Examen 1 F5

Física 5^{to} 1^{er} Examen: Fuerzas Electrostáticas

Parte A: Resolver los siguientes problemas (70 puntos):

1. Cuatro cargas $|q| = 2.00 \times 10^{-12}$ C, se encuentran en las esquinas de un cuadrado de lado 2a, centrado en el origen, donde $a = 2.00 \times 10^{-2}$ m (Figura 1). Calcular la fuerza que ejerce este sistema sobre una carga $q_P = 3.00 \times 10^{-12}$ C, ubicada en el punto P = (10a, 0).

Puntaje adicional:

Graficar el módulo de la fuerza en función de la distancia, para diferentes puntos P (sobre el eje x) muy alejados.

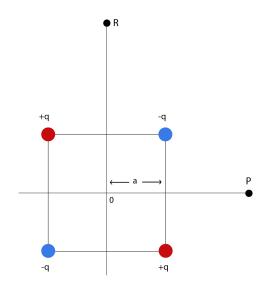


Figure 1: Problema 1

2. Una carga $q_1 = 2.50 \,\mu\text{C}$ está ligada a un resorte, y todo el sistema está montado sobre una superficie sin rozamiento. Cuando se acerca otra carga $q_2 = -8.50 \,\mu\text{C}$, a una distancia d = 9.50 cm de esta, el resorte se estira una distancia x = 5.00 mm (o sea, la distancia entre ambas cargas ahora es 9.00 cm). (Figura 2). Calcular la constante elástica del resorte.

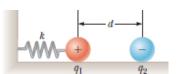
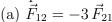


Figure 2: Problema 2


Algunos Datos Útiles:

Partícula	0 ()	Masa (kg)
Electrón	-1.60×10^{-19}	9.11×10^{-31}
Protón	$+1.60 \times 10^{-19}$	1.67×10^{-27}
Neutrón	0	1.67×10^{-27}

Constante Coulombiana $k_e = 8.9875 \times 10^9 \frac{N m^2}{C^2}$.

Parte B: Resolver los siguientes problemas (10 puntos cada uno):

- 1. Se coloca un gramo de hidrógeno dentro de una esfera pequeña, y otro gramo hidrógeno en otra esfera. Separamos ambas esferas por una distancia de 1 metro. Si la carga del electrón y la del protón difirieran en el noveno decimal, ¿cúanto valdría la fuerza Coulombiana entre estas dos esferas?
- 2. El Objeto 1 tiene una carga de $+4 \mu C$, y el objeto 2 tiene una carga de $-12 \mu C$. Señalar la respuesta correcta: a respueses
 (a) $\vec{F}_{12} = -3\vec{F}_{21}$ (b) $F_{12} = -3\vec{F}_{21}$ (c) $3\vec{F}_{12} = -\vec{F}_{21}$ (d) $\vec{F}_{12} = 3\vec{F}_{21}$ (f) $3\vec{F}_{12} = \vec{F}_{21}$

(b) $\vec{F}_{12} = -\vec{F}_{21}$

(g) Ninguna anterior

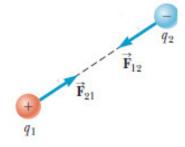


Figure 3: Problema 2

- 3. Dos cargas puntuales se atraen entre sí por una fuerza eléctrica de módulo F. Si una carga se reduce a un tercio de su valor original, y la distancia entre ellas se duplica, la magnitud de la fuerza resultante es:
 - (a) $\frac{1}{3}F$ (b) $\frac{1}{12}F$ (c) $\frac{1}{6}F$
- (d) $\frac{3}{4}F$

- (e) $\frac{4}{3}F$ (f) 12F (g) Ninguna anterior
- 4. Considerar el primer problema de este examen. ¿Qué pasaría si los signos de todas las cargas cambiaran a los signos opuestos?
 - (a) La fuerza resultante no cambia.
 - (b) Cambia la magnitud de la fuerza, pero el sentido es el mismo.
 - (c) Cambia tanto el sentido de la fuerza como su magnitud.
 - (d) Cambia el sentido de la fuerza, pero no su magnitud.
 - (e) Ninguna de las anteriores