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Figure 7–3. A schematic representation of the proof that a spherical particle cannot undergo lateral migra-
tion in either 2-D or axisymmetric Poiseuille flow if the disturbance flow is a creeping flow. In (a) we suppose
that the undisturbed flow moves from left to right and the sphere migrates inward with velocity up . Then,
in the creeping-flow limit, if direction of the undisturbed flow is reversed, the signs of all velocities including
that of the sphere would also have to be reversed, as shown in (b). Because the problems (a) and (b) are
identical other than the direction of the flow through the channel or tube, we conclude that up = 0.

body without actually solving the full fluid mechanics problem and calculating the force by
integrating the stress vector n · T over the sphere surface.

3. Lateral Migration of a Sphere in Poiseuille Flow
One of the best-known experimental results for particle motion in viscous flows is the
observation by Segre and Silberberg2 of lateral migration for a small, neutrally buoyant
sphere (ρsphere = ρfluid) that is immersed in Poiseuille flow through a straight, circular tube
or in the pressure-driven parabolic flow (sometimes called 2D Poiseuille flow) between
two parallel plane boundaries. The experiments of Segre and Silberberg, and many later
investigators, show that a freely suspended sphere in these circumstances will slowly move
perpendicular to the main direction of flow until it reaches an equilibrium position that is
approximately 60% of the way from the centerline (or central plane) to the wall. Hence a
suspension of such spheres flowing in Poiseuille flow through a tube of radius R will tend to
accumulate in an annular ring at r = 0.6R. Because the Reynolds number for many of the
experimental observations was quite small, one might assume that a theoretical explanation
could be achieved by using detailed solutions of the creeping-flow equations with suitable
boundary conditions. However, in view of the complexity of the geometry (an eccentrically
located sphere inside a circular tube), this theoretical problem is extremely complex and
difficult to solve, even in the creeping-flow limit. Thus, before actually trying to solve
the problem, it is prudent to determine whether lateral migration is possible at all in the
creeping-flow limit.

The fact is that a theory based entirely on the creeping-flow approximation will lead
to the result that lateral migration is impossible, at least for a single sphere immersed in
axisymmetric or two-dimensional Poiseuille flow. To see that this is true, we can refer to
Fig. 7–3. Here is a sketch of the hypothetical situation of a sphere that is undergoing lateral
migration in Poiseuille flow through a tube. The undisturbed flow in part (a) of Fig. 7–3
is shown moving from left to right, and the sphere is assumed to be migrating radially
inward toward the center of the tube. Now, however, if the creeping-motion approximation
is valid, the governing equations and boundary conditions are linear in the velocity and
pressure, and we can change the signs of all velocities and the pressure and still have a
solution of the same problem but with the direction of the undisturbed flow reversed, as
shown in Fig. 7–3(b). However, because all the velocities have the opposite sign, the inward
migration velocity from configuration (a) must now become an outward migration velocity
for configuration (b). But there is now a clear contradiction. The problems in (a) and (b)
are clearly indistinguishable in all respects. Thus, if the sphere undergoes a lateral motion,
it should be in the same direction in both cases. Because the preceding argument, based on
the linearity of the problem, shows that a nonzero migration velocity in case (a) must lead
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3.2. HYDRAULIC RESISTANCE OF SOME STRAIGHT CHANNELS 47

3.2 Hydraulic resistance of some straight channels

In this section we will list a selection of the hydraulic resistance of specific channels, such
as the one shown in Fig. 3.3 and studied in Exercise 3.7.

Using the results derived in Section 2.4 for the Poiseuille flow in straight channels, it
is easy to list the hydraulic resistance Rhyd for the six diÆerent cross sections as done in
Table 3.1. Next to the analytical expressions for Rhyd is given numerical values for Rhyd.
These values are calculated using the viscosity of water and fixing the length L along the
channel axis to be 1 mm. The length-scales perpendicular to the axis are also of the order
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0.25 Eq. (2.30b)
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b a 4
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¥L

1 + (b/a)2

(b/a)3
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2.84 Exercise 3.4

Table 3.1: A list over the hydraulic resistance for straight channels with diÆerent cross
sectional shapes. The numerical values are calculated using the following parameters:
¥ = 1 mPa s (water), L = 1 mm, a = 100 µm, b = 33 µm, h = 100 µm, and w = 300 µm.
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This eÆective Reynolds number can therefore be arbitrarily small compared to the con-
ventional Reynolds number given a su±ciently long channel.

3.5 Hydraulic resistance, two connected straight channels

When two straight channels of diÆerent dimensions are connected to form one long chan-
nel the translation invariance will in general be broken, and the expressions for the ideal
Poiseuille flow no longer apply. However, we expect the ideal description to be approxima-
tively correct if the Reynolds number Re of the flow is su±ciently small. This is because a
very small value of Re corresponds to a vanishing small contribution from the non-linear
term in the Navier–Stokes equation, a term that is strictly zero in ideal Poiseuille flows
due to translation invariance.

The influence of the Reynolds number on the velocity field is illustrated in Fig. 3.6,
where results of numerical simulations using FemLab have been shown. Two infinite
parallel-plate channels with heights h1 and h2 and hydraulic resistances R1 and R2 are
joined in a series coupling forming a back-step of height h2°h1. At low Reynolds number
Re = ΩV0h1/¥ = 0.01, panel (a), the transition from a perfect Poiseuille flow in R1

is smooth and happens on a length scale shorter than h1. At high Reynolds number
Re = ΩV0h1/¥ = 100, panel (b), the transition happens on a length scale larger than
h1, and a convection roll forms in the entrance region of R2. This is a simple example
of how it is a fair approximation to assume ideal Poiseuille flows in individual parts of a
microfluidic network at low Reynolds numbers, whereas the approximation is dubious at
high Reynolds numbers.

Note that in microfluidics the Reynolds number Re = ΩV0L0/¥ tends to be low due to
the small length scales L0 involved.

3.5.1 Two straight channels in series

Consider the series coupling of two hydraulic resistors as shown in Fig. 3.7. If we assume
the validity of the Hagen–Poiseuille law for each of the resistors after they are connected,
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Figure 3.7: The series coupling of two channels with hydraulic resistance R1 and R2. The
simple additive law R = R1+R2 is only valid in the limit of low Reynolds number, Re! 0,
and for long narrow channels.
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of low Reynolds number, Re! 0, and for long narrow channels far apart.

then using the additivity of the pressure drop along the series coupling it is straightforward
to show the law of additivity of hydraulic resistors in a series coupling,

R = R1 + R2. (3.48)

Bearing in mind the discussion in the previous subsection, the additive law is only valid
for low Reynolds numbers and for long and narrow channels.

3.5.2 Two straight channels in parallel

Consider the parallel coupling of two hydraulic resistors as shown in Fig. 3.8. If we assume
the validity of the Hagen–Poiseuille law for each of the resistors after they are connected,
then using the conservation of flow rate, i.e., Q = Q1 + Q2 in the parallel coupling it is
straightforward to show the law of additivity of inverse hydraulic resistances in a parallel
coupling,

R =
µ

1
R1

+
1

R2

∂°1

=
R1 R2

R1 + R2

. (3.49)

Bearing in mind the discussion in the previous subsection, the inverse-additive law is only
valid for low Reynolds numbers and for long and narrow channels far apart.

3.6 Compliance

The same form of Hagen-Poiseuille’s law and Ohm’s law means that pressure drop ¢p and
flow rate Q (volume V per time) are analogous to voltage drop ¢U and current I (charge
q per time), respectively. Now, since electric capacitance is given by C = dq/dU we are
led to introduce hydraulic capacitance, also known as compliance, given by

Chyd ¥ °
dV
dp

, (3.50)

where the minus is chosen since the volume diminishes as the pressure increases. Com-
pliance exists because neither real fluids nor the chambers or channels containing them
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Creeping Flows – Two-Dimensional and Axisymmetric Problems

up

(a)

up

(b)

Figure 7–3. A schematic representation of the proof that a spherical particle cannot undergo lateral migra-
tion in either 2-D or axisymmetric Poiseuille flow if the disturbance flow is a creeping flow. In (a) we suppose
that the undisturbed flow moves from left to right and the sphere migrates inward with velocity up . Then,
in the creeping-flow limit, if direction of the undisturbed flow is reversed, the signs of all velocities including
that of the sphere would also have to be reversed, as shown in (b). Because the problems (a) and (b) are
identical other than the direction of the flow through the channel or tube, we conclude that up = 0.

body without actually solving the full fluid mechanics problem and calculating the force by
integrating the stress vector n · T over the sphere surface.

3. Lateral Migration of a Sphere in Poiseuille Flow
One of the best-known experimental results for particle motion in viscous flows is the
observation by Segre and Silberberg2 of lateral migration for a small, neutrally buoyant
sphere (ρsphere = ρfluid) that is immersed in Poiseuille flow through a straight, circular tube
or in the pressure-driven parabolic flow (sometimes called 2D Poiseuille flow) between
two parallel plane boundaries. The experiments of Segre and Silberberg, and many later
investigators, show that a freely suspended sphere in these circumstances will slowly move
perpendicular to the main direction of flow until it reaches an equilibrium position that is
approximately 60% of the way from the centerline (or central plane) to the wall. Hence a
suspension of such spheres flowing in Poiseuille flow through a tube of radius R will tend to
accumulate in an annular ring at r = 0.6R. Because the Reynolds number for many of the
experimental observations was quite small, one might assume that a theoretical explanation
could be achieved by using detailed solutions of the creeping-flow equations with suitable
boundary conditions. However, in view of the complexity of the geometry (an eccentrically
located sphere inside a circular tube), this theoretical problem is extremely complex and
difficult to solve, even in the creeping-flow limit. Thus, before actually trying to solve
the problem, it is prudent to determine whether lateral migration is possible at all in the
creeping-flow limit.

The fact is that a theory based entirely on the creeping-flow approximation will lead
to the result that lateral migration is impossible, at least for a single sphere immersed in
axisymmetric or two-dimensional Poiseuille flow. To see that this is true, we can refer to
Fig. 7–3. Here is a sketch of the hypothetical situation of a sphere that is undergoing lateral
migration in Poiseuille flow through a tube. The undisturbed flow in part (a) of Fig. 7–3
is shown moving from left to right, and the sphere is assumed to be migrating radially
inward toward the center of the tube. Now, however, if the creeping-motion approximation
is valid, the governing equations and boundary conditions are linear in the velocity and
pressure, and we can change the signs of all velocities and the pressure and still have a
solution of the same problem but with the direction of the undisturbed flow reversed, as
shown in Fig. 7–3(b). However, because all the velocities have the opposite sign, the inward
migration velocity from configuration (a) must now become an outward migration velocity
for configuration (b). But there is now a clear contradiction. The problems in (a) and (b)
are clearly indistinguishable in all respects. Thus, if the sphere undergoes a lateral motion,
it should be in the same direction in both cases. Because the preceding argument, based on
the linearity of the problem, shows that a nonzero migration velocity in case (a) must lead
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experimental observations was quite small, one might assume that a theoretical explanation
could be achieved by using detailed solutions of the creeping-flow equations with suitable
boundary conditions. However, in view of the complexity of the geometry (an eccentrically
located sphere inside a circular tube), this theoretical problem is extremely complex and
difficult to solve, even in the creeping-flow limit. Thus, before actually trying to solve
the problem, it is prudent to determine whether lateral migration is possible at all in the
creeping-flow limit.

The fact is that a theory based entirely on the creeping-flow approximation will lead
to the result that lateral migration is impossible, at least for a single sphere immersed in
axisymmetric or two-dimensional Poiseuille flow. To see that this is true, we can refer to
Fig. 7–3. Here is a sketch of the hypothetical situation of a sphere that is undergoing lateral
migration in Poiseuille flow through a tube. The undisturbed flow in part (a) of Fig. 7–3
is shown moving from left to right, and the sphere is assumed to be migrating radially
inward toward the center of the tube. Now, however, if the creeping-motion approximation
is valid, the governing equations and boundary conditions are linear in the velocity and
pressure, and we can change the signs of all velocities and the pressure and still have a
solution of the same problem but with the direction of the undisturbed flow reversed, as
shown in Fig. 7–3(b). However, because all the velocities have the opposite sign, the inward
migration velocity from configuration (a) must now become an outward migration velocity
for configuration (b). But there is now a clear contradiction. The problems in (a) and (b)
are clearly indistinguishable in all respects. Thus, if the sphere undergoes a lateral motion,
it should be in the same direction in both cases. Because the preceding argument, based on
the linearity of the problem, shows that a nonzero migration velocity in case (a) must lead
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axisymmetric or two-dimensional Poiseuille flow. To see that this is true, we can refer to
Fig. 7–3. Here is a sketch of the hypothetical situation of a sphere that is undergoing lateral
migration in Poiseuille flow through a tube. The undisturbed flow in part (a) of Fig. 7–3
is shown moving from left to right, and the sphere is assumed to be migrating radially
inward toward the center of the tube. Now, however, if the creeping-motion approximation
is valid, the governing equations and boundary conditions are linear in the velocity and
pressure, and we can change the signs of all velocities and the pressure and still have a
solution of the same problem but with the direction of the undisturbed flow reversed, as
shown in Fig. 7–3(b). However, because all the velocities have the opposite sign, the inward
migration velocity from configuration (a) must now become an outward migration velocity
for configuration (b). But there is now a clear contradiction. The problems in (a) and (b)
are clearly indistinguishable in all respects. Thus, if the sphere undergoes a lateral motion,
it should be in the same direction in both cases. Because the preceding argument, based on
the linearity of the problem, shows that a nonzero migration velocity in case (a) must lead
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tion in either 2-D or axisymmetric Poiseuille flow if the disturbance flow is a creeping flow. In (a) we suppose
that the undisturbed flow moves from left to right and the sphere migrates inward with velocity up . Then,
in the creeping-flow limit, if direction of the undisturbed flow is reversed, the signs of all velocities including
that of the sphere would also have to be reversed, as shown in (b). Because the problems (a) and (b) are
identical other than the direction of the flow through the channel or tube, we conclude that up = 0.
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3. Lateral Migration of a Sphere in Poiseuille Flow
One of the best-known experimental results for particle motion in viscous flows is the
observation by Segre and Silberberg2 of lateral migration for a small, neutrally buoyant
sphere (ρsphere = ρfluid) that is immersed in Poiseuille flow through a straight, circular tube
or in the pressure-driven parabolic flow (sometimes called 2D Poiseuille flow) between
two parallel plane boundaries. The experiments of Segre and Silberberg, and many later
investigators, show that a freely suspended sphere in these circumstances will slowly move
perpendicular to the main direction of flow until it reaches an equilibrium position that is
approximately 60% of the way from the centerline (or central plane) to the wall. Hence a
suspension of such spheres flowing in Poiseuille flow through a tube of radius R will tend to
accumulate in an annular ring at r = 0.6R. Because the Reynolds number for many of the
experimental observations was quite small, one might assume that a theoretical explanation
could be achieved by using detailed solutions of the creeping-flow equations with suitable
boundary conditions. However, in view of the complexity of the geometry (an eccentrically
located sphere inside a circular tube), this theoretical problem is extremely complex and
difficult to solve, even in the creeping-flow limit. Thus, before actually trying to solve
the problem, it is prudent to determine whether lateral migration is possible at all in the
creeping-flow limit.

The fact is that a theory based entirely on the creeping-flow approximation will lead
to the result that lateral migration is impossible, at least for a single sphere immersed in
axisymmetric or two-dimensional Poiseuille flow. To see that this is true, we can refer to
Fig. 7–3. Here is a sketch of the hypothetical situation of a sphere that is undergoing lateral
migration in Poiseuille flow through a tube. The undisturbed flow in part (a) of Fig. 7–3
is shown moving from left to right, and the sphere is assumed to be migrating radially
inward toward the center of the tube. Now, however, if the creeping-motion approximation
is valid, the governing equations and boundary conditions are linear in the velocity and
pressure, and we can change the signs of all velocities and the pressure and still have a
solution of the same problem but with the direction of the undisturbed flow reversed, as
shown in Fig. 7–3(b). However, because all the velocities have the opposite sign, the inward
migration velocity from configuration (a) must now become an outward migration velocity
for configuration (b). But there is now a clear contradiction. The problems in (a) and (b)
are clearly indistinguishable in all respects. Thus, if the sphere undergoes a lateral motion,
it should be in the same direction in both cases. Because the preceding argument, based on
the linearity of the problem, shows that a nonzero migration velocity in case (a) must lead
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tion in either 2-D or axisymmetric Poiseuille flow if the disturbance flow is a creeping flow. In (a) we suppose
that the undisturbed flow moves from left to right and the sphere migrates inward with velocity up . Then,
in the creeping-flow limit, if direction of the undisturbed flow is reversed, the signs of all velocities including
that of the sphere would also have to be reversed, as shown in (b). Because the problems (a) and (b) are
identical other than the direction of the flow through the channel or tube, we conclude that up = 0.
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integrating the stress vector n · T over the sphere surface.

3. Lateral Migration of a Sphere in Poiseuille Flow
One of the best-known experimental results for particle motion in viscous flows is the
observation by Segre and Silberberg2 of lateral migration for a small, neutrally buoyant
sphere (ρsphere = ρfluid) that is immersed in Poiseuille flow through a straight, circular tube
or in the pressure-driven parabolic flow (sometimes called 2D Poiseuille flow) between
two parallel plane boundaries. The experiments of Segre and Silberberg, and many later
investigators, show that a freely suspended sphere in these circumstances will slowly move
perpendicular to the main direction of flow until it reaches an equilibrium position that is
approximately 60% of the way from the centerline (or central plane) to the wall. Hence a
suspension of such spheres flowing in Poiseuille flow through a tube of radius R will tend to
accumulate in an annular ring at r = 0.6R. Because the Reynolds number for many of the
experimental observations was quite small, one might assume that a theoretical explanation
could be achieved by using detailed solutions of the creeping-flow equations with suitable
boundary conditions. However, in view of the complexity of the geometry (an eccentrically
located sphere inside a circular tube), this theoretical problem is extremely complex and
difficult to solve, even in the creeping-flow limit. Thus, before actually trying to solve
the problem, it is prudent to determine whether lateral migration is possible at all in the
creeping-flow limit.

The fact is that a theory based entirely on the creeping-flow approximation will lead
to the result that lateral migration is impossible, at least for a single sphere immersed in
axisymmetric or two-dimensional Poiseuille flow. To see that this is true, we can refer to
Fig. 7–3. Here is a sketch of the hypothetical situation of a sphere that is undergoing lateral
migration in Poiseuille flow through a tube. The undisturbed flow in part (a) of Fig. 7–3
is shown moving from left to right, and the sphere is assumed to be migrating radially
inward toward the center of the tube. Now, however, if the creeping-motion approximation
is valid, the governing equations and boundary conditions are linear in the velocity and
pressure, and we can change the signs of all velocities and the pressure and still have a
solution of the same problem but with the direction of the undisturbed flow reversed, as
shown in Fig. 7–3(b). However, because all the velocities have the opposite sign, the inward
migration velocity from configuration (a) must now become an outward migration velocity
for configuration (b). But there is now a clear contradiction. The problems in (a) and (b)
are clearly indistinguishable in all respects. Thus, if the sphere undergoes a lateral motion,
it should be in the same direction in both cases. Because the preceding argument, based on
the linearity of the problem, shows that a nonzero migration velocity in case (a) must lead
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accumulate in an annular ring at r = 0.6R. Because the Reynolds number for many of the
experimental observations was quite small, one might assume that a theoretical explanation
could be achieved by using detailed solutions of the creeping-flow equations with suitable
boundary conditions. However, in view of the complexity of the geometry (an eccentrically
located sphere inside a circular tube), this theoretical problem is extremely complex and
difficult to solve, even in the creeping-flow limit. Thus, before actually trying to solve
the problem, it is prudent to determine whether lateral migration is possible at all in the
creeping-flow limit.
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axisymmetric or two-dimensional Poiseuille flow. To see that this is true, we can refer to
Fig. 7–3. Here is a sketch of the hypothetical situation of a sphere that is undergoing lateral
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is valid, the governing equations and boundary conditions are linear in the velocity and
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inward toward the center of the tube. Now, however, if the creeping-motion approximation
is valid, the governing equations and boundary conditions are linear in the velocity and
pressure, and we can change the signs of all velocities and the pressure and still have a
solution of the same problem but with the direction of the undisturbed flow reversed, as
shown in Fig. 7–3(b). However, because all the velocities have the opposite sign, the inward
migration velocity from configuration (a) must now become an outward migration velocity
for configuration (b). But there is now a clear contradiction. The problems in (a) and (b)
are clearly indistinguishable in all respects. Thus, if the sphere undergoes a lateral motion,
it should be in the same direction in both cases. Because the preceding argument, based on
the linearity of the problem, shows that a nonzero migration velocity in case (a) must lead

438

P1: JZP
0521849101c07 CUFX064/Leal Printer: cupusbw 0 521 84910 1 April 25, 2007 13:17

Creeping Flows – Two-Dimensional and Axisymmetric Problems

up

(a)

up

(b)

Figure 7–3. A schematic representation of the proof that a spherical particle cannot undergo lateral migra-
tion in either 2-D or axisymmetric Poiseuille flow if the disturbance flow is a creeping flow. In (a) we suppose
that the undisturbed flow moves from left to right and the sphere migrates inward with velocity up . Then,
in the creeping-flow limit, if direction of the undisturbed flow is reversed, the signs of all velocities including
that of the sphere would also have to be reversed, as shown in (b). Because the problems (a) and (b) are
identical other than the direction of the flow through the channel or tube, we conclude that up = 0.

body without actually solving the full fluid mechanics problem and calculating the force by
integrating the stress vector n · T over the sphere surface.

3. Lateral Migration of a Sphere in Poiseuille Flow
One of the best-known experimental results for particle motion in viscous flows is the
observation by Segre and Silberberg2 of lateral migration for a small, neutrally buoyant
sphere (ρsphere = ρfluid) that is immersed in Poiseuille flow through a straight, circular tube
or in the pressure-driven parabolic flow (sometimes called 2D Poiseuille flow) between
two parallel plane boundaries. The experiments of Segre and Silberberg, and many later
investigators, show that a freely suspended sphere in these circumstances will slowly move
perpendicular to the main direction of flow until it reaches an equilibrium position that is
approximately 60% of the way from the centerline (or central plane) to the wall. Hence a
suspension of such spheres flowing in Poiseuille flow through a tube of radius R will tend to
accumulate in an annular ring at r = 0.6R. Because the Reynolds number for many of the
experimental observations was quite small, one might assume that a theoretical explanation
could be achieved by using detailed solutions of the creeping-flow equations with suitable
boundary conditions. However, in view of the complexity of the geometry (an eccentrically
located sphere inside a circular tube), this theoretical problem is extremely complex and
difficult to solve, even in the creeping-flow limit. Thus, before actually trying to solve
the problem, it is prudent to determine whether lateral migration is possible at all in the
creeping-flow limit.

The fact is that a theory based entirely on the creeping-flow approximation will lead
to the result that lateral migration is impossible, at least for a single sphere immersed in
axisymmetric or two-dimensional Poiseuille flow. To see that this is true, we can refer to
Fig. 7–3. Here is a sketch of the hypothetical situation of a sphere that is undergoing lateral
migration in Poiseuille flow through a tube. The undisturbed flow in part (a) of Fig. 7–3
is shown moving from left to right, and the sphere is assumed to be migrating radially
inward toward the center of the tube. Now, however, if the creeping-motion approximation
is valid, the governing equations and boundary conditions are linear in the velocity and
pressure, and we can change the signs of all velocities and the pressure and still have a
solution of the same problem but with the direction of the undisturbed flow reversed, as
shown in Fig. 7–3(b). However, because all the velocities have the opposite sign, the inward
migration velocity from configuration (a) must now become an outward migration velocity
for configuration (b). But there is now a clear contradiction. The problems in (a) and (b)
are clearly indistinguishable in all respects. Thus, if the sphere undergoes a lateral motion,
it should be in the same direction in both cases. Because the preceding argument, based on
the linearity of the problem, shows that a nonzero migration velocity in case (a) must lead

438

P1: JZP
0521849101c07 CUFX064/Leal Printer: cupusbw 0 521 84910 1 April 25, 2007 13:17

Creeping Flows – Two-Dimensional and Axisymmetric Problems

up

(a)

up

(b)

Figure 7–3. A schematic representation of the proof that a spherical particle cannot undergo lateral migra-
tion in either 2-D or axisymmetric Poiseuille flow if the disturbance flow is a creeping flow. In (a) we suppose
that the undisturbed flow moves from left to right and the sphere migrates inward with velocity up . Then,
in the creeping-flow limit, if direction of the undisturbed flow is reversed, the signs of all velocities including
that of the sphere would also have to be reversed, as shown in (b). Because the problems (a) and (b) are
identical other than the direction of the flow through the channel or tube, we conclude that up = 0.

body without actually solving the full fluid mechanics problem and calculating the force by
integrating the stress vector n · T over the sphere surface.

3. Lateral Migration of a Sphere in Poiseuille Flow
One of the best-known experimental results for particle motion in viscous flows is the
observation by Segre and Silberberg2 of lateral migration for a small, neutrally buoyant
sphere (ρsphere = ρfluid) that is immersed in Poiseuille flow through a straight, circular tube
or in the pressure-driven parabolic flow (sometimes called 2D Poiseuille flow) between
two parallel plane boundaries. The experiments of Segre and Silberberg, and many later
investigators, show that a freely suspended sphere in these circumstances will slowly move
perpendicular to the main direction of flow until it reaches an equilibrium position that is
approximately 60% of the way from the centerline (or central plane) to the wall. Hence a
suspension of such spheres flowing in Poiseuille flow through a tube of radius R will tend to
accumulate in an annular ring at r = 0.6R. Because the Reynolds number for many of the
experimental observations was quite small, one might assume that a theoretical explanation
could be achieved by using detailed solutions of the creeping-flow equations with suitable
boundary conditions. However, in view of the complexity of the geometry (an eccentrically
located sphere inside a circular tube), this theoretical problem is extremely complex and
difficult to solve, even in the creeping-flow limit. Thus, before actually trying to solve
the problem, it is prudent to determine whether lateral migration is possible at all in the
creeping-flow limit.

The fact is that a theory based entirely on the creeping-flow approximation will lead
to the result that lateral migration is impossible, at least for a single sphere immersed in
axisymmetric or two-dimensional Poiseuille flow. To see that this is true, we can refer to
Fig. 7–3. Here is a sketch of the hypothetical situation of a sphere that is undergoing lateral
migration in Poiseuille flow through a tube. The undisturbed flow in part (a) of Fig. 7–3
is shown moving from left to right, and the sphere is assumed to be migrating radially
inward toward the center of the tube. Now, however, if the creeping-motion approximation
is valid, the governing equations and boundary conditions are linear in the velocity and
pressure, and we can change the signs of all velocities and the pressure and still have a
solution of the same problem but with the direction of the undisturbed flow reversed, as
shown in Fig. 7–3(b). However, because all the velocities have the opposite sign, the inward
migration velocity from configuration (a) must now become an outward migration velocity
for configuration (b). But there is now a clear contradiction. The problems in (a) and (b)
are clearly indistinguishable in all respects. Thus, if the sphere undergoes a lateral motion,
it should be in the same direction in both cases. Because the preceding argument, based on
the linearity of the problem, shows that a nonzero migration velocity in case (a) must lead

438

Migración	
  Inercial	
  	
  



14	
  

Microfluidica	
  
Migración	
  Inercial	
  en	
  flujo	
  de	
  Poiseuille	
  	
  

!! !
!

= Empuje (lift) 

P1: JZP
0521849101c07 CUFX064/Leal Printer: cupusbw 0 521 84910 1 April 25, 2007 13:17

Creeping Flows – Two-Dimensional and Axisymmetric Problems

up

(a)

up

(b)

Figure 7–3. A schematic representation of the proof that a spherical particle cannot undergo lateral migra-
tion in either 2-D or axisymmetric Poiseuille flow if the disturbance flow is a creeping flow. In (a) we suppose
that the undisturbed flow moves from left to right and the sphere migrates inward with velocity up . Then,
in the creeping-flow limit, if direction of the undisturbed flow is reversed, the signs of all velocities including
that of the sphere would also have to be reversed, as shown in (b). Because the problems (a) and (b) are
identical other than the direction of the flow through the channel or tube, we conclude that up = 0.

body without actually solving the full fluid mechanics problem and calculating the force by
integrating the stress vector n · T over the sphere surface.

3. Lateral Migration of a Sphere in Poiseuille Flow
One of the best-known experimental results for particle motion in viscous flows is the
observation by Segre and Silberberg2 of lateral migration for a small, neutrally buoyant
sphere (ρsphere = ρfluid) that is immersed in Poiseuille flow through a straight, circular tube
or in the pressure-driven parabolic flow (sometimes called 2D Poiseuille flow) between
two parallel plane boundaries. The experiments of Segre and Silberberg, and many later
investigators, show that a freely suspended sphere in these circumstances will slowly move
perpendicular to the main direction of flow until it reaches an equilibrium position that is
approximately 60% of the way from the centerline (or central plane) to the wall. Hence a
suspension of such spheres flowing in Poiseuille flow through a tube of radius R will tend to
accumulate in an annular ring at r = 0.6R. Because the Reynolds number for many of the
experimental observations was quite small, one might assume that a theoretical explanation
could be achieved by using detailed solutions of the creeping-flow equations with suitable
boundary conditions. However, in view of the complexity of the geometry (an eccentrically
located sphere inside a circular tube), this theoretical problem is extremely complex and
difficult to solve, even in the creeping-flow limit. Thus, before actually trying to solve
the problem, it is prudent to determine whether lateral migration is possible at all in the
creeping-flow limit.

The fact is that a theory based entirely on the creeping-flow approximation will lead
to the result that lateral migration is impossible, at least for a single sphere immersed in
axisymmetric or two-dimensional Poiseuille flow. To see that this is true, we can refer to
Fig. 7–3. Here is a sketch of the hypothetical situation of a sphere that is undergoing lateral
migration in Poiseuille flow through a tube. The undisturbed flow in part (a) of Fig. 7–3
is shown moving from left to right, and the sphere is assumed to be migrating radially
inward toward the center of the tube. Now, however, if the creeping-motion approximation
is valid, the governing equations and boundary conditions are linear in the velocity and
pressure, and we can change the signs of all velocities and the pressure and still have a
solution of the same problem but with the direction of the undisturbed flow reversed, as
shown in Fig. 7–3(b). However, because all the velocities have the opposite sign, the inward
migration velocity from configuration (a) must now become an outward migration velocity
for configuration (b). But there is now a clear contradiction. The problems in (a) and (b)
are clearly indistinguishable in all respects. Thus, if the sphere undergoes a lateral motion,
it should be in the same direction in both cases. Because the preceding argument, based on
the linearity of the problem, shows that a nonzero migration velocity in case (a) must lead

438

P1: JZP
0521849101c07 CUFX064/Leal Printer: cupusbw 0 521 84910 1 April 25, 2007 13:17

Creeping Flows – Two-Dimensional and Axisymmetric Problems

up

(a)

up

(b)

Figure 7–3. A schematic representation of the proof that a spherical particle cannot undergo lateral migra-
tion in either 2-D or axisymmetric Poiseuille flow if the disturbance flow is a creeping flow. In (a) we suppose
that the undisturbed flow moves from left to right and the sphere migrates inward with velocity up . Then,
in the creeping-flow limit, if direction of the undisturbed flow is reversed, the signs of all velocities including
that of the sphere would also have to be reversed, as shown in (b). Because the problems (a) and (b) are
identical other than the direction of the flow through the channel or tube, we conclude that up = 0.

body without actually solving the full fluid mechanics problem and calculating the force by
integrating the stress vector n · T over the sphere surface.

3. Lateral Migration of a Sphere in Poiseuille Flow
One of the best-known experimental results for particle motion in viscous flows is the
observation by Segre and Silberberg2 of lateral migration for a small, neutrally buoyant
sphere (ρsphere = ρfluid) that is immersed in Poiseuille flow through a straight, circular tube
or in the pressure-driven parabolic flow (sometimes called 2D Poiseuille flow) between
two parallel plane boundaries. The experiments of Segre and Silberberg, and many later
investigators, show that a freely suspended sphere in these circumstances will slowly move
perpendicular to the main direction of flow until it reaches an equilibrium position that is
approximately 60% of the way from the centerline (or central plane) to the wall. Hence a
suspension of such spheres flowing in Poiseuille flow through a tube of radius R will tend to
accumulate in an annular ring at r = 0.6R. Because the Reynolds number for many of the
experimental observations was quite small, one might assume that a theoretical explanation
could be achieved by using detailed solutions of the creeping-flow equations with suitable
boundary conditions. However, in view of the complexity of the geometry (an eccentrically
located sphere inside a circular tube), this theoretical problem is extremely complex and
difficult to solve, even in the creeping-flow limit. Thus, before actually trying to solve
the problem, it is prudent to determine whether lateral migration is possible at all in the
creeping-flow limit.

The fact is that a theory based entirely on the creeping-flow approximation will lead
to the result that lateral migration is impossible, at least for a single sphere immersed in
axisymmetric or two-dimensional Poiseuille flow. To see that this is true, we can refer to
Fig. 7–3. Here is a sketch of the hypothetical situation of a sphere that is undergoing lateral
migration in Poiseuille flow through a tube. The undisturbed flow in part (a) of Fig. 7–3
is shown moving from left to right, and the sphere is assumed to be migrating radially
inward toward the center of the tube. Now, however, if the creeping-motion approximation
is valid, the governing equations and boundary conditions are linear in the velocity and
pressure, and we can change the signs of all velocities and the pressure and still have a
solution of the same problem but with the direction of the undisturbed flow reversed, as
shown in Fig. 7–3(b). However, because all the velocities have the opposite sign, the inward
migration velocity from configuration (a) must now become an outward migration velocity
for configuration (b). But there is now a clear contradiction. The problems in (a) and (b)
are clearly indistinguishable in all respects. Thus, if the sphere undergoes a lateral motion,
it should be in the same direction in both cases. Because the preceding argument, based on
the linearity of the problem, shows that a nonzero migration velocity in case (a) must lead

438

P1: JZP
0521849101c07 CUFX064/Leal Printer: cupusbw 0 521 84910 1 April 25, 2007 13:17

Creeping Flows – Two-Dimensional and Axisymmetric Problems

up

(a)

up

(b)

Figure 7–3. A schematic representation of the proof that a spherical particle cannot undergo lateral migra-
tion in either 2-D or axisymmetric Poiseuille flow if the disturbance flow is a creeping flow. In (a) we suppose
that the undisturbed flow moves from left to right and the sphere migrates inward with velocity up . Then,
in the creeping-flow limit, if direction of the undisturbed flow is reversed, the signs of all velocities including
that of the sphere would also have to be reversed, as shown in (b). Because the problems (a) and (b) are
identical other than the direction of the flow through the channel or tube, we conclude that up = 0.

body without actually solving the full fluid mechanics problem and calculating the force by
integrating the stress vector n · T over the sphere surface.

3. Lateral Migration of a Sphere in Poiseuille Flow
One of the best-known experimental results for particle motion in viscous flows is the
observation by Segre and Silberberg2 of lateral migration for a small, neutrally buoyant
sphere (ρsphere = ρfluid) that is immersed in Poiseuille flow through a straight, circular tube
or in the pressure-driven parabolic flow (sometimes called 2D Poiseuille flow) between
two parallel plane boundaries. The experiments of Segre and Silberberg, and many later
investigators, show that a freely suspended sphere in these circumstances will slowly move
perpendicular to the main direction of flow until it reaches an equilibrium position that is
approximately 60% of the way from the centerline (or central plane) to the wall. Hence a
suspension of such spheres flowing in Poiseuille flow through a tube of radius R will tend to
accumulate in an annular ring at r = 0.6R. Because the Reynolds number for many of the
experimental observations was quite small, one might assume that a theoretical explanation
could be achieved by using detailed solutions of the creeping-flow equations with suitable
boundary conditions. However, in view of the complexity of the geometry (an eccentrically
located sphere inside a circular tube), this theoretical problem is extremely complex and
difficult to solve, even in the creeping-flow limit. Thus, before actually trying to solve
the problem, it is prudent to determine whether lateral migration is possible at all in the
creeping-flow limit.

The fact is that a theory based entirely on the creeping-flow approximation will lead
to the result that lateral migration is impossible, at least for a single sphere immersed in
axisymmetric or two-dimensional Poiseuille flow. To see that this is true, we can refer to
Fig. 7–3. Here is a sketch of the hypothetical situation of a sphere that is undergoing lateral
migration in Poiseuille flow through a tube. The undisturbed flow in part (a) of Fig. 7–3
is shown moving from left to right, and the sphere is assumed to be migrating radially
inward toward the center of the tube. Now, however, if the creeping-motion approximation
is valid, the governing equations and boundary conditions are linear in the velocity and
pressure, and we can change the signs of all velocities and the pressure and still have a
solution of the same problem but with the direction of the undisturbed flow reversed, as
shown in Fig. 7–3(b). However, because all the velocities have the opposite sign, the inward
migration velocity from configuration (a) must now become an outward migration velocity
for configuration (b). But there is now a clear contradiction. The problems in (a) and (b)
are clearly indistinguishable in all respects. Thus, if the sphere undergoes a lateral motion,
it should be in the same direction in both cases. Because the preceding argument, based on
the linearity of the problem, shows that a nonzero migration velocity in case (a) must lead

438

P1: JZP
0521849101c07 CUFX064/Leal Printer: cupusbw 0 521 84910 1 April 25, 2007 13:17

Creeping Flows – Two-Dimensional and Axisymmetric Problems

up

(a)

up

(b)

Figure 7–3. A schematic representation of the proof that a spherical particle cannot undergo lateral migra-
tion in either 2-D or axisymmetric Poiseuille flow if the disturbance flow is a creeping flow. In (a) we suppose
that the undisturbed flow moves from left to right and the sphere migrates inward with velocity up . Then,
in the creeping-flow limit, if direction of the undisturbed flow is reversed, the signs of all velocities including
that of the sphere would also have to be reversed, as shown in (b). Because the problems (a) and (b) are
identical other than the direction of the flow through the channel or tube, we conclude that up = 0.

body without actually solving the full fluid mechanics problem and calculating the force by
integrating the stress vector n · T over the sphere surface.

3. Lateral Migration of a Sphere in Poiseuille Flow
One of the best-known experimental results for particle motion in viscous flows is the
observation by Segre and Silberberg2 of lateral migration for a small, neutrally buoyant
sphere (ρsphere = ρfluid) that is immersed in Poiseuille flow through a straight, circular tube
or in the pressure-driven parabolic flow (sometimes called 2D Poiseuille flow) between
two parallel plane boundaries. The experiments of Segre and Silberberg, and many later
investigators, show that a freely suspended sphere in these circumstances will slowly move
perpendicular to the main direction of flow until it reaches an equilibrium position that is
approximately 60% of the way from the centerline (or central plane) to the wall. Hence a
suspension of such spheres flowing in Poiseuille flow through a tube of radius R will tend to
accumulate in an annular ring at r = 0.6R. Because the Reynolds number for many of the
experimental observations was quite small, one might assume that a theoretical explanation
could be achieved by using detailed solutions of the creeping-flow equations with suitable
boundary conditions. However, in view of the complexity of the geometry (an eccentrically
located sphere inside a circular tube), this theoretical problem is extremely complex and
difficult to solve, even in the creeping-flow limit. Thus, before actually trying to solve
the problem, it is prudent to determine whether lateral migration is possible at all in the
creeping-flow limit.

The fact is that a theory based entirely on the creeping-flow approximation will lead
to the result that lateral migration is impossible, at least for a single sphere immersed in
axisymmetric or two-dimensional Poiseuille flow. To see that this is true, we can refer to
Fig. 7–3. Here is a sketch of the hypothetical situation of a sphere that is undergoing lateral
migration in Poiseuille flow through a tube. The undisturbed flow in part (a) of Fig. 7–3
is shown moving from left to right, and the sphere is assumed to be migrating radially
inward toward the center of the tube. Now, however, if the creeping-motion approximation
is valid, the governing equations and boundary conditions are linear in the velocity and
pressure, and we can change the signs of all velocities and the pressure and still have a
solution of the same problem but with the direction of the undisturbed flow reversed, as
shown in Fig. 7–3(b). However, because all the velocities have the opposite sign, the inward
migration velocity from configuration (a) must now become an outward migration velocity
for configuration (b). But there is now a clear contradiction. The problems in (a) and (b)
are clearly indistinguishable in all respects. Thus, if the sphere undergoes a lateral motion,
it should be in the same direction in both cases. Because the preceding argument, based on
the linearity of the problem, shows that a nonzero migration velocity in case (a) must lead

438

G.	
  SEGRÉ,	
  A.	
  SILBERBERG,	
  	
  
“Radial	
  ParGcle	
  Displacements	
  	
  
in	
  Poiseuille	
  Flow	
  of	
  Suspensions”.	
  	
  
Nature	
  189,	
  209-­‐210	
  (21	
  January	
  1961)	
  

~	
  0.6	
  R	
  



15	
  

Microfluidica	
  

Inertial microfluidics

Dino Di Carlo*

Received 25th June 2009, Accepted 19th August 2009

First published as an Advance Article on the web 22nd September 2009

DOI: 10.1039/b912547g

Despite the common wisdom that inertia does not contribute to microfluidic phenomena, recent work

has shown a variety of useful effects that depend on fluid inertia for applications in enhanced mixing,

particle separation, and bioparticle focusing. Due to the robust, fault-tolerant physical effects

employed and high rates of operation, inertial microfluidic systems are poised to have a critical impact

on high-throughput separation applications in environmental cleanup and physiological fluids

processing, as well as bioparticle focusing applications in clinical diagnostics. In this review I will

discuss the recent accelerated progress in developing prototype inertial microfluidic systems for

a variety of applications and attempt to clarify the fundamental fluid dynamic effects that are being

exploited. Finally, since this a nascent area of research, I will suggest some future promising directions

exploiting fluid inertia on the microscale.

Introduction

Traditionally, microfluidics has often been associated with

negligible inertia. That is, fluid flow in microfluidic channels is

assumed to occur at low Reynolds number, where Reynolds

number (Re ¼ rUH/m) is a dimensionless parameter describing

the ratio between inertial and viscous forces in a flow. This

assumption is arrived at because microchannel dimensions, H,

are small (<1 mm). However, for water with density, r" 1000 kg/

m3 and viscosity, m " 0.001 Pa s, in a channel with a diameter of

100 mm, the Reynolds number of the flow approaches 1 for a low

mean flow velocity, U of "0.01 m/s. For this relatively common

case, neglecting inertia by using a Stokes flow (i.e. Re ¼ 0)

approximation can lead to incorrect results. Steady-state Stokes

flow is arrived at by setting the left hand side (i.e. inertial

components ‘‘ma’’) of the Navier–Stokes equations, which

describe the balance of linear momentum for a Newtonian fluid:

r(vu/vt + u$Vu) ¼ #Vp + mV2u + f, to zero. Here u is the fluid

velocity field, p is the pressure field, and f is a vector field of

external body forces acting on fluid elements. Stokes flow is often

incorrectly equated with laminar flow, but these are separate

concepts – Stokes flow implies laminar flow, but the opposite is

not necessarily true. It is true that in all but the most extreme

cases, flows in microchannels are laminar and predictable since

turbulence is usually observed for Re > "20001 (20 m/s average

velocity in our previous example!). Here I focus on an often

neglected middle regime where both inertia and viscosity of the

fluid are finite, between Stokes flow and inviscid flow, where the

solutions to the full Navier–Stokes equations are required.

Several inertial effects are beginning to see use in microfluidic

systems. The predominantly used effects that I will focus

discussion on are: (1) secondary flows in curved channels, and (2)

inertial migration of particles. Geometry-induced re-circulating

flows that become significant with finite inertia have also briefly

been explored for microfluidic applications2,3 but will not be

discussed here because theory and experimental results for these

systems are less well developed. In the following sections I will

begin by generally discussing the physical bases for the two main

effects and review how they have been exploited in microfluidic

environments for specific applications. I will concurrently discuss

the advantages and disadvantages of inertial microfluidic

approaches and conclude with future directions that appear

promising.

Secondary flow in curved channels

Improved mixing and precise control over fluid interfaces can be

achieved by utilizing flows transverse to downstream fluid

streamlines in curved channels. Key external parameters to
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particle Reynolds number is a measure of the ratio of inertial to

viscous forces of the disturbance from the underlying channel

flow at the particle length scale and contrasts with a particle

Reynolds number dependent only on length dimensions of the

particle in an unbounded flow.

Recently, myself and others have shown that some aspects of

particle migration in these confined geometries cannot be pre-

dicted using these assumptions – such that the finite-size of the

particle plays an important role in inertial migration when a/H is

of order 1.19,20 Finite element solutions to the complete incom-

pressible Navier–Stokes Equations yielded a novel scaling for the

lift force in this case that was further dependent on a particle’s

position in the channel.19 Our work showed that lift scaled as FL

f rU2a3/H near the channel centerline, but scaled instead as FL

f rU2a6/H4 near the channel wall. Differences in scaling between

the channel wall and centerline suggest two disparate fluid

dynamic effects physically act to create inertial lift equilibrium

positions. Ho and Leal, and Matas et al. discussed two compo-

nents of inertial lift that together act to yield an equilibrium

position between the channel wall and centerline:15,18 (1) a ‘‘wall

effect’’ lift that is always away from the wall towards the channel

centerline, and (2) a ‘‘shear-gradient’’ lift that acts down the

gradient in shear rate of the flow (Fig. 3C). Note that a gradient

in shear rate is naturally present in Poiseuille flow (parabolic

velocity profile), but not in Couette flow (linear velocity profile).

For finite-size particles, another useful parameter, the lateral

particle migration velocity (Up) can be shown to scale with

particle Reynolds number. One can calculate a migration

velocity for particles near the channel centerline by balancing

shear-gradient inertial lift with Stokes drag (Fstokes ¼ 3pmaUp).

This leads to a fractional lateral migration velocity per

downstream velocity: Up/U f Rp. Therefore, particles are pre-

dicted to travel a lateral distance (Lx) towards equilibrium

positions that is proportional to the particle Reynolds number

and the given downstream position (Lz): Lx f RpLz. This

equation is useful to inform design decisions for inertial micro-

fluidic systems given an assumption of an average value for the

lift coefficient (fL) between 0.02 and 0.05 over the channel cross-

section and that shear-gradient lift limits migration to equilib-

rium positions compared to stronger wall effect lift (see Box 1).

Focusing equilibrium positions due to inertial lift have also been

shown to be dependent on channel symmetry. Particles in cylin-

drical channels focus to an annulus following the channel symmetry

(Fig. 3A). Recently, particles flowing through square or rectangular

channels were also found to focus to equilibrium positions

following the 4-fold channel symmetry (Fig. 3B,D, Fig. 4A).19,21–23

Interestingly, as the aspect ratio of the channel becomes larger (i.e. a

very wide or very tall channel) focusing again follows symmetry and

reduces to predominantly two equilibrium positions centered at the

long face of the channel.19,24,25

In addition to lift forces creating equilibrium positions for

particles within the cross section of a channel, particles sus-

pended at intermediate densities will interact in a flow with finite

inertia to create particle trains with regular spacing in the direc-

tion of flow (Fig. 4B).25–28 This has been observed by Morris et al.

as single trains in millimeter scale pipe flows,26 and by Edd and

Di Carlo as staggered ‘‘double-trains’’ for flows through rect-

angular microchannels.25 Ogino et al. simulated cylinders flowing

through infinite plates with finite Re that yielded similar stag-

gered inter-particle coupling.28

Particle concentration is also a critical factor affecting focusing

behavior and accuracy. Aside from the interparticle interactions

Fig. 3 Inertial lift. (A) In a cylindrical pipe, at moderate Reynolds numbers, randomly distributed particles are known to focus to an annulus located

between the center and wall of the pipe. (B) In square channels, following the symmetry of the system, particles instead focus to four equilibrium regions

centered at the faces of the channels for dilute suspensions of particles flowing at moderate Reynolds numbers. (C) Two lift forces perpendicular to the

flow direction act to create equilibrium positions in channels, (i) a ‘‘wall effect’’ lift that is directed away from the wall and decays with distance from the

wall and (ii) a shear gradient lift that is directed down the shear gradient and is zero at the channel centerline. Interaction of the two forces leads to

defined equilibrium positions in channel flows. (D) In square channels, the simulated force field on a particle over a fourth of a channel cross-section is

shown.19 A plot of the magnitude of inertial lift forces at y ¼ 0 is also shown demonstrating the general shape of the combined shear-gradient and wall-

effect lift and magnitudes in the nano-newtons for the labeled conditions (15 mm particle in a 50 mm channel, Re ¼ 50).

This journal is ª The Royal Society of Chemistry 2009 Lab Chip, 2009, 9, 3038–3046 | 3041
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to focus 7 and 10 mm particles25,30 and cells25 to two equilibrium

streams for Rp > !0.2, useful for filtration and concentration

applications. Although the authors discuss a separate mecha-

nism, I would argue that Hjort et al. have also demonstrated

kinetic separations, whereby hydrodynamic focusing of a mixed

blood cell/bacteria stream against a wall, allowed for migration

of larger blood cells away from the wall at a faster rate than

smaller bacteria (Fig. 4D).29 This system allowed for high-purity

separation of E. coli from red blood cells with throughputs up

to 18 mL/min. Parallelization for further improvements in

throughput with this platform is a future challenge because of the

multiple fluid inputs required for the initial hydrodynamic

focusing step.

It should be noted that inertial lift forces were recognized to

play a role in particle behavior in field flow fractionation (FFF)

based separations pioneered by J. Calvin Giddings et al.31–33 and

were briefly explored in the early 1990’s. Applications or

commercial instruments employing inertial lift and arising from

these investigations are not apparent. Additionally, Bellhouse

et al. proposed using inertial lift force (particularly lift away from

walls) in combination with cross-flow filtration with traditional

filters for size based separations.34

Inertial migration in curved channels

Particles flowing in curving channels with finite inertia will

experience both inertial migration and influences from secondary

Dean flow. For most cases, where particles are relatively

neutrally buoyant, centrifugal effects on the suspended particles

themselves appear negligible.35 A combination of Dean flow and

inertial lift can provide precise focusing and positioning of

particles for applications in concentration and separation. Key

external parameters to control particle focusing behavior include

the channel dimensions, aspect ratio and radius of curvature,

particle diameter, and flow rate.

Physics of inertial migration in curved channels

For particles flowing in curved channels, as a first order

approximation, one can make an assumption that the effects of

inertial migration and secondary flow act in superposition on

a particle21 (Fig. 5). This is such that a particle held stationary at

an inertial lift equilibrium position will experience a drag force

that at its maximum will be directly proportional to the local

secondary flow velocity field (UD) – perpendicular to the primary

flow direction. This ‘‘Dean drag’’ force then acts to entrain

particles in the secondary flow in competition with lift forces

directed towards inertial lift equilibrium positions. We proposed

that a ratio of these forces (inertial lift/Dean drag) would be a key

parameter describing behavior in these systems21,36 with recent

evidence supporting this claim.35 An inertial force ratio, Rf ¼
a2R/H3 that describes the order of magnitude scaling between

these forces, is obtained by dividing the dimensional scaling of

inertial lift in the shear gradient region19 with the scaling of Dean

drag, neglecting any position and Re-dependent changes.35 This

dimensionless group is useful for predicting particle behavior, as

demonstrated by the two limiting cases: (i) Rf / 0, particle

streams will neglect inertial equilibrium positions and remain

entrained in the secondary flow, and (ii) Rf / N, for sufficiently

high particle Reynolds number, particles will migrate to inertial

focusing equilibrium positions independent of the secondary

flow. The most interesting case, for intermediate Rf, inertial

equilibrium positions can be modified by the secondary flow

leading to interesting new focusing modes and applications

(Fig. 5). Our recent results suggest that this intermediate range

starts at Rf > !0.04.35 Notice that Rf is dependent on particle

Fig. 4 Applications of inertial migration in straight channels. (A) In a 50 mm square channel streak images of 10 mm particles are shown 4 cm

downstream. Particles that are initially randomly distributed focus to what appears to be three streams with the brighter middle stream corresponding to

two streams at different depths superimposed. Focused streams are useful for applications in flow cytometry, concentration, filtration, and separation.21

(B) For high-aspect ratio channels with a height of 50 mm and width of 27 mm, focusing of 10 mm particles to two streamlines is observed. Particles are

observed to hydrodynamically interact and self-order into staggered ‘‘double-trains’’ for a particle Reynolds number !0.2. The inertial self-ordering

effect was utilized to create more uniform single-particle occupancy droplets if the frequency of the ordered particle stream is synchronized with droplet

generation frequency in a microfluidic droplet generator.25 (C) High-aspect ratio channels were used to focus smaller 2 mm particles for filtration

applications. Image printed with permission from Papautsky et al.23 (D) Differential transport rates for two size particles due to differences in the

magnitude of wall effect lift were employed for separation of blood cells (!8 mm) from bacteria (!1 mm). Image printed with permission from ref. 29.

This journal is ª The Royal Society of Chemistry 2009 Lab Chip, 2009, 9, 3038–3046 | 3043
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to focus 7 and 10 mm particles25,30 and cells25 to two equilibrium

streams for Rp > !0.2, useful for filtration and concentration

applications. Although the authors discuss a separate mecha-

nism, I would argue that Hjort et al. have also demonstrated

kinetic separations, whereby hydrodynamic focusing of a mixed

blood cell/bacteria stream against a wall, allowed for migration

of larger blood cells away from the wall at a faster rate than

smaller bacteria (Fig. 4D).29 This system allowed for high-purity

separation of E. coli from red blood cells with throughputs up

to 18 mL/min. Parallelization for further improvements in

throughput with this platform is a future challenge because of the

multiple fluid inputs required for the initial hydrodynamic

focusing step.

It should be noted that inertial lift forces were recognized to

play a role in particle behavior in field flow fractionation (FFF)

based separations pioneered by J. Calvin Giddings et al.31–33 and

were briefly explored in the early 1990’s. Applications or

commercial instruments employing inertial lift and arising from

these investigations are not apparent. Additionally, Bellhouse

et al. proposed using inertial lift force (particularly lift away from

walls) in combination with cross-flow filtration with traditional

filters for size based separations.34

Inertial migration in curved channels

Particles flowing in curving channels with finite inertia will

experience both inertial migration and influences from secondary

Dean flow. For most cases, where particles are relatively

neutrally buoyant, centrifugal effects on the suspended particles

themselves appear negligible.35 A combination of Dean flow and

inertial lift can provide precise focusing and positioning of

particles for applications in concentration and separation. Key

external parameters to control particle focusing behavior include

the channel dimensions, aspect ratio and radius of curvature,

particle diameter, and flow rate.

Physics of inertial migration in curved channels

For particles flowing in curved channels, as a first order

approximation, one can make an assumption that the effects of

inertial migration and secondary flow act in superposition on

a particle21 (Fig. 5). This is such that a particle held stationary at

an inertial lift equilibrium position will experience a drag force

that at its maximum will be directly proportional to the local

secondary flow velocity field (UD) – perpendicular to the primary

flow direction. This ‘‘Dean drag’’ force then acts to entrain

particles in the secondary flow in competition with lift forces

directed towards inertial lift equilibrium positions. We proposed

that a ratio of these forces (inertial lift/Dean drag) would be a key

parameter describing behavior in these systems21,36 with recent

evidence supporting this claim.35 An inertial force ratio, Rf ¼
a2R/H3 that describes the order of magnitude scaling between

these forces, is obtained by dividing the dimensional scaling of

inertial lift in the shear gradient region19 with the scaling of Dean

drag, neglecting any position and Re-dependent changes.35 This

dimensionless group is useful for predicting particle behavior, as

demonstrated by the two limiting cases: (i) Rf / 0, particle

streams will neglect inertial equilibrium positions and remain

entrained in the secondary flow, and (ii) Rf / N, for sufficiently

high particle Reynolds number, particles will migrate to inertial

focusing equilibrium positions independent of the secondary

flow. The most interesting case, for intermediate Rf, inertial

equilibrium positions can be modified by the secondary flow

leading to interesting new focusing modes and applications

(Fig. 5). Our recent results suggest that this intermediate range

starts at Rf > !0.04.35 Notice that Rf is dependent on particle

Fig. 4 Applications of inertial migration in straight channels. (A) In a 50 mm square channel streak images of 10 mm particles are shown 4 cm

downstream. Particles that are initially randomly distributed focus to what appears to be three streams with the brighter middle stream corresponding to

two streams at different depths superimposed. Focused streams are useful for applications in flow cytometry, concentration, filtration, and separation.21

(B) For high-aspect ratio channels with a height of 50 mm and width of 27 mm, focusing of 10 mm particles to two streamlines is observed. Particles are

observed to hydrodynamically interact and self-order into staggered ‘‘double-trains’’ for a particle Reynolds number !0.2. The inertial self-ordering

effect was utilized to create more uniform single-particle occupancy droplets if the frequency of the ordered particle stream is synchronized with droplet

generation frequency in a microfluidic droplet generator.25 (C) High-aspect ratio channels were used to focus smaller 2 mm particles for filtration

applications. Image printed with permission from Papautsky et al.23 (D) Differential transport rates for two size particles due to differences in the

magnitude of wall effect lift were employed for separation of blood cells (!8 mm) from bacteria (!1 mm). Image printed with permission from ref. 29.

This journal is ª The Royal Society of Chemistry 2009 Lab Chip, 2009, 9, 3038–3046 | 3043
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shear stress [29]. Holm et al. applied this technique for the
separation of trypanosomes from red blood cells [30] and
for the classification of morphologically altered red cells
[29]. More recently, Sugaya et al. applied HDF for shape-
based sorting of budding and single cells from a yeast-cell
mixture [31]. HDF, which employs highly branched chan-
nel structures, is based on differential particle behavior in a
fluid branch point due to steric exclusion, with the size
cutoff for separation being determined by the fluidic resist-
ance ratio of the channel that defines the amount of the fluid
that splits into each channel. Similar to the mechanism
underlying DLD, the rotation of nonspherical particles in
HDF modifies their effective steric dimension. Both HDF
and DLD are efficient, passive, and continuous techniques,
but both require (i) highly complex features—130 branch
channels for HDF [31], and complex and high-resolution
arrays of postswith 13 different arrangements forDLD[29],
and (ii) low flow rates—60 nL=min for Holm et al. [30] and
2–3 !L=min for Sugaya et al. [31], consequently offering a
low throughput thatmay be suitable for research applications
but not for industrial-scale applications. Similarly, Valero
et al. performed shape-based sorting of yeast by balancing
opposing DEP forces at multiple frequencies [32]. DEP
requires the integration of active elements and a precise
and reproducible control of the buffer conductivity between
each experiment; both of these requirements complicate
potential use beyond research applications.

Recently, Di Carlo and others have shown that inertial
focusing, based on effects of fluid inertia on migration in
cylindrical pipes first observed by Segre and Silberberg
[33], can be used to separate microparticles and cells in
microchannels at high rates [28,34–36]. Briefly, two inertial
lift forces are involved: (i) a shear-gradient lift force and
(ii) a wall-effect lift force induce particle migration across
streamlines when the Reynolds number of the particle, Rep,
is of order 1 or greater. Rep ¼ Reeða=WÞ2 with a=W being

the ratio of particle to channel diameter, and Ree indicates
the Reynolds number for the channel flow, Ree ¼
"UmW=!. Here, ", Um, and ! correspond to the density,
maximum velocity, and dynamic viscosity of the fluid. In
rectangular or square channels, particles generally migrate
to two to four distinct dynamic equilibrium positions de-
pending on the fold symmetry of the channel cross section
(Fig. 1). Among other advantages, the possibility of oper-
ating over a large range of high flow rates makes inertial
focusing a promising technique for low-cost cytometry,
massively parallel cell separation, and washing [37–39].
However, previous work has mainly investigated spherical
particles and characterized the ability of inertial focusing to
separate or focus particles or cells based on the overall
particle diameter [28]. Recently, Hur et al. demonstrated
deformability-based differences in equilibrium positions
(stable focusing positions in the channel) for cells and
viscous droplets [40]. Some of the current authors also
showed that inertial effects can be exploited to focus

nonspherical particles to uniform locations [41], illustrating
that the effect of particle shape on its focusing position is an
important parameter to be further investigated. However, it
is not clear how particles of controlled aspect rations with

FIG. 1. Focusing of ellipsoids of different aspect ratios to two
sets of dynamic equilibrium positions. (a) In rectangular chan-
nels with a high aspect ratio, at moderate Re, randomly distrib-
uted particles are known to focus to two equilibrium regions
centered at the long faces of the channels. (b) The particle
shapes, stretching ratios, and ellipsoid dimensions evaluated in
the current work. (c) The microfluidic device (upper drawing)
used for shape-based separation consists of a simple straight
4-cm long channel, withW¼25, 30, or 35!m, andH ¼ 47 !m.
At the inlet (middle drawing, left), particles are initially ran-
domly distributed within the fluid. Equilibrium positions (Xeq)
are measured at the channel outlet (middle drawing, right), 4 cm
downstream of the inlet, where particles are assumed to be
inertially focused due to the combined effect of FLw

(wall-effect
lift) and FLs

(shear-gradient lift). Overlaid pictures (scale bar ¼
10 !m) illustrate particle distribution, respectively, at the inlet
(right) and outlet (left). The lower images are multiple overlays
of frames captured at the channel inlet (left) and outlet (right).

MAHDOKHT MASAELI et al. PHYS. REV. X 2, 031017 (2012)
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(w and h being the width and height of the channel). The particle
Reynolds number has an additional dependence on the particle
diameter, a. The definition of Reynolds number based on the
mean channel velocity can be related to Rc by Re ! 2⁄3 Rc.

Inertial lift forces dominate particle behavior when the par-
ticle Reynolds number is of order 1. Typically, particle flow in
microscale channels is dominated by viscous interactions with Rp
"" 1. In these systems, particles are accelerated to the local f luid
velocity because of viscous drag of the fluid over the particle
surface. Dilute suspensions of neutrally buoyant particles are not
observed to migrate across streamlines, resulting in the same
distribution seen at the inlet, along the length, and at the outlet
of a channel. As Rp increases, migration across streamlines has
been observed in macroscale systems (19). In a cylindrical tube
particles were observed to migrate away from the tube center
and walls to form a focused annulus. The theoretical basis for this
‘‘tubular pinch’’ effect was later described to be a combination

of inertial lift forces acting on particles at high particle Reynolds
numbers (21, 22). The dominant forces on rigid particles are the
‘‘wall effect,’’ where an asymmetric wake of a particle near
the wall leads to a lift force away from the wall (23), and the
shear-gradient-induced lift that is directed down the shear
gradient and toward the wall (20). A relation describing the
magnitude of these lift forces (Fz) in a parabolic f low between
two infinite plates follows from Asmolov (20) and is useful in
understanding how the intensity of inertial migration depends on
system parameters with, the caveat that the derivation assumes
Rp " 1.

Fz !
!Um

2 a4

Dh
2 fc(Rc, xc) !

"2

!
Rp

2 fc#Rc, xc). [3]

Here fc(Rc, xc) can be considered a lift coefficient and is a
function that is dependent on the position of the particle within
the cross-section of the channel xc and the channel Reynolds
number, but independent of particle geometry. At the equilib-
rium position, where the wall effect and shear-gradient lift
balance, fc ! 0.

Inertial lift acting on a particle leads to migration away from
the channel center. From Eq. 3 an expression for the particle
migration velocity, Up, can be developed assuming Stokes drag,
Fs ! 3#"aUp, balances this lift force:

Up !
!Um

2 a3

3#"Dh
2 fc(Rc, xc). [4]

An estimate of the transverse migration velocity out from the
channel center line can be made by using an average value of fc
$ 0.5 for flow through parallel plates (20). This calculation yields
a value of 3.5 cm/s for 10-"m particles in a flow with Um ! 1.8
m/s. Traveling a lateral distance of 40 "m requires traveling %2
mm downstream in the main flow. Eq. 4 also indicates that the
lateral distance traveled will depend heavily on particle diame-
ter, indicating the possibility of separations based on differential
migration. Assumptions that limit the accuracy of this analysis
are given in the supporting information (SI) Text.

Additional interactions between particles and flow have to be
considered when channels are not straight. Secondary rotational
f low caused by inertia of the fluid itself, called Dean flow (24),
has been previously described in curved channels, and can alter
the position of flowing particles. Two dimensionless numbers to
characterize this secondary flow, the Dean number {De !
Re(Dh/2r)1/2] and curvature ratio ($ ! Dh/2r) can be defined (18,
24), where r is the radius of curvature of the channel. At
moderate Dean numbers observed in our experiments (De " 50),
Dean flow consists of two counterrotating vortices with flow
directed toward the outer bend at the midline of the channel and
inwards at the channel edges. The magnitude of the rotational
f low velocity (UD) scales as

UD$De2%!Dh. [5]

In the presence of other forces (e.g., inertial lift forces) that act
to keep a particle in a stationary position, a drag force is applied
by the secondary flow with a maximum possible value that is
proportional to the secondary flow velocity. From Eq. 5 and
assuming Stokes drag, the drag attributable to Dean flow (Dean
drag, FD) scales as FD $ !Um

2 aDh
2r&1.

The balance between inertial lift and Dean drag forces is what
determines the preferred location of particles in channels with
curved geometry. It should be noted that although lift and drag
forces in a simple flow act orthogonally on a body, inertial lift and
Dean drag forces may not. This is because inertial lift acts in a
perpendicular direction to the primary channel f low, whereas
Dean drag is in the direction of the secondary flow, leading both

Fig. 1. Inertial self-ordering. (a) Schematic drawing of the inertial ordering
process. After flowing through a channel of a particular symmetry, precise
ordering of initially scattered particles is observed both longitudinally along
the direction of flow and laterally across the channel. (b) Top-down views of
fluorescent streak images of flowing 9-"m-diameter particles in a square
channel (50 "m) filled with water (density ! ! 1.00 g/ml and dynamic viscosity
" ! 10&3 Pa!s). Flow is from left to right. The inlet region is shown at the left,
where the particles are initially uniformly distributed within the fluid. Longer
images show the outlet 3 cm downstream for the channel Reynolds number
Rc ! 15, 30, or 90 (particle Reynolds number Rp ! 0.48, 0.97, or 2.9). Focusing
of particles into four single streamlines is observed. From above this appears
as three lines with double the intensity in the middle streak–line. (c) For a
symmetric curving channel the symmetry of the system reduces focusing to
two streams. Above a critical Dean number (De) focusing is perturbed. (d) For
an asymmetric curving system, focusing down to a single stream is favored.
Focusing is again more complex as De increases. (e) A confocal cross-section of
the rectangular channel shown in b shows focusing of particles to the four
channel faces. (Scale bar, 10 "m.) ( f) Schematic diagram showing the force
balance between the shear-gradient (Fshear, red arrows) and wall-induced lift
(Fwall, blue arrows) for particles in three positions. (g) Confocal cross-section
for an asymmetric channel. (h) Starting at the inlet on the left, a random inlet
distribution of fluorescent microparticles is focused to a tight streamline on
the right after a short distance. (Scale bar, 160 "m.)

Di Carlo et al. PNAS " November 27, 2007 " vol. 104 " no. 48 " 18893
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control these flows include the channel dimensions, radius of

curvature, and flow rate.

Physics of Dean flow

Secondary flow arises in fluid flow through a curved channel

because of a mismatch of velocity in the downstream direction

between fluid in the center and near-wall regions of a channel.

Therefore, fluid elements near the channel centerline have larger

inertia than fluid near the channel walls, and would tend to flow

outward around a curve, creating a pressure gradient in the

radial direction of the channel. Because the channel is enclosed,

relatively stagnant fluid near the walls re-circulates inward due to

this centrifugal pressure gradient, creating two symmetric

vortices (Fig. 1). A dimensionless number that describes the

magnitude of this flow was first established by W. R. Dean, and

a more generally accepted form of this Dean number is described

by Berger et al.4 as k ¼ (H/2R)1/2Re. Berger et al. noted that,

although not explored, the ratio of channel dimension to radius

of curvature, defined by the parameter d ¼ H/(2R), also has

important effects on the shape of the secondary flow.4 Following

Squires and Quake1 the secondary flow velocity scales as UD" k2

m/(rH). Besides giving a measure of the Dean flow velocity,

increases in Dean number are associated with changes in shape of

the secondary flow, with the centers of the symmetric vortices

moving towards the outer wall and development of boundary

layers with increasing k.4

Applications of secondary flow in microfluidic systems

Secondary flows have been employed in microfluidic systems

primarily for applications in fluid mixing. Mixing in microfluidic

systems has been extensively explored because of the difficulty in

quickly mixing fluid streams without the aid of turbulence

(reviewed in ref. 5 and articles in that issue of Philosophical

Transactions). Most techniques are based on the concept of

increasing the interfacial area for diffusive mixing to occur. Often

the concept of chaotic advection is used, whereby fluid interfaces

are stretched and folded to increase the interfacial area to an

extreme level.6 Because of the exponential growth in stretching of

fluid interfaces in these systems the positions of individual fluid

elements cannot be confidently assigned, recapitulating an aspect

of turbulent flow that leads to good mixing.

Secondary flows in curved microfluidic channels have been

used to increase the interfacial area for diffusive mixing. One of

the first examples is the use of three-dimensional ‘‘twisted’’

channels analogous to macroscale systems that take advantage of

chaotic advection.7 In this work, Beebe et al. observed almost

complete mixing for Re < 25, which was a significant improve-

ment over a planar serpentine channel in which Dean flow

stretched interfaces symmetrically back and forth with each turn,

therefore not yielding chaotic advection. Ligler et al. demon-

strated a circular curve design that stretches fluid streams in

a single direction to increase mixing efficiency.8 Alternative

designs have been demonstrated by Sudarsan and Ugaz using

spiral channels (Fig. 2A), and further improvements employed

curved channels to reorient fluid elements followed by branching

channels that separately reoriented and recombined fluid

elements, creating aspects of chaotic advection.2,9 In these single-

layer systems effective mixing of a fluorescent dye was achievable

for Re > 20. Advantages of using secondary flow in curved

channels for mixing include: (i) the relatively simple design and

operation, (ii) enhancement of mixing with increasing flow rate

as opposed to diffusive mixing, and (iii) applicability to a range

of different fluids of varying viscosities, densities, and conduc-

tivities. However, it should be noted that these techniques are

often not appropriate for many Lab-on-a-Chip applications

dealing with small volumes of fluid, since mixing enhancement

becomes negligible for lower flow rates where k < "1.

Besides mixing, the ability to controllably deform the interface

between two co-flowing fluids has been employed for other

applications. Huang et al. used the two re-circulating vortices in

Dean flow to transform vertically co-flowing streams into hori-

zontal co-flowing streams (Fig. 2B). Additional fluid inputs were

then added to pinch the horizontal streams creating a 3D

hydrodynamic focusing effect in a single-layer microfluidic

chip.10 If instead of completely transforming the co-flow to

horizontal, the interface between the two co-flowing streams is

slightly deformed then the curvature that is created can be used

as an optical lens if the two fluids have different indices of

refraction11 (Fig. 2C). Huang et al. demonstrated a tunable lens

using the co-flow of calcium chloride solution and deionized

water.11 Here the focal length of the lens was tunable by adjusting

the flow rate (i.e. Dean flow velocity) through the curved

channel.

Dean vortices have also been used to act on particles in flow.

Go et al. separated particles with significantly higher density than

the fluid based on the idea that larger particles intercept different

secondary flow velocity fields than smaller particles, leading to

differential movement (Fig. 2D).12 Caveats to interpretation of

the results of this work include the need to consider inertial lift

forces acting on particles, and the effect of large particles on

distorting the secondary flow field itself. In fact, the interaction

of inertial lift forces with secondary Dean flows leads to complex

and useful behavior – as discussed below.

Inertial migration of particles

Parallel and precise cell and particle manipulation can be ach-

ieved using inertial lift forces intrinsic to particle motion in

confined channel flows. Key external parameters to control the

Fig. 1 Dean flow. In curved channels, when inertia is important, faster

moving fluid near the channel center tends to continue outward, and to

conserve mass, more stagnant fluid near the walls re-circulates inward.

This creates two counter-rotating vortices perpendicular to the primary

flow direction.

This journal is ª The Royal Society of Chemistry 2009 Lab Chip, 2009, 9, 3038–3046 | 3039
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control these flows include the channel dimensions, radius of

curvature, and flow rate.

Physics of Dean flow

Secondary flow arises in fluid flow through a curved channel

because of a mismatch of velocity in the downstream direction

between fluid in the center and near-wall regions of a channel.

Therefore, fluid elements near the channel centerline have larger

inertia than fluid near the channel walls, and would tend to flow

outward around a curve, creating a pressure gradient in the

radial direction of the channel. Because the channel is enclosed,

relatively stagnant fluid near the walls re-circulates inward due to

this centrifugal pressure gradient, creating two symmetric

vortices (Fig. 1). A dimensionless number that describes the

magnitude of this flow was first established by W. R. Dean, and

a more generally accepted form of this Dean number is described

by Berger et al.4 as k ¼ (H/2R)1/2Re. Berger et al. noted that,

although not explored, the ratio of channel dimension to radius

of curvature, defined by the parameter d ¼ H/(2R), also has

important effects on the shape of the secondary flow.4 Following

Squires and Quake1 the secondary flow velocity scales as UD" k2

m/(rH). Besides giving a measure of the Dean flow velocity,

increases in Dean number are associated with changes in shape of

the secondary flow, with the centers of the symmetric vortices

moving towards the outer wall and development of boundary

layers with increasing k.4

Applications of secondary flow in microfluidic systems

Secondary flows have been employed in microfluidic systems

primarily for applications in fluid mixing. Mixing in microfluidic

systems has been extensively explored because of the difficulty in

quickly mixing fluid streams without the aid of turbulence

(reviewed in ref. 5 and articles in that issue of Philosophical

Transactions). Most techniques are based on the concept of

increasing the interfacial area for diffusive mixing to occur. Often

the concept of chaotic advection is used, whereby fluid interfaces

are stretched and folded to increase the interfacial area to an

extreme level.6 Because of the exponential growth in stretching of

fluid interfaces in these systems the positions of individual fluid

elements cannot be confidently assigned, recapitulating an aspect

of turbulent flow that leads to good mixing.

Secondary flows in curved microfluidic channels have been

used to increase the interfacial area for diffusive mixing. One of

the first examples is the use of three-dimensional ‘‘twisted’’

channels analogous to macroscale systems that take advantage of

chaotic advection.7 In this work, Beebe et al. observed almost

complete mixing for Re < 25, which was a significant improve-

ment over a planar serpentine channel in which Dean flow

stretched interfaces symmetrically back and forth with each turn,

therefore not yielding chaotic advection. Ligler et al. demon-

strated a circular curve design that stretches fluid streams in

a single direction to increase mixing efficiency.8 Alternative

designs have been demonstrated by Sudarsan and Ugaz using

spiral channels (Fig. 2A), and further improvements employed

curved channels to reorient fluid elements followed by branching

channels that separately reoriented and recombined fluid

elements, creating aspects of chaotic advection.2,9 In these single-

layer systems effective mixing of a fluorescent dye was achievable

for Re > 20. Advantages of using secondary flow in curved

channels for mixing include: (i) the relatively simple design and

operation, (ii) enhancement of mixing with increasing flow rate

as opposed to diffusive mixing, and (iii) applicability to a range

of different fluids of varying viscosities, densities, and conduc-

tivities. However, it should be noted that these techniques are

often not appropriate for many Lab-on-a-Chip applications

dealing with small volumes of fluid, since mixing enhancement

becomes negligible for lower flow rates where k < "1.

Besides mixing, the ability to controllably deform the interface

between two co-flowing fluids has been employed for other

applications. Huang et al. used the two re-circulating vortices in

Dean flow to transform vertically co-flowing streams into hori-

zontal co-flowing streams (Fig. 2B). Additional fluid inputs were

then added to pinch the horizontal streams creating a 3D

hydrodynamic focusing effect in a single-layer microfluidic

chip.10 If instead of completely transforming the co-flow to

horizontal, the interface between the two co-flowing streams is

slightly deformed then the curvature that is created can be used

as an optical lens if the two fluids have different indices of

refraction11 (Fig. 2C). Huang et al. demonstrated a tunable lens

using the co-flow of calcium chloride solution and deionized

water.11 Here the focal length of the lens was tunable by adjusting

the flow rate (i.e. Dean flow velocity) through the curved

channel.

Dean vortices have also been used to act on particles in flow.

Go et al. separated particles with significantly higher density than

the fluid based on the idea that larger particles intercept different

secondary flow velocity fields than smaller particles, leading to

differential movement (Fig. 2D).12 Caveats to interpretation of

the results of this work include the need to consider inertial lift

forces acting on particles, and the effect of large particles on

distorting the secondary flow field itself. In fact, the interaction

of inertial lift forces with secondary Dean flows leads to complex

and useful behavior – as discussed below.

Inertial migration of particles

Parallel and precise cell and particle manipulation can be ach-

ieved using inertial lift forces intrinsic to particle motion in

confined channel flows. Key external parameters to control the

Fig. 1 Dean flow. In curved channels, when inertia is important, faster

moving fluid near the channel center tends to continue outward, and to

conserve mass, more stagnant fluid near the walls re-circulates inward.

This creates two counter-rotating vortices perpendicular to the primary

flow direction.
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  Taylor-­‐Dean	
  
Mezclado;	
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  de	
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magnitude and direction of lift forces include the channel

dimensions & aspect ratio, particle diameter, and flow rate.

Physics of inertial migration

Particles in a flow experience both shear and normal stresses

acting over their surfaces that yield forces parallel (i.e. drag

forces) and perpendicular (i.e. lift forces) to the main flow

direction. In most flows, drag forces will act to accelerate parti-

cles until they are force free in the flow direction and travel at the

average intersected fluid speed. Lift forces are most often asso-

ciated with inviscid, unbounded flows acting on ‘‘particles’’

(e.g. wings) of defined shape. Lift on particles within bounded

channel flows has been less studied presumably because both

viscous and inertial components are important in these flows.

Simple physical explanations for the processes yielding lift forces

are often hard to come by, with a significant example being that

one of the most common intuitive arguments for lift on an

airplane wing is considered flawed (i.e. the equal transit time

argument). In any case, studies have led to significant insight into

scaling and necessary factors required for these forces.

Migration of rigid particles (due to lift) across undisturbed

streamlines was first reported in the 1960s for macroscale flows

through a cylindrical pipe.13 Segre and Silberberg observed that

randomly dispersed millimeter-diameter particles migrated to an

annulus centered at a position !0.6 times the radius of a 1 cm

diameter pipe (Fig. 3A). At the time this phenomenon was not

explained by fluid dynamic theory, partly because of the diffi-

culty of analytical calculations when the Reynolds number is

finite and inertia is important (in the cylindrical-pipe experi-

ments, Reynolds numbers between 1–100 were used). Following

the observations of Segre and Silberberg a flurry of theoretical

investigations ensued in an attempt to capture this unique

behavior. The technique of matched asymptotic expansions

proved to be one of the most useful for determining

dominant lateral forces on particles of diameter, a, in channels of

dimension, H, and yielded a lift force, FL, that scales as: FL f
rU2a4/H2.14–18

Besides yielding a scaling for the lift, theoretical investigations

into inertial migration of particles have identified the dependence

of lift on cross-sectional position within a channel,15–18 showed

an additional dependence of lift on Re,16–18 and relaxed

constraints on analytical solutions requiring low values of Re.16–18

A main success of the developed theory is that the dependence of

the lift force on the cross-sectional position in the channel (as

depicted in Fig. 3D) recapitulated the experimentally observed

equilibrium position at !0.6 times the channel radius.15–18 Here,

and throughout this work, the definition of ‘‘equilibrium’’ or

‘‘equilibrium positions’’ does not imply that the system is at

equilibrium in the thermodynamic sense, but rather implies the

mathematical definition that particles occupy a stationary point

of a dynamical system. Further dependence of lift force on

channel Reynolds number was also theoretically predicted, such

that FL ¼ fL(Re,x/h)$rU2a4/H2 where fL is a non-dimensional lift

coefficient that is a function of Reynolds number and the

normalized cross-sectional position (x/h).16–18 Interestingly, fL

has been shown to decrease with increasing Re or U suggesting

that lift scales slightly less strongly than with U2.16–18 These

previous investigations also found that similar forms of the lift

force were observed for cylindrical channels14,18 and parallel

plates.15–17 For all of the work using matched asymptotic

expansions, an assumption of small particle Reynolds number

(Rp ¼ Re(a/H)2 ¼ rUa2/H) and a/H # 1 was used such that the

particle does not disturb the underlying flow field. Here the

Fig. 2 Applications of secondary flow in curved channels. (A) Dean flow was used to increase the interfacial area for diffusive mixing in microchannels.

Image printed with permission from Ugaz et al.2 (B) 3-D hydrodynamic focusing of fluid streams in a single layer system was achieved by rotating the

initial stream in a Dean flow prior to pinching the flow again. Image printed with permission from Huang et al.10 (C) Similarly, a variable focal length

lens was created by inertial modulation of the curvature between two co-flowing streams with different refractive indices.11 (D) Larger particles will

intersect different regions of the secondary flow velocity field, which leads to separation.12

3040 | Lab Chip, 2009, 9, 3038–3046 This journal is ª The Royal Society of Chemistry 2009
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Microfluidica	
  
en	
  el	
  límite	
  de	
  Stokes	
  

Mezclado	
  
En	
  el	
  régimen	
  de	
  Stokes	
  (Re=0)	
  

También	
  es	
  un	
  problema!	
  


