Problemas de Física 4 § Máquinas y Ciclos

- 1. Dibujar en los planos p-v y p-T, y calcular la eficiencia de máquinas, que realicen los siguientes ciclos:
 - (a) Sterling
 - (b) Otto
 - (c) Rankine
 - (d) Diesel
 - (e) Ericsson
- 2. Calcular la eficiencia de una máquina de Carnot, en la cual el gas ideal se reemplaza por un gas "Clausius": p(v-b) = RT.
- 3. Se conectan "en serie" dos máquinas térmicas de modo que el calor eliminado por la primera se utiliza como alimentación de la segunda. Los rendimientos de las máquinas son η_1 y η_2 , respectivamente.
 - (a) Calcular el rendimiento neto de la combinación de estas máquinas.
 - (b) Si las máquinas fueran reversibles, y funcionaran entre las temperaturas T_H y T_M (la primer máquina), y entre T_M y T_L (la segunda), siendo $T_H > T_M > T_L$, ¿cuál sería el rendimiento neto, en función de estas temperaturas?

Lecturas Auxiliares Recomendadas:

- How Car Engines Work: http://auto.howstuffworks.com/engine.htm
- The Otto Engine Institute of Technical Chemistry University of Leipzig, Germany: http://techni.tachemie.uni-leipzig.de/otto/
- Interactive Physics Demo: The Carnot Engine: http://www.rawbw.com/xmwang/myGUI/CarnotG.html
- Interactive Physics Demo: The Diesel Engine: http://www.rawbw.com/xmwang/myGUI/DieselG.html

[§]http://www.df.uba.ar/users/dmitnik/fisica4