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Abstract

The reliability of statistical procedures in Excel are assessed in three areas: estimation (both linear
and nonlinear); random number generation; and statistical distributions (e.g., for calculating p-values).
Excel’s performance in all three areas is found to be inadequate. Persons desiring to conduct statistical
analyses of data are advised not to use Excel. c© 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Sawitzki (1994b) documented the failure of many statistical packages to pass
entry-level tests of accuracy known as the Wilkinson Tests (Wilkinson, 1985). The
need exists to know how statistical packages fare on more substantial tests of numer-
ical accuracy (Sawitzki, 1994a). Recently McCullough (1998) proposed a collection
of intermediate-level tests which assesses the numerical reliability of a package in
three areas: estimation (both linear and nonlinear); random number generation; and
statistical distributions (e.g., for calculating p-values). Estimation is assessed via
the Statistical Reference Datasets (StRD), which recently was released by the
American “National Institute of Standards and Technology” (NIST). The output of
the random number generator (RNG) is assessed using statistical tests for random-
ness. The accuracy of statistical distributions is assessed by comparing the results of
Excel to those from a specialized package such as Kn�usel’s (1989) ELV program.
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This methodology has been applied to statistical software (McCullough, 1999a) and
econometric software (McCullough, 1999b) to uncover numerous aws in each area.
It is worth noting that vendors of these statistical and econometric packages partic-
ipated fully in the application of this methodology to their products. These vendors
veri�ed all calculations, provided information on algorithms when such information
was not included in the documentation, and otherwise assisted the process.
This methodology is applied to Microsoft Excel 97, which o�ers a variety of sta-

tistical procedures. Numerous texts are devoted to using Excel for statistics, decision
and management science, and �nancial modeling. Since it is conceivable that more
statistical calculations are performed using Excel than any other package, it is im-
portant that the statistical capabilities of Excel be assessed. Microsoft was invited to
participate in this evaluation, but chose not to do so.
It is important to note that the purpose of benchmarking is not to count the

number of accurate digits. Obviously, what constitutes an “acceptable” number of
accurate digits varies from user to user and application to application. This di�erence
between users notwithstanding, all users can reasonably expect that developers have
correctly implemented reliable algorithms. Yet, software developers frequently do not
disclose the algorithm used in a speci�c procedure, and rarely reveal the details of
its implementation. Thus, the purpose of benchmarking is to assess the quality of the
underlying algorithm. If benchmark results show that the implemented algorithm is
faulty in some way, or that a known “bad” algorithm has been implemented, then the
software can be judged inadequate in that regard. For all the tests considered here,
double precision can achieve acceptable accuracy. Consequently, if a package “fails”
a test in double precision but “passes” it in quadruple precision, its performance
must be judged inadequate because the purpose of benchmarking is to assess the
algorithm, not extended precision capabilities.
Another important consideration is that the tests be “reasonable” (Wilkinson, 1994).

For any algorithm, a data set can be reverse-engineered to exploit a weakness in the
algorithm. Therefore, the test problem should be amenable to solution by known
reliable algorithms. If a good algorithm can compute the percentiles of the Normal
distribution down to 1E-12, then failing to compute smaller percentiles is not evi-
dence of bad software, but failing to compute larger percentiles is such evidence.
Similarly, suppose a reliable algorithm will solve a particular problem to several dig-
its of accuracy, and the package in question produces only a few accurate digits or
even zero accurate digits. It can then be deduced that the package does not properly
implement a reliable algorithm, and so can be judged inadequate.
By way of illustrating these points, the statistical distributions of Excel already

have been assessed by Kn�usel (1998), to which we refer the interested reader. He
found numerous defects in the various algorithms used to compute several distribu-
tions, including the Normal, Chi-square, F and t, and summarized his results con-
cisely: “So one has to warn statisticians against using Excel functions for scienti�c
purposes”. There exist well-known algorithms which do not su�er from these defects,
and which many packages implement. The performance of Excel in this area can be
judged unsatisfactory. Thus, the remainder of this paper shall focus on estimation
and RNG testing. Our computer is a Pentium running Windows 95.
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Finally, there is the matter of how a developer responds to known errors, espe-
cially errors which have been published. Sawitzki (1994b) used Wilkinson’s (1985)
entry level tests of numerical accuracy to uncover aws in statistical procedures of
Excel 4.0, in particular in the computation of the sample variance and in diagnosing
singularity for linear regression. The StRD will expose these same aws if they have
not been corrected in subsequent releases of Excel.

2. StRD

The StRD (http:==www.nist.gov=itl=div898=strd) was designed explicitly to assist
researchers in benchmarking statistical software packages, and comprises four suites
of numerical benchmarks for statistical software: univariate summary statistics, one-
way analysis of variance, linear regression, and nonlinear regression. For each suite
of tests there are several problems in each of three di�culty levels: low, average, and
high, indicated in the tables by parenthetical (l), (a), and (h). Reliable algorithms
implemented in double precision produce acceptable results for all four suites.
Using multiple precision computer arithmetic to 500 digits for linear procedures,

the StRD can all but eliminate rounding error, thus providing solutions which may
be considered exact. For nonlinear least-squares problems, NIST uses di�erent al-
gorithms with di�erent implementations and quadruple precision to solve the test
problems. Both of these algorithms can, in double precision, return 10 accurate dig-
its for each of the nonlinear test problems. In addition, multiple pro�les of the least
squares surface are used to ensure that a global minimum has been attained. “Certi-
�ed values” for the solutions are provided to 15 digits for linear procedures and 11
digits for nonlinear procedures. Computational details of the StRD, including problem
selection and methods of solution, can be found in Rogers et al. (1998).

2.1. Univariate summary statistics

Consider estimating the sample mean ( �x) and sample standard deviation (s) for
the StRD dataset Michelso. 1 The StRD certi�ed values calculated to 15 signi�cant
digits are given in Table 1, together with the results calculated by Excel. Inaccurate
digits are underlined.
It can be seen that Excel returns about 15 accurate digits for the mean and about

seven accurate digits for the standard deviation. The same information can be more
concisely presented by use of the log relative error (LRE),

�= log10(|x − c|)=|c|; (1)

where x is the estimated quantity and c is the certi�ed value, and � is given the
appropriate subscript. The LRE is a measure of the number of signi�cant digits only
if x is close to c. Before calculating the LRE, it should �rst be determined that x and
c di�er by a factor of less than two, else set the LRE to zero. Due to the computer’s

1 All the dataset names are UNIX-style, and are case sensitive.
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Table 1
StRD results for univariate data set michelso

�x s

NIST 299.852400000000 0.0790105478190518
Excel 299.85240000000 0:0790105482336451

Table 2
StRD results for univariate summary statistics

Dataset � �x �s Dataset � �x �s

Pidigits (l) 15 15 Numacc1 (l) 15 15
Lottery (l) 15 15 Numacc2 (a) 14.0 11.6
Lew (l) 15 15 Numacc3 (a) 15 1.2
Mavro (l) 15 9.4 Numacc4 (h) 14.0 0
Michelso (l) 15 8.3

�nite precision, it is possible for the LRE to exceed the number of signi�cant digits
in c, in which case set the LRE equal to the number of signi�cant digits in c.
Any LRE less than unity is set to zero. Finally, LREs of zero and the number of
sigini�cant digits in c are displayed without a decimal point, to remind the reader
that these are upper and lower bounds. Thus, in the above example, � �x = 15 and
�s = 8:3. Table 2 presents such results for all nine of the univariate data sets.
In double precision, the usual formula

�̂2 =
∑
(xi − �x)2

n− 1 (2)

will return several accurate digits for Numacc3 and Numacc4, which Excel does not
do, even though it is a double-precision program. While the user guide does not
indicate what formula is used to calculate the variance, it is not unreasonable to
think that Excel uses the “calculator formula” presented in many textbooks

�̂2 =
∑
x2i − n �x2
n− 1 : (3)

A method designed for hand calculation with a few observations, each of which is
small in magnitude, is not appropriate for use in a computer program which may
handle a great many observations whose magnitude may be large. This formula,
the least reliable of the �ve methods analyzed by Ling (1974), is frequently used
as an example of “what not to do” in texts on statistical computing (e.g., Thisted,
1988, Section 3:2:2), because the algorithm is inherently unstable. On the basis that
Excel implements an unreliable algorithm for computation of the sample variance, its
performance on this suite of tests can be judged inadequate. Sawitzki (1994b) noted
that Excel 4.0 had the same di�culty calculating the sample variance, so Microsoft
did not �x this error.
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Table 3
StRD results for ANOVA dataset SiResist

StRD

Source df ss ms F
Between 4 5:114E-02 1:2787E-02 1:18046237440225E + 00
Within 20 2:166E-01 1:0832E-02 –

Excel
Source df ss ms F
Between 4 5:114E-02 1:2787E-02 1:1804623781126100E + 00
Within 20 2:166E-01 1:0832E-02 –

Table 4
ANOVA results

Test �F Test �F

SiResist (l) 8.5 Simon5 (a) 1.1
Simon1 (l) 14.3 Simon6 (a) 0a

Simon2 (l) 12.5 Simon7 (h) 0b

Simon3 (l) 12.6 Simon8 (h) 0a

AgWt (a) 1.8 Simon9 (h) 0a

Simon4 (a) 1.7

aProduced negative within group sum-of-squares.
bProduced negative between group sum-of-squares.

2.2. Analysis of variance

Table 3 gives the one-way analysis of variance table for the data set SiResist; only
the F-statistic is displayed to all �fteen digits. A convenient way to summarize this
information is to report the LRE for the F-statistic. Calculation shows that �F =8:5.
If the F-statistic is not accurate to at least a few digits, then some gross error has
occurred in the calculations of the sums of squares or elsewhere. Results for this
suite of tests are presented in Table 4.
As can be seen, Excel delivers an acceptable performance only for the low-

di�culty problems. A reliable algorithm can deliver eight or nine digits for the
average di�culty problems, with performance degrading to only a few digits for the
higher di�culty problems. From a computational perspective, it is worth noting that
such problems may be better solved using symbolic methods. For example, using
Hunka’s (1997) ANOVA.NB module, Mathematica 3.0 (Wolfram, 1996) can de-
liver 15 digits of accuracy for all the ANOVA problems. As far as numerical solution
of such problems is concerned, these higher-di�culty ANOVA tests are an example
that delivering only a few digits of accuracy is not necessarily evidence of bad soft-
ware. However, delivering zero digits of accuracy for the average-di�culty problems
is such evidence. Observing the negative sums of squares produced by Excel, it can
be deduced that Excel uses an unstable algorithm. Thus, Excel’s performance on this
suite of tests can be judged inadequate.
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Table 5
StRD results for Longley Dataset

Coe�cient Mean Stand.dev.

�0 NIST −3482258:63459582 890420.383607373
Excel −3482258:6538903 890420.385773117
LRE 8.3 8.6

�1 NIST 15.0618722713733 84.9149257747669
Excel 15.0618726770786 84.9149257825076
LRE 7.6 10.0

�2 NIST −0:0358191792925910 0.0334910077722432
Excel −0:0358191798902255 0.0334910078242200
LRE 7.8 8.8

�3 NIST −2:02022980381683 0.488399681651699
Excel −2:02022981272773 0.488399682456131
LRE 8.4 8.8

�4 NIST −1:03322686717359 0.214274163161675
Excel −1:03322686974925 0.214274163322592
LRE 8.6 9.1

�5 NIST −0:0511041056535807 0.226073200069370
Excel −0:0511041036005626 0.226073200148693
LRE 7.4 9.5

�6 NIST 1829.15146461355 455.478499142212
Excel 1829.15147447748 455.478500251236
LRE 8.3 8.6

Table 6
StRD results for linear regression

Dataset ��̂ ��̂ Dataset ��̂ ��̂

Norris(l) 12.1 13.8 Wampler1 (h) 7.0 7.2
Pontius (l) 11.2 14.3 Wampler2 (h) 9.7 11.8
Origin1 (a) 14.7 15 Wampler3 (h) 6.6 11.2
Origin2 (a) 15 15 Wampler4 (h) 6.6 11.2
Fillip (h) 0 0 Wampler5 (h) 6.6 11.2
Longley (h) 7.4 8.6

2.3. Linear regression

Table 5 presents the NIST and Excel results for the famous Longley (1967) bench-
mark, together with LREs. Again, inaccurate digits are underlined. Even using LREs,
this is too much information, and only one LRE for the coe�cients and one LRE
for the standard errors can be presented. Based on the “weakest link in the chain”
principle, the respective minima are used, so ��̂ = 7:4 and ��̂ = 8:6. Similar results
for all the linear regression problems are presented in Table 6.
While Excel performs reasonably well on most of the data sets, its failure on

the data set Filip indicates a serious problem. Filip is a tenth-degree polynomial,
which of course is highly collinear and can stress the linear solver. Ill-conditioned
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Table 7
StRD results for nonlinear problem Rat43

Default Precision=1E− 7
Coe�cient NIST Excel LRE Excel LRE

�1 699.64151270 676.0986499 1.5 699.6463758 5.2
�2 5.2771253025 39.7190456 0 5.275510708 3.5
�3 0.75962938329 4.559009025 0 0.759471816 3.6
�4 1.2792483859 13.02379155 0 1.27875659 3.4

data matrices are highly susceptible to numerical error, and so it is important for a
solver to recognize that a data set is ill-conditioned. This is a most important part
of any linear regression routine. In fact, Press et al. (1992, p. 23) notes that “much
of the sophistication of complicated ‘linear equation-solving packages’ is devoted to
the detection” of near-singularity. This can be veri�ed by consulting the IMSL or
LAPACK documentation. If the data are too ill-conditioned for the solver to pro-
duce a reliable solution, the program should refuse to compute a solution, issuing
a warning message such as, “near-singular data matrix”. Excel, however, ignores
the near-singularity and proceeds with the calculations, delivering coe�cients which
are accurate to zero digits. On the basis that Excel does not properly check for
near-singularity of the data matrix, its performance on this suite can be judged in-
adequate. Sawitzki (1994b) noted a similar problem in Excel 4.0, so this problem
also was not �xed.

2.4. Nonlinear regression

The nonlinear benchmarks provide for two sets of starting values, Start I and Start
II, the former “far” from the solution and the latter “near” to the solution. Usually
it is easier for a solver to achieve a more accurate solution from Start II than from
Start I. Start II is used only in the case that the solver refuses to produce a solution
from Start I.
Frequently nonlinear solvers have several options. Excel o�ers options for: method

of derivative calculation, forward (default) or central numerical derivatives; conver-
gence tolerance (default is 1.E-3); “scaling” (recentering) the variables; and method
of solution (default is the GRG2 quasi-Newton method, with an option for an unspec-
i�ed conjugate gradient method). Default options rarely represent the best a solver
can do, as Table 7 indicates. Default solution of the data set Rat43 yields ��̂ = 0,
while decreasing the tolerance to 1.E-7 yields ��̂ = 3:4. Changing the method of
solution or method of derivative calculation did not improve the results.
Table 8 presents similar results for all 27 nonlinear data sets with four sets of

options. Default solution is presented in column two, where it can be seen that
zero-digit accuracy is produced 21 times. In each case, since a correct solution was
not produced, the solver should have returned a “cannot �nd a solution” message.
The third column presents results for decreasing the tolerance to 1E-7, which changed
a zero-digit answer to a correct answer four times: Misra1a, Misra1c, Thurber and
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Table 8
StRD results for nonlinear regression

Nonlinear options
Data set A B C D

Misra1a (l) 0 1.6 0 4.8
Chwirut2 (l) 4.3 4.3 4.6 4.6
Chwirut1 (l) 4.0 4.0 4.9 4.9
Lanczos3 (l) 0 0 0 0
Gauss1 (l) 0 0 0 0
Gauss2 (l) 0 0 0 0
DanWood (l) 4.7 4.7 5.5 5.5
Misra1b (l) 1.2 1.2 0 4.4
Kirby2 (a) 0 0 0 1.1
Hahn1 (a) 0 0 0 0
Nelson (a) 0 0 0 1.3
MGH17 (a) 0 0 0 0
Lanczos1 (a) 0 0 0 0
LANCZOS2 (a) 0 0 0 0
Gauss3 (a) 0 0 0 0
Misra1c (a) 0 2.1 4.6 4.6
Misra1d (a) 0 0 0 5.3
Roszman1 (a) 0 0 2.3 3.7
ENSO (a) 3.4 3.4 3.3 3.4
MGH09 (h) 0 0 0 0
Thurber (h) 0 1.7 0 1.8
BOXBOD (h) 0 0 0 0
Rat42 (h) 3.7 5.9 5.3 5.3
MGH10 (h) 0 0 0 0
Eckerle4 (h) 0 0 0 0
Rat43 (h) 0 3.4 0 0
Bennett5 (h) 0 0 0 0

A: Default estimation.
B: Convergence tolerance=1E-7.
C: Automatic scaling.
D: B+C.

Rat43. Invoking “automatic scaling” but leaving the convergence tolerance at default
o�ers slight improvement over default estimation, as can be seen in column four:
20 problems had zero-digit accuracy. Finally, the �fth column presents the results
for automatic scaling and tolerance set at 1E-7: fourteen zero-digit accuracy solu-
tions. For any package it may be too much to expect that the solver can �nd a
solution for each problem, but it is not too much to expect that the solver can �gure
out when it has not reached a solution. The zero digits of accuracy “solutions” in
Table 8 do not represent local minima. Rather, the solver has labelled as a local
minimum a point which is not a local minimum, and this it should not do. In such
cases, reliable packages will report some sort of warning message rather than print
out coe�cients. By way of contrast, for the 27 nonlinear problems, the number of
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Table 9
Results of Marsaglia’s DIEHARD tests

Test Test

Birthday spacings test p Count the ones test (stream of bytes) F
Overlapping 5-permutation test p Count the ones test (speci�c byte) F
Binary rank test: 31× 31 matrices p Parking lot test p
Binary tank test: 32× 32 matrices p Minimum distance test p
Binary rank test: 6× 8 matrices p 3-D spheres test F
Bitstream test p Squeeze test F
OPSO test F Overlapping sums test p
OQSO test F Runs test p
DNA test F Craps test p

“p”= Pass.
“F”=Fail.

zero-digit accuracy solutions for SAS, SPSS, and S-Plus are three, one, and none,
respectively. The econometric package TSP also produces no zero-digit accuracy
solutions.

3. Random number generator

Elementary details of random number generation are discussed in Gentle (1998).
The RNG should produce output which passes tests for randomness. Testing the
RNG is important, because many statistical procedures make use of random numbers.
More than one test should be applied, since there are many possible departures from
randomness. One such collection of tests is given by Knuth (1981), which was
programmed by Dwyer and Williams (1996a, b). Marsaglia (1993) noted that these
tests are not very stringent, and later proposed DIEHARD: A battery of randomness
tests (Marsaglia, 1996). These tests are discussed in the DIEHARD documentation
and in Gentle (1998, ch. 6).
Both collections of tests require millions of random numbers as input, and Excel

will not generate such a large �le. Therefore, another double precision package was
used to generate numbers according to the algorithm for the Excel RNG, and these
were submitted to both programs. The Excel RNG passed all the Knuth tests (results
not presented), but failed several of the DIEHARD tests. Results are presented in
Table 9.DIEHARD is predicated on a full 32-bit RNG, though many PC software
programs use only 31-bit RNGs. A good 31-bit RNG will pass all but one of the
DIEHARD tests. Since Excel does not use a good RNG, its performance on this
suite of tests can be judged inadequate.

4. Conclusions and recommendations

We have applied the methodology outlined by McCullough (1998) to assess the
reliability of Excel in three areas: estimation, random number generation, and sta-
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tistical distributions. Excel has been found inadequate in all three areas. We also
note that Microsoft did not correct aws noted by Sawitzki (1994b). We advise that
Excel not be used for statistical calculations. There is a large number of “add-on”
statistical packages for Excel; these also need to be benchmarked. Persons wishing
to conduct statistical analyses would do well to avail themselves of a package which
performs well on benchmark tests.
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