
Microfluidica	  
	  

Difusión	  
	  

1	  



2	  

Microfluidica	  
Ecuación	  de	  difusión	  

En	  microfluidica	  y	  aplicaciones	  (lab-‐on-‐a-‐chip;	  μTAS):	  
Transporte	  de	  especies	  químicas,	  nanoparGculas	  y	  parGculas	  coloidales	  (transporte	  de	  masa)	  
En	  muchos	  casos	  puede	  suponerse	  que	  no	  afectan	  el	  movimiento	  del	  fluido	  (escalares	  pasivos)	  
Dos	  mecanismos	  de	  transporte	  independientes:	  	  
Convección	  	  (adveccion)	  y	  Difusión	  	  (movimiento	  térmico	  o	  Browniano)	  
Métodos	  de	  descripción:	  	  
Macroscópico	  (teoría	  del	  conMnuo):	  Ecuación	  de	  transporte	  para	  la	  concentración.	  
Microscópico	  (caminata	  aleatoria):	  Ecuación	  estocásMca	  para	  la	  densidad	  de	  probabilidad	  

Ecuación de conservación de un escalar C(x,t) (e. g. concentración): 

∂C
∂t + ∇ ∙ ! = 0 J(x,t) es el flujo del escalar C	  
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Microfluidica	  
Ecuación	  de	  convección−difusión	  

J(x,t): el flujo del escalar C	  

Transporte por convección:	   !! = !!! 

Transporte por difusión: Ecuación de Fick (1856)  
(fenomenológica y por analogía a la ecuación del calor de Fourier (1822))	  

!! = −!!∇!! 
∂C
∂t + ∇ ∙ !! + !! = ∂C

∂t + ∇ ∙ !!!− !!∇! = 0 

DM : Coeficiente de Difusión Molecular	  

∂C
∂t + ! ∙ ∇ ! = !"

!" = !!∇!! 
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Microfluidica	  
Ecuación	  de	  convección−difusión	  

∂C
∂t + ! ∙ ∇! = !!∇!! 

v' = v
v!
;! x' = x

l!
;! t' = t

t!
= v!t
l!
;!

Ecuación Adimensional: 
Elegir magnitudes características del problema: velocidad v0 y longitud l0 

Concentración? 

! = !
C!
!

v!
!!

∂!
∂t′ +

v!
!!

!!′ ∙ ∇! = 1
!!!

!!∇!! 

v!!!
!!

∂!
∂t′ + !!′ ∙ ∇! = ∇!! 

Pe = v!!!
!!

 Número de Peclet:	  
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Pe ∂!
∂t′ + !!′ ∙ ∇! = ∇!! 

Microfluidica	  
Ecuación	  de	  convección−difusión	  

Número de Peclet:	   Pe = v!!!
!!

 Transporte convectivo 
Transporte difusivo	  

Ley	  de	  escala	  en	  microfluidos	  ?	  	  

Pe#~!!!! 
 

(Igual	  que	  el	  número	  de	  Reynolds)	  	  

En	  microfluidica,	  a	  medida	  que	  reducimos	  el	  tamaño,	  	  
la	  difusión	  es	  más	  importante	  y	  el	  número	  de	  Peclet	  à	  0	  

longitud l0 ≈ 100µm 
velocidad v0 ≈ 100µm/s 

agua DM ≈ 1000 µm2/s 

Peclet ≈ 5	  

Todavía	  es	  bastante	  alto!	  
Depende	  de	  cada	  caso…	  

Ej.1: v0 ≈ 10µm/s; l0 ≈ 10µm 
à Pe << 1  

Ej. 2: Moléculas grandes (ADN) 
à Pe >> 1 
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Microfluidica	  
Solución	  fundamental	  con	  una	  fuente	  puntual	  (1D)	  

∂C
∂t = !!∇!!! 

Condición Inicial t=0 
!!!(!)! 

!(!, !) = !!
4!!!!

!exp − !!
4!!!

 

!!~! 2!!!! 

!~! 2!!!! 

Distribución	  Gaussiana	  	  
(distribución	  Normal	  en	  probabilidades)	  

Varianza	  

Radio	  de	  una	  gota	  de	  Mnta	  
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Microfluidica	  
Algunos	  ejemplos	  de	  difusión	  y	  Mempos	  caracterísMcos	  
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Creeping Flows – Two-Dimensional and Axisymmetric Problems
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Figure 7–3. A schematic representation of the proof that a spherical particle cannot undergo lateral migra-
tion in either 2-D or axisymmetric Poiseuille flow if the disturbance flow is a creeping flow. In (a) we suppose
that the undisturbed flow moves from left to right and the sphere migrates inward with velocity up . Then,
in the creeping-flow limit, if direction of the undisturbed flow is reversed, the signs of all velocities including
that of the sphere would also have to be reversed, as shown in (b). Because the problems (a) and (b) are
identical other than the direction of the flow through the channel or tube, we conclude that up = 0.

body without actually solving the full fluid mechanics problem and calculating the force by
integrating the stress vector n · T over the sphere surface.

3. Lateral Migration of a Sphere in Poiseuille Flow
One of the best-known experimental results for particle motion in viscous flows is the
observation by Segre and Silberberg2 of lateral migration for a small, neutrally buoyant
sphere (ρsphere = ρfluid) that is immersed in Poiseuille flow through a straight, circular tube
or in the pressure-driven parabolic flow (sometimes called 2D Poiseuille flow) between
two parallel plane boundaries. The experiments of Segre and Silberberg, and many later
investigators, show that a freely suspended sphere in these circumstances will slowly move
perpendicular to the main direction of flow until it reaches an equilibrium position that is
approximately 60% of the way from the centerline (or central plane) to the wall. Hence a
suspension of such spheres flowing in Poiseuille flow through a tube of radius R will tend to
accumulate in an annular ring at r = 0.6R. Because the Reynolds number for many of the
experimental observations was quite small, one might assume that a theoretical explanation
could be achieved by using detailed solutions of the creeping-flow equations with suitable
boundary conditions. However, in view of the complexity of the geometry (an eccentrically
located sphere inside a circular tube), this theoretical problem is extremely complex and
difficult to solve, even in the creeping-flow limit. Thus, before actually trying to solve
the problem, it is prudent to determine whether lateral migration is possible at all in the
creeping-flow limit.

The fact is that a theory based entirely on the creeping-flow approximation will lead
to the result that lateral migration is impossible, at least for a single sphere immersed in
axisymmetric or two-dimensional Poiseuille flow. To see that this is true, we can refer to
Fig. 7–3. Here is a sketch of the hypothetical situation of a sphere that is undergoing lateral
migration in Poiseuille flow through a tube. The undisturbed flow in part (a) of Fig. 7–3
is shown moving from left to right, and the sphere is assumed to be migrating radially
inward toward the center of the tube. Now, however, if the creeping-motion approximation
is valid, the governing equations and boundary conditions are linear in the velocity and
pressure, and we can change the signs of all velocities and the pressure and still have a
solution of the same problem but with the direction of the undisturbed flow reversed, as
shown in Fig. 7–3(b). However, because all the velocities have the opposite sign, the inward
migration velocity from configuration (a) must now become an outward migration velocity
for configuration (b). But there is now a clear contradiction. The problems in (a) and (b)
are clearly indistinguishable in all respects. Thus, if the sphere undergoes a lateral motion,
it should be in the same direction in both cases. Because the preceding argument, based on
the linearity of the problem, shows that a nonzero migration velocity in case (a) must lead
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4.3. THE DIFFUSION EQUATION 69

4.3 The diÆusion equation

In the following we consider the diÆusion of a single solute and therefore suppress the
index Æ. If the velocity field v of the solvent is zero, convection is absent and Eq. (4.21)
becomes the diÆusion equation,

@tc = D r2c. (4.23)

Simple dimensional analysis of this equation can already reveal some important physics.
It is clear that if T0 and L0 denotes the characteristic time- and length-scale over which
the concentration c(r, t) varies, then

L0 =
p

DT0 or T0 =
L2

0

D
, (4.24)

which resembles Eq. (4.8). The diÆusion constant D thus determines how fast a concen-
tration diÆuses a certain distance. Typical values of D are

D º 2£ 10°9 m2/s, small ions in water, (4.25a)

D º 4£ 10°11 m2/s, 30-base-pair DNA molecules in water, (4.25b)

D º 1£ 10°12 m2/s, 5000-base-pair DNA molecules in water, (4.25c)

which yield the following times T0 for diÆusion across the typical microfluidic distance
L0 = 100 µm,

T0(100 µm) º 5 s, small ions in water, (4.26a)
T0(100 µm) º 250 s º 4 min, 30-base-pair DNA molecules in water, (4.26b)

T0(100 µm) º 104 s º 3 h, 5000-base-pair DNA molecules in water. (4.26c)

Let us now turn to some analytical solutions of the diÆusion equation.

4.3.1 Limited point-source diÆusion

Consider a small drop containing N0 ink molecules injected at position r = 0 at time t = 0
in the middle of a huge tank of water. The initial point-like concentration acts as the
source of the diÆusion, and it can be written as a Dirac delta function1

c(r, t = 0) = N0 ±(r). (4.27)

The ink immediately begins to diÆuse out into the water, and it is easy to show by
inspection that the solution to the diÆusion equation (4.23) given the initial condition
Eq. (4.27) is

c(r, t > 0) =
N0

(4ºDt)
3
2

exp
≥
° r2

4Dt

¥
. (4.28)

This is an example of a limited diÆusion process because the amount of solute is fixed and
hence limited. The result Eq. (4.28) is discussed in Fig. 4.2.

1
The Dirac delta function ±(r) is defined by: ±(r) = 0 for r 6= 0 and

Z 1

°1

Z 1

°1

Z 1

°1
dr ±(r) = 1.

H.	  Bruus	  
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One of the best-known experimental results for particle motion in viscous flows is the
observation by Segre and Silberberg2 of lateral migration for a small, neutrally buoyant
sphere (ρsphere = ρfluid) that is immersed in Poiseuille flow through a straight, circular tube
or in the pressure-driven parabolic flow (sometimes called 2D Poiseuille flow) between
two parallel plane boundaries. The experiments of Segre and Silberberg, and many later
investigators, show that a freely suspended sphere in these circumstances will slowly move
perpendicular to the main direction of flow until it reaches an equilibrium position that is
approximately 60% of the way from the centerline (or central plane) to the wall. Hence a
suspension of such spheres flowing in Poiseuille flow through a tube of radius R will tend to
accumulate in an annular ring at r = 0.6R. Because the Reynolds number for many of the
experimental observations was quite small, one might assume that a theoretical explanation
could be achieved by using detailed solutions of the creeping-flow equations with suitable
boundary conditions. However, in view of the complexity of the geometry (an eccentrically
located sphere inside a circular tube), this theoretical problem is extremely complex and
difficult to solve, even in the creeping-flow limit. Thus, before actually trying to solve
the problem, it is prudent to determine whether lateral migration is possible at all in the
creeping-flow limit.

The fact is that a theory based entirely on the creeping-flow approximation will lead
to the result that lateral migration is impossible, at least for a single sphere immersed in
axisymmetric or two-dimensional Poiseuille flow. To see that this is true, we can refer to
Fig. 7–3. Here is a sketch of the hypothetical situation of a sphere that is undergoing lateral
migration in Poiseuille flow through a tube. The undisturbed flow in part (a) of Fig. 7–3
is shown moving from left to right, and the sphere is assumed to be migrating radially
inward toward the center of the tube. Now, however, if the creeping-motion approximation
is valid, the governing equations and boundary conditions are linear in the velocity and
pressure, and we can change the signs of all velocities and the pressure and still have a
solution of the same problem but with the direction of the undisturbed flow reversed, as
shown in Fig. 7–3(b). However, because all the velocities have the opposite sign, the inward
migration velocity from configuration (a) must now become an outward migration velocity
for configuration (b). But there is now a clear contradiction. The problems in (a) and (b)
are clearly indistinguishable in all respects. Thus, if the sphere undergoes a lateral motion,
it should be in the same direction in both cases. Because the preceding argument, based on
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two parallel plane boundaries. The experiments of Segre and Silberberg, and many later
investigators, show that a freely suspended sphere in these circumstances will slowly move
perpendicular to the main direction of flow until it reaches an equilibrium position that is
approximately 60% of the way from the centerline (or central plane) to the wall. Hence a
suspension of such spheres flowing in Poiseuille flow through a tube of radius R will tend to
accumulate in an annular ring at r = 0.6R. Because the Reynolds number for many of the
experimental observations was quite small, one might assume that a theoretical explanation
could be achieved by using detailed solutions of the creeping-flow equations with suitable
boundary conditions. However, in view of the complexity of the geometry (an eccentrically
located sphere inside a circular tube), this theoretical problem is extremely complex and
difficult to solve, even in the creeping-flow limit. Thus, before actually trying to solve
the problem, it is prudent to determine whether lateral migration is possible at all in the
creeping-flow limit.

The fact is that a theory based entirely on the creeping-flow approximation will lead
to the result that lateral migration is impossible, at least for a single sphere immersed in
axisymmetric or two-dimensional Poiseuille flow. To see that this is true, we can refer to
Fig. 7–3. Here is a sketch of the hypothetical situation of a sphere that is undergoing lateral
migration in Poiseuille flow through a tube. The undisturbed flow in part (a) of Fig. 7–3
is shown moving from left to right, and the sphere is assumed to be migrating radially
inward toward the center of the tube. Now, however, if the creeping-motion approximation
is valid, the governing equations and boundary conditions are linear in the velocity and
pressure, and we can change the signs of all velocities and the pressure and still have a
solution of the same problem but with the direction of the undisturbed flow reversed, as
shown in Fig. 7–3(b). However, because all the velocities have the opposite sign, the inward
migration velocity from configuration (a) must now become an outward migration velocity
for configuration (b). But there is now a clear contradiction. The problems in (a) and (b)
are clearly indistinguishable in all respects. Thus, if the sphere undergoes a lateral motion,
it should be in the same direction in both cases. Because the preceding argument, based on
the linearity of the problem, shows that a nonzero migration velocity in case (a) must lead
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identical other than the direction of the flow through the channel or tube, we conclude that up = 0.
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!250 channel widths "approximately 2.5 cm and 4 min#
to completely mix.

1. Sensing, filtering, and fabricating with parallel laminar
flows

The competition between convection and diffusion,
embodied in the Péclet number, forms the basis for a
number of techniques for sensing and separating flow
ingredients. The following devices are designed to oper-
ate at intermediate Pe, where differences in solute diffu-
sion rates play the key role.

a. T sensor

One device that employs adjacent laminar streams is
the T sensor, shown in Fig. 5"a# "Kamholz et al., 1999;
Weigl and Yager, 1999#. Two fluid streams are brought to
flow alongside each other down a channel, and solute
molecules in each stream diffuse into the other, forming
an interdiffusion zone whose boundary is measured,
typically with a fluorescent marker. "Note, however, that

reactions introduce additional time scales and complex-
ity into the system.# T sensors have be used to measure
analyte concentration "Weigl and Yager, 1999# and ana-
lyte diffusivities and reaction kinetics "Kamholz et al.,
1999, 2001; Baroud et al., 2003#. Finally, competitive im-
munoassays have been performed by injecting an anti-
body solution alongside a solution of known, labeled an-
tigen. Antigen-antibody binding is evidenced by marker
accumulation in the interdiffusion zone, and an un-
marked antigen can be detected differentially, as compe-
tition for antibody binding alters the marker profile
measured downstream "Hatch et al., 2001#.

The naive picture presented above does not tell the
whole story about the T sensor, however. Ignoring the
channel top and bottom leads to the expectation that the
width of the interdiffusion zone should grow with z1/2, as
in Eq. "7#. In fact, experiment and analysis have shown
the front to behave in a more complicated fashion. Con-
focal microscopy of the three-dimensional front "Fig. 5#
determined the spreading near the top and bottom walls
to vary with z1/3 and with z1/2 near the middle "Ismagilov
et al., 2000#, which occurs because fluid near the top and
bottom moves more slowly than the middle, so that trac-
ers do not move as far downstream as they diffuse across
the streamlines. The near-wall interfacial dynamics can
thus be understood in terms of the classic Lévêque prob-
lem of diffusion in a shear flow "Lévêque, 1928; Deen,
1998; Ismagilov et al., 2000; Kamholz and Yager, 2001#.
Further analysis near the inlet reveals z1/3 spreading
near the walls and z1/2 in the channel center, which then
catches up downstream "Kamholz and Yager, 2002#.

b. Filtration without membranes

Figure 6 depicts the H filter, a simple device that fil-
ters particles by size without a membrane "Brody et al.,
1996; Brody and Yager, 1997#. As in the T sensor, two
different streams are brought together to flow alongside

FIG. 5. "Color in online edition# "a# The microfluidic T sensor
"Kamholz et al., 1999#. Different fluids are brought together at
a T junction to flow alongside each other down the channel. A
simple estimate suggests that the interdiffusion zone spreads
diffusively, with the square root of time "or downstream dis-
tance#, although "b#–"d# show this naive argument to break
down near the “floor” and “ceiling” of the channel. Confocal
microscopy reveals the three-dimensional nature of the
spreading of the interface in the T sensor "Ismagilov et al.,
2000#. "b# Fluorescent tracers mark reactions occurring in the
interdiffusion zone, here seen from above. "c#, "d# The no-slip
nature of the top and bottom walls of the channel affect the
flow profile, so that tracer molecules near the boundaries dif-
fuse and spread with z1/3, rather than z1/2. Reprinted with per-
mission from Ismagilov et al., 2000. ©2000, AIP.

TABLE III. Typical diffusivities for various tracers in water at
room temperature.

Characteristic diffusivities
Particle Typical size Diffusion constant

Solute ion 10−1 nm 2!103 "m2/s
Small protein 5 nm 40 "m2/s
Virus 100 nm 2 "m2/s
Bacterium 1 "m 0.2 "m2/s
Mammalian/human cell 10 "m 0.02 "m2/s

FIG. 6. "Color in online edition# The membraneless H filter
exploits the different rates at which tracers with different dif-
fusivities "and thus Pe# spread across a channel. The length l is
chosen so that large waste products do not have time to diffuse
across the channel, and thus remain confined to their initial
stream, whereas smaller molecules of interest diffuse across
the channel into the neighboring stream. At the outlet, the
second stream contains the more mobile species almost exclu-
sively "Brody et al., 1996; Brody and Yager, 1997#.

983T. M. Squires and S. R. Quake: Microfluidics: Fluid physics at the nanoliter scale

Rev. Mod. Phys., Vol. 77, No. 3, July 2005

Sensores	  T	  

La	  zona	  de	  interdifusión	  en	  el	  	  
sensor	  T	  se	  uso	  para	  :	  	  
(en	  gral.	  empleando	  fluorescencia)	  
-‐  Medir	  coeficientes	  de	  difusión	  
-‐  Detectar	  especies	  en	  una	  muestra	  	  
-‐  Medir	  la	  cinéMca	  de	  reacciones	  químicas	  
-‐  …	  

Que	  pasa	  en	  estas	  
secciones	  	  
transversales?	  

From	  Squires	  &	  Quake	  

Pioneros:	  
Bernhard	  H.	  Weigl	  	  

&	  Paul	  Yager	  
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Fig. I. (a) A box containing a mixture of large and small molecules is placed 
adjacent to an empty box at t < 0. (b) When the wall between the two boxes 
is removed, the molecules begin to diffuse into the empty box, 0 < t < r. (c) 
After some time. t = r, the wall is replaced between the two boxes a distance 
A~, to tile right of the original position. Particles that have a diffusion coef- 
ficient substantially less than A~/r will be present at vastly reduced concen- 
trations in the box on the right; however, particles with diffusion coefficients 
substantially larger than A~/'r will be in equal concentrations in both boxes. 

. , , . / -Sample Inpu t  j / - - S a m p l e  O u t pu t  

W -  Fi l tered Ou tpu t  
-Di lu tant  I npu t  

Fig. 2. A fluid barrier is created in the central channel. The thickness of this 
barrier, Ab, can be controlled by varying the ratio of the pressures driving 
the sample input and the dilutant input. Only panicles that diffuse across 
this barrier before reaching the sample output channel will end up in the 
filtered output. 

The concept of  diffusion-based separation is described in 
Fig. 2. The process relies on the non-mixing nature of  low- 
Reynolds-number  flow along with the fast diffusion t imes for 
small  molecules.  The idea was originally implemented in a 
system with two glass plates separated by a shim by Giddings 
[6,7] .  W e  present here a modified version of this imple- 
mented in a microfabricated fluid system. 

A simple model can be used to quantify this 'extraction" 
process. The normalized probability density function, y(x),  
for the one-dimensional  distance, x, which a particle (with 
diffusion coefficient D) diffuses in a time t, follows a Gaus- 
sian distribution: 

y(x) = ~  exp - ( l )  
~/4-rrDr 

............. :~:~,_~:~ ! h 

Fig. 3. (a) In low-Reynolds-number flow there is no mixing or secondary 
flows at the confluence of two channels. (b) The two flow streams move 
down the common channel without gross mixing. The smaller particles 
diffuse more quickly, and therefore can di ffuse across the channel (a distance 
less than h) while the larger particles dilfuse more slowly. 

In the simple approximation that the width of  the box on 
the left is much less than the distm~ce A b, the concentration 
of  particles in the output will be giver by 

C(D) = Cofy(x)  (Ix (2)  
, #  
Xb 

which is related to the well-tabulated function e f t (x ) .  
Because the function y(x)  falls off  rapidly with increasing 

x, this approximation turns out to be remarkably good; the 
behavior o f  the solution i~ not substantially changed by solv- 
ing the complete problem. The result is that the concentration 
o f  a molecule with D = Dr/n is reduced in the output by a 
factor of  e - " .  Since the diffusion coefficient o f  a molecule 
generally varies as its linear size, this can be a very sensitive 
process for discriminating among  molecules,  

This hypothetical separation scheme can be implemented 
in a microfluid system in which the d imensions  of  the chan- 
nels are sufficiently small that only low-Reynolds-number  
(Re << 1 ) flow can occur. Initially two separate flow streams 
(a carrier stream and a dilutant stream) are brought together 
into a central channel in which particles can diffuse between 
the two non-mixing streams (see Fig. 3.) Whereas  at higher 
Reynolds numbers  (Re >> 1 ), mixing independent o f  diffu- 
sion would occur between the two fluids in the central chan- 
nel, when the channels are no more than tens o f  micrometers  
in size, the two adjacent streams flow in parallel without 
turbulence for the length o f  the channel.  Only diffusive mix- 
ing will occur even in low-viscosity fluids. At the end of  the 
parallel flow channel a fraction of  the carrier flow stream is 
split off  into an output channel.  The time for diffusive 
exchange between the two fluids, z =  l/v, is controlled by the 
velocity, v, of  fluid in the central channel  and the length, 1, of  
the channel. The barrier distance, Ab, is determined by the 
precise fraction o f  the carrier flow stream that flows into the 
waste stream. The barrier distance can be controlled by 
changing the geometry and /o r  pressures o f  the four channels.  

Brody,	  J.	  P.	  and	  Yager,	  P.	  “Diffusion-‐based	  ExtracMon	  in	  a	  Microfabricated	  Device”	  	  
Sensors	  and	  Actuators	  A:	  Physical	  58,	  no.	  1	  (1997):	  13–18.	  doi:10.1016/S0924-‐4247(97)80219-‐1.	  
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(Re << 1 ) flow can occur. Initially two separate flow streams 
(a carrier stream and a dilutant stream) are brought together 
into a central channel in which particles can diffuse between 
the two non-mixing streams (see Fig. 3.) Whereas  at higher 
Reynolds numbers  (Re >> 1 ), mixing independent o f  diffu- 
sion would occur between the two fluids in the central chan- 
nel, when the channels are no more than tens o f  micrometers  
in size, the two adjacent streams flow in parallel without 
turbulence for the length o f  the channel.  Only diffusive mix- 
ing will occur even in low-viscosity fluids. At the end of  the 
parallel flow channel a fraction of  the carrier flow stream is 
split off  into an output channel.  The time for diffusive 
exchange between the two fluids, z =  l/v, is controlled by the 
velocity, v, of  fluid in the central channel  and the length, 1, of  
the channel. The barrier distance, Ab, is determined by the 
precise fraction o f  the carrier flow stream that flows into the 
waste stream. The barrier distance can be controlled by 
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Separación	  de	  parGculas	  suspendidas	  
en	  base	  a	  la	  difusividad	  (tamaño).	  

Como	  depende	  la	  difusividad	  del	  tamaño?	  
Stokes-‐Einstein	  !	  
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∂C
∂t + ! ∙ ∇! = !∇!! 

Problema:	  	  
Sedimentación	  de	  parGculas	  coloidales:	  

!! 

Distribución	  estacionaria	  en	  1D	  ?	  

! ∙ ∇! − !∇!! = 0 

v!
!!"
!" − !

!!!!
!!! = 0 

!!
!" v!! − !

!!"
!" = 0 

!!!
!" = 0! ⇒ !!!! = constante 

!!!! = 0 
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Problema:	  	  
Sedimentación	  de	  parGculas	  coloidales:	  

!! 

!!!! = 0 

v!! − !
!!"
!" = 0 

! !, ! = !!!exp − v!!!  

Mecánica	  EstadísMca:	  distribución	  de	  Boltzmann	  

! !, ! = !!!exp −βE = !!!exp −!"#!!!
 

!"
!!!

= v!
! !!⇒ ! = v! !!!!

!" !! v
! 

! = !!!!!!! ! = ! !!!6!"!!!
Stokes	  -‐
Einstein	  
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Filtros	  H	  :	  Suspensiones	  Ac0vas	  

designed specifically to give sperm a residence time of 20 s in
the main separation channel. A bifurcation placed at the end of
this separation channel allows efficient collection of only the motile
sperm that deviated from its initial inlet stream (Figure 2 and
Supporting Information).
Component Integration. The MISS integrates all functions

necessary for sperm sortingssuch as inlet/ outlet ports, fluid
reservoirs, pumps, power source, and separation columnsonto a
simple chip design that is practical to manufacture and use (Figure
1). A key design feature is the set of four horizontally oriented
fluid reservoirs that also function as sample inlet/ outlet ports and
a fluid pumping system. The orientation, geometry, and size of
these reservoirs are designed to balance gravitational forces and
surface tension forces and provide a pumping system that
generates a steady flow rate over extended periods of time
regardless of the volume of fluid in the reservoirs. This contrasts
with conventional gravity-driven pumping systems whose flow
rates decrease over time as the volume of fluid in the inlet
reservoir decreases. The diameters of the reservoirs were selected
to be small enough that surface tension prevents liquid from
spilling out of the horizontally oriented reservoirs but large enough
to hold sufficient amounts of sample (tens to hundreds of
microliters) and allow convenient sample introduction and recov-
ery. This balance of forces allows the reservoirs to be arranged
horizontally without the liquid inside spilling out. The horizontal
reservoir arrangement, in turn, holds the height difference
between the fluid in the inlet and outlet reservoirs the same (1.0-
mm height difference between inlet and outlet reservoir ceilings,
Figure 1) regardless of the volume of fluid present in the
reservoirs and maintains a constant hydraulic pressure even as
the amount of fluid in the reservoirs changes.19

Pass ive Pumping Mechanism. The passively driven pump-
ing system described here is unique in that it uses horizontally
oriented reservoirs to overcome the problem of traditional gravity-
driven pumping, where the pressure decreases as the amount of
liquid in the reservoir decreases. Furthermore, the structure of
the pump is greatly simplified compared to other mechanical or
nonmechanical pumping systems, allowing easy manufacture and
integration of the pump into a small, integrated device. Finally,
the use of gravity and surface tension as the driving-force
contributes to the overall small size of the MISS by eliminating
the need for power supplies, such as batteries. Taking gravity,
surface tension, and channel resistance into consideration, the
MISS was designed to give a steady flow rate of sperm with a
residence time of ∼20 s inside the main sorting channel. More
specifically, the MISS is designed so that the flow resistance of
the fluid reservoirs is more than 106 times less than that of the
microfluidic channels and, therefore, negligible. Thus, the resis-
tance of the channels, calculated to be 2.8 × 1012 kg/ (s/ m4),
approximates the total resistance of the system. Since a bulk flow
rate of 0.008 µL/ s is required to achieve the desired residence
time of 20 s and the total resistance is 2.8 × 1012 kg/ (s/ m4), the
net pressure drop required to drive the fluid is 23 N/ m2. To
achieve this desired pressure drop, we designed the dimensions
of the reservoirs such that capillary forces (3.0-mm-diameter inlet
reservoir versus 2.0-mm-diameter outlet reservoir) would be 13
N/ m2 and the pressure drop across the microfluidic channel of
the MISS due to hydrostatic forces (1.0-mm height difference)
would be 9.8 N/ m2. For calculation of the capillary force, we
approximated the contact angle to be 0° (the contact angle of water

(19) Zhu, X.; Phadke, N.; Chang, J.; Cho, B.; Huh, D.; Takayama, S. Proceedings
of MicroTAS 2002, Nara, Japan, 2002; pp 151-153.

Figure 2. Video images and schematic figure of sperm sorting. (a) Phase contrast images of sperm sample entering channel at the inlet
junction, motile sperm swimming out of their initial streamline and spreading throughout the width of the channel, and motile sperm being sorted
at the outlet junction. (b) Cartoon illustration of the video images shown in (a). The dashed line represents the interface between the parallel
laminar streams. At the outlet junction, the motile sperm are evenly distributed throughout the width of the channel. The majority of the nonmotile
sperm, however, are positioned in the initial streamline, which corresponds to the upper stream in this image. The relative flow rates of the inlet
streams and outlet streams (upper stream/lower stream) are ∼1:3 (see Supporting Information for a movie of the process).

Analytical Chemistry, Vol. 75, No. 7, April 1, 2003 1673

Cho,	  B.	  S.,	  Schuster,	  T.	  G.,	  Zhu,	  X.,	  Chang,	  D.,	  Smith,	  G.	  D.,	  and	  Takayama,	  S.	  “Passively	  Driven	  Integrated	  Microfluidic	  System	  for	  SeparaMon	  of	  
MoMle	  Sperm”	  AnalyMcal	  Chemistry	  75,	  no.	  7	  (2003):	  1671–1675.	  doi:10.1021/ac020579e,	  	  

También	  pueden	  agregarse	  campos	  transversales	  …	  
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Microfluidica	  
Difusión	  Molecular:	  Aplicaciones	  directas	  

Usando	  Flujos	  Laminares	  para	  Fabricar	  
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interface between two aqueous phases con-
taining luminol and Fe(III) (Fig. 2C) (10).
Control of crystallization of calcium carbon-
ate (calcite) and various calcium phosphates
(apatites) has been extensively studied be-
cause of its biological relevance (11). A uni-
form array of calcite single crystals (12) and
a thin (!20 "m thick), continuous line of

apatite (13) were generated simultaneously at
the two interfaces between parallel laminar
flows of aqueous NaHCO3, CaCl2, and
KH2PO4 solutions inside rectangular capillar-
ies fabricated by placing a PDMS membrane
(with channels embossed in its surface) over
a substrate consisting of a self-assembled
monolayer of HS(CH2)15COOH on Au (Fig.

2D). This experiment illustrates the capabil-
ity of FLO to support several different reac-
tions in the same capillary simultaneously.

We used FLO for the fabrication of a
more complex, electrically functional de-
vice by making an array of three microelec-
trodes inside a 200-"m-wide rectangular
capillary (Fig. 3A). This capillary was as-
sembled by placing a PDMS membrane that
contained the channel network on a glass
slide with the main channel oriented per-
pendicularly to a gold stripe that had been
deposited by electron beam evaporation. A
two-electrode system was first generated by
flowing an aqueous gold etchant across the
gold stripe as the middle phase of a three-
phase laminar flow system, with water as
the adjacent phases. Controlling the rela-
tive volumes of the three liquid phases
injected into the capillary controlled the
width of the area of Au that was etched in
the middle of the capillary. To prevent
etching of the Ag contact pad at the end of
the smaller exit outlet (Fig. 3B), we applied
a counter flow of water from this channel.
The third, reference electrode was generat-
ed by depositing a silver wire at the inter-
face of the two phases containing compo-
nents of electroless silver plating solution,
followed by treatment with 1% HCl to form
AgCl on the surface of the wire (14 ). The
wire was directed into the smaller outlet
toward the Ag contact pad (Fig. 3B) by
applying a flow of water from the main
outlet. We tested the performance of the final
device using cyclic voltammetry (Fig. 3C). The
volume required to fill the electrochemical ac-
tive area was less than 5 nl, and therefore less
than 10 pmol of Ru(NH3)6Cl3 (5 nl of 2 mM
solution) was used for electrochemical analysis.

A
HCl KF

25 µm5 µm

10 30 40 500
µm

0

400

800
nm

20

C

D

LuminolFe3+

CaCl2

KH2PO4 NaHCO3

Chemi-
luminescence

200 µm

10 µm 50 µm

Fig. 2. (A) Atomic force microscopy profile of a trench (half-width # 6
"m) in SiO2 on a Si wafer etched by HF that is generated on the interface
of laminar flow of KF (2 M in H2O) and HCl (2 M in H2O). (B) Optical
micrograph of a polymeric structure deposited on glass at the laminar
flow interface of 0.005% aqueous solutions of poly(sodium 4-styrene-
sulfonate) and hexadimethrine bromide. (C) Optical micrograph of

chemiluminescence at the interface of a two-phase aqueous laminar flow
system: K3Fe

III(CN)6 (0.1 M) and luminol (0.05 M, in 0.1 M NaOH) in the
presence of O2. (D) Scanning electron microscopy images of calcite (right)
and apatite (left) deposited simultaneously on a self-assembled monolayer
at the interface of aqueous laminar flows of NaHCO3 (16 mM in H2O,
buffered to pH 8.5), CaCl2 (25 mM), and KH2PO4 (3.6 mM, pH 7.4).

Fig. 3. (A) Optical micrographs of the stepwise
fabrication of a three-electrode system inside
a 200-"m-wide channel. Two gold electrodes
(counter and working) are formed by selective-
ly etching the gold stripe that widens beyond
the outer edge of the PDMS membrane into
contact pads in the middle of the channel with
a three-phase laminar flow system. A silver
reference electrode is fabricated at the inter-
face of a two-phase laminar flow (14). (B)
Overview picture of the three-electrode sys-
tem including the Ag contact pad. The dashed
box corresponds to the last picture shown in
(A). (C) Cyclic voltammogram of $5 nl of
Ru(NH3)6Cl3 in water (2 mM, 0.1 M NaCl

electrolyte) as recorded with the three-electrode system (scan rate # 100 mV/s).

R E P O R T S

2 JULY 1999 VOL 285 SCIENCE www.sciencemag.org84
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Fabricación	  de	  electrodos	   Manejando	  y	  controlando	  el	  flujo	  con	  
Bandas	  con	  disMntas	  propiedades	  de	  mojado	  

1/R2) (9), where !P is the pressure differ-
ence, " is the liquid surface free energy, and
R1 and R2 are the radii of curvature in direc-
tions vertical and parallel, respectively, to the
liquid stream. For a straight stream (Fig. 1F),
R2 is infinite and the equation is simplified to
!P # "/R1. The value R1 can be expressed by

the equation R1 # h/[2sin($b – 90°)], where h
is the channel depth. Based on the essential
condition for virtual wall rupture ($b # $n),
the maximum pressure that virtual walls in a
straight stream can sustain is Pmax # !P #
(2"/h)sin($n – 90°). Thus, the virtual walls
cannot withstand any pressure if $n % 90°.
Experimentally, we have confirmed this pre-
diction by using bromoundecyltrichlorosilane
instead of OTS to modify surface wetting
property ($n # 83°). Carefully adding deion-
ized water into the channel initially resulted
in water being confined to the hydrophilic
regions, but a slight pressure increase caused
water to cross the boundary and rupture the
virtual walls.

The channel depth used here is &180 'm
and the $n of water on a SAM of OTS is 112°.
Calculations show that Pmax is 300 N/m2,

corresponding to a pressure of 30.6 mm of
water (mmH2O). For a SAM of heptadeca-
fluoro-1,1,2,2-tetrahydrodecyltrichlorosilane
(HFTS), the $n of deionized water is 118°,
corresponding to a critical pressure of 376
N/m2 (38.4 mmH2O). We used the design in
Fig. 1F to measure Pmax for surfaces pat-
terned with these two trichlorosilanes. Al-
though the measurement was complicated by
kinetic issues and high humidity inside the
channels, we observed that bulges developed
at a pressure of 31 mmH2O for OTS-
patterned channels and 37 mmH2O for
HFTS-patterned channels (27 ), in good
agreement with our analytical predictions.

On the basis of the maximum pressure
differences for the OTS and HFTS monolay-
ers, we designed and fabricated simple pres-
sure-sensitive switches to direct the flow of
liquids inside channel networks (Fig. 3). The
central region was hydrophilic, whereas the
other two parts were modified with SAMs of
OTS and HFTS, respectively. Therefore, the
maximum pressures that the two virtual walls
of the liquid stream can sustain are different.
At a low pressure [for example, 10 mmH2O
(Fig. 3B)], the aqueous Rodamine B solution
flowed only along the central hydrophilic
pathway from (a) to (b). At a medium pres-
sure POTS % P % PHFTS [Fig. 3C, 26 mmH2O
(28)] the virtual wall between the hydrophilic
and OTS regions ruptured and water flowed
from (a) to (b), (c), and (d). At a higher
pressure P ( PHFTS (Fig. 3D), aqueous solu-
tion flowed through all channels from (a) to
(b), (c), (d), (e), and (f ). Because the contact
angle can be systematically adjusted by using
mixed SAMs of two different trichlo-
rosilanes, the liquid flow direction can be
switched at any desired pressure.

The previous discussion is for a straight
stream. If there is a turn in the hydrophilic
pathway (Fig. 1G), R2 is finite. For the outer
virtual wall of the turn, R2 is positive and
Pmax increases. For the inner virtual wall, R2

is negative, lowering Pmax. Thus, there is a
limit on the sharpness of turns that can be

Fig. 1. Schematic illustrations
of multistream laminar flows
(A to D) and the correspond-
ing images of aqueous flow
inside channels after surface
patterning (E to H). The liq-
uid is a dilute solution of
Rhodamine B dye (0.057 w/w
%) in deionized water.

Fig. 2. (A) Angle of curvature $b of a liquid
confined by a virtual wall inside a microchan-
nel. (B) Schematic illustration of the tip of a
liquid advancing through a surface-defined
pathway. The top and bottom are hydrophilic
glass substrates; the hydrophobic virtual walls
are on the sides.

Fig. 3. Pressure-sensitive
valves. (A) The laminar flow
scheme for patterning sur-
face free energies inside
channels with two different
trichlorosilanes, OTS and
HFTS. (B through D) Images
of flow patterns of a Rhoda-
mine B dilute solution are
shown at various pressures
(expressed as water column
height, or mmH2O): (B) 10
mm, (C) 26 mm, and (D) 39
mm. The concentration of
dye in deionized water is
0.057 w/w %.

R E P O R T S

9 FEBRUARY 2001 VOL 291 SCIENCE www.sciencemag.org1024
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Microfluidica	  
Podemos	  aprovechar	  el	  movimiento	  Browniano?	  	  
Ratchets	  (recMficando	  el	  movimiento	  Browniano)	  

Transformar	  el	  movimiento	  Browniano	  (parte)	  en	  transporte	  dirigido	  

Es	  compaMble	  con	  las	  leyes	  de	  termodinámica?	  
Calor	  à	  Energía?	  	  	  	  

Difusión	  

-‐  Chance	  de	  no	  pasar	  por	  B	  depende	  de	  la	  difusión	  
-‐  Chance	  de	  pasar	  por	  B+	  es	  mayor	  a	  la	  de	  pasar	  por	  B-‐	  
-‐  La	  probabilidad	  depende	  de	  la	  magnitud	  de	  la	  difusión	  
-‐  ParGculas	  mas	  grandes	  difunden	  menos	  
-‐  Separación	  por	  tamaño!	  

Obstáculos	  

Duke	  &	  Aus0n	  `98	  
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Microfluidica	  
“Sor/ng	  by	  diffusion”	  

Aplicación:	  Separación	  de	  moléculas	  de	  ADN	  

Chou,	  C.	  F.,	  Bakajin,	  O.,	  Turner,	  S.	  W.	  P.,	  Duke,	  T.	  A.	  J.,	  Chan,	  S.	  S.,	  Cox,	  E.	  C.,	  
Craighead,	  H.	  G.,	  and	  AusMn,	  R.	  H.	  “SorMng	  by	  Diffusion:	  An	  Asymmetric	  
Obstacle	  Course	  for	  ConMnuous	  Molecular	  SeparaMon”	  Proceedings	  of	  the	  
NaMonal	  Academy	  of	  Sciences	  96,	  no.	  24	  (1999):	  13762–13765.	  	  

Pioneer:	  R.	  H.	  AusMn	  

Sistema	  grabado	  en	  silica	  	  

Mol.	  Grandes	   Mol.	  Pequeñas	  

E	  
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Microfluidica	  
“Sor/ng	  by	  diffusion”	  
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Microfluidica	  
Otros	  ejemplos	  en	  microfluidos	  	  

(review	  by	  Hanggi	  and	  Reimann)	  

Particle sorting by a structured microfluidic ratchet device with tunable
selectivity: theory and experiment

Lukas Bogunovic,a Ralf Eichhorn,b Jan Regtmeier,a Dario Anselmettia and Peter Reimann*c

Received 27th October 2011, Accepted 25th January 2012

DOI: 10.1039/c2sm07053g

We theoretically predict and experimentally demonstrate that several different particle species can be

separated from each other by means of a ratchet device, consisting of periodically arranged triangular

(ratchet) shaped obstacles. We propose an explicit algorithm for suitably tailoring the externally

applied, time-dependent voltage protocol so that one or several, arbitrarily selected particle species are

forced to migrate oppositely to all the remaining species. As an example we present numerical

simulations for a mixture of five species, labelled according to their increasing size, so that species 2 and

4 simultaneously move in one direction and species 1, 3, and 5 in the other. The selection of species to be

separated from the others can be changed at any time by simply adapting the voltage protocol. This

general theoretical concept to utilize one device for many different sorting tasks is experimentally

confirmed for a mixture of three colloidal particle species.

1 Introduction

Ratchet effects refer to directed transport under non-equilibrium

conditions in periodic systems with broken spatial symmetry,

and are currently attracting considerable attention in a wide

variety of different fields.1–4 So far, the majority of pertinent

works has been devoted to basic theoretical concepts, fuelled—

among others—by the exciting perspective to exploit ratchet

effects for particle sorting purposes at the nano- and micro-scale.

Concerning experimental ratchet devices, directed transport per

se has already been demonstrated in a number of systems as well,

see ref. 5–17 for just a few examples. On the other hand, the

actual sorting of different particle species has been achieved only

in a few experimental systems.18–29 All of them have been con-

ducted in some sort of microstructure with broken spatial

symmetry, while the indispensable non-equilibrium conditions

have been implemented mostly by utilizing electrokinetic

effects,18–27 but also via magnetic fields28 or intracellular

morphological changes.29

Along these lines of experimentally realizing ratchet effects by

exploiting electrokinetics,30,31 our present work addresses the

natural next question: given a mixture of different particle

species, is it possible to separate any arbitrarily selected subset of

species from all the others with the help of one and the same

microstructured ratchet device? After setting the general frame-

work we have in mind, we will outline the basic theoretical ideas,

verify them quantitatively by numerical simulations, and finally

provide the experimental proof-of-principle for a colloidal

suspension containing three different species of polystyrene bead.

The general experimental framework is schematically illus-

trated in Fig. 1 (see also Appendix A.1). The central, topo-

graphically structured area consists of periodically arranged,

triangular (ratchet) shaped obstacles. The entire device is filled

Fig. 1 Experimental setup. (a): Schematic top view (x–y plane) of the

entire device (not to scale) with reservoirs and electrodes at its ends and

a central, microstructured part (grey). (b) Optical micrograph image of

the microstructured area. The entire microstructured region extends over

10 000 mm ! 300 mm in the x–y plane and 10 mm in height (z-direction).

(c) Magnification, exhibiting periodically arranged obstacles (posts) of

ratchet-shaped cross section (see Fig. 2 for the dimensions of the obsta-

cles) with a period of 20 mm in the x direction and 14 mm in the y

direction. Also visible are microbeads of three different diameters

(2.9 mm, 1.9 mm, and 1.1 mm). The largest and smallest beads can be easily

distinguished by their size. The medium sized beads are fluorescently

labelled and thus appear as bright spots.

aExperimental Biophysics and Applied Nanoscience, Faculty of Physics,
Bielefeld University, 33615 Bielefeld, Germany
bNORDITA, Roslagstullsbacken 23, 10691 Stockholm, Sweden
cCondensedMatter Theory, Bielefeld University, 33615 Bielefeld, Germany

3900 | Soft Matter, 2012, 8, 3900–3907 This journal is ª The Royal Society of Chemistry 2012

Dynamic Article LinksC<Soft Matter

Cite this: Soft Matter, 2012, 8, 3900

www.rsc.org/softmatter PAPER

D
ow

nl
oa

de
d 

by
 Jo

hn
s H

op
ki

ns
 U

ni
ve

rs
ity

 o
n 

13
 A

pr
il 

20
12

Pu
bl

ish
ed

 o
n 

28
 F

eb
ru

ar
y 

20
12

 o
n 

ht
tp

://
pu

bs
.rs

c.
or

g 
| d

oi
:1

0.
10

39
/C

2S
M

07
05

3G

View Online / Journal Homepage / Table of Contents for this issue

Diseño	  original	  propuesto	  por	  	  Ertas	  `98	   P.	  Reinman	  (2012)	  	  

Eichhorn,	  R.,	  Reimann,	  P.,	  and	  Hanggi,	  P.	  “Paradoxical	  
MoMon	  of	  a	  Single	  Brownian	  ParMcle:	  Absolute	  NegaMve	  
Mobility”	  Physical	  Review	  E	  66,	  no.	  6	  (2002):	  066132.	  

two states F!A of the total force !9" are of different sign,
and the current !10" constitutes the net result from the differ-
ent average distances the particle travels in the opposite di-
rections.
The above conditions imposed on A and F imply that A

"F#A$F . In view of Eq. !10", we can thus infer that a
current !5" opposite to the static force F, and therefore ANM,
may emerge only if statistical paths dominate where the
mean traveling distance #y($ ,F tot) is smaller for larger
forces F tot .

A. Moderately fast driving

The system parameters in Fig. 2, in particular the charac-
teristic time scale $ of Eq. !4", are chosen such that the
nonequilibrium noise source operates in the regime of rather
high frequency 1/(2$), i.e., the particle can travel at most a
few periods L by free drift within the time $ . The physical
mechanism leading to ANM for this ‘‘moderately fast’’ driv-
ing can be understood as follows. Consider a particle being
located in one of the ‘‘corners’’ between the right ‘‘corridor
wall’’ and any of the adjacent obstacles %see Fig. 3!a"& at the
beginning of the time interval $ with constant F tot#0. Due
to this external force, a drift with velocity

vyªF tot /' !11"

in the positive y direction is induced, additional to the diffu-
sive motion stemming from the thermal environment. If the
ambient thermal noise is not too strong, and hence the diffu-

sion proceeds not too fast, the particle in Fig. 3!a" first
closely follows the right ‘‘corridor wall,’’ not being hindered
by the neighboring obstacle to the left. It then hits the next
obstacle !at the right corridor wall" and ‘‘slides down on the
back’’ of that obstacle until it ‘‘falls off’’ to perform a ‘‘free
fall’’ in the positive y direction. Because the lateral extension
of the obstacles b exceeds half the corridor width B/2, the
particle then hits with a high probability q, the next obstacle
on its way and ends up being trapped in the corresponding
corner between that obstacle and the left corridor wall. In
order to avoid this trap, the particle must thermally diffuse at
least over a distance b$(B$b)%2b$B in the positive x
direction during its free fall in the y direction. With increas-
ing total force !9", ‘‘free traveling speed’’ !11" increases, im-
plying that the available time and therefore the probability
pª1$q of such a diffusive displacement decreases, see Fig.
3!b". Consequently, the particle travels on average a shorter
distance along the y axis during the time $ for larger forces
F tot . As discussed above, see below Eq. !10", it is this very
mechanism that implies the occurrence of ANM.
In order to quantify these qualitative findings, we calcu-

late the average traveling distance #y($ ,F tot) for F tot#0;
the current !5" then follows according to Eq. !10". To this
end, we start by approximating the above mentioned prob-
ability p of avoiding a trap. After drifting for a time t along
the y axis with speed vy from Eq. !11", the thermal diffusion
along the x axis is approximately captured !for not too large
t) by a Gaussian distribution with variance 2Dt . For a par-
ticle that closely passes by the leftmost edge of an obstacle

FIG. 3. !a" Typical traveling routes of the particle for F tot#0 together with their probabilities (qª1$p). !b" Traveling routes for a large
positive force F tot%F"A !left" and a small negative force F tot%F$A !right". For the large force, the traveling speed vy is large and the
particle has only a little time to thermally diffuse along the x direction, as indicated by a narrow !approximately" Gaussian profile. The
particle thus typically ends up by being trapped, and the probability p for avoiding a trap is very small. For the small force, the drift velocity
vy is smaller. Consequently, the available time for diffusive ‘‘broadening’’ is larger !broader Gaussian profile" resulting in a noticeable
probability p of avoiding the trap. The respective values of p are indicated by the filled parts of the Gaussian profiles. The dashed paths do
not contribute to ANM. See also the main text. !c" Typical traveling routes for fast nonequilibrium driving with sojourn times $ just smaller
than 3'L/2(A$!F!) %see also Eq. !14"&. Before the particle can cover the ‘‘basic distance’’ 3L/2 but after it has traveled at least one period
L, the external force F tot switches from F$A&0 to F"A#0, indicated by the turning point of the particle route. The solid path showing
immediate trapping after reversal of the force is at the origin of ANM. The dashed path yields no net motion. Both routes occur with an
approximate probability of 1/2.

RALF EICHHORN, PETER REIMANN, AND PETER HÄNGGI PHYSICAL REVIEW E 66, 066132 !2002"

066132-4

Ros,	  A.,	  Eichhorn,	  R.,	  Regtmeier,	  J.,	  Duong,	  T.	  T.,	  Reimann,	  P.,	  and	  
Anselme�,	  D.	  “Brownian	  MoMon	  -‐	  Absolute	  NegaMve	  ParMcle	  
Mobility”	  Nature	  436,	  no.	  7053	  (2005):	  928–928.	  	  
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Microfluidica	  
Es	  correcta	  la	  descripción?	  

Cual	  es	  la	  distribución	  asintóMca	  	  
de	  parGculas,	  proyectada	  	  
en	  la	  celda	  unitaria?	  



21	  

Microfluidica	  
RecMficando	  la	  difusion…	  

€ 

U(x) ˜ P ∞(x) −D∇ ˜ P ∞(x)[ ] •n x( )
∂s

= 0

Si	  la	  velocidad	  en	  la	  superficie	  de	  los	  obstaculos	  es	  cero	  	  
à	  No	  puede	  haber	  gradientes!!	  

∇• U(x) P∞(x)−D∇ P∞(x)$% &'= 0
Si	  la	  velocidad	  es	  solenoide	  (divergencia	  cero)	  
La	  distribución	  es	  uniforme	  !	  

Condición	  	  
de	  borde	  

à Todas	  las	  moléculas	  se	  mueven	  en	  la	  dirección	  de	  la	  fuerza	  	  
à No	  hay	  separación!!	  

Ejemplos:	   	  Transporte	  convecMvo	  	  
	   	   	  Campo	  Eléctrico	  

∇ ∙ ! = 0 
∇ ∙ ! = 0 
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Microfluidica	  
RecMficando	  la	  difusión…	  

Como	  es	  que	  ocurre	  la	  separación?	  

La	  aproximación	  de	  parGculas	  puntuales	  no	  es	  correcta!	  
Por	  que??	  

Para	  que	  sirve	  el	  resultado	  	  
anterior	  ??	  

Usar	  campos	  que	  penetran	  	  
los	  obstáculos:	  	  
Gravedad	  

O	  Usar	  obstáculos	  que	  dejan	  	  
pasar	  el	  campo:	  	  

Obstáculos	  con	  poros	  	  
para	  que	  pasen	  lo	  iones!	  


