Física Teórica 3 Serie 5: Gases reales

1^{er} Cuatrimestre de 2011

Problema 1: Dibuje los diagramas de racimo correspondientes a los siguientes productos de funciones

- a) $f_{12} \cdot f_{23} \cdot f_{34} \cdot f_{45} \cdot f_{14} \cdot f_{25}$
- b) $f_{12} \cdot f_{23} \cdot f_{13} \cdot f_{45} \cdot f_{46} \cdot f_{56}$

Problema 2: Muestre que la expansión del virial para la energía termodinámica es

$$\frac{E}{Nk_BT} = \frac{3}{2} - T \sum_{i=1}^{\infty} \frac{1}{j} \frac{\partial B_{j+1}}{\partial T} \rho^j$$

y la correspondiente a la entropía es

$$\frac{S}{Nk_B} = \frac{S_{\text{ideal}}}{Nk_B} - \sum_{j=1}^{\infty} \frac{1}{j} \frac{\partial (TB_{j+1})}{\partial T} \rho^j$$

Problema 3: Muestre que en la aproximación de Van der Waals

$$\begin{cases} V(r) = \infty & r < r_o \\ e^{-\beta V(r)} \approx 1 - \beta V(r) & r > r_o \end{cases}$$

para el segundo coeficiente del virial, la energía de interacción del gas vale:

$$E - E_{ideal} = N_{pares} \langle V(r) \rangle$$
,

donde N_{pares} es el número de pares de moléculas y $\langle V(r) \rangle$ es el valor medio del potencial de interacción de un par.

Problema 4: En la misma aproximación, muestre que $S_{\rm real} < S_{\rm ideal}$ y que la disminución de entropía se debe a la disminución del volumen real en que pueden moverse las moléculas por ser impenetrables.

Problema 5: Muestre que el potencial intermolecular debe anularse más rápidamente que r^{-3} para que el coeficiente $B_2(T)$ exista. Hágalo partiendo la integral en dos regiones: de 0 a L y de L a ∞ . Elija L grande de modo que la exponencial se pueda expandir, e investigue esta convergencia.

Problema 6:

Se tiene un gas de N moléculas que interactúan de la siguiente forma: sea r_{12} la distancia entre los centros de las moléculas 1 y 2. Entonces

$$V(r_{12}) = \begin{cases} \infty & 0 \le r_{12} < \sigma \\ -\varepsilon & \sigma \le r_{12} < 2\sigma \\ 0 & 2\sigma \le r_{12} \end{cases}$$

- a) Calcule $B_2(T)$.
- b) Grafique $B_2(T)$ e interprete físicamente la curva, relacionándola con la forma de V(r).
- c) Muestre que si V_o es el volumen en el cual $V(r) = -\varepsilon$ para cada par de moléculas y n es el número de pares, entonces

$$E - E_{ideal} = n \frac{V_0}{V} (-\varepsilon) e^{\beta \varepsilon}$$

- d) Sea un mol de estas moléculas en un volumen de 0,1 litros con $\sigma=2$ y $\varepsilon=10meV$ a $T=500^oK$. Calcule $(E-E_{ideal})$ y la presión.
- e) Con los datos anteriores de σ y ε calcule los parámetros de $Van\ der\ Waals\ a$ y b.

Problema 7: (a resolver numéricamente) Para el potencial de Lennard-Jones:

$$V(r) = 4\epsilon [(\sigma/r)^{12} - (\sigma/r)^6]$$

donde ϵ y σ son constantes positivas,

- a) Haga un gráfico del segundo coeficiente del virial reducido, B_2/r_0^3 como función de la temperatura reducida, k_BT/ϵ (siendo r_0 la distancia que hace mínimo al potencial).
- b) Interprete físicamente el comportamiento de la curva obtenida y estime la temperatura para la cual se anula el segundo coeficiente del virial (temperatura de Boyle).