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Microfluidica	
  
Ecuación	
  de	
  difusión	
  

En	
  microfluidica	
  y	
  aplicaciones	
  (lab-­‐on-­‐a-­‐chip;	
  μTAS):	
  
Transporte	
  de	
  especies	
  químicas,	
  nanoparGculas	
  y	
  parGculas	
  coloidales	
  (transporte	
  de	
  masa)	
  
En	
  muchos	
  casos	
  puede	
  suponerse	
  que	
  no	
  afectan	
  el	
  movimiento	
  del	
  fluido	
  (escalares	
  pasivos)	
  
Dos	
  mecanismos	
  de	
  transporte	
  independientes:	
  	
  
Convección	
  	
  (adveccion)	
  y	
  Difusión	
  	
  (movimiento	
  térmico	
  o	
  Browniano)	
  
Métodos	
  de	
  descripción:	
  	
  
Macroscópico	
  (teoría	
  del	
  conMnuo):	
  Ecuación	
  de	
  transporte	
  para	
  la	
  concentración.	
  
Microscópico	
  (caminata	
  aleatoria):	
  Ecuación	
  estocásMca	
  para	
  la	
  densidad	
  de	
  probabilidad	
  

Ecuación de conservación de un escalar C(x,t) (e. g. concentración): 

∂C
∂t + ∇ ∙ ! = 0 J(x,t) es el flujo del escalar C	
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  de	
  convección−difusión	
  

J(x,t): el flujo del escalar C	
  

Transporte por convección:	
   !! = !!! 

Transporte por difusión: Ecuación de Fick (1856)  
(fenomenológica y por analogía a la ecuación del calor de Fourier (1822))	
  

!! = −!!∇!! 
∂C
∂t + ∇ ∙ !! + !! = ∂C

∂t + ∇ ∙ !!!− !!∇! = 0 

DM : Coeficiente de Difusión Molecular	
  

∂C
∂t + ! ∙ ∇ ! = !"

!" = !!∇!! 
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∂C
∂t + ! ∙ ∇! = !!∇!! 

v' = v
v!
;! x' = x

l!
;! t' = t

t!
= v!t
l!
;!

Ecuación Adimensional: 
Elegir magnitudes características del problema: velocidad v0 y longitud l0 

Concentración? 

! = !
C!
!

v!
!!

∂!
∂t′ +

v!
!!

!!′ ∙ ∇! = 1
!!!

!!∇!! 

v!!!
!!

∂!
∂t′ + !!′ ∙ ∇! = ∇!! 

Pe = v!!!
!!

 Número de Peclet:	
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Pe ∂!
∂t′ + !!′ ∙ ∇! = ∇!! 
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  de	
  convección−difusión	
  

Número de Peclet:	
   Pe = v!!!
!!

 Transporte convectivo 
Transporte difusivo	
  

Ley	
  de	
  escala	
  en	
  microfluidos	
  ?	
  	
  

Pe#~!!!! 
 

(Igual	
  que	
  el	
  número	
  de	
  Reynolds)	
  	
  

En	
  microfluidica,	
  a	
  medida	
  que	
  reducimos	
  el	
  tamaño,	
  	
  
la	
  difusión	
  es	
  más	
  importante	
  y	
  el	
  número	
  de	
  Peclet	
  à	
  0	
  

longitud l0 ≈ 100µm 
velocidad v0 ≈ 100µm/s 

agua DM ≈ 1000 µm2/s 

Peclet ≈ 5	
  

Todavía	
  es	
  bastante	
  alto!	
  
Depende	
  de	
  cada	
  caso…	
  

Ej.1: v0 ≈ 10µm/s; l0 ≈ 10µm 
à Pe << 1  

Ej. 2: Moléculas grandes (ADN) 
à Pe >> 1 
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Solución	
  fundamental	
  con	
  una	
  fuente	
  puntual	
  (1D)	
  

∂C
∂t = !!∇!!! 

Condición Inicial t=0 
!!!(!)! 

!(!, !) = !!
4!!!!

!exp − !!
4!!!

 

!!~! 2!!!! 

!~! 2!!!! 

Distribución	
  Gaussiana	
  	
  
(distribución	
  Normal	
  en	
  probabilidades)	
  

Varianza	
  

Radio	
  de	
  una	
  gota	
  de	
  Mnta	
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Creeping Flows – Two-Dimensional and Axisymmetric Problems
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Figure 7–3. A schematic representation of the proof that a spherical particle cannot undergo lateral migra-
tion in either 2-D or axisymmetric Poiseuille flow if the disturbance flow is a creeping flow. In (a) we suppose
that the undisturbed flow moves from left to right and the sphere migrates inward with velocity up . Then,
in the creeping-flow limit, if direction of the undisturbed flow is reversed, the signs of all velocities including
that of the sphere would also have to be reversed, as shown in (b). Because the problems (a) and (b) are
identical other than the direction of the flow through the channel or tube, we conclude that up = 0.

body without actually solving the full fluid mechanics problem and calculating the force by
integrating the stress vector n · T over the sphere surface.

3. Lateral Migration of a Sphere in Poiseuille Flow
One of the best-known experimental results for particle motion in viscous flows is the
observation by Segre and Silberberg2 of lateral migration for a small, neutrally buoyant
sphere (ρsphere = ρfluid) that is immersed in Poiseuille flow through a straight, circular tube
or in the pressure-driven parabolic flow (sometimes called 2D Poiseuille flow) between
two parallel plane boundaries. The experiments of Segre and Silberberg, and many later
investigators, show that a freely suspended sphere in these circumstances will slowly move
perpendicular to the main direction of flow until it reaches an equilibrium position that is
approximately 60% of the way from the centerline (or central plane) to the wall. Hence a
suspension of such spheres flowing in Poiseuille flow through a tube of radius R will tend to
accumulate in an annular ring at r = 0.6R. Because the Reynolds number for many of the
experimental observations was quite small, one might assume that a theoretical explanation
could be achieved by using detailed solutions of the creeping-flow equations with suitable
boundary conditions. However, in view of the complexity of the geometry (an eccentrically
located sphere inside a circular tube), this theoretical problem is extremely complex and
difficult to solve, even in the creeping-flow limit. Thus, before actually trying to solve
the problem, it is prudent to determine whether lateral migration is possible at all in the
creeping-flow limit.

The fact is that a theory based entirely on the creeping-flow approximation will lead
to the result that lateral migration is impossible, at least for a single sphere immersed in
axisymmetric or two-dimensional Poiseuille flow. To see that this is true, we can refer to
Fig. 7–3. Here is a sketch of the hypothetical situation of a sphere that is undergoing lateral
migration in Poiseuille flow through a tube. The undisturbed flow in part (a) of Fig. 7–3
is shown moving from left to right, and the sphere is assumed to be migrating radially
inward toward the center of the tube. Now, however, if the creeping-motion approximation
is valid, the governing equations and boundary conditions are linear in the velocity and
pressure, and we can change the signs of all velocities and the pressure and still have a
solution of the same problem but with the direction of the undisturbed flow reversed, as
shown in Fig. 7–3(b). However, because all the velocities have the opposite sign, the inward
migration velocity from configuration (a) must now become an outward migration velocity
for configuration (b). But there is now a clear contradiction. The problems in (a) and (b)
are clearly indistinguishable in all respects. Thus, if the sphere undergoes a lateral motion,
it should be in the same direction in both cases. Because the preceding argument, based on
the linearity of the problem, shows that a nonzero migration velocity in case (a) must lead
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4.3. THE DIFFUSION EQUATION 69

4.3 The diÆusion equation

In the following we consider the diÆusion of a single solute and therefore suppress the
index Æ. If the velocity field v of the solvent is zero, convection is absent and Eq. (4.21)
becomes the diÆusion equation,

@tc = D r2c. (4.23)

Simple dimensional analysis of this equation can already reveal some important physics.
It is clear that if T0 and L0 denotes the characteristic time- and length-scale over which
the concentration c(r, t) varies, then

L0 =
p

DT0 or T0 =
L2

0

D
, (4.24)

which resembles Eq. (4.8). The diÆusion constant D thus determines how fast a concen-
tration diÆuses a certain distance. Typical values of D are

D º 2£ 10°9 m2/s, small ions in water, (4.25a)

D º 4£ 10°11 m2/s, 30-base-pair DNA molecules in water, (4.25b)

D º 1£ 10°12 m2/s, 5000-base-pair DNA molecules in water, (4.25c)

which yield the following times T0 for diÆusion across the typical microfluidic distance
L0 = 100 µm,

T0(100 µm) º 5 s, small ions in water, (4.26a)
T0(100 µm) º 250 s º 4 min, 30-base-pair DNA molecules in water, (4.26b)

T0(100 µm) º 104 s º 3 h, 5000-base-pair DNA molecules in water. (4.26c)

Let us now turn to some analytical solutions of the diÆusion equation.

4.3.1 Limited point-source diÆusion

Consider a small drop containing N0 ink molecules injected at position r = 0 at time t = 0
in the middle of a huge tank of water. The initial point-like concentration acts as the
source of the diÆusion, and it can be written as a Dirac delta function1

c(r, t = 0) = N0 ±(r). (4.27)

The ink immediately begins to diÆuse out into the water, and it is easy to show by
inspection that the solution to the diÆusion equation (4.23) given the initial condition
Eq. (4.27) is

c(r, t > 0) =
N0

(4ºDt)
3
2

exp
≥
° r2

4Dt

¥
. (4.28)

This is an example of a limited diÆusion process because the amount of solute is fixed and
hence limited. The result Eq. (4.28) is discussed in Fig. 4.2.

1
The Dirac delta function ±(r) is defined by: ±(r) = 0 for r 6= 0 and

Z 1

°1

Z 1

°1

Z 1

°1
dr ±(r) = 1.

H.	
  Bruus	
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approximately 60% of the way from the centerline (or central plane) to the wall. Hence a
suspension of such spheres flowing in Poiseuille flow through a tube of radius R will tend to
accumulate in an annular ring at r = 0.6R. Because the Reynolds number for many of the
experimental observations was quite small, one might assume that a theoretical explanation
could be achieved by using detailed solutions of the creeping-flow equations with suitable
boundary conditions. However, in view of the complexity of the geometry (an eccentrically
located sphere inside a circular tube), this theoretical problem is extremely complex and
difficult to solve, even in the creeping-flow limit. Thus, before actually trying to solve
the problem, it is prudent to determine whether lateral migration is possible at all in the
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The fact is that a theory based entirely on the creeping-flow approximation will lead
to the result that lateral migration is impossible, at least for a single sphere immersed in
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Fig. 7–3. Here is a sketch of the hypothetical situation of a sphere that is undergoing lateral
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is shown moving from left to right, and the sphere is assumed to be migrating radially
inward toward the center of the tube. Now, however, if the creeping-motion approximation
is valid, the governing equations and boundary conditions are linear in the velocity and
pressure, and we can change the signs of all velocities and the pressure and still have a
solution of the same problem but with the direction of the undisturbed flow reversed, as
shown in Fig. 7–3(b). However, because all the velocities have the opposite sign, the inward
migration velocity from configuration (a) must now become an outward migration velocity
for configuration (b). But there is now a clear contradiction. The problems in (a) and (b)
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sphere (ρsphere = ρfluid) that is immersed in Poiseuille flow through a straight, circular tube
or in the pressure-driven parabolic flow (sometimes called 2D Poiseuille flow) between
two parallel plane boundaries. The experiments of Segre and Silberberg, and many later
investigators, show that a freely suspended sphere in these circumstances will slowly move
perpendicular to the main direction of flow until it reaches an equilibrium position that is
approximately 60% of the way from the centerline (or central plane) to the wall. Hence a
suspension of such spheres flowing in Poiseuille flow through a tube of radius R will tend to
accumulate in an annular ring at r = 0.6R. Because the Reynolds number for many of the
experimental observations was quite small, one might assume that a theoretical explanation
could be achieved by using detailed solutions of the creeping-flow equations with suitable
boundary conditions. However, in view of the complexity of the geometry (an eccentrically
located sphere inside a circular tube), this theoretical problem is extremely complex and
difficult to solve, even in the creeping-flow limit. Thus, before actually trying to solve
the problem, it is prudent to determine whether lateral migration is possible at all in the
creeping-flow limit.

The fact is that a theory based entirely on the creeping-flow approximation will lead
to the result that lateral migration is impossible, at least for a single sphere immersed in
axisymmetric or two-dimensional Poiseuille flow. To see that this is true, we can refer to
Fig. 7–3. Here is a sketch of the hypothetical situation of a sphere that is undergoing lateral
migration in Poiseuille flow through a tube. The undisturbed flow in part (a) of Fig. 7–3
is shown moving from left to right, and the sphere is assumed to be migrating radially
inward toward the center of the tube. Now, however, if the creeping-motion approximation
is valid, the governing equations and boundary conditions are linear in the velocity and
pressure, and we can change the signs of all velocities and the pressure and still have a
solution of the same problem but with the direction of the undisturbed flow reversed, as
shown in Fig. 7–3(b). However, because all the velocities have the opposite sign, the inward
migration velocity from configuration (a) must now become an outward migration velocity
for configuration (b). But there is now a clear contradiction. The problems in (a) and (b)
are clearly indistinguishable in all respects. Thus, if the sphere undergoes a lateral motion,
it should be in the same direction in both cases. Because the preceding argument, based on
the linearity of the problem, shows that a nonzero migration velocity in case (a) must lead
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!250 channel widths "approximately 2.5 cm and 4 min#
to completely mix.

1. Sensing, filtering, and fabricating with parallel laminar
flows

The competition between convection and diffusion,
embodied in the Péclet number, forms the basis for a
number of techniques for sensing and separating flow
ingredients. The following devices are designed to oper-
ate at intermediate Pe, where differences in solute diffu-
sion rates play the key role.

a. T sensor

One device that employs adjacent laminar streams is
the T sensor, shown in Fig. 5"a# "Kamholz et al., 1999;
Weigl and Yager, 1999#. Two fluid streams are brought to
flow alongside each other down a channel, and solute
molecules in each stream diffuse into the other, forming
an interdiffusion zone whose boundary is measured,
typically with a fluorescent marker. "Note, however, that

reactions introduce additional time scales and complex-
ity into the system.# T sensors have be used to measure
analyte concentration "Weigl and Yager, 1999# and ana-
lyte diffusivities and reaction kinetics "Kamholz et al.,
1999, 2001; Baroud et al., 2003#. Finally, competitive im-
munoassays have been performed by injecting an anti-
body solution alongside a solution of known, labeled an-
tigen. Antigen-antibody binding is evidenced by marker
accumulation in the interdiffusion zone, and an un-
marked antigen can be detected differentially, as compe-
tition for antibody binding alters the marker profile
measured downstream "Hatch et al., 2001#.

The naive picture presented above does not tell the
whole story about the T sensor, however. Ignoring the
channel top and bottom leads to the expectation that the
width of the interdiffusion zone should grow with z1/2, as
in Eq. "7#. In fact, experiment and analysis have shown
the front to behave in a more complicated fashion. Con-
focal microscopy of the three-dimensional front "Fig. 5#
determined the spreading near the top and bottom walls
to vary with z1/3 and with z1/2 near the middle "Ismagilov
et al., 2000#, which occurs because fluid near the top and
bottom moves more slowly than the middle, so that trac-
ers do not move as far downstream as they diffuse across
the streamlines. The near-wall interfacial dynamics can
thus be understood in terms of the classic Lévêque prob-
lem of diffusion in a shear flow "Lévêque, 1928; Deen,
1998; Ismagilov et al., 2000; Kamholz and Yager, 2001#.
Further analysis near the inlet reveals z1/3 spreading
near the walls and z1/2 in the channel center, which then
catches up downstream "Kamholz and Yager, 2002#.

b. Filtration without membranes

Figure 6 depicts the H filter, a simple device that fil-
ters particles by size without a membrane "Brody et al.,
1996; Brody and Yager, 1997#. As in the T sensor, two
different streams are brought together to flow alongside

FIG. 5. "Color in online edition# "a# The microfluidic T sensor
"Kamholz et al., 1999#. Different fluids are brought together at
a T junction to flow alongside each other down the channel. A
simple estimate suggests that the interdiffusion zone spreads
diffusively, with the square root of time "or downstream dis-
tance#, although "b#–"d# show this naive argument to break
down near the “floor” and “ceiling” of the channel. Confocal
microscopy reveals the three-dimensional nature of the
spreading of the interface in the T sensor "Ismagilov et al.,
2000#. "b# Fluorescent tracers mark reactions occurring in the
interdiffusion zone, here seen from above. "c#, "d# The no-slip
nature of the top and bottom walls of the channel affect the
flow profile, so that tracer molecules near the boundaries dif-
fuse and spread with z1/3, rather than z1/2. Reprinted with per-
mission from Ismagilov et al., 2000. ©2000, AIP.

TABLE III. Typical diffusivities for various tracers in water at
room temperature.

Characteristic diffusivities
Particle Typical size Diffusion constant

Solute ion 10−1 nm 2!103 "m2/s
Small protein 5 nm 40 "m2/s
Virus 100 nm 2 "m2/s
Bacterium 1 "m 0.2 "m2/s
Mammalian/human cell 10 "m 0.02 "m2/s

FIG. 6. "Color in online edition# The membraneless H filter
exploits the different rates at which tracers with different dif-
fusivities "and thus Pe# spread across a channel. The length l is
chosen so that large waste products do not have time to diffuse
across the channel, and thus remain confined to their initial
stream, whereas smaller molecules of interest diffuse across
the channel into the neighboring stream. At the outlet, the
second stream contains the more mobile species almost exclu-
sively "Brody et al., 1996; Brody and Yager, 1997#.

983T. M. Squires and S. R. Quake: Microfluidics: Fluid physics at the nanoliter scale

Rev. Mod. Phys., Vol. 77, No. 3, July 2005
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Fig. I. (a) A box containing a mixture of large and small molecules is placed 
adjacent to an empty box at t < 0. (b) When the wall between the two boxes 
is removed, the molecules begin to diffuse into the empty box, 0 < t < r. (c) 
After some time. t = r, the wall is replaced between the two boxes a distance 
A~, to tile right of the original position. Particles that have a diffusion coef- 
ficient substantially less than A~/r will be present at vastly reduced concen- 
trations in the box on the right; however, particles with diffusion coefficients 
substantially larger than A~/'r will be in equal concentrations in both boxes. 

. , , . / -Sample Inpu t  j / - - S a m p l e  O u t pu t  

W -  Fi l tered Ou tpu t  
-Di lu tant  I npu t  

Fig. 2. A fluid barrier is created in the central channel. The thickness of this 
barrier, Ab, can be controlled by varying the ratio of the pressures driving 
the sample input and the dilutant input. Only panicles that diffuse across 
this barrier before reaching the sample output channel will end up in the 
filtered output. 

The concept of  diffusion-based separation is described in 
Fig. 2. The process relies on the non-mixing nature of  low- 
Reynolds-number  flow along with the fast diffusion t imes for 
small  molecules.  The idea was originally implemented in a 
system with two glass plates separated by a shim by Giddings 
[6,7] .  W e  present here a modified version of this imple- 
mented in a microfabricated fluid system. 

A simple model can be used to quantify this 'extraction" 
process. The normalized probability density function, y(x),  
for the one-dimensional  distance, x, which a particle (with 
diffusion coefficient D) diffuses in a time t, follows a Gaus- 
sian distribution: 

y(x) = ~  exp - ( l )  
~/4-rrDr 

............. :~:~,_~:~ ! h 

Fig. 3. (a) In low-Reynolds-number flow there is no mixing or secondary 
flows at the confluence of two channels. (b) The two flow streams move 
down the common channel without gross mixing. The smaller particles 
diffuse more quickly, and therefore can di ffuse across the channel (a distance 
less than h) while the larger particles dilfuse more slowly. 

In the simple approximation that the width of  the box on 
the left is much less than the distm~ce A b, the concentration 
of  particles in the output will be giver by 

C(D) = Cofy(x)  (Ix (2)  
, #  
Xb 

which is related to the well-tabulated function e f t (x ) .  
Because the function y(x)  falls off  rapidly with increasing 

x, this approximation turns out to be remarkably good; the 
behavior o f  the solution i~ not substantially changed by solv- 
ing the complete problem. The result is that the concentration 
o f  a molecule with D = Dr/n is reduced in the output by a 
factor of  e - " .  Since the diffusion coefficient o f  a molecule 
generally varies as its linear size, this can be a very sensitive 
process for discriminating among  molecules,  

This hypothetical separation scheme can be implemented 
in a microfluid system in which the d imensions  of  the chan- 
nels are sufficiently small that only low-Reynolds-number  
(Re << 1 ) flow can occur. Initially two separate flow streams 
(a carrier stream and a dilutant stream) are brought together 
into a central channel in which particles can diffuse between 
the two non-mixing streams (see Fig. 3.) Whereas  at higher 
Reynolds numbers  (Re >> 1 ), mixing independent o f  diffu- 
sion would occur between the two fluids in the central chan- 
nel, when the channels are no more than tens o f  micrometers  
in size, the two adjacent streams flow in parallel without 
turbulence for the length o f  the channel.  Only diffusive mix- 
ing will occur even in low-viscosity fluids. At the end of  the 
parallel flow channel a fraction of  the carrier flow stream is 
split off  into an output channel.  The time for diffusive 
exchange between the two fluids, z =  l/v, is controlled by the 
velocity, v, of  fluid in the central channel  and the length, 1, of  
the channel. The barrier distance, Ab, is determined by the 
precise fraction o f  the carrier flow stream that flows into the 
waste stream. The barrier distance can be controlled by 
changing the geometry and /o r  pressures o f  the four channels.  
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parallel flow channel a fraction of  the carrier flow stream is 
split off  into an output channel.  The time for diffusive 
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precise fraction o f  the carrier flow stream that flows into the 
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designed specifically to give sperm a residence time of 20 s in
the main separation channel. A bifurcation placed at the end of
this separation channel allows efficient collection of only the motile
sperm that deviated from its initial inlet stream (Figure 2 and
Supporting Information).
Component Integration. The MISS integrates all functions

necessary for sperm sortingssuch as inlet/ outlet ports, fluid
reservoirs, pumps, power source, and separation columnsonto a
simple chip design that is practical to manufacture and use (Figure
1). A key design feature is the set of four horizontally oriented
fluid reservoirs that also function as sample inlet/ outlet ports and
a fluid pumping system. The orientation, geometry, and size of
these reservoirs are designed to balance gravitational forces and
surface tension forces and provide a pumping system that
generates a steady flow rate over extended periods of time
regardless of the volume of fluid in the reservoirs. This contrasts
with conventional gravity-driven pumping systems whose flow
rates decrease over time as the volume of fluid in the inlet
reservoir decreases. The diameters of the reservoirs were selected
to be small enough that surface tension prevents liquid from
spilling out of the horizontally oriented reservoirs but large enough
to hold sufficient amounts of sample (tens to hundreds of
microliters) and allow convenient sample introduction and recov-
ery. This balance of forces allows the reservoirs to be arranged
horizontally without the liquid inside spilling out. The horizontal
reservoir arrangement, in turn, holds the height difference
between the fluid in the inlet and outlet reservoirs the same (1.0-
mm height difference between inlet and outlet reservoir ceilings,
Figure 1) regardless of the volume of fluid present in the
reservoirs and maintains a constant hydraulic pressure even as
the amount of fluid in the reservoirs changes.19

Pass ive Pumping Mechanism. The passively driven pump-
ing system described here is unique in that it uses horizontally
oriented reservoirs to overcome the problem of traditional gravity-
driven pumping, where the pressure decreases as the amount of
liquid in the reservoir decreases. Furthermore, the structure of
the pump is greatly simplified compared to other mechanical or
nonmechanical pumping systems, allowing easy manufacture and
integration of the pump into a small, integrated device. Finally,
the use of gravity and surface tension as the driving-force
contributes to the overall small size of the MISS by eliminating
the need for power supplies, such as batteries. Taking gravity,
surface tension, and channel resistance into consideration, the
MISS was designed to give a steady flow rate of sperm with a
residence time of ∼20 s inside the main sorting channel. More
specifically, the MISS is designed so that the flow resistance of
the fluid reservoirs is more than 106 times less than that of the
microfluidic channels and, therefore, negligible. Thus, the resis-
tance of the channels, calculated to be 2.8 × 1012 kg/ (s/ m4),
approximates the total resistance of the system. Since a bulk flow
rate of 0.008 µL/ s is required to achieve the desired residence
time of 20 s and the total resistance is 2.8 × 1012 kg/ (s/ m4), the
net pressure drop required to drive the fluid is 23 N/ m2. To
achieve this desired pressure drop, we designed the dimensions
of the reservoirs such that capillary forces (3.0-mm-diameter inlet
reservoir versus 2.0-mm-diameter outlet reservoir) would be 13
N/ m2 and the pressure drop across the microfluidic channel of
the MISS due to hydrostatic forces (1.0-mm height difference)
would be 9.8 N/ m2. For calculation of the capillary force, we
approximated the contact angle to be 0° (the contact angle of water

(19) Zhu, X.; Phadke, N.; Chang, J.; Cho, B.; Huh, D.; Takayama, S. Proceedings
of MicroTAS 2002, Nara, Japan, 2002; pp 151-153.

Figure 2. Video images and schematic figure of sperm sorting. (a) Phase contrast images of sperm sample entering channel at the inlet
junction, motile sperm swimming out of their initial streamline and spreading throughout the width of the channel, and motile sperm being sorted
at the outlet junction. (b) Cartoon illustration of the video images shown in (a). The dashed line represents the interface between the parallel
laminar streams. At the outlet junction, the motile sperm are evenly distributed throughout the width of the channel. The majority of the nonmotile
sperm, however, are positioned in the initial streamline, which corresponds to the upper stream in this image. The relative flow rates of the inlet
streams and outlet streams (upper stream/lower stream) are ∼1:3 (see Supporting Information for a movie of the process).

Analytical Chemistry, Vol. 75, No. 7, April 1, 2003 1673
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interface between two aqueous phases con-
taining luminol and Fe(III) (Fig. 2C) (10).
Control of crystallization of calcium carbon-
ate (calcite) and various calcium phosphates
(apatites) has been extensively studied be-
cause of its biological relevance (11). A uni-
form array of calcite single crystals (12) and
a thin (!20 "m thick), continuous line of

apatite (13) were generated simultaneously at
the two interfaces between parallel laminar
flows of aqueous NaHCO3, CaCl2, and
KH2PO4 solutions inside rectangular capillar-
ies fabricated by placing a PDMS membrane
(with channels embossed in its surface) over
a substrate consisting of a self-assembled
monolayer of HS(CH2)15COOH on Au (Fig.

2D). This experiment illustrates the capabil-
ity of FLO to support several different reac-
tions in the same capillary simultaneously.

We used FLO for the fabrication of a
more complex, electrically functional de-
vice by making an array of three microelec-
trodes inside a 200-"m-wide rectangular
capillary (Fig. 3A). This capillary was as-
sembled by placing a PDMS membrane that
contained the channel network on a glass
slide with the main channel oriented per-
pendicularly to a gold stripe that had been
deposited by electron beam evaporation. A
two-electrode system was first generated by
flowing an aqueous gold etchant across the
gold stripe as the middle phase of a three-
phase laminar flow system, with water as
the adjacent phases. Controlling the rela-
tive volumes of the three liquid phases
injected into the capillary controlled the
width of the area of Au that was etched in
the middle of the capillary. To prevent
etching of the Ag contact pad at the end of
the smaller exit outlet (Fig. 3B), we applied
a counter flow of water from this channel.
The third, reference electrode was generat-
ed by depositing a silver wire at the inter-
face of the two phases containing compo-
nents of electroless silver plating solution,
followed by treatment with 1% HCl to form
AgCl on the surface of the wire (14 ). The
wire was directed into the smaller outlet
toward the Ag contact pad (Fig. 3B) by
applying a flow of water from the main
outlet. We tested the performance of the final
device using cyclic voltammetry (Fig. 3C). The
volume required to fill the electrochemical ac-
tive area was less than 5 nl, and therefore less
than 10 pmol of Ru(NH3)6Cl3 (5 nl of 2 mM
solution) was used for electrochemical analysis.

A
HCl KF

25 µm5 µm

10 30 40 500
µm

0

400

800
nm

20

C

D

LuminolFe3+

CaCl2

KH2PO4 NaHCO3

Chemi-
luminescence

200 µm

10 µm 50 µm

Fig. 2. (A) Atomic force microscopy profile of a trench (half-width # 6
"m) in SiO2 on a Si wafer etched by HF that is generated on the interface
of laminar flow of KF (2 M in H2O) and HCl (2 M in H2O). (B) Optical
micrograph of a polymeric structure deposited on glass at the laminar
flow interface of 0.005% aqueous solutions of poly(sodium 4-styrene-
sulfonate) and hexadimethrine bromide. (C) Optical micrograph of

chemiluminescence at the interface of a two-phase aqueous laminar flow
system: K3Fe

III(CN)6 (0.1 M) and luminol (0.05 M, in 0.1 M NaOH) in the
presence of O2. (D) Scanning electron microscopy images of calcite (right)
and apatite (left) deposited simultaneously on a self-assembled monolayer
at the interface of aqueous laminar flows of NaHCO3 (16 mM in H2O,
buffered to pH 8.5), CaCl2 (25 mM), and KH2PO4 (3.6 mM, pH 7.4).

Fig. 3. (A) Optical micrographs of the stepwise
fabrication of a three-electrode system inside
a 200-"m-wide channel. Two gold electrodes
(counter and working) are formed by selective-
ly etching the gold stripe that widens beyond
the outer edge of the PDMS membrane into
contact pads in the middle of the channel with
a three-phase laminar flow system. A silver
reference electrode is fabricated at the inter-
face of a two-phase laminar flow (14). (B)
Overview picture of the three-electrode sys-
tem including the Ag contact pad. The dashed
box corresponds to the last picture shown in
(A). (C) Cyclic voltammogram of $5 nl of
Ru(NH3)6Cl3 in water (2 mM, 0.1 M NaCl

electrolyte) as recorded with the three-electrode system (scan rate # 100 mV/s).
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1/R2) (9), where !P is the pressure differ-
ence, " is the liquid surface free energy, and
R1 and R2 are the radii of curvature in direc-
tions vertical and parallel, respectively, to the
liquid stream. For a straight stream (Fig. 1F),
R2 is infinite and the equation is simplified to
!P # "/R1. The value R1 can be expressed by

the equation R1 # h/[2sin($b – 90°)], where h
is the channel depth. Based on the essential
condition for virtual wall rupture ($b # $n),
the maximum pressure that virtual walls in a
straight stream can sustain is Pmax # !P #
(2"/h)sin($n – 90°). Thus, the virtual walls
cannot withstand any pressure if $n % 90°.
Experimentally, we have confirmed this pre-
diction by using bromoundecyltrichlorosilane
instead of OTS to modify surface wetting
property ($n # 83°). Carefully adding deion-
ized water into the channel initially resulted
in water being confined to the hydrophilic
regions, but a slight pressure increase caused
water to cross the boundary and rupture the
virtual walls.

The channel depth used here is &180 'm
and the $n of water on a SAM of OTS is 112°.
Calculations show that Pmax is 300 N/m2,

corresponding to a pressure of 30.6 mm of
water (mmH2O). For a SAM of heptadeca-
fluoro-1,1,2,2-tetrahydrodecyltrichlorosilane
(HFTS), the $n of deionized water is 118°,
corresponding to a critical pressure of 376
N/m2 (38.4 mmH2O). We used the design in
Fig. 1F to measure Pmax for surfaces pat-
terned with these two trichlorosilanes. Al-
though the measurement was complicated by
kinetic issues and high humidity inside the
channels, we observed that bulges developed
at a pressure of 31 mmH2O for OTS-
patterned channels and 37 mmH2O for
HFTS-patterned channels (27 ), in good
agreement with our analytical predictions.

On the basis of the maximum pressure
differences for the OTS and HFTS monolay-
ers, we designed and fabricated simple pres-
sure-sensitive switches to direct the flow of
liquids inside channel networks (Fig. 3). The
central region was hydrophilic, whereas the
other two parts were modified with SAMs of
OTS and HFTS, respectively. Therefore, the
maximum pressures that the two virtual walls
of the liquid stream can sustain are different.
At a low pressure [for example, 10 mmH2O
(Fig. 3B)], the aqueous Rodamine B solution
flowed only along the central hydrophilic
pathway from (a) to (b). At a medium pres-
sure POTS % P % PHFTS [Fig. 3C, 26 mmH2O
(28)] the virtual wall between the hydrophilic
and OTS regions ruptured and water flowed
from (a) to (b), (c), and (d). At a higher
pressure P ( PHFTS (Fig. 3D), aqueous solu-
tion flowed through all channels from (a) to
(b), (c), (d), (e), and (f ). Because the contact
angle can be systematically adjusted by using
mixed SAMs of two different trichlo-
rosilanes, the liquid flow direction can be
switched at any desired pressure.

The previous discussion is for a straight
stream. If there is a turn in the hydrophilic
pathway (Fig. 1G), R2 is finite. For the outer
virtual wall of the turn, R2 is positive and
Pmax increases. For the inner virtual wall, R2

is negative, lowering Pmax. Thus, there is a
limit on the sharpness of turns that can be

Fig. 1. Schematic illustrations
of multistream laminar flows
(A to D) and the correspond-
ing images of aqueous flow
inside channels after surface
patterning (E to H). The liq-
uid is a dilute solution of
Rhodamine B dye (0.057 w/w
%) in deionized water.

Fig. 2. (A) Angle of curvature $b of a liquid
confined by a virtual wall inside a microchan-
nel. (B) Schematic illustration of the tip of a
liquid advancing through a surface-defined
pathway. The top and bottom are hydrophilic
glass substrates; the hydrophobic virtual walls
are on the sides.

Fig. 3. Pressure-sensitive
valves. (A) The laminar flow
scheme for patterning sur-
face free energies inside
channels with two different
trichlorosilanes, OTS and
HFTS. (B through D) Images
of flow patterns of a Rhoda-
mine B dilute solution are
shown at various pressures
(expressed as water column
height, or mmH2O): (B) 10
mm, (C) 26 mm, and (D) 39
mm. The concentration of
dye in deionized water is
0.057 w/w %.

R E P O R T S
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Podemos	
  aprovechar	
  el	
  movimiento	
  Browniano?	
  	
  
Ratchets	
  (recMficando	
  el	
  movimiento	
  Browniano)	
  

Transformar	
  el	
  movimiento	
  Browniano	
  (parte)	
  en	
  transporte	
  dirigido	
  

Es	
  compaMble	
  con	
  las	
  leyes	
  de	
  termodinámica?	
  
Calor	
  à	
  Energía?	
  	
  	
  	
  

Difusión	
  

-­‐  Chance	
  de	
  no	
  pasar	
  por	
  B	
  depende	
  de	
  la	
  difusión	
  
-­‐  Chance	
  de	
  pasar	
  por	
  B+	
  es	
  mayor	
  a	
  la	
  de	
  pasar	
  por	
  B-­‐	
  
-­‐  La	
  probabilidad	
  depende	
  de	
  la	
  magnitud	
  de	
  la	
  difusión	
  
-­‐  ParGculas	
  mas	
  grandes	
  difunden	
  menos	
  
-­‐  Separación	
  por	
  tamaño!	
  

Obstáculos	
  

Duke	
  &	
  Aus0n	
  `98	
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“Sor/ng	
  by	
  diffusion”	
  

Aplicación:	
  Separación	
  de	
  moléculas	
  de	
  ADN	
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Otros	
  ejemplos	
  en	
  microfluidos	
  	
  

(review	
  by	
  Hanggi	
  and	
  Reimann)	
  

Particle sorting by a structured microfluidic ratchet device with tunable
selectivity: theory and experiment

Lukas Bogunovic,a Ralf Eichhorn,b Jan Regtmeier,a Dario Anselmettia and Peter Reimann*c

Received 27th October 2011, Accepted 25th January 2012

DOI: 10.1039/c2sm07053g

We theoretically predict and experimentally demonstrate that several different particle species can be

separated from each other by means of a ratchet device, consisting of periodically arranged triangular

(ratchet) shaped obstacles. We propose an explicit algorithm for suitably tailoring the externally

applied, time-dependent voltage protocol so that one or several, arbitrarily selected particle species are

forced to migrate oppositely to all the remaining species. As an example we present numerical

simulations for a mixture of five species, labelled according to their increasing size, so that species 2 and

4 simultaneously move in one direction and species 1, 3, and 5 in the other. The selection of species to be

separated from the others can be changed at any time by simply adapting the voltage protocol. This

general theoretical concept to utilize one device for many different sorting tasks is experimentally

confirmed for a mixture of three colloidal particle species.

1 Introduction

Ratchet effects refer to directed transport under non-equilibrium

conditions in periodic systems with broken spatial symmetry,

and are currently attracting considerable attention in a wide

variety of different fields.1–4 So far, the majority of pertinent

works has been devoted to basic theoretical concepts, fuelled—

among others—by the exciting perspective to exploit ratchet

effects for particle sorting purposes at the nano- and micro-scale.

Concerning experimental ratchet devices, directed transport per

se has already been demonstrated in a number of systems as well,

see ref. 5–17 for just a few examples. On the other hand, the

actual sorting of different particle species has been achieved only

in a few experimental systems.18–29 All of them have been con-

ducted in some sort of microstructure with broken spatial

symmetry, while the indispensable non-equilibrium conditions

have been implemented mostly by utilizing electrokinetic

effects,18–27 but also via magnetic fields28 or intracellular

morphological changes.29

Along these lines of experimentally realizing ratchet effects by

exploiting electrokinetics,30,31 our present work addresses the

natural next question: given a mixture of different particle

species, is it possible to separate any arbitrarily selected subset of

species from all the others with the help of one and the same

microstructured ratchet device? After setting the general frame-

work we have in mind, we will outline the basic theoretical ideas,

verify them quantitatively by numerical simulations, and finally

provide the experimental proof-of-principle for a colloidal

suspension containing three different species of polystyrene bead.

The general experimental framework is schematically illus-

trated in Fig. 1 (see also Appendix A.1). The central, topo-

graphically structured area consists of periodically arranged,

triangular (ratchet) shaped obstacles. The entire device is filled

Fig. 1 Experimental setup. (a): Schematic top view (x–y plane) of the

entire device (not to scale) with reservoirs and electrodes at its ends and

a central, microstructured part (grey). (b) Optical micrograph image of

the microstructured area. The entire microstructured region extends over

10 000 mm ! 300 mm in the x–y plane and 10 mm in height (z-direction).

(c) Magnification, exhibiting periodically arranged obstacles (posts) of

ratchet-shaped cross section (see Fig. 2 for the dimensions of the obsta-

cles) with a period of 20 mm in the x direction and 14 mm in the y

direction. Also visible are microbeads of three different diameters

(2.9 mm, 1.9 mm, and 1.1 mm). The largest and smallest beads can be easily

distinguished by their size. The medium sized beads are fluorescently

labelled and thus appear as bright spots.

aExperimental Biophysics and Applied Nanoscience, Faculty of Physics,
Bielefeld University, 33615 Bielefeld, Germany
bNORDITA, Roslagstullsbacken 23, 10691 Stockholm, Sweden
cCondensedMatter Theory, Bielefeld University, 33615 Bielefeld, Germany
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  066132.	
  

two states F!A of the total force !9" are of different sign,
and the current !10" constitutes the net result from the differ-
ent average distances the particle travels in the opposite di-
rections.
The above conditions imposed on A and F imply that A

"F#A$F . In view of Eq. !10", we can thus infer that a
current !5" opposite to the static force F, and therefore ANM,
may emerge only if statistical paths dominate where the
mean traveling distance #y($ ,F tot) is smaller for larger
forces F tot .

A. Moderately fast driving

The system parameters in Fig. 2, in particular the charac-
teristic time scale $ of Eq. !4", are chosen such that the
nonequilibrium noise source operates in the regime of rather
high frequency 1/(2$), i.e., the particle can travel at most a
few periods L by free drift within the time $ . The physical
mechanism leading to ANM for this ‘‘moderately fast’’ driv-
ing can be understood as follows. Consider a particle being
located in one of the ‘‘corners’’ between the right ‘‘corridor
wall’’ and any of the adjacent obstacles %see Fig. 3!a"& at the
beginning of the time interval $ with constant F tot#0. Due
to this external force, a drift with velocity

vyªF tot /' !11"

in the positive y direction is induced, additional to the diffu-
sive motion stemming from the thermal environment. If the
ambient thermal noise is not too strong, and hence the diffu-

sion proceeds not too fast, the particle in Fig. 3!a" first
closely follows the right ‘‘corridor wall,’’ not being hindered
by the neighboring obstacle to the left. It then hits the next
obstacle !at the right corridor wall" and ‘‘slides down on the
back’’ of that obstacle until it ‘‘falls off’’ to perform a ‘‘free
fall’’ in the positive y direction. Because the lateral extension
of the obstacles b exceeds half the corridor width B/2, the
particle then hits with a high probability q, the next obstacle
on its way and ends up being trapped in the corresponding
corner between that obstacle and the left corridor wall. In
order to avoid this trap, the particle must thermally diffuse at
least over a distance b$(B$b)%2b$B in the positive x
direction during its free fall in the y direction. With increas-
ing total force !9", ‘‘free traveling speed’’ !11" increases, im-
plying that the available time and therefore the probability
pª1$q of such a diffusive displacement decreases, see Fig.
3!b". Consequently, the particle travels on average a shorter
distance along the y axis during the time $ for larger forces
F tot . As discussed above, see below Eq. !10", it is this very
mechanism that implies the occurrence of ANM.
In order to quantify these qualitative findings, we calcu-

late the average traveling distance #y($ ,F tot) for F tot#0;
the current !5" then follows according to Eq. !10". To this
end, we start by approximating the above mentioned prob-
ability p of avoiding a trap. After drifting for a time t along
the y axis with speed vy from Eq. !11", the thermal diffusion
along the x axis is approximately captured !for not too large
t) by a Gaussian distribution with variance 2Dt . For a par-
ticle that closely passes by the leftmost edge of an obstacle

FIG. 3. !a" Typical traveling routes of the particle for F tot#0 together with their probabilities (qª1$p). !b" Traveling routes for a large
positive force F tot%F"A !left" and a small negative force F tot%F$A !right". For the large force, the traveling speed vy is large and the
particle has only a little time to thermally diffuse along the x direction, as indicated by a narrow !approximately" Gaussian profile. The
particle thus typically ends up by being trapped, and the probability p for avoiding a trap is very small. For the small force, the drift velocity
vy is smaller. Consequently, the available time for diffusive ‘‘broadening’’ is larger !broader Gaussian profile" resulting in a noticeable
probability p of avoiding the trap. The respective values of p are indicated by the filled parts of the Gaussian profiles. The dashed paths do
not contribute to ANM. See also the main text. !c" Typical traveling routes for fast nonequilibrium driving with sojourn times $ just smaller
than 3'L/2(A$!F!) %see also Eq. !14"&. Before the particle can cover the ‘‘basic distance’’ 3L/2 but after it has traveled at least one period
L, the external force F tot switches from F$A&0 to F"A#0, indicated by the turning point of the particle route. The solid path showing
immediate trapping after reversal of the force is at the origin of ANM. The dashed path yields no net motion. Both routes occur with an
approximate probability of 1/2.

RALF EICHHORN, PETER REIMANN, AND PETER HÄNGGI PHYSICAL REVIEW E 66, 066132 !2002"

066132-4
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Es	
  correcta	
  la	
  descripción?	
  

Cual	
  es	
  la	
  distribución	
  asintóMca	
  	
  
de	
  parGculas,	
  proyectada	
  	
  
en	
  la	
  celda	
  unitaria?	
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RecMficando	
  la	
  difusion…	
  

€ 

U(x) ˜ P ∞(x) −D∇ ˜ P ∞(x)[ ] •n x( )
∂s

= 0

Si	
  la	
  velocidad	
  en	
  la	
  superficie	
  de	
  los	
  obstaculos	
  es	
  cero	
  	
  
à	
  No	
  puede	
  haber	
  gradientes!!	
  

∇• U(x) P∞(x)−D∇ P∞(x)$% &'= 0
Si	
  la	
  velocidad	
  es	
  solenoide	
  (divergencia	
  cero)	
  
La	
  distribución	
  es	
  uniforme	
  !	
  

Condición	
  	
  
de	
  borde	
  

à Todas	
  las	
  moléculas	
  se	
  mueven	
  en	
  la	
  dirección	
  de	
  la	
  fuerza	
  	
  
à No	
  hay	
  separación!!	
  

Ejemplos:	
   	
  Transporte	
  convecMvo	
  	
  
	
   	
   	
  Campo	
  Eléctrico	
  

∇ ∙ ! = 0 
∇ ∙ ! = 0 
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RecMficando	
  la	
  difusión…	
  

Como	
  es	
  que	
  ocurre	
  la	
  separación?	
  

La	
  aproximación	
  de	
  parGculas	
  puntuales	
  no	
  es	
  correcta!	
  
Por	
  que??	
  

Para	
  que	
  sirve	
  el	
  resultado	
  	
  
anterior	
  ??	
  

Usar	
  campos	
  que	
  penetran	
  	
  
los	
  obstáculos:	
  	
  
Gravedad	
  

O	
  Usar	
  obstáculos	
  que	
  dejan	
  	
  
pasar	
  el	
  campo:	
  	
  

Obstáculos	
  con	
  poros	
  	
  
para	
  que	
  pasen	
  lo	
  iones!	
  


