFMKPr
21

~ 1
2 H21b0H !]XH

~H1K !2

1
4
3

E2D21
~ 1

3 H31b0H2!]XH

~H1K !3 G50, (5.22)

with the edge conditions at X56A

H50 (5.23)

and

FIG. 34. Nonisothermal spreading: evolution of the stream
function with M̂50.2,uA50.25, B!1, and G50. Instanta-
neous streamlines are given in steps of Dc50.01. Copyright
© 1991 Cambridge University Press. Reprinted with the per-
mission of Cambridge University Press from Ehrhard and
Davis (1991).
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]XH57tanu . (5.24)

Anderson and Davis (1995) further allowed the appar-
ent contact angle to depend explicitly on the mass trans-
port due to phase transformation and hypothesized the
edge condition

dA

dT
52

e

K̂u~T !
1h̄ f~u!, (5.25)

where h̄ is constant and f(u)5(u2uA)m for u.uA ,
f(u)50 for uR,u,uA , and f(u)5(u2uR)m for
u,uR , in which the contact line moves by the joint ef-
fects of spreading and mass loss. This results in an in-
crease in the apparent contact angle as a function of the
rate of heating. Thus heating directly affects both the
evolution equation and the edge condition.

One result of following the evolution in time of a
spreading drop is that, for nearly the full lifetime of the
drop, there is a balance between the mass loss and the
spreading, giving a drop with a nearly constant contact
angle significantly larger than that given by the thermo-
dynamics for the evaporation-free case. Figure 35, taken
from Fig. 10 of Anderson and Davis (1995), shows the
angle in a spreading drop as a function of time.

Hocking (1995b) took the microscopic angle to be
constant (unaffected by mass transport) and analyzed a
steady version of the above system with mass loss
present in the evolution equation but absent in the edge
condition. He found the same qualitative effects of
evaporation as Anderson and Davis (1995), although the
magnitudes of the steepening are smaller.

Wayner (1982, 1993, 1994) has proposed and observed
experimentally a means for the propagation of the con-
tact line by a mass-transfer processes in which liquid
evaporates from the drop and condenses on the sub-
strate ahead of the drop. This process might be espe-
cially effective in heated systems.

FIG. 35. The angle u and the location of the contact line A in
a spreading drop as functions of time T . Reprinted with the
permission of the American Institute of Physics from Ander-
son and Davis (1995).
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VI. RELATED TOPICS

A. Introduction

The approach to the analysis of thin films as described
depends on the use of lubrication scalings to derive
strongly nonlinear evolution equations that contain suf-
ficient dynamics. This approach is applicable to a great
number of related problems that will not be described in
detail here. However, a few of these shall be sketched
with the aim of providing the reader entries into the
literature. The problems illustrate some of the different
phenomena that may be addressed.

B. Falling films

Consider a thin liquid layer flowing down a plane in-
clined to the horizontal by angle u as shown in Fig. 36.
The equations are consistent with a uniform film of
depth h0 in parallel flow with profile

ū ~z !5
rgsinu

m S h0z2
1
2

z2D (6.1a)

and hydrostatic pressure distribution

p̄ ~z !5pa1rgcosu~h02z !. (6.1b)

This layer is susceptible to long-surface-wave instabili-
ties, as discovered by Yih (1955, 1963) and Benjamin
(1957) using linear stability theory; the neutral curve is
shown in Fig. 37. Benney (1966) extended the theory
into the nonlinear regime by deriving a nonlinear evolu-
tion equation for the interface shape z5h(x ,t). There
have been a number of extensions of this work, as dis-
cussed by Lin (1969), Gjevik (1970), Roskes (1970),
Atherton and Homsy (1976), Krishna and Lin (1977),
Pumir et al. (1983), and Lin and Wang (1985). Nakaya
(1975, 1978, 1981, 1983, 1989), among others, examined
various dynamics in the nonlinear range.

For three-dimensional waves and Z5H(X ,Y ,T), the
dimensionless evolution equation, which we shall call
the Benney equation, has the form (Roskes, 1970; Lin
and Krishna, 1977; see also Joo and Davis, 1992a, 1992b
for the case of a vertical plane, u5p/2)

FIG. 36. Schematic of the problem for a falling film.
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]TH1ReH2HX1e]XF 2
15

Re2~H6]XH !G
2

1
3

Gcosu¹W 1•~H3¹W 1H !1S¹W 1•~H3¹W 1¹1
2H !5O~e2!,

(6.2)

where

G5
r2h0

3g

m2 , Re5Gsinu , S5e2
rsh0

3m2 5O~1 !, (6.3)

and Re is the Reynolds number.
Notice that the unit-order terms of Eq. (6.2) contain

no instabilities but generate waves that propagate and
steepen as they travel. This can be easily seen, since the
first two unit-order terms of Eq. (6.2) constitute a well-
known first-order nonlinear wave equation (see, for ex-
ample, Whitham, 1974). One must retain O(e) terms in
order to find an instability which is given by the third
term. The hydrostatic-pressure and surface-tension ef-
fects are conveniently postponed to O(e) in order to
compete with the surface-wave growth.

Notice also that the mean flow, driven by the compo-
nent of gravity down the plate, gives the wave propaga-
tion (term No. 2) and the wave instability (term No. 3)
preferred orientations but leaves the surface tension
(term No. 5) and hydrostatic pressure (term No. 4) iso-
tropic in X and Y .

Linear theory of the film of unit thickness leads to
waves that propagate at linearized phase speed cL ,

cL5Re , (6.4)

and growth rate

v5ek82S 2
15

Re22
1
3

Gcosu2Sk82D . (6.5)

FIG. 37. Phase diagram for the Benney equation (6.2).

Rc5
5
2 cotu is the critical value of the Reynolds number Re . For

Re,Rc the state H51 is stable. If Re.Rc then (i) for
k8,ks8 two-dimensional waves blowup in a finite time; (ii) for
ks8,k8,kc8 two-dimensional waves saturate; (iii) for k8.kc8

initial perturbations of H51 decay. Here kc85@
2

15S Re(Re
2Rc)]1/2 and kc852ks8 .
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Here the dimensionless wave vector is written
k85k8(cosuk ,sinuk) so that by linear theory only two-
dimensional waves are preferred, i.e., uk50 maximizes
v . Figure 37 shows for uk50 the neutral curves of k8
versus Re . The figure also shows the result of a weakly
nonlinear analysis of Eq. (6.2). See Lin (1969) and Gje-
vik (1970), in which a two-dimensional theory is devel-
oped. Here all dependent variables of the disturbance
equations, say, p5Ap11A2p21••• and the amplitude
A(t) are found to satisfy a Landau equation,

Ȧ5A2duAu2A. (6.6)

Here A is the complex amplitude of the unstable wave,
depending on the slow time t, and d is positive above
and negative below the curve ks8(Re), indicating bifur-
cation that is supercritical when positive and subcritical
when negative. Subcritical bifurcation indicates a jump
transition to surface-wave instabilities while supercritical
bifurcation indicates a smooth transition (see, for ex-
ample, Seydel, 1988).

The results based on the numerical solution of Eq.
(6.2) are that if k8 is the initial wavelength, there exists a
value ks8 such that

(i) For kc8.k8.ks8 , two-dimensional waves saturate
(Gjevik, 1970).

(ii) For k8,ks8 , two-dimensional waves blow up in a
finite time (Gjevik, 1970).

(iii) For the vertical plate case (u5p/2), all two-
dimensional equilibrated waves are unstable to
disturbances spatially synchronous downstream,
leading to periodic, cross-stream, complex three-
dimensional patterns (Joo and Davis, 1992a).

(iv) For the vertical plate, all two-dimensional equili-
brated waves are unstable to two-dimensional dis-
turbances spatially subharmonic downstream (Joo
and Davis, 1992b). Here for the vertical plane
kc85A2G2/15S is the cutoff wave number found
from the linear theory and ks85kc8/2. See also
Prokopiou et al. (1991) for comparable and more
extensive results at higher Re . Liu et al. (1995)
have examined transitions to three dimensions at
higher Reynolds number and on a plate with
small inclination (see Fig. 1). Results similar to (i)
and (ii) were also obtained by Rosenau et al.
(1992).

Equation (6.2) in two dimensions (]/]Y50) can be
reduced to a weakly nonlinear equation as shown by
Sivashinsky and Michelson (1980), if one writes
H5H01eH̄ (j ,t), and if H0 is constant, with a slow
time t5eT , and translates with the linear phase speed
cL , j5X2ReH0

2T . The resulting system is

]tH̄ 12ReH0H̄ ]jiH̄ 1g]j
2H̄ 1SH0

3]j
4H̄ 50, (6.7)

known as the Kuramoto-Sivashinsky equation (Nepom-
nyashchy, 1974; Kuramoto and Tsuzuki, 1975, 1976;
Sivashinsky, 1977). Here g52Re2H0

6/152GH0
3cosu/3.

This is a well-studied equation (see Hyman and Nico-
laenko (1986); Kevrekidis et al. (1990)], which has only
Rev. Mod. Phys., Vol. 69, No. 3, July 1997
bounded solutions that are steady, time-periodic, quasi-
periodic, or chaotic. Different equations displaying
breaking waves and related to Eq. (6.7) were given by
Oron and Rosenau (1989) and Rosenau and Oron
(1989).

In the derivation of Eq. (6.2), the inertial terms, which
are multiplied by Re , are considered small at leading
order and enter the evolution equation at O(e). As we
shall shortly see, this restricts the validity of Eq. (6.2) to
Re numerically small. If one wishes to describe flows at
large Re , one must retain inertia at leading order, i.e.,
the downstream component of the momentum balance
that needs to be solved is

eRe~]TH1U]XH !52]XP1]Z
2 U , (6.8)

with the pressure P satisfying a hydrostatic balance. This
is a boundary-layer problem [when eRe5O(1)], which
has been solved approximately by Prokopiou et al.
(1991) by using a Karman-Pohlhausen method in which
one presumes a Z profile for U and Eq. (6.8) is replaced
by its Z-averaged version. The results are not
asymptotic but do give better predictions of flows at
higher Reynolds numbers than does Eq. (6.2). Rather
than a simple equation, one obtains a complicated sys-
tem,

]TH1]X q50, (6.9a)

F~H ,q !50, (6.9b)

where q5*0
HUdZ is the volumetric flow rate per unit-

span width, and F is a pseudo-differential operator (Sh-
kadov, 1967, 1968; Alekseenko et al., 1985; Chang et al.,
1993; Chang, 1994).

Clearly, one can couple the dynamics of the falling
film with the phenomena earlier explored, viz., heat and
mass transfer, van der Waals attractions, etc. Rather
than give the details, we only list a few references: Lin
(1974), Sreenivasan and Lin (1978), Kelly et al. (1986),
Joo et al. (1991,1997), and Oron and Rosenau (1992).

C. Falling sheets

Again consider a plane inclined to the horizontal by
angle u as shown in Fig. 38. Now, however, one begins
with a dry plane and opens a gate at x50 that allows the
viscous liquid to flow down the plate with a straight con-
tact line that moves in the positive x direction. The sup-
ply of liquid can be infinite (see Fig. 38, curve 1) or the
gate can be shut in a finite time, creating a trailing con-
tact line on a sheet of a fixed volume, analogous to a
two-dimensional drop rolling down the plate (Fig. 38,
curve 3).

Huppert (1982b) showed experimentally in the latter
case that the leading edge becomes unstable in either of
two ways, both periodic in the cross-stream direction y .
Either long fingers develop with sides parallel to the x
direction with the roots fixed to the plate or triangular
fingers form, traveling downward with their roots mov-
ing downward as well (see Fig. 2). Further experiments
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by Silvi and Dussan V. (1985) show that the magnitude
of the contact angle determines which type of finger ap-
pears.

The basic state of the infinite sheet is shown in Fig. 38;
as the sheet moves downward, a bead or ridge forms
behind the leading edge (see Fig. 38, curve 2), giving rise
to what appears to be a section of a quasisteady cylinder.
This is formed because in a frame of reference moving
with the contact line there is a recirculating flow down
along the free surface toward the contact line and re-
turning along the plate. The recirculation is caused by
the presence of the contact line, slowing the drainage of
the film. The return flow is generated by an induced
pressure gradient due to the downstream ‘‘wall,’’ the
leading edge of the film. The induced high pressure near
the contact line deforms the interface producing the
ridge (Spaid and Homsy, 1996). On a vertical wall, the
ridge is present. As the tilt angle of the plate is de-
creased, hydrostatic pressures will cause the ridge to de-
crease in size. For plates at small angles the ridge may
be very small or absent.

The governing lubrication equation for this system is
given by Hocking (1990),

]TH1
1
3

G]X@H2~H1b0!#sinu1¹W 1•FH2~H1b0!

3¹W 1S S¹W
1

2H2
1
3 GHcosu D G50, (6.10)

where G and S are given by Eq. (6.3) and b0 is the
constant slip coefficient [see Eq. (2.16)]. Appropriate
edge conditions are posed as well as periodicity in Y .

Hocking (1990) considered a falling ridge, i.e., a sheet
with two contact lines. He points out that the similarity
solution found by Huppert (1982b) is not valid at the
trailing edge and that the similarity solution ends
abruptly at a nonzero height and therefore cannot rep-
resent the liquid ridge in the whole domain. These defi-
ciencies call for the construction of two inner solutions,
one at each edge of the ridge. These are constructed as
similarity solutions for Eq. (6.10) while using a slip con-

FIG. 38. Schematic of the problem for a falling sheet (curves 1,
2) and liquid ridge (curve 3). Arrows indicate the direction of
the flow.
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dition and an assumption of quasisteady state at the
leading edge. The solution exhibits a bulge near the
leading edge of the sheet. Hocking suggested that the
instability of the leading edge is related to the fluid flow
in the bulge. He also established linear instability to
spanwise disturbances of a fluid ridge moving with both
contact lines straight.

Troian et al. (1989) considered the fingering instability
of falling sheets as an instability of the self-similar basic
state (Huppert, 1982b), represented by a balance be-
tween gravity and viscous forces that blends into a very
thin precursor film of uniform thickness running ahead
of the contact line. Linear stability analysis shows that
the fastest growth of the disturbances occurred near the
‘‘virtual contact line,’’ where capillary forces were com-
parable to viscous and gravitational forces. A preferred
wavelength, weakly dependent on the thickness of the
thin precursor film for linear stability, is predicted and
agrees well with their experimental data. Brenner (1993)
studied the growth in time of the most unstable wave-
length. He derived analytical expressions in good quali-
tative agreement with the experimental results of de
Bruyn (1992) for a liquid sheet of fixed volume proceed-
ing down an inclined plane. Lopez et al. (1996) used a
slip model for a liquid sheet of fixed flow rate, and hence
of constant far-field thickness, and predicts fastest-
growing wave numbers in good agreement with (al-
though somewhat lower than) the wave numbers of fully
developed rivulets measured by Johnson et al. (1996).
The fully nonlinear lubrication calculation was in better
agreement with the data than the linear theory.

The nonlinear evolution of a liquid ridge moving
down an incline was examined by Hocking and Miksis
(1993). The study was based on a quasisteady hypothesis
and the assumption of the dynamic variation of the con-
tact angle given by Eq. (5.8a). It was found that fluid is
transferred laterally into growing lobes at the expense of
thinner parts of the ridge. The process continues until
the leading and the trailing edges meet. Using the linear
stability theory, presented earlier by Hocking (1990),
they reconsidered the problem, taking the presence of
contact lines into account instead of using a quasisteady
assumption. The results indicate that a preferred wave-
length exists, and to this extent they parallel the results
of Troian et al. (1989). In both cases the wavelength is
not completely determined, being weakly dependent on
the thickness of the precursor film (Troian et al., 1989)
or logarithmically dependent on the value of the slip
coefficient (Hocking and Miksis, 1993). It should be
noted that the thickness ratio of the precursor layer to
the bulk film far from the contact region may be
O(1025) to O(1026), which suggests that intermediate
scaling may be needed for asymptotic consistency.

Moriarty et al. (1991) developed a spreading theory
for a falling-liquid ridge in the case of small surface ten-
sion. The solution for the corresponding evolution equa-
tion was constructed using the method of matched
asymptotic expansions. At the front the flow was shown
to be governed by a balance between viscous, gravita-
tional, and capillary forces, while away from it the mo-
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tion is governed by the balance between viscous and
gravitational forces. The authors used the concept of the
precursor film to model the behavior of the contact line.
Various problems related to the effective slip in the vi-
cinity of the moving contact line were discussed by Tuck
and Schwartz (1990) and Moriarty and Schwartz (1992).

The ridge behind the leading edge might be suscep-
tible to Rayleigh-Taylor-type instability see (Chan-
drasekhar, 1961) or capillary instability (Rayleigh, 1894),
but Spaid and Homsy (1996) showed by examining the
energy balances in the linear stability theory that a kine-
matic mechanism is responsible, i.e., a perturbed capil-
lary ridge subject to the body force rgsinu has thicker
regions of liquid advancing more rapidly than the thin-
ner regions. Small scale cross-stream perturbations are
stabilized by surface tension.

Spaid and Homsy (1996) analyzed the film in two
ways: (i) with a contact line and slip and (ii) with a pre-
cursor layer and no contact line. These two models pro-
duce similar ridges, and the instability depends only on
the shape of the ridge.

D. Hele-Shaw flows

Slow flows of a viscous fluid between two closely
spaced plates are Hele-Shaw flows. In such a case the
flow field is approximately plane Poiseuille flow. In the
absence of gravity the velocity components are propor-
tional to the pressure gradients in the respective direc-
tions. Extensive treatment of Hele-Shaw flows was pre-
sented in Bensimon et al. (1986) and Homsy (1987). In
the case of a horizontal one-dimensional Hele-Shaw
flow, the longitudinal component of the flow field is
given by

u52
b2

12m
]xp , (6.11)

where b is the width of the gap between the plates. If
two immiscible fluids of greatly different viscosities are
placed within a Hele-Shaw cell, the pressure pa in the
less viscous fluid can be assumed to be uniform in space.
The dynamics of the interface separating these two flu-
ids can also be described using the lubrication approxi-
mation.

When a thin liquid neck of a local thickness 2h(x ,t)
bounded by the other fluid on both sides is considered to
be symmetrical, the location of the interfaces is at
z56h . The total liquid volumetric flux per unit depth
through the cross section of the neck is uh , and there-
fore it follows from the continuity equation that

] th1]x~uh !50. (6.12)

The substitution of Eq. (6.11) into Eq. (6.12) and the use
of the boundary condition for the balance of the normal
stresses at the interface

pa2p5s]x
2h , (6.13)

yield the evolution equation (Constantin et al., 1993)
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m] th1
b2s

12
]x~h]x

3h !50. (6.14)

This is analogous to Eq. (2.31) for surface tension only
and t50, but with h3 replaced by h .

If one considers the effect of gravity on Hele-Shaw
flows, the evolution equation will contain a linear advec-
tive term proportional to ]xh , which can be removed by
introducing a moving frame of reference. It is found that
at a late stage of evolution the minimal thickness of a
neck decreases with time as t24, and breakup is achieved
at infinite time (Constantin et al., 1993). Finite-time rup-
ture in the droplet-breakup problem in the Hele-Shaw
cell was investigated in the context of Eq. (6.14) solved
given a smooth initial condition (Dupont et al., 1993).
They also found that at the time of pinchoff the width of
the neck grows quadratically as one moves away from
the point of breakup.

Almgren (1996) studied rupture in Hele-Shaw flows
and tested the validity of Eq. (6.14) near those points by
comparing its solutions with the solutions of the Hele-
Shaw approximation of the Navier-Stokes problem.
Both approaches showed the appearance of rupture in
finite times. It was concluded that the lubrication ap-
proximation, Eq. (6.14), is a faithful one and reproduces
well the regime of rupture.

Traveling-wave solutions for a general equation of the
type

] th1]x~hn]x
3h !50, (6.15)

where n is constant, were studied by Boatto et al. (1993).
It was found that transitions between different qualita-
tive behaviors occurred at n=3, 2, 3/2, and 1/2. Soliton-
like localized waves were determined to be possible only
for n,3. The generic solution that represents a receding
front is present for all n.0.

Consideration of density-stratified Hele-Shaw flows
leads to the dimensionless evolution equation (Gold-
stein et al., 1993) of the form

]TH1Bd]X~H]XH !1]X~H]X
3 H !50, (6.16)

where Bd is a Bond number relating the density jump
effects to those due to capillarity,

Bd5
2gDrb

s
, (6.17)

with b being the width of the Hele-Shaw cell. Equation
(6.16) is analogous to Eq. (2.31) with H3 replaced by
H in the fourth-order term. Rupture was studied by
Goldstein et al. (1995).

VII. SUMMARY

Several closing remarks are now in order. First of all,
like any other theory, the long-wave theory of evolution
of liquid films has to be verified against the results of
experimental studies.

Several experimental works that have appeared in the
literature support the theory and provide encouraging
results even beyond the formal range of its validity. Bu-
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relbach et al. (1990) performed a series of experiments
in an attempt to check the long-wave theory developed
by Tan et al. (1990) for steady thermocapillary flows due
to nonuniform heating of the solid substrate. The mea-
sured steady shapes were tested against theoretical pre-
dictions, and good agreement was found for layers less
than 1 mm thick under moderate heating conditions,
where the temperature difference along the plate was 50
°C over a 5-cm length. The relative error was large for
conditions near rupture (where the long-wave theory is
not valid; see Burelbach et al., 1988), but in all other
cases the predicted and measured minimum film thick-
nesses agreed to within 20%. The theory (Tan et al.,
1990) also predicts rupture when the parameter Bdyn of
Eq. (3.6) exceeds a certain critical value Bdyn

c and steady
patterns for Bdyn,Bdyn

c . Experimental results (Burel-
bach et al., 1990; see Fig. 1) showed that Bdyn is an ex-
cellent qualitative indicator of whether or not the film
ruptures. This confirmed validity of the thermocapillary
theory is a good indication that long-wave analysis
should also be valid for more general
systems with phase transformation (evaporation/
condensation) and also for transient states of the film.

van Hook et al. (1995) performed experiments on the
onset of the long-wavelength instability in a thin layer of
silicone oil of thickness ranging between 0.005 cm and
0.025 cm and aspect ratio between 150 and 750 when the
temperature drop across the layer was between 0.05 °C
and 5 °C. A formation of ‘‘dry spots’’ at randomly vary-
ing locations was found above the critical temperature
difference across the layer. The experimental results
were checked versus solutions of one- and two-
dimensional versions for the evolution equation (2.63)
with g(H)51. A qualitative agreement of the structure
of the dry spots with corresponding numerical simula-
tions was found. van Hook et al. (1996) developed a
two-layer model taking into consideration the change in
the temperature profile in the air due to deformation of
the interface. This two-layer model reduces to the one-
layer model given by Eq. (2.63) in an appropriate limit.
The experimental results of van Hook et al. (1996) are
found to agree quantitatively with a two-layer model for
certain liquid depths.

A theoretical study of the Rayleigh-Taylor instability
in an extended geometry (Fermigier et al., 1992) on the
basis of the long-wave equation shows the tendency of
hexagonal structures to emerge as a preferred pattern, in
agreement with their experimental observations.

Goodwin and Homsy (1990) analyzed the falling sheet
by direct integration of the Stokes flow (creeping flow)
equations and found good agreement with the lubrica-
tion theory when the contact angle was small, i.e., when
for C→0, C21us

3;1.
In some cases experiments run ahead of theory. Thin-

ning by evaporation of completely wetting thin water
films was studied experimentally by Elbaum and Lipson
(1994). Dewetting of the substrate was found to begin
with nucleation and spreading of dry spots in which the
film thickness ranged typically tens of Angströms. Tor-
oidal rims forming around circular dry patches under-
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went a sequence of instabilities and collapsed into a se-
ries of droplets behind the drying front. Further study of
the late stage of the breakup was done by Elbaum and
Lipson (1995). They found that the wavelength of the
patterns at the initial stage of instability of the rim was
comparable to its diameter. That suggests that the initial
stage of the breakup is governed by the capillary insta-
bility. However, at long times the characteristic wave-
length is different, which leads to the conclusion that
other than capillary mechanisms are involved in the pro-
cess. A theoretical explanation of the phenomenon has
not yet been found.

Another test for the validity of an asymptotic theory,
such as the long-wave theory presented here, is via com-
parison of the solutions given by the long-wave evolu-
tion equations and the numerical solutions for the full
original free-boundary problem from which the evolu-
tion equation was derived. Given the intrinsic complex-
ity of the latter, there is only a limited number of such
comparative studies. Krishnamoorthy et al. (1995) stud-
ied the spontaneous rupture of thin liquid films due to
thermocapillarity. A full-scale direct numerical simula-
tion of the governing equations was performed, and its
results were found to exhibit very good qualitative
agreement, except for times very close to rupture. More
tests done for different aspects of falling films are men-
tioned below.

As an attempt to extend long-wave theories to falling-
film flows, terms of higher order than unity are retained.
As discussed in Sec. VI.B, such efforts have led to the
discovery of new phenomena. Such Benney-type equa-
tions for falling films have unbounded solutions in cer-
tain parametric domains and bounded solutions in oth-
ers. This was demonstrated by Pumir et al. (1983) and
Rosenau et al. (1992) for the Benney equation. Clearly,
solutions of a large, or infinite, amplitude do not de-
scribe real physical effects and are artifacts of the ap-
proximation that led to the specific evolution equations
being solved. This suggests that some formally small
terms of higher order neglected by the asymptotic ex-
pansion become significant. Therefore the ordering of
the asymptotic series breaks down, and this results in a
failure of the evolution equation derived to represent a
rightful limiting case of the original set of governing
equations. Frenkel (1993) argues that evolution equa-
tions of the Benney type are not uniformly valid in time.
One of the reasons for this is that the expansion param-
eter e employed in the asymptotic series is based on the
initial characteristic wavelength l of the disturbance.
However, as a result of nonlinear interaction the effec-
tive value of e increases as a result of decrease of l , and
thus after some time its initial value becomes irrelevant.

Several authors have tested the results of the two-
dimensional version of Eq. (6.2) in the domain of satu-
rating solutions, ks8,k8,kc8 (see Sec. VI.B), against di-
rect numerical solutions of the Navier-Stokes equations.
A few early results were given by Ho and Patera (1990)
and Salamon et al. (1994). They reported good agree-
ment between the long-wave theory and the full
problem. A systematic study has recently appeared by
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Ramaswamy et al. (1996), who examined the two-
dimensional vertically falling film and showed that there
was a very good quantitative agreement with the results
of Eq. (6.2) for k.ks and G<5, and poorer agreement
thereafter, when SG21/35100. [The reader should not
forget that the Benney equation holds for G5O(1).]

Kim et al. (1992) studied the effect of an electrostatic
field on the dynamics of a film flow down an inclined
plane. They compared the results given by the long-
wave evolution equation with those of the Karman-
Pohlhausen approach, Eqs. (6.9), and direct numerical
computations of the full free-boundary problem. Their
long-wave evolution equation was similar to Eq. (6.2)
but contained an extra term, corresponding to the ap-
plied electrostatic field. Solutions for the models and the
full problem were qualitatively similar for the surface
deformations and pressures, when the Reynolds number
was relatively low, Re;5. For larger Re , a boundary-
layer approach using the Karman-Pohlhausen approxi-
mation was found very good in its prediction of steady
states of the film. The transient states of the Karman-
Pohlhausen model and the full problem, although quali-
tatively similar, had quantitative differences.

A somewhat easier, but less conclusive, test of the
theory would be to solve the asymptotic hierarchy of the
equations to one order higher than that at which closure
of the problem and the evolution equation are attained.
By solving the evolution equation and substituting its
solution into the next-order terms of the asymptotic ex-
pansions for the dependent variables, e.g., velocity, pres-
sure, temperature, etc., one can determine whether they
constitute a small correction for the leading-order terms.
A positive answer validates the results of the expansion
and thus the asymptotic correctness of the resulting evo-
lution equation.

The possibility of the emergence of nonphysical solu-
tions degrades to a certain extent the usefulness of the
Benney equation in studying the behavior of a falling
film. As an alternative one may consider using the
‘‘boundary-layer’’ approach of Eqs. (6.9). Another alter-
native is to reduce the strongly nonlinear Benney equa-
tion to a weakly nonlinear Kuramoto-Sivashinsky equa-
tion (6.7) whose solutions are bounded and smooth at all
times. This reduction, however, is rigorously valid for
interfacial deflections that one very small compared to
the average film thickness.

A reason for caution, as mentioned above, is the
emergence of higher Fourier modes in the solutions,
which are fed by the strongly nonlinear nature of the
equations. These long-wave equations are derived under
the assumption that the average thickness of the fluid
layer will be small with respect to the characteristic
wavelength of the interfacial perturbations, and thus the
spatial gradients along the interface will also be small.
However, the presence of higher subdominant modes
in the solution giving multihumped patterns similar to
that displayed in Fig. 28, does not preclude their rel-
evance, as shown by Krishnamoorthy et al. (1995) for
horizontal layers, Ramaswamy et al. (1996) Krish-
namoorthy et al. (1997a) for two-dimensional heated
Rev. Mod. Phys., Vol. 69, No. 3, July 1997
falling films, and Krishnamoorthy et al. (1997b) for
three-dimensional heated falling films. Comparison be-
tween solutions of the long-wave equations and the full
direct simulations of the original free-boundary problem
clearly supports the existence of such multihumped
structures and demonstrates their qualitative similarity.

The evolution equations discussed in this review are
generally known to be well balanced in the sense of
boundedness of their solutions. Yet rigorous mathemati-
cal treatment of these equations is in its infancy. In fact,
whether or not they can exhibit unphysical, unbounded
solutions remains an open mathematical question.

The examples discussed in this review suggest gener-
alizations in two directions. On the one hand, one can
delve more deeply into the stated physical systems and
create new models when the dynamics cease to be well
described. On the other hand, one can broaden the ex-
isting models to include new physical effects that couple
with those already understood. These two alternatives
will be discussed.

Burelbach et al. (1988) showed that just before film
rupture by van der Waals attractions, inertial effects be-
come important, so that one cannot strictly predict dry-
out. In order to follow the dynamics to dryout one must
retain the inertial terms and solve a ‘‘boundary-layer
problem.’’ When rupture occurs, contact lines are
formed and one must establish contact-line boundary
conditions in order to follow the opening of the dry
patch. Since negative disjoining pressures are associated
with poorly wetting liquids, the ruptured interface would
likely turn under the liquid as the patch opens, invalidat-
ing the lubrication approximation. This scenario of rup-
ture and opening is a prototype of a class of problems in
which the connectivity of the domain changes in time.
The ability to describe such evolutions is extremely im-
portant. Upgrading the importance of inertia has been
shown to be crucial in the study of falling films; see
Chang (1994) for a view of this.

In this review some thermal and solutal phenomena
have been described in terms of thermocapillary, soluto-
capillary, and evaporative effects. These are among situ-
ations in which new physico-chemical effects (i.e., sur-
face physics) can be incorporated. One can study the
coupling of heterogeneous chemical reactions with film
dynamics [e.g., see Meinkohn and Mikhailov (1993)].
During the process of welding, or soldering, the molten
metal can react chemically with the substrate which
yields new reaction products [e.g., see Braun et al.
(1995)]. Multiple component and multiphase systems
can be approached. Structural effects such as those
present in lipid bilayer cell membranes and rheologically
complex fluid films can be addressed (see, for example,
Gallez et al., 1993). When moving contact lines are
present, one should devise a model of van der Waals
attractions valid for geometries more complex than uni-
form films or wedges and so be able to study the effects
of contact lines on spreading at arbitrary contact angles.
The slip model and the contact angle u deal with mac-
roscopic effects linked to the microscopic physics near
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the contact line u . More work needs to be done on the
description of the microscopics. This could then give a
deduced slip law and a deduced u5u(uCL). There seems
to be very little information on the contact angle in sys-
tems involving phase change: evaporation/condensation,
solidification, etc. Anderson and Davis (1995) supposed
that the apparent angle depends on the local mass trans-
port, but does the microscopic angle?

Clearly, careful experimental investigations are
needed to verify phenomena and to give data that can
be used to test the theories. This review stands as a call
for such experiments.
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