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Table 1 Change in physical quantities with miniaturization

Physical quantity Change Length scale
Linear flow rate Reduced l 1

Volumetric flow rate Reduced l 3

Diffusive rate Increased On the order of l 2

Driving pressure Increased l 4

Gravity effects Reduced l 3

where l is the length scale and indicates the importance of surface forces in these micrometer-based
systems (2). Important scaling laws as a function of l for several physical quantities are presented
in Table 1.

In addition to scaling laws, dimensionless numbers, as shown in Table 2, provide further
insight into the physical phenomena occurring in microfluidic devices. Such numbers are derived
from fundamental equations governing the behavior of fluid flow (8). For instance, the simplified
Navier-Stokes equation is

ρ
du
dt

= −∇ p + η∇2u + f , 2.

Table 2 Change in dimensionless groups with miniaturization

Dimensionless
name and symbol Quantity Definition Change

Length
scale

Reynolds (Re) ρU 0 L0

η

Inertial forces
Viscous forces

Reduced l 2

Péclet (Pe) U 0 L0

D
Fluid convection
Fluid diffusion

Reduced l 2

Capillary (Ca) ηU 0

γ

Viscous forces
Interfacial forces

Reduced l 1

Damköhler (Da) DτR

L2
Reaction time

Transport time
Increased l 0

Marangoni (Mg) "γR
ηα

Surface tension gradient
Viscous forces

Reduced On the
order of

l 1

Bond (Bo) "ρg R2

γi

Gravity
Surface tension

Reduced l 2

Sherwood (Sh) κL
D

Convective mass transport
Diffusive mass transport

Reduced l 1

Deborah (De)
τ

(
γ

ρR3

)1/2 Relaxation time for polymeric liquid
Characteristic time

Increased l 3/2

Knudsen (Kn) λ

L
Mean free path

Physical length scale
Increased l 1

Weber (We) ρV 2

γ/R
Inertial forces

Surface tension forces
Reduced l 3
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Número	
  de	
  Knudsen	
  ≈	
  1	
  	
  
Nuestra	
  aproximación	
  de	
  los	
  fluidos	
  	
  
como	
  un	
  conBnuo	
  Bene	
  problemas.	
  

Las	
  condiciones	
  de	
  borde	
  
necesitan	
  correcciones	
  (por	
  que?)	
  

Número	
  de	
  Knudsen	
  >>	
  1	
  	
  
Hay	
  que	
  abandonar	
  	
  
la	
  idea	
  de	
  tratar	
  
a	
  los	
  fluidos	
  (gases)	
  	
  
como	
  un	
  conBnuo..	
  	
  

Número	
  de	
  Knudsen	
  <<	
  1	
  	
  à	
  no	
  hay	
  ningún	
  problema	
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Las	
  condiciones	
  de	
  borde	
  
Son	
  una	
  imposición	
  de	
  la	
  	
  
Teoría	
  del	
  conBnuo!	
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Conceptos	
  básicos	
  

Fox	
  and	
  McDonald's	
  IntroducBon	
  to	
  Fluid	
  Mechanics,	
  8th	
  EdiBon	
  

Aplicamos	
  una	
  fuerza	
  tangencial	
  (esfuerzo	
  de	
  corte)	
  

Fluido:	
  No	
  puede	
  resisBr	
  esfuerzos	
  de	
  corte	
  	
  
	
   	
  y	
  se	
  deforma	
  de	
  manera	
  conBnua	
  

Como	
  definimos	
  que	
  es	
  un	
  fluido?	
  

La	
  fuerza	
  (esfuerzo	
  de	
  corte)	
  es	
  proporcional	
  	
  
a	
  la	
  velocidad	
  (rapidez)	
  de	
  deformación	
  

σ= FA=!!!! !!"=
F
A=!!

!!!
!" !

Fluido	
  Newtoniano	
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Ecuaciones	
  de	
  conservación	
  
Conservación	
  de	
  la	
  Masa	
  

Ecuación	
  de	
  conBnuidad	
  
∂ρ
∂t + ∇ ∙ ρv = 0!
Dρ
Dt + ρ ∇ ∙ v = 0!

Fluido	
  Incompresible	
  
∇ ∙ v=0# Campo	
  de	
  velocidades	
  	
  

es	
  solenoide	
  

Esta	
  aproximación	
  sigue	
  siendo	
  valida	
  en	
  general,	
  pero	
  puede	
  traer	
  problemas	
  en	
  
casos	
  parBculares,	
  no	
  por	
  la	
  velocidad	
  (<<	
  velocidad	
  del	
  sonido),	
  sino	
  por	
  cambios	
  
grandes	
  de	
  presiones	
  (ver	
  Tabeling	
  “boeleneck	
  effect”)	
  

D
Dt =

!
!" + v ∙ ∇!

Derivada	
  Material	
  o	
  Sustancial	
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Ecuaciones	
  de	
  conservación	
  
Conservación	
  de	
  Momento	
  (Lineal)	
  

D !v
Dt = D

Dt !"!!v
!(!)

= Fuerzas!

!
Fuerzas = !Volumen + !Superficie!!

!Volumen = !"!!!!
!(!)

!

!Volumen = !"!!!!
!(!)

!!!

!

Elemento	
  	
  
de	
  fluido	
  

Fuerzas	
  de	
  Volumen	
  
Actúa	
  en	
  todos	
  los	
  puntos	
  dentro	
  del	
  elemento	
  de	
  fluido	
  

2da	
  Ley	
  de	
  Newton	
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Fuerzas	
  de	
  Superficie	
  

!Superficie = 0
!

!

!

Actúa	
  en	
  la	
  superficie	
  del	
  elemento	
  de	
  fluido	
  

Fuerzas = !Volumen + !Superficie!!

Leyes de escala I:  Cual de las contribuciones es mas grande ? (# Bond) 
Leyes de escala II: Que pasa con la aceleración cuando l à 0 ? 

Tienen	
  que	
  estar	
  en	
  equilibrio!!	
  

à	
  Podemos	
  representarlas	
  mediante	
  el	
  tensor	
  de	
  esfuerzos	
  

f = !! ∙ !!

Elemento	
  de	
  fluido	
  infinitesimal	
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Integral de las fuerzas sobre la superficie	
  	
  
	
  

!"!!! ∙ !
!"

= !"!∇ ∙ !!
!

!

D
Dt !"!!v

!(!)
= Fuerzas = !"!!!!

!(!)
+ !"!∇ ∙ !!

!(!)
!

!

!! = −!"+ !!

!DvDt = !!+ ∇ ∙ !! = !! − ∇! + ∇ ∙ !!
!

Teorema de transporte de Reynolds + Ecuación de continuidad	
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Newtoniano;	
  	
  Incompresible;	
  Isótropo	
  

! = !2!!!
Tensor de deformaciones	
  

! = 1
2 ∇!+ ∇!! ! !!" =

1
2
∂v!
∂x!

+ !v!!!!
!

Ecuación de Navier-Stokes	
  

!DvDt = !! − ∇! + !∇!v!
!

Fuerzas de Inercia	
   Fuerzas viscosas	
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Ecuaciones	
  adimensionales	
  

! ∂v
∂t + v ∙ ! v = −∇! + !∇!v!

!Elegir magnitudes representativas/características  
del problema: velocidad v0 y longitud l0 

v' = v
v!
;! x' = x

l!
;! t' = t

t!
= v!t
l!
;! p' = p

p!
= pl!
!v!

;!

!v!!
l!

∂v'
∂t′ + v' ∙ !′ v' = !v!

l!!
−∇′!′+ ∇′!v' !

! !v!l!
!

∂v'
∂t′ + v' ∙ !′ v' = −∇′!′+ ∇′!v'!

!
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Ecuaciones	
  adimensionales	
  

Re ∂v
∂t + v ∙ ! v = −∇! + ∇!v!

! Re = !v!l!
! !

Que ventaja tiene usar ec. adimensioales? 

-  Ley de Semejanza (o Similitud):  
Geometría; Dinámica à Solución Análoga 

-  Independencia de las unidades 
-  Reducción del número de parámetros 
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Ecuaciones	
  adimensionales	
  

Re ∂v
∂t + v ∙ ! v = −∇! + ∇!v!

! Re = !v!l!
! !

Porque elegimos magnitudes características?  
Los distintos términos de la ecuación son O(1) !! 
El número de Reynolds representa fuerzas inercia/viscosas 

Re = !v!l!
! = !v!!

l!
!v!
l!!

!

Re ≪ 1!
0 = −∇! + ∇!v!

!

Ecuación de Stokes	
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Microfluídica:	
  	
  
	
  Re = !v!l!
! !

longitud l0 ≈ 100µm 
velocidad v0 ≈ 100µm/s 

µ water ≈  0.001 kg/m.s 
ρ water ≈ 1g/cm3 

Re ≈ 0.01	
  

En general podemos ignorar los efectos de inercia ! 
Cuidado: Pueden ser el único efecto presente! (recordar mas adelante)	
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Microfluídica:	
  	
  
	
  Re = !v!l!
! !

Ley de escala para el # Reynolds?	
  
Supongamos que la manera que disponemos 

de mover el fluido es  
una diferencia de presión constante	
  

p! =
!v!
l!
;!

Hicimos alguna otra suposición?	
  
Si, que las fuerzas viscosas y no las inerciales  

son las que contrarrestan la presión!  	
  

Re = !l!p!l!
!! ~l!!!v! =

l!p!
! ;!
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Ecuaciones	
  de	
  Stokes	
  
0 = −∇! + ∇!v!

! Ecuación	
  lineal	
  en	
  la	
  velocidad!!	
  

Superposición lineal	
  de soluciones	
  
!!;p! :!!∇p! + ∇!!! = 0!

! !!;p! :!!∇p! + ∇!!! = 0!
!

!∇(αp1 + βp2)+ ∇2 !!1 + !!2 = 0!
!

! !!! + !!! ; (αp! + βp!) !
!

Permite	
  trabajar	
  con	
  una	
  base	
  de	
  soluciones	
  {vn}	
  

Que	
  pasa	
  con	
  las	
  condiciones	
  de	
  borde?	
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Ecuaciones	
  de	
  Stokes	
  
0 = −∇! + ∇!v!

! Ecuación	
  lineal	
  en	
  la	
  velocidad!!	
  

Se puede partir (descomponer) problemas en partes	
  

P1: JZP
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Creeping Flows – Two-Dimensional and Axisymmetric Problems

Y

X

L

= + +F

(a) (b) (c)

ΩΩ ΩΩ

Figure 7–2. Illustration of the decomposition of the problem of a freely rotating sphere in a simple shear
flow as the sum of three simpler problems: (a) a sphere rotating in a fluid that is stationary at infinity, (b) a
sphere held stationary in a uniform flow, and (c) a nonrotating sphere in a simple shear flow that is zero at
the center of the sphere. The angular velocity Ω in (a) is the same as the angular velocity of the sphere in the
original problem. The translation velocity in (b) is equal to the undisturbed fluid velocity evaluated at the
position of the center of the sphere. The shear rate in (c) is equal to the shear rate in the original problem.

Re is not vanishingly small, the inertia of the fluid will play an increasingly important role
with increase of Re. In the creeping-flow case, the fluid with negligible inertia has no more
difficulty traversing a path that flows the contours of the body when it is in configuration
(a) than (b). Once fluid inertia enters the picture, however, the radial outward flow from the
front face of the body in configuration (b) will be much more difficult to deflect back into
the main flow direction, and the result will be a larger region of fluid that is disturbed by the
presence of the body compared with the more streamlined configuration (a). This results in
a larger drag.

2. The Lift on a Sphere That is Rotating in a Simple Shear Flow
As a second example, let us consider a solid sphere rotating with angular velocity Ω about
its center, with the center held fixed in space and the fluid “at infinity” undergoing a flow
that is a combination of uniform translation with velocity U and linear shear flow with a
shear rate γ . The situation is sketched in Fig. 7–2. An analogous problem is the motion of
a spinning baseball that is translating through the atmosphere with a velocity −U in the
presence of a wind that produces the shear motion because of the no-slip condition at the
ground. It is well known to fans of baseball that the ball will follow a curved trajectory
with a component of translational motion that is in the direction Ω ∧ U. Hence, with the
previously described configuration, the combination of translational and rotational motion
leads to a net hydrodynamic force on the baseball that is perpendicular to the U, Ω plane.
Such a force, orthogonal to the direction of motion, is usually denoted as a “lift” force. We
wish to determine whether there would be any lift on the sphere in the creeping-flow limit.
Hence, referring to Fig. 7–2, we seek to determine whether there is a force on the sphere in
the direction orthogonal to the fluid motion at infinity.

The governing nondimensionalized equations and boundary conditions for this problem
are

∇2u − ∇ p = 0; ∇ · u = 0, (7–15)

with

u =
(

a
Uc

)
Ω ∧ r on the sphere r = 1,

u =
(

1 + γ a
Uc

· y
)

iz at ∞.

436

a)  Rotación	
  en	
  un	
  fluido	
  en	
  reposo.	
  
b)  Arrastre	
  generado	
  por	
  un	
  fluido	
  en	
  movimiento	
  uniforme.	
  
c)  Velocidad	
  de	
  deformación	
  lineal	
  (centrada	
  en	
  una	
  esfera	
  fija).	
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Fluidos	
  en	
  el	
  régimen	
  de	
  Stokes	
  
Resultados	
  generales	
  

Significado	
  #	
  Reynolds	
  	
  

Videos	
  Clásicos	
  G.	
  I.	
  Taylor	
  

Reversibilidad	
  CinemáBca	
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Movimientos	
  simétricos	
  no	
  sirven	
  	
  
Ni	
  para	
  moverse,	
  ni	
  para	
  empujar	
  fluidos!!	
  

Fluidos	
  en	
  el	
  régimen	
  de	
  Stokes	
  
Resultados	
  generales	
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0 = −∇! + ∇!v!
!

U	
   Q	
  (caudal)	
  

Cual	
  es	
  la	
  velocidad	
  de	
  la	
  esfera	
  si	
  duplico	
  el	
  caudal?	
  

F	
   Q	
  (caudal)	
  

Cual	
  es	
  la	
  fuerza	
  de	
  arrastre	
  en	
  la	
  esfera	
  si	
  duplico	
  el	
  caudal?	
  

Microfluídica:	
  	
  
Preguntas	
  @	
  Re=0	
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Microfluídica:	
  	
  
Preguntas	
  @	
  Re=0	
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B. Some General Consequences of Linearity and the Creeping-flow Equations

UU

(a) (b)

(Drag  =  DA) (Drag  =  DB)

Figure 7–1. A schematic representation of two
mirror-image configurations of cone-shaped bodies
that are held fixed in a uniform, undisturbed flow. For
the limit Re ≡ 0, DA ≡ DB .

and (b). We wish to know whether the drag force DA for configuration (a) is larger than,
smaller than, or equal to the drag force DB for configuration (b).

To determine DB , we need to actually solve the creeping-flow and continuity equations,

∇2u − ∇ p = 0,

∇ · u = 0,
(7–11)

subject to boundary conditions

u = 0 on S(b),

u = U at ∞.
(7–12)

However, once DB has been determined, we can immediately obtain DA.
To see that this is true, we simply note that we can obtain the detailed flow problem

for configuration (a) directly from (7–11) and (7–12) by simply reversing the sign of the
undisturbed flow at infinity. In particular, if the solution for configuration (b) is denoted as
(u, p), the solution for configuration (a) is just

!u = −u,

!p = −p.
(7–13)

This is a consequence of the linearity of governing equations and boundary conditions
(7–11) and (7–12), plus the fact that the geometry of the boundaries are mirror images. It
follows that the magnitude of the drag for configuration (a) must be identical (except for a
sign change) to the drag for (b), that is,

DA ≡ DB . (7–14)

Clearly, the result (7–14) is a consequence of linearity alone and does not require a solution
of the governing equations and boundary conditions. Of course, if we want to determine
the actual value of the drag, we will have to solve the problem in either configuration (a) or
(b). All that (7–14) tells us is that the drag in the two configurations is equal.

This result may at first seem surprising. For most readers, it might seem that the drag
should be lower for the nose-forward configuration (a) as this is more streamlined, and our
everyday experience suggests that more streamlined shapes should experience less drag.
However, this experience is most likely with the motion of bodies through fluids at relatively
large values of the Reynolds number, Re. In fact, for finite Reynolds numbers, e.g., Re > 1,
the drag in configuration (a) will be lower than the drag in configuration (b). It is difficult to
provide an adequate explanation for this result at this point. However, one way to think about
it is that the limit Re = 0 corresponds to the case in which the inertia (i.e., acceleration) of
the fluid is negligible compared with viscous and pressure forces. On the other hand, once

435

Cual	
  se	
  mueve	
  más	
  rápido?	
  
Fuerza	
  de	
  arrastre	
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Creeping Flows – Two-Dimensional and Axisymmetric Problems

up

(a)

up

(b)

Figure 7–3. A schematic representation of the proof that a spherical particle cannot undergo lateral migra-
tion in either 2-D or axisymmetric Poiseuille flow if the disturbance flow is a creeping flow. In (a) we suppose
that the undisturbed flow moves from left to right and the sphere migrates inward with velocity up . Then,
in the creeping-flow limit, if direction of the undisturbed flow is reversed, the signs of all velocities including
that of the sphere would also have to be reversed, as shown in (b). Because the problems (a) and (b) are
identical other than the direction of the flow through the channel or tube, we conclude that up = 0.

body without actually solving the full fluid mechanics problem and calculating the force by
integrating the stress vector n · T over the sphere surface.

3. Lateral Migration of a Sphere in Poiseuille Flow
One of the best-known experimental results for particle motion in viscous flows is the
observation by Segre and Silberberg2 of lateral migration for a small, neutrally buoyant
sphere (ρsphere = ρfluid) that is immersed in Poiseuille flow through a straight, circular tube
or in the pressure-driven parabolic flow (sometimes called 2D Poiseuille flow) between
two parallel plane boundaries. The experiments of Segre and Silberberg, and many later
investigators, show that a freely suspended sphere in these circumstances will slowly move
perpendicular to the main direction of flow until it reaches an equilibrium position that is
approximately 60% of the way from the centerline (or central plane) to the wall. Hence a
suspension of such spheres flowing in Poiseuille flow through a tube of radius R will tend to
accumulate in an annular ring at r = 0.6R. Because the Reynolds number for many of the
experimental observations was quite small, one might assume that a theoretical explanation
could be achieved by using detailed solutions of the creeping-flow equations with suitable
boundary conditions. However, in view of the complexity of the geometry (an eccentrically
located sphere inside a circular tube), this theoretical problem is extremely complex and
difficult to solve, even in the creeping-flow limit. Thus, before actually trying to solve
the problem, it is prudent to determine whether lateral migration is possible at all in the
creeping-flow limit.

The fact is that a theory based entirely on the creeping-flow approximation will lead
to the result that lateral migration is impossible, at least for a single sphere immersed in
axisymmetric or two-dimensional Poiseuille flow. To see that this is true, we can refer to
Fig. 7–3. Here is a sketch of the hypothetical situation of a sphere that is undergoing lateral
migration in Poiseuille flow through a tube. The undisturbed flow in part (a) of Fig. 7–3
is shown moving from left to right, and the sphere is assumed to be migrating radially
inward toward the center of the tube. Now, however, if the creeping-motion approximation
is valid, the governing equations and boundary conditions are linear in the velocity and
pressure, and we can change the signs of all velocities and the pressure and still have a
solution of the same problem but with the direction of the undisturbed flow reversed, as
shown in Fig. 7–3(b). However, because all the velocities have the opposite sign, the inward
migration velocity from configuration (a) must now become an outward migration velocity
for configuration (b). But there is now a clear contradiction. The problems in (a) and (b)
are clearly indistinguishable in all respects. Thus, if the sphere undergoes a lateral motion,
it should be in the same direction in both cases. Because the preceding argument, based on
the linearity of the problem, shows that a nonzero migration velocity in case (a) must lead

438

Puede	
  haber	
  fuerza	
  verBcal?	
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in the creeping-flow limit, if direction of the undisturbed flow is reversed, the signs of all velocities including
that of the sphere would also have to be reversed, as shown in (b). Because the problems (a) and (b) are
identical other than the direction of the flow through the channel or tube, we conclude that up = 0.

body without actually solving the full fluid mechanics problem and calculating the force by
integrating the stress vector n · T over the sphere surface.

3. Lateral Migration of a Sphere in Poiseuille Flow
One of the best-known experimental results for particle motion in viscous flows is the
observation by Segre and Silberberg2 of lateral migration for a small, neutrally buoyant
sphere (ρsphere = ρfluid) that is immersed in Poiseuille flow through a straight, circular tube
or in the pressure-driven parabolic flow (sometimes called 2D Poiseuille flow) between
two parallel plane boundaries. The experiments of Segre and Silberberg, and many later
investigators, show that a freely suspended sphere in these circumstances will slowly move
perpendicular to the main direction of flow until it reaches an equilibrium position that is
approximately 60% of the way from the centerline (or central plane) to the wall. Hence a
suspension of such spheres flowing in Poiseuille flow through a tube of radius R will tend to
accumulate in an annular ring at r = 0.6R. Because the Reynolds number for many of the
experimental observations was quite small, one might assume that a theoretical explanation
could be achieved by using detailed solutions of the creeping-flow equations with suitable
boundary conditions. However, in view of the complexity of the geometry (an eccentrically
located sphere inside a circular tube), this theoretical problem is extremely complex and
difficult to solve, even in the creeping-flow limit. Thus, before actually trying to solve
the problem, it is prudent to determine whether lateral migration is possible at all in the
creeping-flow limit.

The fact is that a theory based entirely on the creeping-flow approximation will lead
to the result that lateral migration is impossible, at least for a single sphere immersed in
axisymmetric or two-dimensional Poiseuille flow. To see that this is true, we can refer to
Fig. 7–3. Here is a sketch of the hypothetical situation of a sphere that is undergoing lateral
migration in Poiseuille flow through a tube. The undisturbed flow in part (a) of Fig. 7–3
is shown moving from left to right, and the sphere is assumed to be migrating radially
inward toward the center of the tube. Now, however, if the creeping-motion approximation
is valid, the governing equations and boundary conditions are linear in the velocity and
pressure, and we can change the signs of all velocities and the pressure and still have a
solution of the same problem but with the direction of the undisturbed flow reversed, as
shown in Fig. 7–3(b). However, because all the velocities have the opposite sign, the inward
migration velocity from configuration (a) must now become an outward migration velocity
for configuration (b). But there is now a clear contradiction. The problems in (a) and (b)
are clearly indistinguishable in all respects. Thus, if the sphere undergoes a lateral motion,
it should be in the same direction in both cases. Because the preceding argument, based on
the linearity of the problem, shows that a nonzero migration velocity in case (a) must lead
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