Microfluidica

Ecuaciones de conservación Dinámica de Fluidos

Ecuación Navier-Stokes Número de Reynolds

Flujos de Stokes
Consecuencias

Microfluidica

Mecánica del Continuo / Teoría del continuo (validas?)

Microfluídica \rightarrow Nanofluidica

Knudsen (Kn)	$\frac{\lambda}{L}$	$\frac{\text { Mean free path }}{\text { Physical length scale }}$
	Increased	l^{1}

Número de Knudsen << $1 \rightarrow$ no hay ningún problema

Número de Knudsen ≈ 1
Nuestra aproximación de los fluidos como un continuo tiene problemas.

Las condiciones de borde necesitan correcciones (por que?)

Número de Knudsen >> 1
Hay que abandonar
la idea de tratar
a los fluidos (gases) como un continuo..

Las condiciones de borde Son una imposición de la

Teoría del continuo!

Conceptos básicos

Como definimos que es un fluido?
Aplicamos una fuerza tangencial (esfuerzo de corte)
Time

(a) Solid or fluid

(b) Solid or fluid

(c) Fluid only

(d) Fluid only

Fluido: No puede resistir esfuerzos de corte y se deforma de manera continua

Fluido Newtoniano

$$
\sigma=\frac{\dot{\beta}}{\Delta}=\mu \dot{\gamma}=\frac{\dot{\beta}}{\boldsymbol{\beta}}=\frac{\dot{x}}{\boldsymbol{A}}=\frac{d v_{x}}{d y}
$$

Fox and McDonald's Introduction to Fluid Mechanics, 8th Edition

Ecuaciones de conservación Conservación de la Masa

Ecuación de continuidad

$$
\begin{aligned}
& \frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \vec{v})=0 \\
& \frac{D \rho}{D t}+\rho(\nabla \cdot \vec{v})=0
\end{aligned}
$$

Derivada Material o Sustancial

$$
\frac{\mathrm{D}}{\mathrm{Dt}}=\frac{\partial}{\partial t}+\overrightarrow{\mathrm{v}} \cdot \nabla
$$

Fluido Incompresible

$$
\nabla \cdot \vec{v}=0
$$

Campo de velocidades es solenoide

Esta aproximación sigue siendo valida en general, pero puede traer problemas en casos particulares, no por la velocidad (<< velocidad del sonido), sino por cambios grandes de presiones (ver Tabeling "bottleneck effect")

Ecuaciones de conservación Conservación de Momento (Lineal)

$2^{\text {da }}$ Ley de Newton

$$
\frac{\mathrm{D}(m \overrightarrow{\mathrm{v}})}{\mathrm{Dt}}=\frac{\mathrm{D}}{\mathrm{Dt}} \int_{V(t)} d V \rho \overrightarrow{\mathrm{v}}=\sum \text { Fuerzas }
$$

$$
\sum \text { Fuerzas }=\sum F_{\text {Volumen }}+\sum F_{\text {Superficie }}
$$

Fuerzas de Volumen
Actúa en todos los puntos dentro del elemento de fluido

$$
\begin{aligned}
& F_{\text {Volumen }}=\int_{V(t)} d V \rho \overrightarrow{\boldsymbol{g}} \\
& F_{\text {Volumen }}=\int_{V(t)} d V q \overrightarrow{\boldsymbol{E}}
\end{aligned}
$$

Fuerzas de Superficie

Actúa en la superficie del elemento de fluido \sum Fuerzas $=\sum F_{\text {Volumen }}+\sum F_{\text {Superficie }}$

Elemento de fluido infinitesimal
Leyes de escala I: Cual de las contribuciones es mas grande ? (\# Bond)
Leyes de escala II: Que pasa con la aceleración cuando $l \rightarrow 0$?

$$
\sum_{\vec{x}} \overrightarrow{\boldsymbol{F}}_{\text {Superficie }}=0
$$

Tienen que estar en equilibrio!!
\rightarrow Podemos representarlas mediante el tensor de esfuerzos

$$
f=\overrightarrow{\boldsymbol{\sigma}^{\prime}} \cdot \overrightarrow{\boldsymbol{n}}
$$

Integral de las fuerzas sobre la superficie

$$
\begin{gathered}
\int_{\partial V} d S \overrightarrow{\boldsymbol{\sigma}^{\prime}} \cdot \overrightarrow{\boldsymbol{n}}=\int_{V} d V \nabla \cdot \overrightarrow{\boldsymbol{\sigma}^{\prime}} \\
\overrightarrow{\boldsymbol{\sigma}^{\prime}}=-p \mathbb{I}+\overrightarrow{\boldsymbol{\sigma}} \\
\frac{\mathrm{D}}{\mathrm{Dt}} \int_{V(t)} d V \rho \overrightarrow{\mathrm{v}}=\sum \text { Fuerzas }=\int_{V(t)} d V \rho \overrightarrow{\boldsymbol{g}}+\int_{V(t)} d V \nabla \cdot \overrightarrow{\sigma^{\prime}}
\end{gathered}
$$

Teorema de transporte de Reynolds + Ecuación de continuidad

$$
\rho \frac{\mathrm{D} \overrightarrow{\mathrm{v}}}{\mathrm{Dt}}=\rho \overrightarrow{\boldsymbol{g}}+\nabla \cdot \overrightarrow{\boldsymbol{\sigma}^{\prime}}=\rho \overrightarrow{\boldsymbol{g}}-\nabla p+\nabla \cdot \overrightarrow{\boldsymbol{\sigma}}
$$

Newtoniano; Incompresible; Isótropo

$$
\overrightarrow{\boldsymbol{\sigma}}=2 \mu \overrightarrow{\boldsymbol{E}}
$$

Tensor de deformaciones

$$
\overrightarrow{\boldsymbol{E}}=\frac{1}{2}\left(\nabla \overrightarrow{\mathbf{v}}+\nabla \overrightarrow{\mathbf{v}}^{T}\right) \quad E_{i j}=\frac{1}{2}\left(\frac{\partial \mathrm{v}_{i}}{\partial \mathrm{x}_{j}}+\frac{\partial \mathrm{v}_{j}}{\partial x_{i}}\right)
$$

Ecuación de Navier-Stokes

$$
\rho \frac{\mathrm{D} \overrightarrow{\mathrm{v}}}{\mathrm{Dt}}=\rho \overrightarrow{\boldsymbol{g}}-\nabla \rho+\mu \nabla^{2} \overrightarrow{\mathrm{v}}
$$

Fuerzas de Inercia
Fuerzas viscosas

Ecuaciones adimensionales

$$
\rho\left(\frac{\partial \overrightarrow{\mathbf{v}}}{\partial \mathrm{t}}+(\overrightarrow{\mathbf{v}} \cdot \nabla) \overrightarrow{\mathbf{v}}\right)=-\nabla p+\mu \nabla^{2} \overrightarrow{\mathbf{v}}
$$

Elegir magnitudes representativas/características del problema: velocidad v_{0} y longitud 1_{0}

$$
\begin{gathered}
\overrightarrow{\mathrm{v}^{\prime}}=\frac{\overrightarrow{\mathrm{v}}}{\mathrm{v}_{0}} ; \quad \overrightarrow{\mathrm{x}^{\prime}}=\frac{\overrightarrow{\mathrm{x}}}{\mathrm{l}_{0}} ; \mathrm{t}^{\prime}=\frac{\mathrm{t}}{\mathrm{t}_{0}}=\frac{\mathrm{v}_{0} \mathrm{t}}{\mathrm{l}_{0}} ; \quad \mathrm{p}^{\prime}=\frac{\mathrm{p}}{\mathrm{p}_{0}}=\frac{\mathrm{pl}}{\mu \mathrm{v}_{0}} \\
\frac{\rho \mathrm{v}_{0}^{2}}{\mathrm{l}_{0}}\left(\frac{\partial \overrightarrow{\mathbf{v}^{\prime}}}{\partial \mathrm{t}^{\prime}}+\left(\overrightarrow{\mathbf{v}^{\prime}} \cdot \nabla^{\prime}\right) \overrightarrow{\mathbf{v}^{\prime}}\right)=\frac{\mu \mathrm{v}_{0}}{\mathrm{l}_{0}^{2}}\left(-\nabla^{\prime} p^{\prime}+\nabla^{\prime 2} \overrightarrow{\mathbf{v}^{\prime}}\right) \\
\frac{\rho \mathrm{v}_{0} \mathrm{l}_{0}}{\mu}\left(\frac{\partial \overrightarrow{\mathbf{v}^{\prime}}}{\partial \mathrm{t}^{\prime}}+\left(\overrightarrow{\mathbf{v}^{\prime}} \cdot \nabla^{\prime}\right) \overrightarrow{\mathbf{v}^{\prime}}\right)=-\nabla^{\prime} p^{\prime}+\nabla^{\prime 2} \overrightarrow{\mathbf{v}^{\prime}}
\end{gathered}
$$

Ecuaciones adimensionales

$$
\begin{gathered}
\operatorname{Re}\left(\frac{\partial \overrightarrow{\mathrm{v}}}{\partial \mathrm{t}}+(\overrightarrow{\mathrm{v}} \cdot \nabla) \overrightarrow{\mathrm{v}}\right)=-\nabla p+\nabla^{2} \overrightarrow{\mathrm{v}} \\
\operatorname{Re}=\frac{\rho \mathrm{v}_{0} \mathrm{l}_{0}}{\mu}
\end{gathered}
$$

Que ventaja tiene usar ec. adimensioales?

- Ley de Semejanza (o Similitud):

Geometría; Dinámica \rightarrow Solución Análoga

- Independencia de las unidades
- Reducción del número de parámetros

Ecuaciones adimensionales

$$
\begin{gathered}
\operatorname{Re}\left(\frac{\partial \overrightarrow{\mathbf{v}}}{\partial \mathrm{t}}+(\overrightarrow{\mathbf{v}} \cdot \nabla) \overrightarrow{\mathbf{v}}\right)=-\nabla p+\nabla^{2} \overrightarrow{\mathbf{v}} \\
\operatorname{Re}=\frac{\rho \mathrm{v}_{0} \mathrm{l}_{0}}{\mu}
\end{gathered}
$$

Porque elegimos magnitudes características?
Los distintos términos de la ecuación son $\mathrm{O}(1)$!!
El número de Reynolds representa fuerzas inercia/viscosas

$$
\operatorname{Re}=\frac{\rho \mathrm{v}_{0} \mathrm{l}_{0}}{\mu}=\frac{\rho \mathrm{v}_{0}{ }^{2}}{\mathrm{I}_{0}} / \frac{\mu \mathrm{v}_{0}}{\mathrm{I}_{0}{ }^{2}}
$$

$\operatorname{Re} \ll 1 \Rightarrow$ Ecuación de Stokes

$$
0=-\nabla p+\nabla^{2} \overrightarrow{\mathbf{v}}
$$

Microfluídica:

En general podemos ignorar los efectos de inercia!
Cuidado: Pueden ser el único efecto presente! (recordar mas adelante)

Microfluídica:

$$
\operatorname{Re}=\frac{\rho \mathrm{v}_{0} \mathrm{l}_{0}}{\mu}
$$

Ley de escala para el \# Reynolds?

Supongamos que la manera que disponemos de mover el fluido es una diferencia de presión constante

Hicimos alguna otra suposición?
Si , que las fuerzas viscosas y no las inerciales son las que contrarrestan la presión!

Ecuaciones de Stokes

$$
0=-\nabla p+\nabla^{2} \overrightarrow{\mathbf{v}}
$$

Ecuación lineal en la velocidad!!

Superposición lineal de soluciones

$$
\begin{aligned}
& \left(\overrightarrow{\mathbf{v}_{1}} ; \mathrm{p}_{1}\right): \nabla \mathrm{p}_{1}+\nabla^{2} \overrightarrow{\mathbf{v}_{1}}=0 \\
& \left(\overrightarrow{\mathbf{v}_{2}} ; \mathrm{p}_{2}\right): \nabla \mathrm{p}_{2}+\nabla^{2} \overrightarrow{\mathbf{v}_{2}}=0
\end{aligned}
$$

$$
\left\{\left(\alpha \overrightarrow{\mathbf{v}_{1}}+\beta \overrightarrow{\mathbf{v}_{2}}\right) ;\left(\alpha \mathrm{p}_{1}+\beta \mathrm{p}_{2}\right)\right\}
$$

$\nabla\left(\alpha \mathrm{p}_{1}+\beta \mathrm{p}_{2}\right)+\nabla^{2}\left(\alpha \overrightarrow{\mathbf{v}_{1}}+\beta \overrightarrow{\mathbf{v}_{2}}\right)=0$
Permite trabajar con una base de soluciones $\left\{\mathbf{v}_{n}\right\}$
Que pasa con las condiciones de borde?

Ecuaciones de Stokes

$$
0=-\nabla p+\nabla^{2} \overrightarrow{\mathbf{v}}
$$

Ecuación lineal en la velocidad!!

Se puede partir (descomponer) problemas en partes

(a)

(b)

(c)
a) Rotación en un fluido en reposo.
b) Arrastre generado por un fluido en movimiento uniforme.
c) Velocidad de deformación lineal (centrada en una esfera fija).

Fluidos en el régimen de Stokes Resultados generales

Videos Clásicos G. I. Taylor

Significado \# Reynolds

```
THE NATIONAL COMMITTEE FOR
FLUID MECHANICS FILMS under a grant from the
National Sclence Foundation
```

presonts

Reversibilidad Cinemática

Fluidos en el régimen de Stokes Resultados generales

Movimientos simétricos no sirven
Ni para moverse, ni para empujar fluidos!!

Microfluídica: Preguntas @ Re=0
 $$
0=-\nabla p+\nabla^{2} \overrightarrow{\mathbf{v}}
$$

Cual es la velocidad de la esfera si duplico el caudal?

Q (caudal)

Cual es la fuerza de arrastre en la esfera si duplico el caudal?

Microfluídica: Preguntas @ Re=0

Cual se mueve más rápido?
Fuerza de arrastre

Puede haber fuerza vertical?

