
Thermal-wave detection and thin-film thickness
measurements with laser beam deflection

Jon Opsal, Allan Rosenowaig, and David L. Willenborg

A new technique has been developed that employs highly focused laser beams for both generating and de-
tecting thermal waves in the megahertz frequency regime. This technique includes a comprehensive 3-D
depth-profiling theoretical model; it has been used to measure the thickness of both transparent and opaque
thin films with high spatial resolution. Thickness sensitivities of +2% over the 500-25,000-A range have
been obtained for Al and SiO2 films on Si substrates.

1. Introduction

Thermal-wave physics is playing an ever-increasing
role in the study of material parameters. It has been
employed in optical investigations of solids, liquids, and
gases with photoacoustic and thermal lens2 spectros-
copy. Thermal waves have also been used to study the
thermal and thermodynamic properties1' 3 of materials
and for imaging thermal and material features within
a solid sample. 4

Thermal waves are present whenever there is periodic
heat generation and heat flow in a medium. There are,
therefore, a multitude of mechanisms by which these
waves can be produced, with the two most common in-
volving the absorption by the sample of energy from
either an intensity-modulated optical beam1 or from an
intensity-modulated electron beam.4 Several mecha-
nisms are also available for detecting, directly or indi-
rectly, the resulting thermal waves. These include
gas-microphone photoacoustic detection of heat flow
from the sample to the surrounding gas in which pres-
sure changes are monitored1'5; photothermal mea-
surements of infrared radiation emitted from the heated
sample surface6-8; optical beam deflection of a laser
beam traversing the periodically heated gaseous or
liquid layer just above the sample surface9- 11; inter-
ferometric detection of the thermoelastic displacements
of the surface'2-14; optical detection of the thermoelastic
deformations of the surface13-16; and piezoelectric de-
tection of thermoacoustic signals generated in the
sample. 1 ,17,18
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To date, only this last technique involving ther-
moacoustic detection has been used routinely for de-
tecting high-frequency (i.e., megahertz regime) thermal
waves. The thermoacoustic detection methodology has,
therefore, found important applications in thermal-
wave imaging4 19- 21 at high spatial resolution, where
micron-sized thermal waves are needed, as in the study
of semiconductor materials and devices.

The use of a thermoacoustic probe to detect the re-
flection and scattering of the thermal waves from the
thermal features suffers, however, from the major
drawback of requiring acoustic coupling between the
sample and an ultrasonic transducer. In the analysis
of semiconductor materials and devices, one would like
to operate in an open environment, employ completely
contactless methods for thermal-wave generation and
detection, and be able to make measurements or obtain
images at high spatial resolution. This last requirement
necessitates the use of a highly focused beam for ther-
mal-wave generation and the capability for detecting
high-frequency (>100-kHz) thermal waves.

To satisfy all the above conditions one needs to utilize
lasers for both generating and detecting the thermal
waves. The generation is, of course, straightforward.
The detection is more involved, performed either by
interferometric detection of the thermoelastic dis-
placements of the sample surface or by laser detection
of the local thermoelastic deformations of the surface.
Both techniques are analogous to the optical methods
used for detecting surface acoustic waves,23 although
here the surface displacements and deformations are
due to the thermal waves. All the other methods for
thermal-wave detection suffer from either being limited
to low modulation frequencies or from needing contact
to the sample.

There have been some initial studies of thermal-wave
detection using the techniques described above. Ameri
et al. 12 performed a rudimentary imaging experiment
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Fig. 1. Schematic depiction of laser beam deflection t
for the thin-film thickness measurement expei

Ar LASER technique, which measures local surface displacements
in the vertical direction, the laser probe method mea-
sures changes in the local slope of the surface as de-
picted in Fig. 2.

With the apparatus depicted in Fig. 1, we are able to
A-O MODULATOR detect, at a 1-MHz modulation frequency, changes in

the local surface slope in Al that result from local surface
displacements of -10-4 A/V\iH, a sensitivity that is
considerably greater than that reported in the recent

BEAM ER experiments performed at much lower modulation
frequencies with laser interferometricl2"4"15 and with
laser probe deflectionl3-' 5 methods.

In Sec. II we present the theory that, when combined
with our thermal-wave measurement technique, gives

HeNeDICHROIC us a system for performing quantitative thickness
MIRROR analyses of one or more films on a substrate. The

theory we use is essentially the recent 1-D multilayer
model of Opsal and Rosencwaig 2 4 (O-R model) ex-

MICROSCOPE 
> OBJECTIVE tended appropriately to three dimensions.

In Sec. III we present some of our results showing
good agreement between theory and experiment and,

LE i, just as important, the sensitivity of our measurements
technique used to thickness variations. Finally, in Sec. IV we conclude
ecnique used with a brief summary.

II. Theory

with the laser interferometric technique, while Amer
and his colleagues'3-' 5 have both the laser interfero-
metric and a laser deflection (surface deformation)
technique for spectroscopic studies on amorphous sili-
con. These various investigations were all performed
at low to moderate modulation frequencies (<100 kHz)
only.

We have developed a laser beam deflection technique
which, although similar to the method employed by
Amer's group, differs in several important respects. In
particular, our method employs highly focused heating
and probe laser beams, both incident normal to the
sample surface, and the experiments are performed at
high modulation frequencies of up to 10 MHz.

Figure 1 depicts the experimental arrangement that
we use. The 488-nm beam of a 100-mW Ar+ ion laser
is intensity-modulated with an acoustooptic modulator,
directed through a beam expander, and then focused to
a 2-4-,um diam spot on the sample. This is the heating
beam, and it has a sample incident power of -30 mW.
The 633-nm beam of a 5-mW He-Ne laser, the probe
beam, is directed through a beam expander, a polarizing
beam splitter and quarterwave plate, reflected off a
dichroic mirror, and then focused onto a 2-4-Mum diam
spot on the sample with an incident power of -2 mW.
The two laser spots are displaced -2 Am from each
other at the sample surface. The 488-nm heating beam
reflects back on itself, while the 633-nm probe beam
undergoes a periodic change in the local slope of the
sample surface. The reflected probe beam passes
through the quarterwave plate again, and since it is 900
out of phase from the beam leaving the He-Ne laser, it
is directed by the polarizing beam splitter to the bicell
photodetector, which measures the periodic deflections
of the probe beam. Unlike the laser interferometric

A. Surface Temperatures
When a laser beam, intensity-modulated at a fre-

quency a, is focused onto a spot of radius a on the sur-
face of a sample, the surface temperature at distance r
from the beam center can be written as

T(r) = To + T 1(r) + T2 (r) cos(wt + 0), (1)

where To is the ambient temperature, TI(r) is the
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Fig. 2. Schematic depiction of physical processes affecting the laser
probe beam for an opaque homogeneous sample including thermoe-
lastic deformation of the air-sample interface and thermal lens effects

in the air above the sample.
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steady-state dc temperature, and T2(r) is the magnitude
of the ac or oscillating temperature, which in general will
have a nonzero phase 0. For a homogeneous sample
(i.e., infinite half-space), 3-D analyses similar to those
of Aamodt and Murphy2 5 and McDonald26 provide
expressions for TI(r) and T2(r):

T1 (r) = Po' jdq exp(-q 2a2 /4)Jo(qr), (2a)

T2(r) = Pol qdq exp(-q 2 a2 /4)Jo(qr)2 7rK f q u- 2i 1

In this latter expression, qjz and q2z are complex ther-
mal-wave vector components in the z direction in the
layer and substrate, respectively, defined in terms of
thermal diffusion lengths,

qj = \q - 2i/j,

and Zj are thermal-wave impedances (similarly defined
in the O-R model), Zj = Kjqjz for j = 1,2. Also, Qo is the
energy flux Qo = Po/7ra 2. In the dc limit co 0 we have

(2b)

where Po is the power of a Gaussian probe beam of ra-
dius a, which is assumed to be absorbed at the surface.
Also, in these expressions A is the thermal diffusion
length; ,u = I2K/wpXC, where K iS the thermal conduc-
tivity, p is the density, and C is the specific heat. Jo is
the cylindrical Bessel function of order zero.

At the center of the heating beam r = 0 we have
T 1(0) 1

T 2(0) a e exp(-a 2x 2 /4L 2)

2,(0) A I I 2i

(3a)

(3b)

which are universal functions of Ka and a/lu, respec-
tively. The first of these, Eq. (3a), is plotted in Fig. 3(a)
along with points for a number of different materials
assuming a beam radius a = 1 m. For a good thermal
conductor such as aluminum we expect a temperature
rise of -1°C for each milliwatt of power absorbed. On
the other hand, for a material with a much lower ther-
mal conductivity such as SiO2, the corresponding tem-
perature rise would be much higher, 190°C/mW of
power absorbed. This is important since, as we discuss
later, the dc temperature can significantly affect the
measurements.

Figure 3(b) shows the dependence of T2(0)/T1 (0) as
a function of a/,u. As can be seen, T 2(0) < T(0) for all
modulation frequencies, saturating at the lower
frequencies a/y < 1 and approaching 1-D behavior in
the limit of high-frequency a/, > 1.

It is important to note that Eq. (2b) is a Gaussian-
weighted Hankel transform27 of the solution to the
corresponding 1-D heat conduction problem, where the
Gaussian factor exp(-q 2a 2/4) is the Hankel transform
of the incident beam profile exp(-r 2 /a2 ), and that Eq.
(2a) is the zero frequency, w -0, limit of Eq. (2b). This
is, in general, the method for solving any planar problem
having an axially symmetric source term and is, in fact,
how we extended the 1-D O-R model to three dimen-
sions. Rather than go into mathematical detail, it is
perhaps more illuminating to illustrate with exam-
ples.

For a layer of thickness d on an infinite half-space we
have for the ac surface temperature

a2T2(r) = 2 I S qdq exp(-q 2 a2 /4)Jo(qrT 2 (q)I, (4a)

where T2(q) is the 1-D solution in the O-R model

P2(q) = Q [Z[ + Z2 tanh(qlzd)J (4b)
Z1 Z 2 + Z tanh(qlzd)
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Fig. 3. Surface temperatures of the center of the heating beam (a)
per milliwatt of power absorbed for a variety of materials at zero
modulation frequency and (b) ac temperature normalized to the dc
temperature as a function of the ratio of beam radius to the thermal

diffusion length.
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Z = qKj. Consequently, as one can see from Fig. 3(b),
at low frequencies, where a/,i < 1,

T2(r) Ti(r) = a2 qdq exp(-q2a2/4)Jo(qr)Tj(q), (5a)

where

T I(q) = Q Ki + K2 tanh(qd)
qK K2 + X tanh(qd)]

(5b)

Although not obvious at this point, the maximum sen-
sitivity of the thermal wave to film thickness variation
occurs in general for d << It and, at low frequencies, for
d <a.

u(r) = 2 f qdq exp(-q 2a 2/4)Jo(qr)a(q), (10)

where dz(q) is the solution to the corresponding 1-D
thermoelastic problem. From Eqs. (9) and (10) we then
have

61(r) = -a 2
X q 2 dq exp(-q 2 a 2/4)Jj(qr)Clj(q),

2(r) = -a 2
f q 2dq exp(-q 2 a 2/4)Jj(qr)CZ2(q),

(Ila)

(lib)

where JI(qr) is the Bessel function of order 1. As with
the temperatures Ti(r) and T2(r), the thermoelastic
deflections M,(r) and 62(r) obey the relationship 62(r)

- 61(r) as w - 0.
Applying the O-R model to the problem of a single

layer on a half-space results in a complicated expression
for the ac component, which, in the limit of a thin film,
simplifies to

u2(q) = -Y2Qo 1 + qjd + z '71 - 72 _ q22zq 1 Z, -,72zZ2 I
(q + q2z)Z2 72 q1z q2 zZ2

(12)

The explicit dependence on thickness for thin films
is easily found in the limit of zero frequency from Eqs.
(5a) and (b) to be

_ Po [ ~~~~~~2 dl
T 2(r) TI(r) = ° exp(-r 2/2a 2)Io(r2/2a 2) + -(I

2VTK2a V a)

X exp(-r2Wa) (2 1 6
\K1 K2

where Io(x) = Jo(ix) is the modified Bessel function of
order zero. For points near the center of the heating
beam r << a we have

T2(r) Ti(r) = Po 21 + d K2 Kd _ 0(r 2
/a

2)
2iJ;K2a [ v/" a KJ Kj I

(7a)

and, in the limit of r >> a,

T2(r) - T(r) = - + 2 (1 exp( r2/a2 )(--K 1 (7b)
2lrK2r L \a)aI K 

indicating that the sensitivity to layer thickness will fall
off quite rapidly as one moves away from the center of
the beam. In a measurement dependent only on ther-
mal-wave parameters this would more than likely be
observed, but for measurements such as we are re-
porting here, in which thermoelastic and optical effects
are also significant, one can expect some differences to
occur.

B. Surface Deformations

In our experiments we do not measure the local sur-
face temperatures directly but, rather, the local surface
deformations which depend on average temperature.
An infinitesimal probe beam incident normal to the
surface at distance r from the center of the thermally
induced surface deformation will undergo a periodic
deflection (r), where

6(r) = 51(r) + 62(r) cos(ot + ). (8)

The deflection is related to the surface displacement
u(r) by

6(r) = 2-u , (9)
dr

and u(r) is given by

where yj are the thermoelastic coupling factors, yj =
caj(1 + v)/(l - vj), aj; the thermal expansion coeffi-
cients, and v; the Poisson's ratios for j = 1,2.

Taking the limit co - 0 yields for the dc limit,

Ci(q) = -7200 1 + qd [2 ( 72 ) - K2IIU (13)

Since the product qZj becomes independent of Kj in
the high-frequency limit aIu >> 1, we see the possibility
for markedly different behavior in passing from high
frequencies to the dc limit.

Performing the required integration for the dc terms
in Eq. (11), we find for the thin film deflection at low co
(a/,u < 1),

[1 - exp(-r2/a2)]

'Y2PO + dlr /- 1 -72\ IK1 K2
62(r) 3, 6(r) = - ( [ ( 2 -

2 7r/(2a a ~ 7 I IY K
X exp(-r 2 /2a2 )[Io(r 2 /2a 2 ) - 11(r2/2a2)]

(14)

which for small r, r < a gives

52(r) _i 6(r) =7P (r) {1 + ; ( ) 12 (71 - 72 ( - K2__
27rK2a a a 72 K 2 /J

(15a)

and for r > a,

6 = y2Po + (d ( 2 )Y' -72- ( K ]-K2)

2rK2r I r I '7 72 ) 2

(15b)

Although there is some loss of sensitivity to thickness
variation with increasing r, it is not as severe as in the
surface temperature. Also, at finite frequencies there
can be a gain in sensitivity depending on the parameters
involved.
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C. Thermal Lens Effects

Now the probe beam, in addition to being deflected
by the local surface deformation, will also be deflected
as depicted in Fig. 2 by the thermal-wave-induced index
of refraction gradient in the air above the sample surface
(and, for that matter, in any transparent material whose
index of refraction varies with temperature). Consid-
ering again an infinitesimal probe beam at normal in-
cidence, we have for the deflection occurring in the air
above an opaque sample

(r) = (l.r) + 42(r) cos(wt + x). (16)

This can be expressed in terms of the surface temper-
atures by integrating along the beam path (z direction)
the radial derivative of the temperature, that is,

t(r) = -2e f dz- (17)
dr

where e is the normalized temperature derivative of the
index of refraction e = -1/n dn/dT, and the factor of 2
accounts for the deflection taking place along both the
incident and reflected paths. Again employing the O-R
model for thermal waves in layered media we have

t10 = ea2 f qdq exp(-q 2 a2/4)Jj(qr)Tj(q), (18a)

Wr = ea2
f q

2
dq exp(-q 2 a2/4)Jj(qr) 2(q) (18b)

qo2

where qoz is the thermal wave vector in air, and T1 and
T2 are given, respectively, by Eqs. (5b) and (4b). For
a thin film we have the results at low frequencies (a/I
< 1),

7rK2a a a K1 K2

when r << a, and when r >> a,

W(r) W = [ KK) (19b)
IrK2r r rK K2

D. Other Effects

The theory presented above, while by no means
complete, does contain the essential features of ther-
mal-wave physics that enable us to better understand
our experimental results. The most important effects
that remain are those associated with having a finite
probe beam, finite absorption length, and nonlinear
effects due to significant temperature dependencies in
some of the material parameters. The complexities
introduced by the full elastic Green's function are for-
tunately not present here, since measurements in the
immediate vicinity of the thermal wave are completely
dominated by temperature and the accompanying
scalar thermal expansion response.

The effects of using a finite probe beam are included
by introducing an additional Gaussian factor,
exp(-q 2 b2 /4), in the Hankel transform, where b is the
radius of the probe beam. In the results presented
below, b = 0.75a as determined experimentally.

We include the effects of finite optical absorption in
the sample by the linear superposition of temperature
solutions corresponding to a distribution of subsurface

heat sources. In almost all cases of practical signifi-
cance, the source distribution is well approximated by
an exponential 3Pc exp(-,Bz), where 0-1 is the ab-
sorption length, and Po is the total power absorbed. For
a 488-nm heating beam on Al, /3 106 cm- 1 , which, at
the modulation frequencies used in our measurements,
means that essentially all the energy is absorbed at the
surface. On the other hand, in Si, 3 - 104 cm-1, cor-
responding to an absorption length approximately half
of the thermal diffusion length at the highest frequency
used, 10 MHz. In all our measurements (for Si and
SiO2-on-Si) the finite absorption reduces the magnitude
of the thermal wave but does not significantly alter its
dependence on frequency or thickness.

Nonlinear effects and their inclusion in the analysis
are described in Sec. III, and a full discussion will be
given in another paper.

Before presenting our results there is one important
point that needs to be made. In the O-R model it was
shown that the thermoelastic response at the back
surface of a sample being heated at a mechanically
constrained front surface is independent of variations
in thermal conductivity. Basically this resulted from
the response being proportional to the average tem-
perature in the heated region. By the same token, this
same lack of dependence on thermal conductivity occurs
here for the front surface displacements in the heated
region at high frequencies since it, too, becomes a simple
1-D average of temperature. What is important to note
is that such a varying dependence on thermal conduc-
tivity in going from low (3-D) to high frequency (1-D)
is characteristic of all thermal-wave effects and is one
of the more fundamental reasons that truly quantitative
measurements of thermal features are possible.

111. Results

Of considerable interest is establishing the relative
significance of the thermoelastic and thermal lens ef-
fects on the deflection of the probe beam. For this we
consider the deflections from an opaque homogeneous
substrate with no layers as depicted in Fig. 2. Setting
d = 0 in Eqs. (10)-(14) yields for the thermoelastic de-
flections

(20a)61(r) = yT1 (0) (S) [1 - exp(-r 2 /a2)],

62(r) 2(r/A)

61(r) 1 - exp(-r 2 /a2 )

X Cbx2 dx Jl(rx.) exp(-a 2X2 /4,42 ) 
j I /T2d _~IX2 2(x + VIX2 - 2i)I

At all frequencies c, 62(r) < b(r) and 62(r) - 51(r)
as co - 0. In our experiments only the ac component
62(r) is measured. When aM < 2, the theory predicts
that the maximum 2(r) occurs at r = 1.la in agreement
with our experimental results. The dependence of 31(r)
and 2 (r) on the thermoelastic coupling factor y can be
most important in performing depth profiling of layered
materials, since y can vary significantly for different
materials. For example, = 49 X 10-6/! C in Al and
only 3.7 X 10-6/!C in Si. Thus, even though the surface
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temperatures in these two materials would be compa-
rable under the same heating conditions, the beam de-
flection from an Al surface would be approximately ten
times greater than from a Si surface. Using a more
complete model that accounts for optical reflectivities,
finite absorption depths, and finite probe beam diam-
eters, we have calculated the relative laser beam de-
flections from Al and Si as a function of modulation
frequency. The results shown by the dashed curves in
Fig. 4 are found to be in excellent agreement with the
experimental results plotted as open circles on the same
figure.

The thermal lens effects occur in the air above the
sample surface and within any layer of the sample that
is not optically opaque. Even though these thermal
lenses have only micron-sized dimensions at the high
modulation frequencies employed, their refractive
power is still considerable since the normalized refrac-
tive-index gradient n-'(dn/dx) = -e(dT/dx) across the
lens is now quite high, e being of the same order as the
thermal expansion coefficient of a solid. Also, even
though the probe laser beam is incident normal to the
sample surface, it strikes the thermal lens off-axis and
thus undergoes refraction in both incident and reflected
directions. Consequently, the theory predicts and we
find experimentally that the thermal lens effect can be
appreciable for some materials such as Si.28

From Eqs. (18a) and (b) we obtain for the thermal
lens deflection of an infinitesimal probe beam at a dis-
tance r from the center of the heated region

2
~10 =- 5()

(21a)

02(r) r/u
41(r) 1-exp(-r 2 /a2 )

(x 2dx Ji(rx/ui) exp(-a 2X2/4,42) 2b
J X2 - 2i (21b)

Note that, while this result Eq. (21b) is similar to Eq.
(20b) for the corresponding thermoelastic effect, we
would expect because of the different integrands a
slightly different dependence on frequency. Equation
(21b) will approach 1-D behavior more rapidly than Eq.
(20b).

For air at 1 atm and 0C, e = 1.1 X 10-6/OC, 29 and
thus ( 1(r)/61 (r) for Si is -0.6 and for Al is -0.05.
However, nonlinear effects due to higher temperatures
(to be discussed later) will tend to reduce these ratios.
Figure 4 presents comparisons with experiments for a
complete calculation (that includes nonlinearities)
under vacuum, where there is no thermal lens effect
(dashed curves), and in air, where there is a thermal lens
effect (solid curves). The agreement between theory
and experiment is excellent. Note that the somewhat
stronger dependence on frequency predicted for the
thermal lens effect is observed experimentally in that
its contribution to the total measurement decreases with
increasing frequency.

In these thermal-wave experiments dc and ac tem-
perature excursions can range from 300C to several
hundred degrees depending on the sample's thermal
characteristics. With such temperature excursions, the
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Fig. 4. Relative amplitude of laser beam deflection signal as a
function of thermal-wave (modulation) frequency for Al and Si under
air (with thermal lens) and vacuum (no thermal lens) conditions.
Experimental data are plotted as open (vacuum) and closed (air)
circles and theoretical results as dashed (vacuum) and solid (air)

curves.

dependence on temperature of the various thermal,
optical, and elastic parameters has to be considered as
well. In general, the most critical parameters appear
to be the refractive index and the thermal conductivity.
The index of refraction of air is given by29

n1 + no-1 P1 + aT (22)

where no = 1.003 is the index of refraction of air at C,
T is the temperature above C, a, = 3.66 X 10-3/C
is the volume thermal expansion coefficient, and P is the
normalized pressure of the air. Thus for temperature
excursions in air of 10-1000 C, e will decrease by 30-50%.
In addition, for most solids the temperature dependence
of the thermal conductivity at our operating tempera-
tures is given by30

K(T) = Ko
1 + I3KT

(23)

where K is the thermal conductivity at T = C, T is the
temperature above C and, /K is a temperature coef-
ficient. Temperature excursions of 50-100C in Si,
where K = 7.1 X 10-3 /0 C,3 0 thus decreasing K by 30-
60%. These temperature effects on e and K introduce
appreciable nonlinearities in the model that cannot be
neglected.

Optical effects will, of course, play an important role
in these experiments as well. For example, in Si we
have to take into account the optical absorption length
(-1 Mm) for the 488-nm Ar+ ion laser light. Optical
reflectivities must also be included. In addition, when
dealing with optically transparent films such as SiO2,
optical interference effects within the film have to be
considered as well. Figure 5 schematically depicts the
situation encountered for an SiO2 film on Si. Here we
see the thermoplastic deformations of both the Si-SiO2

3174 APPLIED OPTICS / Vol. 22, No. 20 / 15 October 1983



HEATING
BEAM

Fig. 5. Schematic depiction of physical processes
affecting the laser probe beam for SiO 2 on Si, in-
cluding thermoelastic deformations of Si-SiO2 and
SiO2-air interfaces, thermal lenses of opposite sign
in air and SiO 2, and optical interference effects in the

SiO2 film.
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Fig. 6. Relative amplitude at 1 MHz of laser beam deflection signal
as a function of Al film thickness for a series of Al-on-Si and Al-on-
SiO2-on-Si films. Circles are experimental data, and curves are from

the extended Opsal-Rosencwaig model.

and the SiO2-air surfaces, the thermal lenses in both the
SiO2 and the air, and the optical interference effects on
the probe beam in the SiO2 film. Note that the thermal
lenses have opposite signs in air and SiO2 because of the
opposite signs of their respective e.

When all the thermal lens optical and nonlinear ef-
fects are properly included in the 3-D O-R model, we
have a quantitative tool for measuring the thickness of
thin films. This is illustrated in Fig. 6, where we show
theoretical curves and data obtained for single films of
Al on Si and for double films of Al and SiO 2 on Si. We
have used the magnitude of the thermal-wave signal
rather than the phase in these measurements, since the
magnitude has a greater dynamic range and can be
measured more precisely. The data in Fig. 6 are in ex-

wa
I-
-
a.

4:
w
I-

4:
-J
cc

.5 1.0

THICKNESS (microns)

Fig. 7. Relative amplitude at 1 MHz of laser beam deflection signal
as a function of SiO 2 film thickness for a series of SiO2 -on-Si films.
Circles are experimental data, and curves are from the extended

Opsal-Rosencwaig model.

cellent agreement with the theory both for the single
and double films. The precision of the readings ob-
tained with a 1-sec averaging time and 1-MHz modu-
lation frequency translates to a thickness sensitivity of
±2% over the thickness range of 500-25,000 A for these
films.

In Fig. 7 we show the theoretical curves and the data
for a series of transparent SiO2 films on Si. Although
SiO 2 on Si is only a single film problem, the theory in
this case must include thermoelastic deformations at
both Si-SiO2 and SiO2-air interfaces, thermal lens ef-
fects in both the SiO2 and the air, and optical interfer-
ence effects in the SiO 2 (see Fig. 5). The fit between
theory and experiment is, with all this complexity, quite
good, indicating that transparent as well as opaque films
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can be measured with this thermal-wave technique.
The thickness sensitivity for SiO2 films on Si appears
to be ±2% over the 500-15,000 A range.

IV. Conclusions

We have developed a method for measuring the
thickness of opaque and transparent thin films by
combining a new laser beam deflection technique with
a 3-D model of thermal-wave propagation in layered
media. The experimental part of our technique is
unique in that both the heating and probe laser beams
are highly focused, directed normal to the sample sur-
face, and offset by a small distance from each other.
With this apparatus we measure both thermally in-
duced surface deformations and thermal lens effects at
modulation frequencies up to and including 10 MHz.
As we have shown, however, the surface deformations
are more significant even for materials with relatively
low thermal expansion coefficients such as Si, and at the
highest modulation frequencies (10 MHz) the surface
deformations completely dominate the measure-
ments.

The theory comprising the other half of our methods
is an extension to three dimensions of the Opsal-Ros-
encwaig model of thermal-wave propagation and re-
sponse in multilayered systems. In this paper we il-
lustrated with examples the essential elements of the
extended theory showing results for limiting cases that
closely approximate the conditions for which our
technique is most sensitive to thickness variations. In
addition to explaining the measurements, the theory is
also embodied in a formalism that allows for the sys-
tematic treatment of very complex structures including
layered media, in which the heating beam energy is
absorbed beneath the surface, and transparent layers,
in which optical interference effects on the probe beam
are modulated by the thermal waves. We have also
found that nonlinear effects due to temperature
dependencies in material parameters, particualrly
thermal conductivity and index of refraction, are sig-
nificant and must be included.

We believe that the combination of our experimental
system and theoretical model provides for the first time
a truly quantitative (i.e., accurate) method for effi-
ciently measuring both opaque and transparent thin
film thicknesses in a nondestructive and noncontact
manner.
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