Microfluidica en el límite de Stokes

Resistencia hidráulica y equivalente eléctrico Resistencia y movilidad de partículas Efectos Inercia

Microfluidica Resistencia hidráulica de canales

Celda de Hele-Shaw (dos placas paralelas)

Microfluidica Resistencia hidráulica de canales

$$\bigvee = \langle \mathbf{v} \rangle \qquad \uparrow \qquad \mathbf{V} = \frac{1}{\mu} \left(\frac{h^2}{12}\right) \frac{\Delta p}{L}$$

$$\Delta p; L$$

Engeneral
$$V = \frac{k_H}{\mu} \frac{\Delta p}{L}$$

k_H **Permeabilidad** Propiedad solo de la geometría !!

Sección transversal $S \rightarrow$ Caudal Q = S V

$$\Delta p = R_H Q$$
$$R_H = \mu \frac{12}{h^2} \frac{L}{S}$$

R_H Resistencia hidrodinámica

Microfluidica Resistencia hidráulica

shape		$R_{ m hyd}$ expression
circle		$\frac{8}{\pi} \eta L \frac{1}{a^4}$
ellipse		$\frac{4}{\pi} \eta L \frac{1 + (b/a)^2}{(b/a)^3} \frac{1}{a^4}$
triangle	a a a	$\frac{320}{\sqrt{3}} \eta L \frac{1}{a^4}$
two plates	$egin{array}{ccc} h & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & & \\ & & $	$12 \eta L rac{1}{h^3 w}$
rectangle	$egin{array}{ccc} h & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & & \end{pmatrix}$	$\frac{12\eta L}{1-0.63(h/w)}\;\frac{1}{h^3w}$
square	$h \begin{bmatrix} h \\ h \end{bmatrix} h$	$\frac{12\eta L}{1-0.917\times 0.63}\frac{1}{h^4}$

Microfluidica Resistencias en serie y en paralelo

$$\begin{array}{c} \Delta p_2 = R_2 Q_2 \\ \hline p_0 + \Delta p_1 & \hline Q_1 & p_0 & p_0 + \Delta p_2 & \hline Q_2 & p_0 \\ \hline \Delta p_1 = R_1 Q_1 & \hline \end{array}$$

En seriesMismo(que quiere decir?):Caudal Q

 $\Delta p_1 = R_1 Q$ $\Delta p_2 = R_2 Q \qquad p_1$

 $R = R_1 + R_2$ $p_0 + \Delta p$ Q

 $\Delta p = (R_1 + R_2) \, Q$

 p_0

 $\Delta p = \Delta p_1 + \Delta p_2$

En paralelo Mismo $\Delta p = R_1 Q_1$ (que quiere decir?): Δp $Q = Q_1 + Q_2 = \frac{\Delta p}{R_1} + \frac{\Delta p}{R_2} = \left(\frac{1}{R_1} + \frac{1}{R_2}\right) \Delta p$ $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$

Microfluidica Analogía Eléctrica

Circuito Eléctrico	Análogo en microfluidos
Potencial; Voltaje ΔV	Presión <mark>∆p</mark>
Corriente I	Caudal <i>Q</i>
Densidad de corriente <i>i</i>	Velocidad v
Resistencia <i>R</i>	Resistencia <i>R_H</i>
Capacitancia C	Deformación o compresibilidad

$$\sum_{i} Q_i = 0$$

Leyes de Kirchhoff

Microfluidica

Capítulo 3 Capítulo 2 Capítulo 4

<u>Problema</u>: Crear una bomba de caudal constante usando diferencia de presiones (diferencia de altura) y un tubo capilar (tamaño arbitrario). Pensar en el problema análogo en circuitos eléctricos.

Microfluidica Movimiento de partículas

Separarlo en problemas simples ! Cada problema es lineal ! Podemos definir Resistencias y Movilidades

$$F = R_{FU} U$$
 $F = R_{FV} V$ $F = R_{F\Omega} \Omega$
 $J = M_{FU} F$

Nanofluidos

Simulaciones usando Dinámica Molecular

Microfluidica Adsorción / Stick-slip

Microfluidica Movimiento de partículas

Como es el movimiento de dos esferas idénticas?

Cambia en algo si hay una pared?

En general; Geometría arbitraria

Microfluidica

Cuando son importantes los efectos inerciales?

Estimar la velocidad W perpendicular a la pared.

$$\rho\left(\frac{\partial \vec{\mathbf{v}}}{\partial t} + (\vec{\mathbf{v}} \cdot \nabla) \vec{\mathbf{v}}\right) = -\nabla p + \mu \nabla^2 \vec{\mathbf{v}}$$

Para estimar las fuerzas inerciales en la dirección perpendicular, solo tenemos un término: la derivada convectiva !

$$F_L \propto \rho \frac{V^2}{a} v_a \propto \rho a^2 V^2$$

Que término es importante para balancear esta fuerza? (Ayuda: la esfera se mueve con velocidad W perpendicular a la pared.

$$F_W = 6\pi\mu a W$$

Microfluidica

Cuando son importantes los efectos inerciales?

Microfluidica Migración Inercial en flujo de Poiseuille

G. SEGRÉ, A. SILBERBERG, "Radial Particle Displacements in Poiseuille Flow of Suspensions". Nature 189, 209-210 (21 January 1961)

Figure 8.7 The form of the particle lateral force (or velocity) in Poiseuille pipe flow at finite Re.

CAMBRIDGE TEXTS IN APPLIED MATHEMATICS

A Physical Introduction to Suspension Dynamics

ÉLISABETH GUAZZELLI AND JEFF MORRIS

Microfluidica

www.rsc.org/loc | Lab on a Chip

Inertial microfluidics

Dino Di Carlo*

Received 25th June 2009, Accepted 19th August 2009 First published as an Advance Article on the web 22nd September 2009 DOI: 10.1039/b912547g

Despite the common wisdom that inertia does not contribute to microfluidic phenomena, recent work has shown a variety of useful effects that depend on fluid inertia for applications in enhanced mixing, particle separation, and bioparticle focusing. Due to the robust, fault-tolerant physical effects employed and high rates of operation, inertial microfluidic systems are poised to have a critical impact on high-throughput separation applications in environmental cleanup and physiological fluids processing, as well as bioparticle focusing applications in clinical diagnostics. In this review I will discuss the recent accelerated progress in developing prototype inertial microfluidic systems for a variety of applications and attempt to clarify the fundamental fluid dynamic effects that are being exploited. Finally, since this a nascent area of research, I will suggest some future promising directions exploiting fluid inertia on the microscale.

Microfluidica Migración Inercial

G. SEGRÉ, A. SILBERBERG, "Radial Particle Displacements in Poiseuille Flow of Suspensions". Nature 189, 209-210 (21 January 1961)

Microfluidica Centrado/Enfoque de partículas

Microfluidica en el límite de Stokes

El número de Reynolds aumenta de 0.3 a 12, alrededor de Re=1.5 la suspensión de partículas se focaliza y permanece estable

Re=120; Canal 50um x 50um; Estimar la velocidad

Continuous inertial focusing, ordering, and separation of particles in microchannels Dino Di Carlo, Daniel Irimia, Ronald G. Tompkins, and Mehmet Toner *

Microfluidica Flujo Secundario de Dean

Para que el fluido *doble* hace falta una fuerza centripeta v^2/R La mayor velocidad es en el centro del tubo \rightarrow mayores fuerzas inerciales

Inestabilidad equivalente a la de Rayleigh-Bernard y Taylor-Couette Mayor velocidad $\leftarrow \rightarrow$ Mayor densidad Disipación: Conductividad de calor $\leftarrow \rightarrow$ Viscosidad

Microfluidica Aprovechando la inestabilidad de Taylor-Dean Mezclado; separación; manipulación de fluidos

Microfluidica en el límite de Stokes

Mezclado En el régimen de Stokes (Re=0) También es un problema!