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Table 1 Change in physical quantities with miniaturization

Physical quantity Change Length scale
Linear flow rate Reduced l 1

Volumetric flow rate Reduced l 3

Diffusive rate Increased On the order of l 2

Driving pressure Increased l 4

Gravity effects Reduced l 3

where l is the length scale and indicates the importance of surface forces in these micrometer-based
systems (2). Important scaling laws as a function of l for several physical quantities are presented
in Table 1.

In addition to scaling laws, dimensionless numbers, as shown in Table 2, provide further
insight into the physical phenomena occurring in microfluidic devices. Such numbers are derived
from fundamental equations governing the behavior of fluid flow (8). For instance, the simplified
Navier-Stokes equation is

ρ
du
dt

= −∇ p + η∇2u + f , 2.

Table 2 Change in dimensionless groups with miniaturization

Dimensionless
name and symbol Quantity Definition Change

Length
scale

Reynolds (Re) ρU 0 L0

η

Inertial forces
Viscous forces

Reduced l 2

Péclet (Pe) U 0 L0

D
Fluid convection
Fluid diffusion

Reduced l 2

Capillary (Ca) ηU 0

γ

Viscous forces
Interfacial forces

Reduced l 1

Damköhler (Da) DτR

L2
Reaction time

Transport time
Increased l 0

Marangoni (Mg) "γR
ηα

Surface tension gradient
Viscous forces

Reduced On the
order of

l 1

Bond (Bo) "ρg R2

γi

Gravity
Surface tension

Reduced l 2

Sherwood (Sh) κL
D

Convective mass transport
Diffusive mass transport

Reduced l 1

Deborah (De)
τ

(
γ

ρR3

)1/2 Relaxation time for polymeric liquid
Characteristic time

Increased l 3/2

Knudsen (Kn) λ

L
Mean free path

Physical length scale
Increased l 1

Weber (We) ρV 2

γ/R
Inertial forces

Surface tension forces
Reduced l 3
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Número	  de	  Knudsen	  ≈	  1	  	  
Nuestra	  aproximación	  de	  los	  fluidos	  	  
como	  un	  conBnuo	  Bene	  problemas.	  

Las	  condiciones	  de	  borde	  
necesitan	  correcciones	  (por	  que?)	  

Número	  de	  Knudsen	  >>	  1	  	  
Hay	  que	  abandonar	  	  
la	  idea	  de	  tratar	  
a	  los	  fluidos	  (gases)	  	  
como	  un	  conBnuo..	  	  

Número	  de	  Knudsen	  <<	  1	  	  à	  no	  hay	  ningún	  problema	  	  
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Table 1 Change in physical quantities with miniaturization

Physical quantity Change Length scale
Linear flow rate Reduced l 1

Volumetric flow rate Reduced l 3

Diffusive rate Increased On the order of l 2

Driving pressure Increased l 4

Gravity effects Reduced l 3
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Las	  condiciones	  de	  borde	  
Son	  una	  imposición	  de	  la	  	  
Teoría	  del	  conBnuo!	  
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Conceptos	  básicos	  

Fox	  and	  McDonald's	  IntroducBon	  to	  Fluid	  Mechanics,	  8th	  EdiBon	  

Aplicamos	  una	  fuerza	  tangencial	  (esfuerzo	  de	  corte)	  

Fluido:	  No	  puede	  resisBr	  esfuerzos	  de	  corte	  	  
	   	  y	  se	  deforma	  de	  manera	  conBnua	  

Como	  definimos	  que	  es	  un	  fluido?	  

La	  fuerza	  (esfuerzo	  de	  corte)	  es	  proporcional	  	  
a	  la	  velocidad	  (rapidez)	  de	  deformación	  

σ= FA=!!!! !!"=
F
A=!!

!!!
!" !

Fluido	  Newtoniano	  
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Ecuaciones	  de	  conservación	  
Conservación	  de	  la	  Masa	  

Ecuación	  de	  conBnuidad	  
∂ρ
∂t + ∇ ∙ ρv = 0!
Dρ
Dt + ρ ∇ ∙ v = 0!

Fluido	  Incompresible	  
∇ ∙ v=0# Campo	  de	  velocidades	  	  

es	  solenoide	  

Esta	  aproximación	  sigue	  siendo	  valida	  en	  general,	  pero	  puede	  traer	  problemas	  en	  
casos	  parBculares,	  no	  por	  la	  velocidad	  (<<	  velocidad	  del	  sonido),	  sino	  por	  cambios	  
grandes	  de	  presiones	  (ver	  Tabeling	  “boeleneck	  effect”)	  

D
Dt =

!
!" + v ∙ ∇!

Derivada	  Material	  o	  Sustancial	  
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Ecuaciones	  de	  conservación	  
Conservación	  de	  Momento	  (Lineal)	  

D !v
Dt = D

Dt !"!!v
!(!)

= Fuerzas!

!
Fuerzas = !Volumen + !Superficie!!

!Volumen = !"!!!!
!(!)

!

!Volumen = !"!!!!
!(!)

!!!

!

Elemento	  	  
de	  fluido	  

Fuerzas	  de	  Volumen	  
Actúa	  en	  todos	  los	  puntos	  dentro	  del	  elemento	  de	  fluido	  

2da	  Ley	  de	  Newton	  
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Fuerzas	  de	  Superficie	  

!Superficie = 0
!

!

!

Actúa	  en	  la	  superficie	  del	  elemento	  de	  fluido	  

Fuerzas = !Volumen + !Superficie!!

Leyes de escala I:  Cual de las contribuciones es mas grande ? (# Bond) 
Leyes de escala II: Que pasa con la aceleración cuando l à 0 ? 

Tienen	  que	  estar	  en	  equilibrio!!	  

à	  Podemos	  representarlas	  mediante	  el	  tensor	  de	  esfuerzos	  

f = !! ∙ !!

Elemento	  de	  fluido	  infinitesimal	  
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Integral de las fuerzas sobre la superficie	  	  
	  

!"!!! ∙ !
!"

= !"!∇ ∙ !!
!

!

D
Dt !"!!v

!(!)
= Fuerzas = !"!!!!

!(!)
+ !"!∇ ∙ !!

!(!)
!

!

!! = −!"+ !!

!DvDt = !!+ ∇ ∙ !! = !! − ∇! + ∇ ∙ !!
!

Teorema de transporte de Reynolds + Ecuación de continuidad	  
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Newtoniano;	  	  Incompresible;	  Isótropo	  

! = !2!!!
Tensor de deformaciones	  

! = 1
2 ∇!+ ∇!! ! !!" =

1
2
∂v!
∂x!

+ !v!!!!
!

Ecuación de Navier-Stokes	  

!DvDt = !! − ∇! + !∇!v!
!

Fuerzas de Inercia	   Fuerzas viscosas	  
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Ecuaciones	  adimensionales	  

! ∂v
∂t + v ∙ ! v = −∇! + !∇!v!

!Elegir magnitudes representativas/características  
del problema: velocidad v0 y longitud l0 

v' = v
v!
;! x' = x

l!
;! t' = t

t!
= v!t
l!
;! p' = p

p!
= pl!
!v!

;!

!v!!
l!

∂v'
∂t′ + v' ∙ !′ v' = !v!

l!!
−∇′!′+ ∇′!v' !

! !v!l!
!

∂v'
∂t′ + v' ∙ !′ v' = −∇′!′+ ∇′!v'!

!
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Ecuaciones	  adimensionales	  

Re ∂v
∂t + v ∙ ! v = −∇! + ∇!v!

! Re = !v!l!
! !

Que ventaja tiene usar ec. adimensioales? 

-  Ley de Semejanza (o Similitud):  
Geometría; Dinámica à Solución Análoga 

-  Independencia de las unidades 
-  Reducción del número de parámetros 
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Ecuaciones	  adimensionales	  

Re ∂v
∂t + v ∙ ! v = −∇! + ∇!v!

! Re = !v!l!
! !

Porque elegimos magnitudes características?  
Los distintos términos de la ecuación son O(1) !! 
El número de Reynolds representa fuerzas inercia/viscosas 

Re = !v!l!
! = !v!!

l!
!v!
l!!

!

Re ≪ 1!
0 = −∇! + ∇!v!

!

Ecuación de Stokes	  
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Microfluídica:	  	  
	  Re = !v!l!
! !

longitud l0 ≈ 100µm 
velocidad v0 ≈ 100µm/s 

µ water ≈  0.001 kg/m.s 
ρ water ≈ 1g/cm3 

Re ≈ 0.01	  

En general podemos ignorar los efectos de inercia ! 
Cuidado: Pueden ser el único efecto presente! (recordar mas adelante)	  
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Microfluídica:	  	  
	  Re = !v!l!
! !

Ley de escala para el # Reynolds?	  
Supongamos que la manera que disponemos 

de mover el fluido es  
una diferencia de presión constante	  

p! =
!v!
l!
;!

Hicimos alguna otra suposición?	  
Si, que las fuerzas viscosas y no las inerciales  

son las que contrarrestan la presión!  	  

Re = !l!p!l!
!! ~l!!!v! =

l!p!
! ;!
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Ecuaciones	  de	  Stokes	  
0 = −∇! + ∇!v!

! Ecuación	  lineal	  en	  la	  velocidad!!	  

Superposición lineal	  de soluciones	  
!!;p! :!!∇p! + ∇!!! = 0!

! !!;p! :!!∇p! + ∇!!! = 0!
!

!∇(αp1 + βp2)+ ∇2 !!1 + !!2 = 0!
!

! !!! + !!! ; (αp! + βp!) !
!

Permite	  trabajar	  con	  una	  base	  de	  soluciones	  {vn}	  

Que	  pasa	  con	  las	  condiciones	  de	  borde?	  
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Ecuaciones	  de	  Stokes	  
0 = −∇! + ∇!v!

! Ecuación	  lineal	  en	  la	  velocidad!!	  

Se puede partir (descomponer) problemas en partes	  

P1: JZP
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Creeping Flows – Two-Dimensional and Axisymmetric Problems

Y

X

L

= + +F

(a) (b) (c)

ΩΩ ΩΩ

Figure 7–2. Illustration of the decomposition of the problem of a freely rotating sphere in a simple shear
flow as the sum of three simpler problems: (a) a sphere rotating in a fluid that is stationary at infinity, (b) a
sphere held stationary in a uniform flow, and (c) a nonrotating sphere in a simple shear flow that is zero at
the center of the sphere. The angular velocity Ω in (a) is the same as the angular velocity of the sphere in the
original problem. The translation velocity in (b) is equal to the undisturbed fluid velocity evaluated at the
position of the center of the sphere. The shear rate in (c) is equal to the shear rate in the original problem.

Re is not vanishingly small, the inertia of the fluid will play an increasingly important role
with increase of Re. In the creeping-flow case, the fluid with negligible inertia has no more
difficulty traversing a path that flows the contours of the body when it is in configuration
(a) than (b). Once fluid inertia enters the picture, however, the radial outward flow from the
front face of the body in configuration (b) will be much more difficult to deflect back into
the main flow direction, and the result will be a larger region of fluid that is disturbed by the
presence of the body compared with the more streamlined configuration (a). This results in
a larger drag.

2. The Lift on a Sphere That is Rotating in a Simple Shear Flow
As a second example, let us consider a solid sphere rotating with angular velocity Ω about
its center, with the center held fixed in space and the fluid “at infinity” undergoing a flow
that is a combination of uniform translation with velocity U and linear shear flow with a
shear rate γ . The situation is sketched in Fig. 7–2. An analogous problem is the motion of
a spinning baseball that is translating through the atmosphere with a velocity −U in the
presence of a wind that produces the shear motion because of the no-slip condition at the
ground. It is well known to fans of baseball that the ball will follow a curved trajectory
with a component of translational motion that is in the direction Ω ∧ U. Hence, with the
previously described configuration, the combination of translational and rotational motion
leads to a net hydrodynamic force on the baseball that is perpendicular to the U, Ω plane.
Such a force, orthogonal to the direction of motion, is usually denoted as a “lift” force. We
wish to determine whether there would be any lift on the sphere in the creeping-flow limit.
Hence, referring to Fig. 7–2, we seek to determine whether there is a force on the sphere in
the direction orthogonal to the fluid motion at infinity.

The governing nondimensionalized equations and boundary conditions for this problem
are

∇2u − ∇ p = 0; ∇ · u = 0, (7–15)

with

u =
(

a
Uc

)
Ω ∧ r on the sphere r = 1,

u =
(

1 + γ a
Uc

· y
)

iz at ∞.

436

a)  Rotación	  en	  un	  fluido	  en	  reposo.	  
b)  Arrastre	  generado	  por	  un	  fluido	  en	  movimiento	  uniforme.	  
c)  Velocidad	  de	  deformación	  lineal	  (centrada	  en	  una	  esfera	  fija).	  
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Fluidos	  en	  el	  régimen	  de	  Stokes	  
Resultados	  generales	  

Significado	  #	  Reynolds	  	  

Videos	  Clásicos	  G.	  I.	  Taylor	  

Reversibilidad	  CinemáBca	  
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Movimientos	  simétricos	  no	  sirven	  	  
Ni	  para	  moverse,	  ni	  para	  empujar	  fluidos!!	  

Fluidos	  en	  el	  régimen	  de	  Stokes	  
Resultados	  generales	  
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0 = −∇! + ∇!v!
!

U	   Q	  (caudal)	  

Cual	  es	  la	  velocidad	  de	  la	  esfera	  si	  duplico	  el	  caudal?	  

F	   Q	  (caudal)	  

Cual	  es	  la	  fuerza	  de	  arrastre	  en	  la	  esfera	  si	  duplico	  el	  caudal?	  

Microfluídica:	  	  
Preguntas	  @	  Re=0	  
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Microfluídica:	  	  
Preguntas	  @	  Re=0	  

P1: JZP
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B. Some General Consequences of Linearity and the Creeping-flow Equations

UU

(a) (b)

(Drag  =  DA) (Drag  =  DB)

Figure 7–1. A schematic representation of two
mirror-image configurations of cone-shaped bodies
that are held fixed in a uniform, undisturbed flow. For
the limit Re ≡ 0, DA ≡ DB .

and (b). We wish to know whether the drag force DA for configuration (a) is larger than,
smaller than, or equal to the drag force DB for configuration (b).

To determine DB , we need to actually solve the creeping-flow and continuity equations,

∇2u − ∇ p = 0,

∇ · u = 0,
(7–11)

subject to boundary conditions

u = 0 on S(b),

u = U at ∞.
(7–12)

However, once DB has been determined, we can immediately obtain DA.
To see that this is true, we simply note that we can obtain the detailed flow problem

for configuration (a) directly from (7–11) and (7–12) by simply reversing the sign of the
undisturbed flow at infinity. In particular, if the solution for configuration (b) is denoted as
(u, p), the solution for configuration (a) is just

!u = −u,

!p = −p.
(7–13)

This is a consequence of the linearity of governing equations and boundary conditions
(7–11) and (7–12), plus the fact that the geometry of the boundaries are mirror images. It
follows that the magnitude of the drag for configuration (a) must be identical (except for a
sign change) to the drag for (b), that is,

DA ≡ DB . (7–14)

Clearly, the result (7–14) is a consequence of linearity alone and does not require a solution
of the governing equations and boundary conditions. Of course, if we want to determine
the actual value of the drag, we will have to solve the problem in either configuration (a) or
(b). All that (7–14) tells us is that the drag in the two configurations is equal.

This result may at first seem surprising. For most readers, it might seem that the drag
should be lower for the nose-forward configuration (a) as this is more streamlined, and our
everyday experience suggests that more streamlined shapes should experience less drag.
However, this experience is most likely with the motion of bodies through fluids at relatively
large values of the Reynolds number, Re. In fact, for finite Reynolds numbers, e.g., Re > 1,
the drag in configuration (a) will be lower than the drag in configuration (b). It is difficult to
provide an adequate explanation for this result at this point. However, one way to think about
it is that the limit Re = 0 corresponds to the case in which the inertia (i.e., acceleration) of
the fluid is negligible compared with viscous and pressure forces. On the other hand, once

435

Cual	  se	  mueve	  más	  rápido?	  
Fuerza	  de	  arrastre	  

P1: JZP
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Creeping Flows – Two-Dimensional and Axisymmetric Problems

up

(a)

up

(b)

Figure 7–3. A schematic representation of the proof that a spherical particle cannot undergo lateral migra-
tion in either 2-D or axisymmetric Poiseuille flow if the disturbance flow is a creeping flow. In (a) we suppose
that the undisturbed flow moves from left to right and the sphere migrates inward with velocity up . Then,
in the creeping-flow limit, if direction of the undisturbed flow is reversed, the signs of all velocities including
that of the sphere would also have to be reversed, as shown in (b). Because the problems (a) and (b) are
identical other than the direction of the flow through the channel or tube, we conclude that up = 0.

body without actually solving the full fluid mechanics problem and calculating the force by
integrating the stress vector n · T over the sphere surface.

3. Lateral Migration of a Sphere in Poiseuille Flow
One of the best-known experimental results for particle motion in viscous flows is the
observation by Segre and Silberberg2 of lateral migration for a small, neutrally buoyant
sphere (ρsphere = ρfluid) that is immersed in Poiseuille flow through a straight, circular tube
or in the pressure-driven parabolic flow (sometimes called 2D Poiseuille flow) between
two parallel plane boundaries. The experiments of Segre and Silberberg, and many later
investigators, show that a freely suspended sphere in these circumstances will slowly move
perpendicular to the main direction of flow until it reaches an equilibrium position that is
approximately 60% of the way from the centerline (or central plane) to the wall. Hence a
suspension of such spheres flowing in Poiseuille flow through a tube of radius R will tend to
accumulate in an annular ring at r = 0.6R. Because the Reynolds number for many of the
experimental observations was quite small, one might assume that a theoretical explanation
could be achieved by using detailed solutions of the creeping-flow equations with suitable
boundary conditions. However, in view of the complexity of the geometry (an eccentrically
located sphere inside a circular tube), this theoretical problem is extremely complex and
difficult to solve, even in the creeping-flow limit. Thus, before actually trying to solve
the problem, it is prudent to determine whether lateral migration is possible at all in the
creeping-flow limit.

The fact is that a theory based entirely on the creeping-flow approximation will lead
to the result that lateral migration is impossible, at least for a single sphere immersed in
axisymmetric or two-dimensional Poiseuille flow. To see that this is true, we can refer to
Fig. 7–3. Here is a sketch of the hypothetical situation of a sphere that is undergoing lateral
migration in Poiseuille flow through a tube. The undisturbed flow in part (a) of Fig. 7–3
is shown moving from left to right, and the sphere is assumed to be migrating radially
inward toward the center of the tube. Now, however, if the creeping-motion approximation
is valid, the governing equations and boundary conditions are linear in the velocity and
pressure, and we can change the signs of all velocities and the pressure and still have a
solution of the same problem but with the direction of the undisturbed flow reversed, as
shown in Fig. 7–3(b). However, because all the velocities have the opposite sign, the inward
migration velocity from configuration (a) must now become an outward migration velocity
for configuration (b). But there is now a clear contradiction. The problems in (a) and (b)
are clearly indistinguishable in all respects. Thus, if the sphere undergoes a lateral motion,
it should be in the same direction in both cases. Because the preceding argument, based on
the linearity of the problem, shows that a nonzero migration velocity in case (a) must lead

438

Puede	  haber	  fuerza	  verBcal?	  
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Creeping Flows – Two-Dimensional and Axisymmetric Problems
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Figure 7–3. A schematic representation of the proof that a spherical particle cannot undergo lateral migra-
tion in either 2-D or axisymmetric Poiseuille flow if the disturbance flow is a creeping flow. In (a) we suppose
that the undisturbed flow moves from left to right and the sphere migrates inward with velocity up . Then,
in the creeping-flow limit, if direction of the undisturbed flow is reversed, the signs of all velocities including
that of the sphere would also have to be reversed, as shown in (b). Because the problems (a) and (b) are
identical other than the direction of the flow through the channel or tube, we conclude that up = 0.

body without actually solving the full fluid mechanics problem and calculating the force by
integrating the stress vector n · T over the sphere surface.

3. Lateral Migration of a Sphere in Poiseuille Flow
One of the best-known experimental results for particle motion in viscous flows is the
observation by Segre and Silberberg2 of lateral migration for a small, neutrally buoyant
sphere (ρsphere = ρfluid) that is immersed in Poiseuille flow through a straight, circular tube
or in the pressure-driven parabolic flow (sometimes called 2D Poiseuille flow) between
two parallel plane boundaries. The experiments of Segre and Silberberg, and many later
investigators, show that a freely suspended sphere in these circumstances will slowly move
perpendicular to the main direction of flow until it reaches an equilibrium position that is
approximately 60% of the way from the centerline (or central plane) to the wall. Hence a
suspension of such spheres flowing in Poiseuille flow through a tube of radius R will tend to
accumulate in an annular ring at r = 0.6R. Because the Reynolds number for many of the
experimental observations was quite small, one might assume that a theoretical explanation
could be achieved by using detailed solutions of the creeping-flow equations with suitable
boundary conditions. However, in view of the complexity of the geometry (an eccentrically
located sphere inside a circular tube), this theoretical problem is extremely complex and
difficult to solve, even in the creeping-flow limit. Thus, before actually trying to solve
the problem, it is prudent to determine whether lateral migration is possible at all in the
creeping-flow limit.

The fact is that a theory based entirely on the creeping-flow approximation will lead
to the result that lateral migration is impossible, at least for a single sphere immersed in
axisymmetric or two-dimensional Poiseuille flow. To see that this is true, we can refer to
Fig. 7–3. Here is a sketch of the hypothetical situation of a sphere that is undergoing lateral
migration in Poiseuille flow through a tube. The undisturbed flow in part (a) of Fig. 7–3
is shown moving from left to right, and the sphere is assumed to be migrating radially
inward toward the center of the tube. Now, however, if the creeping-motion approximation
is valid, the governing equations and boundary conditions are linear in the velocity and
pressure, and we can change the signs of all velocities and the pressure and still have a
solution of the same problem but with the direction of the undisturbed flow reversed, as
shown in Fig. 7–3(b). However, because all the velocities have the opposite sign, the inward
migration velocity from configuration (a) must now become an outward migration velocity
for configuration (b). But there is now a clear contradiction. The problems in (a) and (b)
are clearly indistinguishable in all respects. Thus, if the sphere undergoes a lateral motion,
it should be in the same direction in both cases. Because the preceding argument, based on
the linearity of the problem, shows that a nonzero migration velocity in case (a) must lead
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