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W e present an experimental method to 
obtain the effective mass of an unloaded 
oscillating spring. We measure the period 

T(n) of the partial springs that result when hanging 
n of the total N coils of a given spring. Data are cor-
related with the expectation of a simple model for 
T(n) that takes into account the effective mass of 
the hanging spring. We analyze results for metal and 
plastic springs of different masses and strengths, and 
conclude that the method provides the effective mass 
with a good degree of reliability.

A typical exercise in mechanics consists of finding 
the oscillation period T of a mass m attached to the 
free end of a vertical spring of force constant k. If the 
mass mS of the spring is neglected, the period of free 
oscillations is1

       (1) 
T

m
k

= 2p .
    

When the mass of the spring is considered, a possibili-
ty is to write2

       (2)T
m fm

k
S=

+
2p ,

   
where the term f mS, a fraction f of the spring’s mass 
mS, is the “effective mass of the spring,” and with its 
inclusion, the period corresponds to that of a mass m 
+ f mS fastened to a massless spring. It is usual to ob-
tain the effective mass by analyzing results of T(m) in 
the limit m ➝ 0.3

In this paper we present a new experimental meth-
od to obtain the effective mass of an oscillating spring 

or, equivalently, the factor f. The method correlates the 
behavior of the partial springs formed when only n of 
the total number N coils of a given spring are hanging 
and oscillating. First, we review some theoretical treat-
ments that address the problem and afterward  
describe our experimental method derived from a 
simple model.

The problem
The problem of finding the value of f is approached 

in several texts by means of energy considerations,1 
starting from the kinetic energy EK of an oscillating 
vertical spring of length L:

        (3)E v dm
L
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1

2
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The integral is usually solved assuming homogeneous 
stretching that implies a uniform mass distribution,

        (4) 
     

dm
m
L

dzS= ,
    

and also taking the velocity as a linear function of 
the position z measured from the fixed point of the 
spring,

        (5)v z
v
L

z( ) .= 0  
     

Here, v0 is the instantaneous velocity of the point at 
the free end at z = L. With these assumptions, integra-
tion of Eq. (3) gives

        E
m

vS
K =
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from which the value f = 1/3 is obtained. This result 
can be taken as representative of a stiff spring for 
which both uniform stretch and a linear velocity dis-
tribution can be better modeled. 

By using the same approach and a noncalculus 
method, Ruby also deduces f = 1/3 for a stiff spring. 
However, he finds f = 1/2 for a soft spring.4 To obtain 
these values, his model takes a spring with a nonuni-
form stretch and an associated mass distribution given 
by

      (6)dm m a
az
L

dz
LS= +[ ] +/( / ) ( ) .1 2 1  

  

This distribution satisfies the condition

 dm mS

L

=∫
0

 
    

and introduces an adjustable parameter a: a = 0 for a 
stiff spring and a >> 1 for a very soft spring. Neverthe-
less, this model conserves the assumption of a linear 
velocity distribution [Eq. (5)] to integrate Eq. (3).

On the other hand, Galloni and Kohen3 treat the 
spring oscillations in the framework of wave equations 
and obtain different values of f depending on the ratio 
m/mS. They find

f ➝ 1/3 when m/mS >>1, 

and 

f ➝ 4/p2 < 0.41 when m/mS << 1. 

The common one-third fraction of the different 
models can be understood as follows. When m >> mS 
the stretch is mainly defined by the loading of mass 
m; therefore, a uniform stretch along the whole spring 
can be assumed, like in the energy model for a strong 
spring. However, there is a discrepancy in the results 
of the models in the limit m << mS when nonlinear 
effects can be expected. In this sense, the behavior of a 
very soft spring is comparable to the case m/mS  
<< 1, where the mass of the spring is distributed non-
uniformly due to the variable stress along the spring 
produced by the different number of coils each coil 
supports below.

We have measured the mass distribution of several 
hanging soft springs stretched by their own weight 
and found it difficult to apply the nonlinear model of 
Ref. 4, expressed by Eq. (6), to obtain the parameter 
a necessary to estimate f (Fig. 1). For this reason we 
have thought of an experimental method to obtain 
the factor f in the case of an unloaded spring. Our 
experiments are based on a simple model and consist 
of measurements of the oscillation period T(n) and 
the force constant k(n) of the spring that result from 
hanging only n of the N coils of the whole spring.

The model
Consider a spring of mass mS, with only n of its N 

coils hanging. We propose that the unloaded resulting 
spring oscillates with a period

       (7)T n
fM n
k n

( )
( )

( )
,= 2p

    
where f is a fraction of the hanging mass M(n) and 
k(n) is the force constant of the spring composed of 
the n active coils. We assume f is independent of n but 
observe that both M and k naturally depend on the 
number n of hanging coils. On one hand, the hanging 
mass is

      (8)M n n
m
N

S( ) .=  

On the other hand, the spring constant k must vary 
with n—that follows the observation that a spring is 

Fig. 1. Mass distribution of two measured springs. Blue: 
Metal spring #1. Red: Plastic spring #3. Lines are fits with 
a quadratic expression derived from Eq. (6).
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stiffer when shorter. Thus, we propose a simple 
dependence of k with n:

       (9)k n
C
n

( ) ,=
     

where C is a constant. Combining (7) with (8) and 
(9), the period results in

                   (10)T n
fm
C N

n AnS( ) .= =2p
 

 
 

   

Then, the model predicts a linear increase of T with n 
and leads us to an accessible experimental study.

Procedure and Results
For the experiments, each spring is mounted using 

a thin metal plate and located close to a wall (Fig. 2). 
The setup easily allows hanging only n turns of the 
total N of the spring. The other N – n coils remain 
demobilized, piled on the plate. On the wall we glue 
a long strip of millimetric paper on which we mark 
the position of each spire to study the mass distribu-
tion of the spring. To do that, the spring is suspended 
from the uppermost turn, remaining elongated due to 
its own weight. The same experimental arrangement 
allows us to measure the force constant of the spring 
when an extra load is attached to the lowermost turn 
of the n hanging coils.

Our experiments test the model through two steps. 
First, for a given spring we measure k(n) to validate 
Eq. (9) and obtain C as the slope of the linear graph of 
k as a function of 1/n. Second, we measure T(n), verify 
the linear relationship between T and n, and obtain 
the slope A. With the values A and C we finally calcu-
late the fraction f. 

In order to prevent “Slinky” oscillations, the mea-
surements of the period T for each chosen n are made 
maintaining small-oscillation amplitudes. To reduce 
uncertainties, we measure with a digital stopwatch the 
time t10 of 10 oscillations and calculate T = t10/10. 
The spring constant for each n is obtained under static 
conditions. By means of a simple measurement, we ob-

Fig. 2. Experimental setup to determine the effective 
mass of a spring.

Fig. 3. k(n–1) of the spring #1. The uncertainty of k is of 
the order of 2%, and it is covered by the size of the data-
point markers. Solid line is a fit with Eq. (9).

Fig. 4. T(n) of the spring #1. Solid line is a fit with Eq. 
(10).
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tain k as the ratio of the weight W of a small load and 
the resulting spring’s length change DL, k = W/DL.

We show results for a metal helical spring (spring 
#1) with a mass mS = 111.4 g and N = 99 coils. Figure 
3 shows k as a function of 1/n, and Figure 4 contains 
T(n). In the figures, the solid lines represent in each 
case the best fit of the experiment points with Eq. 
(9) and (10), respectively. We obtain the best values: 
C = 41.7 N/m and A = 0.021 s. For this spring, the 
fraction results in f = 0.42. Results for two pairs of 
springs, metal and plastic, are summarized in Table 
I. While data comparison of the fractions f obtained 
for springs #1 and #2 (or #3 and #4) show the repro-
ducibility of the measurements performed on similar 
specimens, the close agreement of the results obtained 
with the metal and plastic springs with different char-
acteristics [note that C(#1)/C(#3) = 3.8] seems to vali-
date the proposed method to obtain the effective mass 
of a hanging spring.

Analysis
Due to the regularity observed in the values of f for 

the springs analyzed, we conclude that our method 
provides consistent results for the unloaded springs. 
We observe that the method produces a fraction f 
closer to the value f = 4/p2 of Ref. 3 when m/mS  
<< 1 (a discrepancy of +5%, which is within the ac-
curacy of our determination of f ) than to the value ½ 
(discrepancy of –12%) predicted for soft springs by 
the particular nonlinear model of Ref. 4. For compari-
son, Christensen2 also determined in the limit m/mS 
<< 1 a fraction f slightly higher than the theoretical 
value 4/p2 of Ref. 3.

Our data treatment is based on a simple model 
tested through graphical analysis. Because this exer-
cise involves a number of important concepts and 
activities—modeling, measuring, graphical analysis, 
and comparison with other models and results—the 
experiments are useful in a basic experimental course 
in the first university year, and constitute a suitable 
complement to the study of springs in the context of 
oscillatory motion.
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Spring

Full 
length, 
L, and

coil dia-
meter

Num-
ber of
coils, 

N

Mass,
mS (g)

A
(s)

C
(N/m)

Frac-
tion, 

f

#1
metal

1190 mm

55 mm 99 111.4 0.021 41.7 0.42

#2
metal

1200 mm

55 mm 98 117.0 0.023 42.2 0.43

#3
plastic

700 mm

45 mm 39 32.4 0.035 11.5 0.43

#4
plastic

680 mm

45 mm 38 33.0 0.039 10.0 0.43

Table I. Data of different springs.
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