{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Cálculo Numérico: Derivadas" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Función numerica para la derivada primera\n", "# Diferencias Finitas\n", "\n", "def dy_diff(y,x):\n", " \"Finite difference derivative of the function f\"\n", " n = len(y)\n", " d = zeros(n,'d') # assume double\n", "\n", " # Use centered differences for the interior points, \n", " # one-sided differences for the ends\n", " for i in range(1,n-1):\n", " d[i] = (y[i+1]-y[i-1])/(x[i+1]-x[i-1])\n", " d[0] = (y[1]-y[0])/(x[1]-x[0])\n", " d[n-1] = (y[n-1]-y[n-2])/(x[n-1]-x[n-2])\n", " return d" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEKCAYAAAAW8vJGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XdUFOf7NvBrF5DekQ6iqAFsECt+NWISNTbUYAEUwd5Q\nUGNHxd57r6jBFk0MKEKMRtQYlRg1CXaMIFVFBOkLu8/7h6/7c6XXZxfuzzl7Dss8M3Pt7Ozc00fA\nGGMghBBC/j8h7wCEEELkCxUGQgghMqgwEEIIkUGFgRBCiAwqDIQQQmRQYSCEECKDCsNHjh49il69\nevGOIZWbm4v+/ftDT08Pw4YN4x2nQl68eAFtbW1U9WxoFxcXHDhwoJpSlSw2NhZCoRASiaTGx/Wx\nyMhIWFlZVbp/bW1txMbGVimDj48PFi5cWK62VZ1ONfkbmzRpEpYvX14jw66MXbt2wcTEBDo6Onj7\n9m25++vTpw++//77crffs2cPpk+fXma7/Px82NvbIzU1teyBshpw9OhR1rZtW6alpcXMzMxY7969\n2e+//14To6rTjhw5wjp06MDEYjHvKNy4uLiwAwcO1Ph4nj9/zgQCQa1P68uXLzNLS8tyte3WrRvb\nv39/tWfw8fFhCxcuLFdbXtPpU0FBQaxLly5cM5RGJBIxdXV19u+//9boePLz85mVlRVLSkoqV/u1\na9eymTNnltmu2rcYNm7ciOnTpyMgIACvXr1CfHw8pkyZgtDQ0OoeVbUSi8W8IxQRFxeH5s2bQyhU\nrA27wsJC3hHqJIFAUGPDZrVwnas8/sZqSkpKCvLy8mBvb1+j4wkJCYG9vT3MzMzK1d7DwwOHDx9G\nQUFB6Q2rWLBkpKenMy0tLXb69OkS2+Tl5TE/Pz9mbm7OzM3Nmb+/P8vPz2eMvV97srCwYGvXrmUN\nGzZkZmZm7MyZMywsLIw1a9aMGRgYsFWrVkmHtXjxYubm5saGDRvGtLW12eeff87+/vtvafdVq1Yx\nW1tbpq2tzRwcHNiZM2ek3YKCgljnzp3Z9OnTmaGhIQsICJBZC5FIJMzf358ZGxszHR0d1qpVKxYd\nHS39nF5eXqxhw4asUaNGbPny5UwikUiH+7///Y999913TF9fnzVu3JiFh4eXOD0ePHjAunXrxvT0\n9FiLFi1YaGgoY4yxRYsWsQYNGjAVFRWmpaXFDh48WKTfxYsXsyFDhrCRI0cybW1t1qJFC3b79m1p\nd4FAwJ49eyZ97+3tzQICAio1rSUSiXR6GhoasqFDh7K0tDTG2P+tRR44cIBZW1uzbt26sdjYWJk1\nyzdv3jAfHx9mbm7O9PX12cCBAxljjKWlpbG+ffuyhg0bMn19fdavXz+WkJAgHW9pWwy3bt1inTp1\nYnp6eszMzIz5+voykUgk8/l3797NmjVrxvT09NiUKVOk3cRiMZs5cyYzMjJiTZo0Ydu3by91Tbis\neam07/zgwYPM3t6eaWtrsyZNmrA9e/ZIu328xbB27Vrm5uYmM96pU6cyPz8/tmDBAqakpMTU1NSY\nlpYWmzp1apHvOCcnh82YMYM1atSI6erqsi5durC8vDzGGGODBw9mpqamTFdXl33xxRfs/v370nH4\n+PhI54tPlTWd0tPT2ejRo5mZmRmzsLBgAQEB0m5l/cYmTpzIvvvuO5nxubq6sk2bNpU6zR88eMDU\n1NSYkpIS09LSYvr6+owx2fnbzs6OnTt3TjrcgoICZmRkxO7evcsYY+zGjRvM2dmZ6enpsTZt2rDI\nyEiZ77NJkyZMW1ubNW7cmB09erTYaVPSsuzx48dMU1OTCQQCpqWlxb766qsi/ebm5rLhw4czQ0ND\npqenx9q3b89evXrFGJPdMixr3ho1ahRbsWKF9P2JEydY48aN2bt37xhjjJ0/f56Zmpqy1NRUaZtm\nzZqxK1euFPuZPqjWwhAeHs6UlZVL3cxcuHAhc3Z2Zq9fv2avX79mnTt3lm7GXr58mSkrK7Nly5ax\nwsJCtm/fPmZoaMg8PT1ZVlYWu3//PlNXV2exsbGMsfcLRhUVFfbjjz+ywsJCtn79eta4cWNWWFjI\nGGPs1KlTLDk5mTHG2MmTJ5mmpiZLSUlhjL2f4MrKymz79u1MLBaz3NxcmZk2IiKCtW3blmVkZDDG\nGHv06JF0WF5eXmzgwIEsKyuLxcbGsubNm0sXXkFBQUxFRYXt37+fSSQStmvXLmZubl7stBCJRMzW\n1patWrWKFRQUsN9++41pa2uzx48fM8YYCwwMZF5eXiVOy8WLFzM1NTUWHh7OJBIJmzdvHuvUqZO0\n+6eF4eNdBhWd1ps3b2bOzs4sMTGRiUQiNmHCBObh4cEY+7/C4O3tzXJyclheXl6RXQ59+vRh7u7u\nLD09nRUUFLCrV68yxt4XjJ9++onl5uayzMxMNmTIEGnRYKz0wvDXX3+xW7duMbFYzGJjY5m9vT3b\nvHmzzOfv378/y8jIYC9evGANGzZkERERjDHGdu3axezs7FhCQgJLS0tjLi4uTCgUljjvljUvlfad\nh4WFsf/++48xxtiVK1eYhoYGu3PnjvR7+FAYkpKSmKamJktPT2eMvV+YGRsbS9sWNy0+/o4nT57M\nunfvzpKSkphYLGY3btyQrnQFBQWxrKwsJhKJmL+/P3N0dJSZL0oqDGVNp4EDB7KJEyeynJwc9urV\nK9ahQwdp4SvrN3b16lVmZWUlHVdaWhpTV1eXTufSpvmhQ4eK7Er6eP5eunQpGz58uLTbuXPnmIOD\nA2OMsYSEBGZoaChdwP7666/M0NCQpaamsqysLKajo8OePHnCGGMsJSVFpoh+rLRl2acrRp/avXs3\n69+/P8vNzWUSiYTduXNHujD/+Hsua95q3759kRXx4cOHMx8fH5aamsrMzc1ZWFiYTHdXV1e2devW\nYnN9UK2FITg4mJmampbaxtbWVqbi/fLLL8zGxoYx9v5Hoq6uLl37fvfuHRMIBCwqKkravm3btiwk\nJIQx9n7B6OzsLO0mkUiYmZkZu3btWrHjdnR0lPYbFBTErK2tZbp/PNNeunSJNW/enN28eVPmyy0s\nLGQNGjRgDx8+lP5vz549zMXFRTqMpk2bSrtlZ2czgUDAXr58WSTP1atXi0wvDw8PFhgYKP18I0aM\nKPazfOjeo0cP6fsPC/MPiisMH28xVGRa29nZsUuXLkm7JSUlMRUVFSYWi6VF4Pnz59LuHxeGpKQk\nJhQKpQu80ty9e1e6BshYxY4xbNq0iQ0aNEjm81+/fl36fujQoWzNmjWMMca6d+8us+Z+4cKFCu07\n/3ReKu93ztj7hemWLVsYY0WPMXzzzTds3759jDHGzp49K12YMfZ+Wnx6jOHDdywWi5m6ujr7559/\nysz+9u1bJhAIpAui0gpDadMpJSWFqaqqstzcXGn3Y8eOse7du0unS2m/MYlEwqytraUrCXv37i12\n7fqDT6d5cYXhw+d4+vQp09bWlmbz9PRky5YtY4wxtnr16iIrXL169WKHDx9m2dnZTE9Pj/34448s\nJyenxCyMlb4sK+tYzMGDB1nnzp2L/b4+LQylzVvNmjVjv/zyi0z/6enpzNramrVq1YpNnDixyPCH\nDx/Oli5dWupnq9ad14aGhkhNTS31jIWkpCQ0atRI+t7a2hpJSUkyw/iwL1VdXR0AYGJiIu2urq6O\nrKws6XtLS0vp3wKBAJaWlkhOTgYAHDlyBE5OTtDX14e+vj6io6Px5s0bafvSzgb58ssv4evriylT\npsDExAQTJkxAZmYmUlNTUVBQUOQzJCYmSt+bmppK/9bQ0AAAmcwfT4tPMzRq1EhmWGX5eNpoaGgg\nLy+v3GeMVGRax8XFYdCgQdJp6eDgAGVlZbx8+VLavqTpGR8fDwMDA+jq6hbplpOTgwkTJsDGxga6\nurro1q0bMjIyyrXP+8mTJ+jXrx/MzMygq6uLBQsWyHy/QNHv4sPnSU5OlslrbW1d6rjKmpdK+87D\nw8PRqVMnGBoaQl9fH+fPny+S8wNvb28EBwcDAIKDgzFy5EiZ7iUdZ0hNTUVeXh5sbW2LdJNIJJg7\ndy6aNm0KXV1dNG7cWNpPWUqbTnFxcSgoKICZmZl0ukycOBGvX7+WtintNyYQCODu7o7jx48DAI4d\nO4bhw4dLu5c1zUvTtGlT2NvbIzQ0FDk5OTh79iw8PT2luU+dOiUdrr6+Pq5fv46UlBRoaGjg5MmT\n2L17N8zNzdGvXz88fvy42HGUtSwrjZeXF3r16gV3d3dYWFhgzpw5JR6bK23e0tfXx7t372Ta6+rq\nYvDgwYiOjsbMmTOLDC8zMxP6+vql5qvWwuDs7AxVVVWcOXOmxDbm5uYyp9e9ePEC5ubmlR5nfHy8\n9G+JRIKEhASYm5sjLi4O48ePx44dO5CWloa3b9+iZcuWMgucsg7mTZ06Fbdv38aDBw/w5MkTrFu3\nDg0bNoSKikqRz/BxgSovc3NzxMfHy2SKi4sr97DKyq+hoYGcnBzp++Tk5EofwLS2tkZERATevn0r\nfeXk5Mgc9Cpp2FZWVkhLS0NGRkaRbhs2bMCTJ08QFRWFjIwMXLlyBez9lmyZmSZNmgQHBwfExMQg\nIyMDK1asKHdRNDMzw4sXL6TvP/77U+WZl0qSn58PNzc3zJ49G69evcLbt2/Rp0+fEvsdMGAA/vnn\nH0RHRyMsLExmQVnad2dkZAQ1NTXExMQU6Xb06FGEhobi0qVLyMjIwPPnzwGU74BzadPJysoKqqqq\nePPmjXSeyMjIwL///luuzMD7g6GnT59GXFwcoqKi4ObmBqDsaV6e+djDwwPHjx9HSEgIHBwc0KRJ\nEwDv52UvLy+ZeTkzMxOzZ88GAPTs2RMXLlxASkoK7OzsMG7cuGKHX5VlmbKyMhYtWoT79+/jjz/+\nwLlz53DkyJFy9fux1q1b48mTJzL/u3fvHoKCguDp6YmpU6cW6efhw4do06ZNqcOt1sKgq6uLpUuX\nYsqUKQgJCUFOTg4KCgoQHh6OOXPmAHj/ZS1fvhypqalITU3F0qVL4eXlVelx/vXXXzhz5gwKCwux\nefNmqKmpoVOnTsjOzoZAIICRkREkEgmCgoIQHR1d7uHevn0bt27dQkFBATQ0NKCmpgYlJSUIhUIM\nHToUCxYsQFZWFuLi4rBp0yaMGDGiwtk7deoEDQ0NrF27FgUFBYiMjMS5c+fg7u5erv7L+mE7Ojri\n6NGjEIvFiIiIwNWrVyuc8YOJEydi/vz50gXD69evy32mmZmZGXr37o3JkycjPT0dBQUFuHbtGoD3\naz7q6urQ1dVFWloalixZUqT/kj5nVlYWtLW1oaGhgUePHmHXrl2l5vi44AwdOhRbt25FYmIi3r59\ni9WrV5fYX1XmJZFIBJFIBCMjIwiFQoSHh+PChQsltldXV4ebmxs8PT3RsWNHmZUEExMTPHv2rNj+\nhEIhRo8ejRkzZiA5ORlisRg3btyASCRCVlYWVFVVYWBggOzsbMyfP7/IdClJadPJzMwMPXv2xIwZ\nM5CZmQmJRIJnz55VaD5zdHSEkZERxo4di2+++QY6OjoAyp7mJiYmSEhIkDm75tPP4e7ujl9++QW7\nd++WKbAjRozA2bNnceHCBYjFYuTl5SEyMhKJiYl49eoVQkJCkJ2dDRUVFWhqakJJSanY7FVZlkVG\nRuLff/+FWCyGtrY2VFRUShxPafr06YMrV65I3+fl5WHEiBFYtWoVDh48iMTERJnfRWJiItLS0tCp\nU6dSh1vt50HOmDEDGzduxPLly2FsbAxra2vs3LkTgwYNAgAEBASgXbt2aN26NVq3bo127dohICBA\n2v+nawKlrRkIBAIMGDAAJ0+ehIGBAY4ePYqffvoJSkpKcHBwwMyZM+Hs7AxTU1NER0ejS5cuMv0W\nN64P/3v37h3Gjx8PAwMD2NjYwMjICLNmzQIAbNu2DZqammjSpAm6du2K4cOHY9SoUaUOtzgqKio4\ne/YswsPD0bBhQ/j6+uL7779H8+bNSxxWSXmLG9eWLVtw9uxZ6Ovr49ixY9LvoKRcpY3Lz88Prq6u\n6NmzJ3R0dODs7IyoqKhS+/34f99//z1UVFRgZ2cHExMTbNmyBQDg7++P3NxcGBkZoXPnzujdu3e5\nc61fvx7Hjh2Djo4Oxo8fD3d3d5m2pX2/48aNQ69evdCmTRu0a9cObm5uJY6nsvMS8P4CtK1bt2Lo\n0KEwMDDA8ePHMWDAgFI/n7e3N6Kjo4ssZPz8/HD69GkYGBjA39+/2OnRqlUrtG/fHoaGhpg3bx4Y\nYxg5ciQaNWoECwsLtGzZEs7OzkWmU0mfvazpdOTIEYhEIjg4OMDAwABDhgxBSkpKqdPl0/95enri\nt99+k+7qAcqe5l999RVatGgBU1NTGBsbFztsU1NTdO7cGTdu3JC5QNTS0hIhISFYuXKldBm1YcMG\nMMYgkUiwadMmWFhYwNDQENeuXStxhaOiy7KPpaSkYMiQIdDV1YWDgwNcXFyKLSpl/cb79euHR48e\nSXefz5s3D40aNcKECRPQoEEDBAcHIyAgQLpCcezYMfj4+EBFRaXEbAAgYOXZnizF6NGjERYWBmNj\nY5lNyI9NmzYN4eHh0NDQwKFDh+Dk5FSVUUotWbIEMTExFbpKkBB5Fx8fDzs7O7x8+RJaWlq84xA5\nt2/fPjx48ACbNm0qtV1+fj4cHR1x7do1GBkZldq2ylsMo0aNQkRERIndz58/j5iYGDx9+hR79+7F\npEmTqjpKqSrWNELkjkQiwYYNG+Dh4UFFgZTLuHHjyiwKAKCqqoqHDx+WWRQAQLmqobp27VrqvVpC\nQ0Ph7e0NAOjYsSPS09Px8uVLmbNfKqusXS2EKJLs7GyYmJigcePGpa5sEVLTqlwYypKYmChzypql\npSUSEhKqpTAsXry4ysMgRF5oamoWe1ozIbWtVm7C8+kuH1rLJ4QQ+VXjWwwWFhYy1xokJCTAwsKi\nSDttfQtkpZfv4hBCCCHv2draFnv9SlXU+BaDq6ur9MKNmzdvQk9Pr9jdSFnpSdLzzAsLGZ4/Zwg5\nK0KncUehNPlz6C9sjuURu5Atypa2k6fX4sWLuWeoj9kpP/9XXcn/Lu8dAs5ugc7CxlAa74wvJp7C\n+YgCvHjBIBbzz1nSq6RrW6qiylsMHh4euHLlClJTU2FlZYUlS5ZILzqZMGEC+vTpg/Pnz6Np06bQ\n1NREUFBQmcNUUgJsbAAbGxW49vNEbKwH5u66hiVHN2LZ74vg+dkErBk0DQ01G1Y1PiGknsvMz4TH\nwdn46flB4PmXcLc5ilWLnVGFGzIovCoXhg/3OSnN9u3bqzQOGxsBTqz5ApmZX2DNvqfYen4Djj90\nRPDgw3Bz+rpKwyaE1F9Hbp7F5t/3QCduDBZ2vo3pc22gqck7FX8K9QQYbW1g+YxmSD20G/0Kj2Do\ncW94BS1AgbiMh07UAhcXF94RKk2RswOUnzdFzJ9fmI9Be/wx6vRU9GyyGq+PbEGALxWFD6p85XN1\nEQgEqGiU46Gv4BMyEiZWmYicegxNDBuV3RMhpF67n/IUX+4chnfxNjjpuR+uPQx4R6qSyiw7yxym\nIhcGAEhMksBl3gbEWa7Djt67Ma7LtzWQjpD6w8DAoEIPrye1Q19fH2lpaUX+T4WhBGIxMHX1LexN\n88Cgzwbjh3Fr6FoJQiqpJhY0pOpK+l6oMJQhPPItXE/1QN+W3XBm4noqDoRUAhUG+VSbhUGhDj6X\npbeLPsI9LyDs/mUM3jOHZm5CCKmEOlUYAODr/xngvPuvCLl/AcP2zafiQAghFVTnCgMA9OhiiHND\nLuKnf8PguX8hFQdCSI1atWpViY8ALa/Y2FgIhcJyP562JtWpYwyfCot8jQE/fQn3Nt8ieEzRR0YS\nQoqiYwx8xMbGokmTJigsLIRQWHSdnY4xVJO+Lg3x86BLOPHPaYwKWsE7DiGkDhKLxbwjVLs6XRgA\noF93Y5zufwlH7u/B9os/845DCKkCGxsbbNiwAW3atIGenh7c3d2Rn5+PQ4cOoWvXrjJthUIh/vvv\nPwCAj48PJk+ejD59+kBbWxtdu3ZFSkoK/Pz8oK+vD3t7e9y7d0/ab1JSEtzc3GBsbIwmTZpg27Zt\n0m6BgYEYPHgwvLy8oKuri0OHDiEwMFDmmc2///47OnfuDH19fVhbW+Pw4cMAgLCwMDg5OUFXVxfW\n1tZYskQ+92TU+cIAAAO/NsXcJqfhf2k87sQ95h2HEFJJAoEAp06dwi+//ILnz5/jn3/+waFDh8p1\navqpU6ewYsUKpKamokGDBujUqRPat2+PtLQ0DB48GDNmzADw/vGq/fv3h5OTE5KSknDp0iVs3rwZ\nFy5ckA4rNDQUQ4YMQUZGBoYPHy4z/ri4OPTp0wd+fn5ITU3FvXv34OjoCADQ0tJCcHAwMjIyEBYW\nhl27diEkJKSap1LV1YvCAAArJndA59wVcNn9LTLz6SlZhFSFQFA9r8qYNm0aTE1Noa+vj/79+8us\n6ZecV4Bvv/0WTk5OUFVVxaBBg6CpqYkRI0ZAIBBg6NChuHv3LgDgzz//RGpqKgICAqCsrIzGjRtj\n7NixOHHihHR4nTt3hqurKwBATU1NZh//sWPH0KNHDwwbNgxKSkowMDBAmzZtAADdunVDixYtAACt\nWrWCu7s7rly5UrkJUYPqTWEAgF/XjIPaa2f8b91oOrhGSBUwVj2vyjA1NZX+raGhUe7HoRobG0v/\nVlNTk3mvrq4uHU5cXBySkpKgr68vfa1atQqvXr2Stre0tCxxPPHx8WjSpEmx3W7duoXu3bvD2NgY\nenp62LNnD968eVOu/LWpXhUGVVXg+oLteJj8HBOPbOQdhxBSTTQ1NZGTkyN9n5KSUulhWVlZoXHj\nxnj79q309e7dO5w7dw7A+62P0nZdWVtbl/jwHE9PTwwcOBAJCQlIT0/HxIkT5eL01E/Vq8IAAM0a\nq+H7fj9i/4N1OH7zMu84hJAq+LDl36ZNG9y/fx9///038vLyEBgYWGy78ujQoQO0tbWxdu1a5Obm\nQiwWIzo6Grdv3y7XsDw9PXHx4kWcOnUKhYWFePPmDf7++28AQFZWFvT19dGgQQNERUXh2LFjcnnr\nnnpXGADAvbc1xhkexcgQTzx9FV92D4QQufRh7b1Zs2ZYtGgRvv76a3z22Wfo2rWrzAL307X84tb6\nP7xXUlLCuXPncO/ePTRp0gQNGzbE+PHj8e7du1L7/fA/a2trnD9/Hhs2bIChoSGcnJzwzz//AAB2\n7tyJRYsWQUdHB8uWLcOwYcOKzcBbnb7ArTSMAY6+a5Cs+zOSll+DsrDKD7MjpE6gC9zkE13gVgsE\nAuD31bOR9UYbY/Zv4B2HEELkRr0tDACgrS3AYbd9CP5vPW7EPOQdhxBC5EK9LgwAMKRnI3whWQrX\nA6MhltS9S9sJIaSi6n1hAIDQRROQ9VYd44M2845CCCHcUWEAoK0lxMGB+3Ho6Wr8+d8T3nEIIYSr\nentWUnG++G4bHqucRNKKK1ASKnHNQggv8vBbJEXRWUmcnFs8BRkZQkw6tK3sxoQQUkdRYfiIjrYQ\n+/oexIGny3EnNoZ3HEII4YIKwye8+jZFp4IF6LtnDCRM/u5hQgipfpGRkbCysqp0/9ra2oiNja1S\nBh8fHyxcuLBKw6guVBiKEbZwGtIyc7H49DHeUQghcsbFxQUHDhyQ+V9mZiZsbGyqNNyybs5Xm6gw\nFENPVwkB7bZgzV9zkZFLz24ghPyfmlx4y8tBfyoMJQjwdoZ+end47FjFOwoh5COrV69G06ZNoaOj\ngxYtWuDnn98/svfQoUPo0qULZs2aBQMDAzRp0gQRERHS/oKCguDg4AAdHR3Y2tpi7969xQ5/3bp1\nGDx4sMz/pk2bBn9/fwQEBODatWvw9fWFtrY2pk2bBkD2MaK5ubmYOXMmbGxsoKenh65duyI/Px8A\nMGTIEJiZmUFPTw/dunXDgwcPqn36VAsmJ+QoilTE9QQmmGPI7sY+4x2FkFojj7/Fj506dYolJycz\nxhg7efIk09TUZMnJySwoKIipqKiw/fv3M4lEwnbt2sXMzc2l/YWFhbH//vuPMcbYlStXmIaGBrtz\n5w5jjLHLly8zS0tLxhhjSUlJTFNTk6WnpzPGGCsoKGDGxsbSti4uLuzAgQMymQQCAXv27P1yYvLk\nyax79+4sKSmJicViduPGDZafn88YYywoKIhlZWUxkUjE/P39maOjo3QYPj4+LCAgoMTPXdL3UhPf\nF13HUIb2M1YiXf0vPF3xI+8ohNSK8vwWBUuqZ3cKW1z137yTkxOWLFmCtLQ0rFixAk+fPgUA5OTk\nQEtLCykpKTJPa/tg0KBB6N69O6ZNm4bIyEh4eXkhPv79bfh79+4NNzc3jB07FufOncOcOXNw//59\nAED37t0xYsQIjBkzRjosoVCImJgY2NjYQEtLC7du3UKrVq1KzZ2eng4DAwNkZGRAW1sbo0aNgqWl\nJZYtW1Zs+9q8joHuNV2Gn2bNgM06BwRF/oZRLl/yjkOIXKiOBXplHTlyBJs2bZKeBZSVlYXU1FQo\nKSkVeeznh+7GxsYIDw/HkiVL8PTpU0gkEuTk5KB169bFjsPb2xu7d+/G2LFjERwcjJEjR8p0L+k4\nQ2pqKvLy8mBra1ukm0Qiwfz583H69Gm8fv0aQqFQ2o+2tnaFp0NNomMMZbAyU4O32XpMO++HAnEh\n7ziE1GtxcXEYP348duzYgbS0NLx9+xYtW7Ysc405Pz8fbm5umD17Nl69eoW3b9+iT58+JfY3YMAA\n/PPPP4iOjkZYWBiGDx8u7VbawWcjIyOoqakhJqbodVBHjx5FaGgoLl26hIyMDDx//hyA/Bxw/hgV\nhnLY7TcIkqyG8D20h3cUQuq17OxsCAQCGBkZQSKRICgoCNHR0QBKX8CKRCKIRCIYGRlBKBQiPDwc\nFy5cKLG9uro63Nzc4OnpiY4dO8LS0lLazcTEpMRnOguFQowePRozZsxAcnIyxGIxbty4AZFIhKys\nLKiqqsLAwADZ2dmYP3++TL/yVCCoMJRDgwYCbOixBftjliAp/Q3vOITUWw4ODpg5cyacnZ1hamqK\n6OhodOm/dnyhAAAgAElEQVTSRXoNQEmP69TW1sbWrVsxdOhQGBgY4Pjx4xgwYECxbT/w9vZGdHQ0\nvLy8ZP7v5+eH06dPw8DAAP7+/kUyrl+/Hq1atUL79u1haGiIefPmgTGGkSNHolGjRrCwsEDLli3h\n7Oxc5uNGeaGDzxXQeMoUmJkJ8UcA3UuJ1F2K8FusDfHx8bCzs8PLly+hpaXFOw7dRE9enZy0FDcz\nT+LKQzk995gQUi0kEgk2bNgADw8PuSgKtY22GCqo69y1SBZGIWblad5RCKkRivJbrCnZ2dkwMTFB\n48aNERERAQsLC96RANTuFgMVhgqKTcxBk81NEeJ+Fv3btuUdh5Bqpyi/xfqGdiXJMRsLDfRSD8Ck\nHwJ4RyGEkBpBhaESDvuNRXLhI3x/9SrvKIQQUu2oMFSCsWEDDDZcgunnFtAmNyGkzqFjDJWUmSWG\nQUArrO+5AX59evOOQ0i1MTAwwNu3b3nHIJ/Q19dHWlpakf/TMQY5oq2lhFGNlmPh5QX0pDdSp6Sl\npYExVqMvUWEB1GY1w9y9F2t8XHXlVVxRqClUGKpg2+RByM8TYtlpuvMqIRUx8/vDUMq2xPLRX/GO\nQopBhaEKVFUFmNZyBdb8uZBusEdIOeWI8rD74RIs6rICSkq805DiVLkwREREwM7ODs2aNcOaNWuK\ndI+MjISuri6cnJzg5OSE5cuXV3WUcmXVmJ4QZJtgVvD3vKMQohAm7t8DzUxHzHJ35h2FlKBKz2MQ\ni8Xw9fXFxYsXYWFhgfbt28PV1RX29vYy7bp164bQ0NAqBZVXysoCLHBegcB/RmCVyBPqDVR5RyJE\nbr3NzsKxF6uxq/cvkJP7xZFiVGmLISoqCk2bNoWNjQ1UVFTg7u6OkJCQIu0U6Wyjypg3vAs0sh0w\nLegg7yiEyLVx+3bCMLMbxvUv/gE5RD5UqTAkJibCyspK+t7S0hKJiYkybQQCAf744w+0adMGffr0\nkd+HX1eBQAAEdF2Iw8/WQFRYwDsOIXLpXW4Ofk7ZiLX96K4B8q5Ku5LKc+/wzz//HPHx8dDQ0EB4\neDgGDhyIJ0+eFNs2MDBQ+reLiwtcXFyqEq9WzRzmjCXXbDE7+Cg2+/jwjkOI3PE9uB96mZ3h3bsl\n7ygKLTIyEpGRkTU6jipd4Hbz5k0EBgYiIiICALBq1SoIhULMmTOnxH4aN26Mv/76CwYGBrJBFOwC\nt+IEHr6M1fcnIGvVQyjT6RaESOWK8qGz0BabO4VgyiC6+WR1krsL3Nq1a4enT58iNjYWIpEIJ0+e\nhKurq0ybly9fSkNHRUWBMVakKNQVC0e4QJjbEIt+OMU7CiFyxf/QYWhmtcbkgVQUFEGVdiUpKytj\n+/bt6NWrF8RiMcaMGQN7e3vs2fP+2cgTJkzA6dOnsWvXLigrK0NDQwMnTpyoluDySElJAN9WAdhy\nZzaWuw+FUECXiRAiKizAoZjVWNYlmM5EUhB0r6RqVlDAoDWzHRZ3W4T5bgPK7oGQOm7G4SPY+2cQ\nMrddpsJQA+RuVxIpSkVFgLHNA7DmxvI6UegIqYpCsRi7oldiZrsAKgoKhApDDdgwbgByC3OxNewC\n7yiEcLXk1E8Q5OljkdeXvKOQCqDCUAPUVIUYbj0fSyPr1u0/CKkIxhg23V6OyS0DoKREmwuKhApD\nDdk2cSgyJCk4cJGe8kbqp9VnzqGgQIhVo/vwjkIqiApDDdHSUIabyTws+IW2Gkj9wxjD6j+WY3TT\nBVBRoa0FRUOFoQbtnjQCr9ljnPj9Fu8ohNSq7eEXkVOYiU3jv+UdhVQCFYYapK/TAH10Z2Fu6Fre\nUQipVct+W4NhFnOgpkqLGEVE31oN2zl+FF4IruHag6e8oxBSK87cvIM3eIxtEzx4RyGVRIWhhlmZ\naKK9YCKmHdvIOwohtWL2z+vxpaYf9HUa8I5CKokKQy3Y6eOLv8Un8SzlFe8ohNSo2zFxeIZfsHvc\neN5RSBVQYagFbe2M0SRvCCYe3ME7CiE1asr3m9BKPBq2ljq8o5AqoMJQS9Z/OxO/vduF9Owc3lEI\nqRHxqW/xp+gIto/w4x2FVBEVhloysGtzGOb8D1MPBvGOQkiNmHRgF6xy+qNrG0veUUgVUWGoRfO6\nzcLJFxtRKBbzjkJItcrKy0NE2jas6Pcd7yikGlBhqEX+33aGSr4pFp34iXcUQqrVjEPB0MlxxIge\nrXhHIdWACkMtEgiA8S1mYfuddXRLblJniCUSHIlZjxnOs3hHIdWECkMtWz3KFbksA3sv0M31SN2w\n8vQ5oEAT84Z15x2FVBMqDLVMtYEQg0xnYsmv63hHIaRabLy1Dt7NZtGttesQKgwc7Bw/EinC2/jl\nzgPeUQipku8v30QmErBxzGDeUUg1osLAgZGeGrqq+mL6qQ28oxBSJQHn16O3/nRoqivzjkKqERUG\nTnaMmohH+AlPk+g2GUQx3Xr8HPFKl7Fz3GjeUUg1o8LAScsmRrDNH4Iph3bzjkJIpfgd3Y7WbBSs\nTLR4RyHVjAoDR6sG+ONSxi5k5+XzjkJIhbxKz0RUwSFscp/KOwqpAVQYOBrczQG6ua0x68gJ3lEI\nqZBpQUEwzfkK3Z0a8Y5CagAVBs58203H4ceb6II3ojAKxWL8lLQF87r7845CaggVBs4WefZCgUSE\nHecjeUchpFyWnjwLZZERprg6845CaggVBs6UlQUYaOaHVb9t5h2FkHLZfnszvJtPh1BIF7TVVVQY\n5MC2sV5IVvkDV/6N4R2FkFKd/v0uMpSeYd0oN95RSA2iwiAHTAw00F44Dv4ntvCOQkip5oVuwpda\nvtDSUOEdhdQgKgxyYsvwKfhbEoz41+m8oxBSrOjYZDxTOovto8bxjkJqGBUGOdGphQUs8/pgatB+\n3lEIKZbv4Z34rNADn1kb8I5CahgVBjmyuOd0hL3ehvyCQt5RCJGRnpWLa7l7sPZbep5zfUCFQY6M\n/qYd1ETWCDh6hncUQmTMOHQUBrnt0d/5M95RSC2gwiBHBAJgbEt/7P1nE+8ohEhJJAzHn2+Gfye6\noK2+oMIgZ1aOHIBsYSKORd7mHYUQAMDWs5chkTDMHfo17yikllBhkDPqqsr4WncKFp3fyjsKIQCA\ntVe3YJDFNHpCWz1ChUEObfUZi/+UziI6LoV3FFLPXYv+Dykq17F59AjeUUgtosIgh5pbGaBZwVD4\nH9nLOwqp52ac2IHPBaNhaqDJOwqpRVQY5NTKAVNxOXM3svNEvKOQeurl2yz8JT6EjR6TeUchtYwK\ng5xy69oSOiJ7zD1yincUUk9NP3QEJnnd8EVrG95RSC2jwiDHJjr64dBDOghNap9YIsGPCdswqytd\n0FYfUWGQY4GefZGn9BpBv97iHYXUM+t+vAiBpAH8B37BOwrhgAqDHFNtoIRvDHyx9BfaaiC1a9Mf\nWzG00TR65kI9RYVBzm0bPRpxKuG4G5PEOwqpJy7dfYrXDaKwaZQn7yiEEyoMcs7GVA8OYg/4B+/m\nHYXUE9+d2o6OKmNhqKvOOwrhhAqDAlj97VT8nrsX77LzeUchdVxi6jv8zb7HJs9JvKMQjqgwKIB+\nneygn++I7w6d4B2F1HF+QYdgkd8DnRyseEchHFW5MERERMDOzg7NmjXDmjVrim0zbdo0NGvWDG3a\ntMHdu3erOsp6ybf9NATHbIFEwnhHIXVUoViC0JTtmNt9Ku8ohLMqFQaxWAxfX19ERETgwYMHOH78\nOB4+fCjT5vz584iJicHTp0+xd+9eTJpEm6iVEeD+DQqFmdgb8QfvKKSOWvlDBJQl2pjU93+8oxDO\nqlQYoqKi0LRpU9jY2EBFRQXu7u4ICQmRaRMaGgpvb28AQMeOHZGeno6XL19WZbT1krKSEP1MpmLl\nxW28o5A6alvUNnja0imqpIqFITExEVZW/7cv0tLSEomJiWW2SUhIqMpo660tPj5IUL2APx/T9CPV\nK/zPx3jT4A7W+wzjHYXIAeWq9CwQlG/NgjHZ/eIl9RcYGCj928XFBS4uLpWNVidZGeugFRuB6Ud3\n4/ely3nHIXXInB+3o7PqeOhpqfGOQsoQGRmJyMjIGh1HlQqDhYUF4uPjpe/j4+NhaWlZapuEhARY\nWFgUO7yPCwMp3trBvuh9qivSswLoR0yqxYtXGYgWHEXUiH95RyHl8OlK85IlS6p9HFXaldSuXTs8\nffoUsbGxEIlEOHnyJFxdXWXauLq64siRIwCAmzdvQk9PDyYmJlUZbb3Wq11zGIo+x8wgOnWVVA+/\noEOwEvVEu+bFr7CR+qdKWwzKysrYvn07evXqBbFYjDFjxsDe3h579uwBAEyYMAF9+vTB+fPn0bRp\nU2hqaiIoKKhagtdn0zpOw6pbC7BP4k0HCkmVFBRKcO7Vduz4+jDvKESOCNinBwA4EQgERY5FkOIV\niiXQmG2HzS5BmNyfTi0klRd49DzW3V6EzA1/0kqGgqqJZSdd+ayAlJWEGGA6Fasu011XSdVs/3Mr\nRjSjU1SJLCoMCmrzKG8kqv6KWw/p1FVSOeduPsJb1XtY502nqBJZVBgUlIWRDtrAC9OP7eIdhSio\neWe243/q46Gjqco7CpEzVBgU2NohU3BTtA9vMnJ5RyEKJi4lA/eFx7BlxETeUYgcosKgwHp83hxG\nBe3orqukwqYFBcG6oBecmprzjkLkEBUGBeffaRpOxG6lu66ScisolOB86nYs7DGNdxQip6gwKLg5\ng3tCIszF1pBrvKMQBRF4NAyqEn2M7tmJdxQip6gwKDgloRDfWkzF2itbeEchCmLnnS3wtvMr973O\nSP1DhaEO2DLaGylqV3Dl71jeUYicO301Gu9UH2Ct91DeUYgco8JQBxjraaGdsg9mnNjOOwqRcwtC\nt+JLnUnQVGvAOwqRY1QY6ojNnr64yw4hKTWLdxQipx69eIOnKqewzXsC7yhEzlFhqCM6O9jAvOAL\n+B08wjsKkVO+QXvRTDwQdlbGvKMQOUeFoQ6Z/6U/QlK2oqBQwjsKkTNZOQW4nLUTK1z9eEchCoAK\nQx0ysXdXqEAdK05c4B2FyJk5h3+CjrgJBndx5B2FKAAqDHWIUCjAiOZ+2PbnZt5RiBxhDDj8aAsm\nO/nzjkIUBBWGOmbdSHekq91DyPVHvKMQObE//E/kN0hGoIdr2Y0JARWGOkdHQw3dNCdg7hl6VgN5\nb/mvW9CvoS9UlJV4RyEKggpDHbTVexIeq5zA0/i3vKMQzqIeJiFe7Ty2jhrDOwpRIFQY6qCWjUzR\nRNwXU4P2845COPMP3oXWAg9YNdTjHYUoECoMddTyfn64+G47cvIKeUchnLzJyMPNwr3YMJTuokoq\nhgpDHeX+RTtoSawxO+gM7yiEk2n7jsK4sC2+cvyMdxSiYKgw1GFT285A0KMN9KyGeqiwkOFU4kbM\nc5nJOwpRQFQY6rDF7q4oUEnF9pAbvKOQWrbk2C9QEapgat8veUchCogKQx2mrKSEIVb+WBm5gXcU\nUsu23d6AUXYzIBTSMxdIxVFhqOO2jhqFV+pXEBH1jHcUUkuCf/0bWWoPsHakO+8oREFRYajjDHU0\n8T/1cZj5Az3hrb4ICNuEbwx8oaFKz1wglUOFoR7Y6T0VD1WC8fgFXfBW1928n4QX6qHYMZqeuUAq\njwpDPdDKxhxNJf0w5cBe3lFIDZv2/Q44KnmikbEB7yhEgVFhqCfWDpqByznbkJEl4h2F1JDE19m4\nzfZiiyfdRZVUDRWGemJgJ0cYSD7D9P0/8I5CaojvvsOwlHRFV4emvKMQBUeFoR6Z+b8ZOPZ8I8Ri\nuuCtrsnLF+Ns6iYs7jmDdxRSB1BhqEdmDewNqORizQ+RvKOQajbv0FloCAww+uv/8Y5C6gAqDPWI\nklCIEbbTsfGPjbyjkGrEGLAveiMmtZkBgYAuaCNVR4Whntno7YW3mlH48Qo94a2u2BX6J/LV47DM\n0413FFJHUGGoZ3Q01NFLzxffnVnHOwqpJksursEQi5looKzMOwqpI6gw1EO7x0xBnPoZXL2XwDsK\nqaIfrzxGquZV7BhDT2gj1YcKQz1k3dAAndRGYUowHWtQdN+dWYseer7Q19LkHYXUIVQY6qk9PtNx\nX+UQop+94R2FVNLVewmIUz+DPWOm8I5C6hgqDPVUq0aWcBAMwoQDO3hHIZU0JXgTOqj6oFFDQ95R\nSB1DhaEe2+45CzfE2xH/Mpt3FFJB0c/ScF8lCHt96II2Uv2oMNRjLi3tYM26YuKeA7yjkAqacGAH\n7AUD0drGkncUUgdRYajn1g6Yg4h365H+roB3FFJO8S+zcUO8DVvdZ/GOQuooKgz13ND/dYAhmsF3\nz3HeUUg5TdxzEFasC75qbc87CqmjqDAQLPpyLn5IXIN8kYR3FFKG9HcFiHi3Hmtc5/COQuowKgwE\nU3p/DTVldcw5cI53FFKGqXtOwAC2cO/SkXcUUodRYSAQCATwbzcXex+soltyy7F8kQQnEtdgYfe5\nvKOQOo4KAwEALBoyCBK1N1h57ArvKKQEs/efg5pyA0zt04N3FFLHVbowpKWloUePHmjevDl69uyJ\n9PT0YtvZ2NigdevWcHJyQocOHSodlNQsZSUlTHCYj7W3lkJChxrkTkEBw+5HS/BdxwV0a21S4ypd\nGFavXo0ePXrgyZMn+Oqrr7B69epi2wkEAkRGRuLu3buIioqqdFBS89aPHIECjRdYeZS2GuTNrH3n\noKJaiIWDB/GOQuqBSheG0NBQeHt7AwC8vb3x888/l9iWMdpvrQhUlJQx0SEAq28F0laDHBGJGHY9\nCsScjoshFNDeX1LzKj2XvXz5EiYmJgAAExMTvHz5sth2AoEAX3/9Ndq1a4d9+/ZVdnSklqzzGoFC\njXgs+z6SdxTy/3237ywaqIqxwG0g7yiknij1yR49evRASkpKkf+vWLFC5r1AIChxv+f169dhZmaG\n169fo0ePHrCzs0PXrl2LbRsYGCj928XFBS4uLmXEJ9VNRUkZk1ssxLqoJVjo5QIhraByJRIx7Hkc\niIXdaGuBvBcZGYnIyMgaHYeAVXI/j52dHSIjI2Fqaork5GR0794djx6V/rjIJUuWQEtLCzNnziwa\nRCCgXU5yokBcCO159pjXYh8We7vwjlOv+W4PweG4QLxbe4cOOpNi1cSys9KrIK6urjh8+DAA4PDh\nwxg4sOhmbk5ODjIzMwEA2dnZuHDhAlq1alXZUZJaoqKkjCktF2Ltn3Ssgaf8fIZ9TwIxr/NiKgqk\nVlW6MMydOxe//vormjdvjt9++w1z576/6CYpKQl9+/YFAKSkpKBr165wdHREx44d0a9fP/Ts2bN6\nkpMatXq4JyQaSQg8fJl3lHpr+p4QNFAF5g0cwDsKqWcqvSuputGuJPkz6/vvsfPmfmRsiYSyMq2x\n1qb8fAbtWZ9j2ZeBmEOFgZRCrnYlkbpvpacHJJrJWHokkneUemf6nhCoqQowe4Ar7yikHqLCQEqk\noqSMqa0XYf1fi1FYSFtztSUvX4L9MYEI6BJIxxYIF1QYSKlWeLiDab7EokO/8Y5Sb/jvCoGaqhCz\nXPvzjkLqKSoMpFQqSsr4rl0gNvw9D7l5dIpSTUt/V4j9sfOx1GUZbS0QbqgwkDItGTIM6uoSTNh6\nineUOs9r40EYqprCr08f3lFIPUaFgZRJKBBiU591OJoyDymv83nHqbNiXmQhLDsQ+4aso60FwhUV\nBlIuo1y6w0LVAZ6bdvGOUme5b9mAz1Rd4NquHe8opJ6jwkDK7ciINYgUr8Q/T4p/9gapvCt3UnCn\nwVYcH7ui7MaE1DAqDKTcXFq0gKP6ALjvWMU7Sp0z8kAgvtD2gaNNY95RCKHCQCrm5MQleKSxH+eu\nxfGOUmccDnuIBJ0fcXzyAt5RCAFAhYFUUDNTc/Q2nIKxxxaC7mBSdRIJ4HduLtwt58BMz4B3HEIA\nUGEglRA8aRZSdS9g2+m7vKMovMCgq8jV+Rv7xvnyjkKIFBUGUmH6mtoY22wR5l+ehYIC2myorLw8\nhjV3Z2FW2xXQaKDGOw4hUlQYSKVs9R4HiVY8Zu76hXcUhTVu8ymoaxRi6RAP3lEIkUGFgVRKA2UV\nLOu2Fjv/80fSK7roraKexmbj2OvZ2NJ3PT2yk8gdeh4DqTTGGJoEuMIwpxNub6IzairCbuocqBgk\n4t8lwbyjEAVHz2MgckUgECBkwjbcUduIE7884x1HYez88V881TqIs1M38I5CSLGoMJAqaW1tAw+r\n2Rh3xhf5+bTFV5asbAlmXJqEKfbLYGNkwjsOIcWiwkCqLGj8DEA3HqM3nOYdRe4NWx0ETZ1CbPYa\nzzsKISWiwkCqrIGyCvYN3IXjb6fj3yfveMeRW9fvpiJcNB/Hh++mA85ErtHBZ1Jt2i4djbRkHfy3\nczPortGyGAPMJo6GfRNdXJ6ziXccUofQwWci10KnrkW83nFsOHaHdxS5M3/PVaTp/4ozU5fyjkJI\nmagwkGpjoW+EmW1WYf4fE5GeIeYdR24kvxJh3cNJWN5lM/Q0tHnHIaRMtCuJVCsJk8Bsfjc4SNxx\nec0U3nHkQjv/1XijeQ3/LT9HT2Yj1Y52JRG5JxQI8aPPblwVBOLw2RjecbjbdOwf3FXfgJCJ26ko\nEIVBhYFUuy6ftcBEh4UYF+GJpJQC3nG4eRqbi1m3PDC/3Xq0tqIH8BDFQbuSSI1gjMF2UV8ovXbE\nk10r691ZSmIx0GiSLwws3+Dvhcdoa4HUGNqVRBSGQCDA1RmHEKd/CNO3XuYdp9aNXn0WqQbncHnm\nLioKROFQYSA1xlLfGDt7HcS2eG/8cTeNd5xac/5qMoLfjcNRt2AYaurxjkNIhdGuJFLjem6YjluP\nXyBly2moq9ftteeMdxKYzfoG/dp0xg+TA3nHIfVATSw7qTCQGpdbkAezRR3RVjwVl9aO5R2nRrWf\ntgEvtH5C4vIrUBYq845D6gE6xkAUkrqKGsLHHEek0jzs+fEx7zg1ZlXQXdzVXIPfpgRTUSAKjQoD\nqRXOTR3g33opfC+7496DLN5xqt31v95i4d/uWNp5M1pY0KmpRLHRriRSaxhj6LJuDO49fY2Y5Wdg\nZlI31qqfxeWjxcpv0N2hNcL9tvCOQ+oZOsZAFF6BuACfLe2L7Pim+G/bDmhqKvbB6IwMBpsZXrCw\nycHfC05BSajEOxKpZ+gYA1F4KkoquDvvNESm19Fx+nqIFfheewUFgOOMhWhgGoNbc4KpKJA6gwoD\nqXW6ajr4a0YYYgy3oe+ck1DEDUXGAJcZ+/HK+ATuzT4LzQYavCMRUm2oMBAumhhZ4uLoc7ioMhVT\n113jHafCvJZEIEorANcnn4eZbkPecQipVlQYCDddmrXGYdej2PVmCLYEK85prEv23MPxfC+ccf8J\njlbNecchpNrVjdNCiMIa7twDMa9WYcaV3hDgV0wbYcs7UqlW7H2ApTH9sLHXLvRr05l3HEJqBBUG\nwt3iAaMgkuRj+s0uiFnzM7bM7ih3d2NlDPAJjERw/lCs/GoD/L4ezDsSITWGTlclciPo+jmMCxuF\nnrn7EbpuAJTlZLVFJAK+8j+Gm3r+OO52HIPbfsU7EiFSdB0DqfMin9xGr0OuaPZyHm5tnQpNTb55\n3r5laDd9NZLNdyNyfBg62LTkG4iQT1BhIPXCk9fP0WFzH6jF98WdNWthbsbnHIn/YgvRbvFkKFlH\n4a8ZYbDWt+CSg5DS0AVupF5o3rAxni24DjXbP9Fs/jCEXXxX6xl+OJsGh2WuMG72As8WXKOiQOoV\nKgxELhlqGODxggvo0tYAA361Q8fxRxD3QlLj433yVIzWo/fA87o9+nT4DP/OOwsdNe0aHy8h8qTS\nheHUqVNo0aIFlJSUcOfOnRLbRUREwM7ODs2aNcOaNWsqOzpSD6kqq+IX3z24NO4MEsy3o+nKLpiy\n/A7y8qp/XNnZgM/CG3DY3AGZNsG4MfkCfpqwCSpKKtU/MkLkXKULQ6tWrXDmzBl88cUXJbYRi8Xw\n9fVFREQEHjx4gOPHj+Phw4eVHaVci4yM5B2h0uQ9e7emHRG/+CaWfTsGB/L6wHj0RAT/9EZ6K42q\n5GcM2HssBcbjffADG4LNQ2fiv4VX0d66TfWELwd5n/5lofx1T6ULg52dHZo3L/2qz6ioKDRt2hQ2\nNjZQUVGBu7s7QkJCKjtKuabIM5ciZBcKhJjbcwySFzzEl90awOdPe+h5+GHQzIvYt/8S8vPLP6y8\nPCAkLA/9/COg4z4Fk6NbYcDXJni58CF8u3lCUMsXUSjC9C8N5a97avRM8cTERFhZWUnfW1pa4tat\nWzU5SlLH6avr4+cJW/Ho9RTsiDyNkIcLkfDnXfww+iHaqPeHV6feaGtnXKQ/xoCb95NxNCoM9wvO\ngdlchpVha4z7oh+muNyCrUETDp+GEPlUamHo0aMHUlJSivx/5cqV6N+/f5kDr+01L1J/2DX8DNuG\nLMA2LMB3ed+hUe+WOHLzLGa98AOLLbohzMAgFAJtW/TCNufBGOJ4AIYahhySE6IAWBW5uLiwv/76\nq9huN27cYL169ZK+X7lyJVu9enWxbW1tbRkAetGLXvSiVwVetra2VV2MF1Etu5JYCRdXtGvXDk+f\nPkVsbCzMzc1x8uRJHD9+vNi2MTEx1RGFEEJIFVX64POZM2dgZWWFmzdvom/fvujduzcAICkpCX37\n9gUAKCsrY/v27ejVqxccHBwwbNgw2NvbV09yQgghNUJubolBCCFEPnC/8lmRL4AbPXo0TExM0KpV\nK95RKiU+Ph7du3dHixYt0LJlS2zdupV3pArJy8tDx44d4ejoCAcHB8ybN493pAoTi8VwcnIq18kc\n8sjGxgatW7eGk5MTOnTowDtOhaSnp2Pw4MGwt7eHg4MDbt68yTtSuT1+/BhOTk7Sl66ubvX+fqv9\nqEUFFBYWMltbW/b8+XMmEolYmzZt2IMHD3hGqpCrV6+yO3fusJYtW/KOUinJycns7t27jDHGMjMz\nWUhsIycAAAOJSURBVPPmzRVq+jPGWHZ2NmOMsYKCAtaxY0d27do1zokqZsOGDczT05P179+fd5RK\nsbGxYW/evOEdo1JGjhzJDhw4wBh7P/+kp6dzTlQ5YrGYmZqashcvXlTbMLluMSj6BXBdu3aFvr4+\n7xiVZmpqCkdHRwCAlpYW7O3tkZSUxDlVxWhoaAAARCIRxGIxDAwMOCcqv4SEBJw/fx5jx45V6DsL\nK2L2jIwMXLt2DaNHjwbw/niorq4u51SVc/HiRdja2spcM1ZVXAtDcRfAJSYmckxUf8XGxuLu3bvo\n2LEj7ygVIpFI4OjoCBMTE3Tv3h0ODg68I5Xb9OnTsW7dOgiF3PfoVppAIMDXX3+Ndu3aYd++fbzj\nlNvz58/RsGFDjBo1Cp9//jnGjRuHnJwc3rEq5cSJE/D09KzWYXKdI+kCOPmQlZWFwYMHY8uWLdDS\n0uIdp0KEQiHu3buHhIQEXL16VWFub3Du3DkYGxvDyclJIde4P7h+/Tru3r2L8PBw7NixA9euXeMd\nqVwKCwtx584dTJ48GXfu3IGmpiZWr17NO1aFiUQinD17FkOGDKnW4XItDBYWFoiPj5e+j4+Ph6Wl\nJcdE9U9BQQHc3NwwYsQIDBw4kHecStPV1UXfvn1x+/Zt3lHK5Y8//kBoaCgaN24MDw8P/Pbbbxg5\nciTvWBVmZmYGAGjYsCEGDRqEqKgozonKx9LSEpaWlmjfvj0AYPDgwaXeJVpehYeHo23btmjYsGG1\nDpdrYfj4AjiRSISTJ0/C1dWVZ6R6hTGGMWPGwMHBAf7+/rzjVFhqairS09MBALm5ufj111/h5OTE\nOVX5rFy5EvHx8Xj+/DlOnDiBL7/8EkeOHOEdq0JycnKQmZkJAMjOzsaFCxcU5gw9U1NTWFlZ4cmT\nJwDe76dv0aIF51QVd/z4cXh4eFT7cLk+bv3jC+DEYjHGjBmjUBfAeXh44MqVK3jz5g2srKywdOlS\njBo1inescrt+/TqCg4OlpxsCwKpVq/DNN99wTlY+ycnJ8Pb2hkQigUQigZeXF7766ivesSpFEXer\nvnz5EoMGDQLwftfM8OHD0bNnT86pym/btm0YPnw4RCIRbG1tERQUxDtShWRnZ+PixYs1cmyHLnAj\nhBAiQ3FPhyCEEFIjqDAQQgiRQYWBEEKIDCoMhBBCZFBhIIQQIoMKAyGEEBlUGAghhMigwkAIIUTG\n/wNo7u3stb6GJgAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from numpy import pi, sin, cos, linspace, zeros\n", "from matplotlib.pyplot import plot, title, legend, show\n", "%matplotlib inline\n", "\n", "x = linspace(0,2*pi)\n", "dsin = dy_diff(sin(x),x)\n", "plot(x,dsin,label='numerical')\n", "plot(x,cos(x),label='analytical')\n", "title(\"Comparison of numerical and analytical derivatives of sin(x) \")\n", "legend()\n", "show()" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Función Numérica para la derivada segunda\n", "# Diferencias Finitas\n", "\n", "def d2y_diff(y, h):\n", " N = len(y)\n", " d2y = zeros(N)\n", " for k in range(1, N - 1):\n", " d2y[k] = (y[k+1] - 2*y[k] + y[k-1])/(h**2)\n", " return d2y" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAEKCAYAAAALoA6YAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd8U2X7x/FPkq6ki1VpoUCZWpZlCQpoGQKiICggIiIC\nDpwgqPD4U8TBEBDBDYLAg6ioD8pWwFaGKKsgggOByhaQDjrTJtfvj7tThoWmSU65369XXvb0pMk3\nJ3Ll5Dr3uY9JRARN0zTNcMyeDqBpmqZdHl3ANU3TDEoXcE3TNIPSBVzTNM2gdAHXNE0zKF3ANU3T\nDEoXcM0jNmzYwDXXXFMmj202mzlw4ECZPLY3iI+Pp0aNGp6OoXkBXcC1fxUVFYXNZiMkJISKFSvS\ntm1b3n//fUpzCkH79u359ddfXZjSNSZMmECdOnUIDg6mRo0a9O/f39ORNO2CdAHX/pXJZGL58uWk\npqZy6NAhxowZw+TJkxk6dOhlPV5ubq6LE7rG/PnzWbhwIevWrePs2bNs27aNzp07ezqWpl2QLuDa\nJQkODqZHjx58+umnzJ8/nz179gCQnZ3N6NGjqVWrFuHh4QwfPpysrCxAfeWPjIzktddeIyIigqFD\nhxZrA0yePJm+ffsWe54nn3ySJ598EoAPP/yQhg0bEhISQt26dZk1a1ax+06ZMoVq1aoRGRnJ3Llz\ni61bsWIFzZo1IzQ0lJo1azJ+/PgLvrZt27bRtWtXateuDUDVqlUZNmxYwfqUlBSGDh1a8FzPP/88\nTqcTAKfTyahRowgLC6NOnTq89dZbmM3mgvVRUVGsW7eu4LFefPFF7r33XgASExMxm80sWLCAWrVq\nERYWxoQJEwrum5mZyeDBg6lUqRKNGjVi69atxXJPmjSJevXqERISQqNGjfjyyy8v+Bq18kUXcO2y\ntGrVisjISDZu3AjAmDFj+OOPP9i1axd//PEHR48e5aWXXiq4/19//UVSUhKHDh3i/fffL/ZY/fv3\nZ+XKlaSlpQHgcDj47LPPuOeeewBVSFesWEFqaioffvghI0eOJCEhAYDVq1czbdo01q5dy++//87a\ntWuLPXZQUBALFy4kJSWFFStW8O677/LVV1+d9zW1adOGBQsWMHXqVLZt24bD4Si2fvDgwfj5+bF/\n/34SEhL45ptv+OCDDwCYNWsWq1evZteuXezYsYMvv/wSk8lU8Lcmk+mc5X/atGkTv//+O+vWreOl\nl17it99+A2D8+PEcPHiQAwcO8PXXXzN//vxif1+vXj02btxIamoq48aNY+DAgZw4ceK8r1ErZ0TT\n/kVUVJSsW7funN+3adNGJkyYIE6nUwIDA2X//v0F677//nupXbu2iIjExcWJn5+fZGdnF6yPi4uT\nyMjIguV27drJggULRETkm2++kbp1614wT69evWTGjBkiInL//ffL2LFjC9b9/vvvYjKZimUp6skn\nn5SRI0de8LE/+ugj6dy5swQGBkrlypVl8uTJIiJy4sQJ8ff3l8zMzIL7Llq0SDp06CAiIh06dJBZ\ns2YVrFu7dq2YTCZxOBwicu42HDdunAwcOFBERA4ePCgmk0mOHj1asP66666TTz/9VERE6tSpI19/\n/XXBulmzZhXbdv8UExMjX3311QXXa+WHj6c/QDTjOnLkCJUqVeL06dNkZGTQokWLgnUiUtA+AAgL\nC8PPz++CjzVgwAA+/vhj7r33XhYtWlSw9w2watUqxo8fz759+3A6nWRkZNC0aVMAjh8/TqtWrQru\nW7NmzWKP++OPPzJmzBj27NmD3W4nOzubfv36XTTHgAEDcDgcLFmyhHvuuYeYmBgqVKhATk4OERER\nBfd1Op0Fz3f8+PFiI0MiIyMv+BwXEh4eXvCzzWYr+EZy7NixYo/9z9e4YMECpk+fTmJiIgBpaWn8\n/fffl/z8mvHoFop2WbZu3cqxY8do164dlStXxmq1snfvXpKSkkhKSiI5OZnU1NSC+5+vZVBUnz59\niI+P5+jRo3z55ZcMGDAAUL31O++8k2eeeYaTJ0+SlJRE9+7dC0bAREREcOjQoYLHKfozqILcq1cv\njhw5QnJyMg8//HCxD5YLsVgs9OnTh6ZNm7Jnzx5q1qyJv78/f//9d8FrTElJYffu3QU5Dh8+XPD3\nRX8GCAwMJD09vWD5UlocF3uNf/75Jw8++CBvv/02Z86cISkpicaNG5dqhJBmHLqAayWSXxBSU1NZ\nvnw5d999N/feey+NGjXCbDbzwAMPMGLECE6dOgXA0aNH+eabb0r8+GFhYcTGxjJ48GDq1KnD1Vdf\nDYDdbsdut1OlShXMZjOrVq0q9rj9+vVj3rx5/PLLL2RkZJxzkDItLY2KFSvi5+fHli1bWLRo0QU/\nTObPn8/KlSs5e/YsTqeTVatWsWfPHlq3bk14eDhdunThqaeeKli/f/9+1q9fX5BjxowZHDt2jOTk\nZCZPnlzseWJiYvjkk0/Izc1l27ZtfPHFF//6oVb0NU6cOJHk5GSOHDnCm2++WbAuPT0dk8lElSpV\ncDqdfPjhh/z8888l2+ia4ekCrpVIjx49CAkJoWbNmkycOJFRo0bx4YcfFqyfPHky9erVo02bNoSG\nhnLzzTfz+++/F6w/X7H65+8GDBjAunXrCva+QY16mTlzJv369aNSpUp8/PHH3H777QXru3XrxogR\nI+jYsSMNGjSgU6dOxR73nXfe4YUXXiAkJISXX36Zu+6664KvMSQkhAkTJlCrVi0qVqzImDFjeO+9\n97jhhhsA1aqw2+00bNiQSpUq0bdv34I96QceeIAuXbrQtGlTWrRowa233orFYsFsVv/EXn75Zfbv\n30/FihV58cUXi7WILrR98o0bN45atWpRu3ZtunXrxqBBgwru37BhQ0aNGsX1119PeHg4P//8M+3a\ntbvgY2nli0n0dy1Nc7lVq1YxfPjwgr60ppUFvQeuaS6QlZXFypUryc3N5ejRo4wfP5477rjD07G0\nck7vgWuaC2RmZnLTTTfx66+/YrVaue2225gxYwZBQUGejqaVY7qAa5qmGZRuoWiaphlUmZ/IExMT\nw65du8r6aTRN08qVa6+9lp07d170PmW+B75r1y5ExOtv48aN83iG8pLTCBl1Tp3T228l2fHVLZQ8\nRhnuZYScRsgIOqer6Zzupwu4pmmaQekCnmfw4MGejlAiRshphIygc7qazul+ZT6M0GQyUcZPoWma\nVu6UpHbqPfA88fHxno5QIkbIaYSMoHO6ms7pfrqAa5qmGZRuoWiapnkh3ULRNE0rx3QBz2OUvpgR\nchohI+icrqZzup8u4JqmaQale+CapmleSPfANU3TyjFdwPMYpS9mhJxGyAg6p6vpnO6nC7imaZpB\n6R64pmmaF9I9cE3TtHJMF/A8RumLGSGnETKCzulqOqf76QKuaZpmULoHrmma5oV0D1zTNK0c0wU8\nj1H6YkbIaYSMoHO6ms7pfqUq4IcPH6ZDhw40atSIxo0bM3PmTFfl0jRN0/5FqXrgJ06c4MSJE8TE\nxJCWlkaLFi348ssviY6OLnwC3QPXNE27ZGXeAw8PDycmJgaAoKAgoqOjOXbsWGkeUtM0TSshl/XA\nExMTSUhIoHXr1q56SLcySl/MCDmNkBF0TlfTOd3PJQU8LS2NPn36MGPGDIKCglzxkJqmadq/8Cnt\nA+Tk5HDnnXcycOBAevXqdd77DB48mKioKAAqVKhATEwMsbGxQOGnoV4u2XL+77wlz4WWi2b1hjzn\nW46NjfWqPBdbzuctefT2dP1yfHw88+bNAyiol/+mVAcxRYT77ruPypUrM3369PM/gT6IqWmadsnK\n/CDmpk2bWLhwIXFxcTRr1oxmzZqxevXq0jykx/zzk9lbGSGnETKCzulqOqf7laqF0q5dO5xOp6uy\naJqmaZdAz4WiaZrmhfRcKJqmaeWYLuB5jNIXM0JOI2QEndPVdE730wVc0zTNoHQPXNM0zQvpHrim\naVo5pgt4HqP0xYyQ0wgZQed0NZ3T/XQB1zRNMyjdA9c0TfNCugeuaZpWjukCnscofTEj5DRCRtA5\nXU3ndD9dwDVN0wxK98A1TdO8kO6Ba5qmlWO6gOcxSl/MCDmNkBF0TlfTOd1PF3BN0zSD0j1wTdM0\nL6R74JqmaeWYLuB5jNIXM0JOI2QEndPVdE730wVc0zTNoHQPXNM0zQvpHrimaVo5pgt4HqP0xYyQ\n0wgZQed0NZ3T/XQB1zRNMyjdA9c0TfNCugeuaZpWjukCnscofTEj5DRCRtA5XU3ndD9dwDVN0wxK\n98A1TdO8kO6Ba5qmlWO6gOcxSl/MCDmNkBF0TlfTOd1PF3BN0zSD0j1wTdM0L+SWHviQIUOoWrUq\nTZo0Ke1DaZqmaZeg1AX8/vvvZ/Xq1a7I4lFG6Yu5MueRI0eIi4vjzz//BCAxMZHFixcTHx9f8Mnv\ncDgu+RvUlbgty1KZ58zNhbNnC5d37YL//Q9+/VUtZ2bC3r1w5sxFH0ZvT/fzKe0DtG/fnsTERBdE\n0cpSYmIiI0Y8x6FDx+jY8QYaNWrAo4+Ows+vIXb7XoYOHcjcuR9hsbRH5FdiYxvj6+vL0qWfY7H4\n8uyzz/L882PYvn07drudli1bYrPZPP2ytEuVlgYrVkBODtx8M3zxBYwcCU4nNGgAXbvC+++Dj4+6\nz5NPwnvvqSKfkwNTpqj7ffYZVKqk1lev7ulXdcVySQ88MTGRHj16sHv37nOfQPfAPWL16tWMHv0S\n6enp9OrVjYULPyEp6QEcjjYEBLyG3f49TuePQCPgANAUWAZ0ALLx8amLydScnJxFQApW681ERPhw\n8mQuZnMQoaGpbN68jgoVKpCcnExERARmsz4m7nVSUmDzZggIgGuugTZt4O+/C9fn5kJWlvrZbAYR\ndbsQX1+wWNTfWCxQoQJ89JHaYxeBhx+G5s3L9jVdIUpSO0u9B14SgwcPJioqCoAKFSoQExNDbGws\nUPh1Ri+Xbrl69ep88smnJCYmEhVVi0mT3iIjYzZwnLfeehWT6Rocjv8D4snK6gX8gire8YATyATa\n5S1Dbq4JeB7YBkBmZj0SE004nU8AFjIy1nHzzbezb98ezOYAIiKq8e23yzh06JBXbA+9HAsHDhDf\nvDnk5BBrNoPVSvyZM+BwoO6d/26jlp3O4sv/XA/E5+SoxwNwOIhPSoJbbyXW4VDrFyyAadOI7dwZ\nUlLU8wUEeMf28PLl+Ph45s2bB1BQL/+VuMDBgwelcePG513noqcoc3FxcZ6OUCLny5mQkCCBgVXE\nYhkpPj6Pi69vsMCLUrg7NU1MphuKLB8SCBDYlLecICZTqJjNEwWcAvvEbK4s8F7B35hMjQU+KPIY\nb4vJVFXgsICI2TxFGjduLW+++ab07HmnzJkzRxwOh/s30CUw8nt+XhkZIg8/LFK7tkibNiKtWomY\nzVLwphX9ufCNPfd3l3mLy/85PFzEahUJCRGpWlVk374y3T6Xyijve0lqp/7Oa0C5ubmMHTuO+vVb\n0rp1Zx5+eDTp6S/icLxObu5McnKuw2T6q8hf1Mds3oOv75PAImy2AXTp0pnAwJ4EBzfAau3IzJkT\nqFPnE/z8QvHzi2HMmOEEB79AYOBAAgO7Exp6Gqt1EWpP3YnFshCTqRcQCYDT+TA//7yHZ55ZytKl\nYTz++Gzuu+9h92+cK9m998K8eXDwIPzwA2zbpnrb+ZxO1fbIFxAAkZEQFATBwWCzwSuvQGCgWlex\nIkyfrpZDQ8FqheuuU/fLZz5PCTl5Uh34TE2FU6dgwABYvBimTYMNG8rs5V+RSvsp0b9/f4mIiBA/\nPz+JjIyUuXPnXvKniHZpHntslNhsNwl8L7BQTKbKAsuL7Ay9JT4+IWKxjBCYIlZrhMyaNVsefvhJ\n6datr0yd+obk5ubK2bNnZc+ePZKSkiIiIk6nU86cOSN2u11ERA4fPixz5syRhQsXypkzZ6RXrwES\nEFBZbLZqEhV1jdhsMQKZec85XUymCAF73vJZ8fOrKK+8MkF6975XRo8eK0lJSZ7cbOXPL7+INGwo\n4ucnUr++iMVSfK/YYhHx8SlcttlEOnRQv7NYRHr1EklPF/n6a5FFi0QOHFCPa7eLHD8ukpurlv/6\nSyQuTuT330VyckSefVYkKkqkaVOR//s/9bj5z1H0+Yr+LjBQ5bTZRF5/3WObzEhKUjv1iTwGkJWV\nxfPPv8yGDduoX78WS5cuIzX1e6A2ACZTJ3x8TpKT8wmQi812Ny+99AAnT54mJSWNfv1up2PHji7J\ncvToUex2OzVq1KB//yGsXr0ZH5962O2bMZvrkp6+Pe+ego9PGL6+9cjMfAg/v43UrLmdn37ajNVq\ndUmWK1pWFtSqpfZwL/Tvy2aDqlXh+HFwOOCee2DOHHV/p1MdkHSFefPgtdfUz+3awaJFkJ6ulk0m\ndSv6TcDXFxIS4I8/oE4d0OeQnFeJamcZf4gYZg/cm/ti3brdIVZrL4EVYjb3E7M5RGBHwQ6Or+9g\n6dLlVqlSJUquuqqOvPba6+J0Oss8l9PplM2bN8uyZctk3759UrVqbTGbXxOYJxbLUwK+Asl5OZ0S\nHNxe5s2bJ4sXL5ZVq1ZJTk5OmWe8GG9+z4sqyHnokEi/fqq//cADIkFBxfd0/fxEAgIKf65VSyQl\nRe1NnznjnpxOp8i996ocwcEilSqdm9NiKeyR22wiL75Y5tnOyWkAJamdbhmFol26vXv3kpiYSLVq\n1fj227XY7ScBf5xOG/7+CUAvsrOfwWLZT2joOhYs2ErVqlXdmtFkMtGmTZuC5e+/X8vgwY/x88+7\naN68Fd9950Nubv7etgmHw8Hw4U/h69sekaNER7/G+vWr8Pf3d2tuQ0pKgpYt1RBAhwN27gS7vfh9\nLBZ49VW1rnp1GD0aQkLUzV1MJliwAMaPVycH2WwQE1O43mxWe+OZmeoGMHky3H23Gl+uXRLdQvFC\n48ZNYMqUN/Hza4rdvg27PRuH4zQQAAjBwW156qku7N9/nCpVQnn66RFUq1bN07HP0bVrb9av9yMr\n63HM5k2YTK/hcLwB3As4sVp7MGVKdx599FFPR/VeJ06odsSWLfDgg+pEnKICAyE7G/z9oV8/mDvX\nMzkvJj5etW9OnVJFOjGxsMUC6gOmQwf46SeoXBneegtat/ZUWq9RktqpC7iX2bt3Ly1bdiIzcydQ\nFfgJs7k9/v43kJk5DF/fOCIjv2PPni1e30vOyMhg1Kjn+O67H6hVK5LNmzeTkrKB/N49vEKfPrtJ\nSspBRBg16gG6d+/uycjew+mEIUPgk0/UnnVoqBrVUbTwmc3qTMrfflMn6fTsqfaAvVlWFoSHqxOM\n8lksqi+ef0JRYKD6FlGvnmcyegndA78EnuyLJSUlyZQpU+SZZ8bKpEmTJDS0S7GWodVaXR5//Cnp\n0OF2ufXW3nL69GmPZS2JC23L7t37iq/v4wIOgePi719D/PzCBBYI/FdstghZsWKFx3N6hXnzCkZ3\nxOX3jf39C0d52Gwi993n6ZTFlHh7btokUqGC6oPbbCK+vsV75P7+Im+8oUbBlMG5BF79vhdRktqp\ne+AelpqaSkzMDZw40Yzs7KsJCJiO02kHfiL/9HZ/fydTp07Ez8+P+Ph4Kleu7OHUl2f+/He45ZY+\n7NoVgoiD6tWjOXDgCVRLBTIyYNq02VfuXnhWFmzdqvZIf/xRbZB8Docal92jh2pBdO4Mzz7rsail\ncsMNqp3y118QFgZVqqh5VvKZTLBwIYwapb5ljBwJkyZ5/7cLT/CGT5Er2TvvvCNW651FdkC2SFBQ\nFQkICBWbLVIqVIiQ77//3tMxXSo5OVmysrKkW7e+AnOLvPb50rLlTdKu3S3SuHFbefnlSV5/NqfL\nnDwpUqeOGrkRFCQSEaH2UIueRXnDDZ5OWTamTi0cS+7rq8aM54+mAbU8e7anU7pdSWqn3gP3gBMn\nTrB48WIcDgcnTpwgJ6dmkbU1cTqd/P33MU6ePEm1atXw8/PzWNayEBoaCsDo0Q/x3Xf3kJkpgBl/\n/9Hs3u0kO/t1oBYHDowlLS2dSZNe8mhet3jqKTh8uHBP1G5XY7jPnFF75AEBMH++ZzOWlVGj1Hjw\nZcvUa/7iC9i3r3B9ejqsWgXDhnkuo7fyhk8Rb+CuvlhiYqJUqlRd/P3vEz+/h8RqrSgBAZUFVgr8\nIQEBd8hdd93v8ZylcSkZ16xZI9269ZWuXfvIwIH3itk8usge+S9SpUotr8hZJpxOdZZjerpI8+bn\nnsHYqZPI1q0SN326SGqqZ7OWgMu2Z6dOxedo8fUV6dhRzbFSsaLI44+rM0I9nbOMlaR26j1wNxs/\nfjIpKYNxOF4BwGRqTLNmn5CcPJaUlCS6d+/Ge+9N93BK9+ncuTOdO3cGYMKEiZjNh4uctJeG2Wxm\n+vQ32L//EO3bt6Zfv36YykMv9Ngx1cc+cECNOImJUUMBs7PVeqtV9YpbtlRDB4ODPZvXnWbOVK89\nN1ctBwSoKXHzx43PmaO2z+TJnsvoJfQwQjdwOp0cPnwYm83G/fc/wYoV3ck/cAdriYl5lYSEOE9G\n9ApHjhyhSZPrSE0dgtMZhdU6kbAwf06dqkdmZnsCA//L8OE9mDLlVU9HLb327VVRypuGFZtNnRqf\nmKj2O2+8EZYuVUX9SnTsGKxeDX5+8PXX6qBmUbVrqw+/ckyPA/cCp06dokOH2zhw4DAORwatWrVg\n586TpKd/AQRgsw1gzJjbeP75MZ6O6hUOHjzIxImv8/ffqTRsWJM33lhJWtpW1NX/TuPjU5OUlNPG\nvxpQYGDxUSZmM7zwAgwerHre1avrURf5nn5azYqY/2EH0LQp3HefmuelUyfo1s1z+cqIHgd+Ccqq\nL3bbbXeJr+9IUfNsp4jVep307t1XQkKqSmBgZXniiaclN3/WNw/mdCVXZVyyZImEhHQv0hbOFT+/\nEDl16pScPHmy1HOpuHVb5uSIvPqqSLduIk8+qebsLtrvDgwU+fBDz+cshTLLefSoSJUqqhduNqvR\nOTVrFo5UucQZDo2yPUtSO3UPvIzt2LGTnJznARMQQmZmf8LCDpKScsLT0bxe27ZtMZmGA7OBG/H1\nnUndunW55ppmpKWl4+NjYvHi/xpj3Hj//mokRUYGfPutGm0RFFQ4N0jr1jBwoKdTeqdq1eDnn9Uo\nnMxM1RN/5ZXCMzczMuA//4ERI664by26heJiIsLnn3/OunUbqVEjnBUr4vnxxy44naOAXKzWnkyY\n0JURI570dFRD2L17N/ff/wRHjhymVauWbNy4nuTkt4HewGYCA3uyb99PREREeDrqhZ05AxERxSef\nCg6GDz5QPd4KFVTP+3wXR9DONXu2KtZFW1AWizoAXPSCFQane+Ae8OKLrzJlykdkZAzD338bERG7\nSE9PJzu7Bk7naZo1i2Lt2q/K3dhud9i3bx/Nm3clLa3w4FVoaAc+//y5gpEsXic3V80kWKNG4QgT\nUBM4LV6srgKvXZr9++HaawvnhfH3hxYt1PwqBw5A/frw2WeGn92wJLVTf+Tnyb+4aGk4HA4mTHiV\njIw1wFNkZ3/E6dNVmTr1JZYsGc+aNR8SF7e8VMXbFTnLWlllrFq1Kjk5fwN/5P3mNHb7r+Tk5DBn\nzhyWLFlCbv7QsxIo02357bfqFHE/P3Ul+JgY9dUfwMdH7YG3bev5nC7ktpx166oRKtHRaht37w6/\n/gp796oWy+7d6htNfovFUzndQPfAXcjhcOBw5AJV8n5jQs0oiMuuiHMlCwkJYebM1xkxoi0+Pm1x\nOLZy222d6NNnECbTrZhMv9K06bvEx6/A11VXm7kcx4+rmQHz9xAPHlRf9++/Xw0drFcPZsxQPXDt\n8rRrpwo2qOt/rltXeGUiEbW9f/9djVYpx3QLpZROnDjBQw89xc8//0rTpg1JTk5i8+aKZGePAbYR\nHPwse/duJzIy0tNRy41ffvmFn3/+mbp169K9e1/++ms20BFwEBjYkffee4CBnjwguGKFupBvamrh\n72w2+OUXqFnzwn+nXZ7ff1ffcPJP9AH1bWf3bnVQs0oVNR2vwZSkduo98FKw2+20bduFQ4duITd3\nJIcPL6ZmzZ+4444I1q/vS3h4OLNnr9bF28Wio6OJjo4G4MyZE0CLvDUW7PZmnDjhoRE+R49CcjJU\nqlR4FmG+3Fz1e831GjSAvn3VHCqZmeoszVtugeuvV8u5ueqszSfL4cCBshnBWMgNT+ESlzM2dPv2\n7RIc3DBvjLe67mNQUAPZtWuX6wPmMcIYVndmbNeum/j4PCWQI7BXrNYIWbhwofzf/70gL730svz5\n559ln9PpFHnsMTWPdXCwmrOjd281q6DNpm7Tp1/2wxvhPRfxcE6nU+Szz0ReeUVkyRKRatWKj7O3\n2US2b/d8zktQktqp98BLwd/fH4cjDcgFfIEcnM50AvIPVmll7osv5nPbbf3Zvt2Kn5+NESMe48EH\nR5CZOQyL5QzTprVmx45N1KlTp+xCLF0KH36oRplkZ6ve94EDao/w4EFo1gyuu67snl9TrZI+fdTP\nGRlqrvF/rv/pJ2je3P3ZypDugV+izZs3M2zYSE6e/IvY2Bs5deoUW7ZAZubtWK1LaN/eyurV/ysf\nEy4ZiN1ux9fXl/btb2XTpruA+wAwm19g6NAkZs16s+ye/NVX1WnwhbNwqa/xRccpa+4jotpVycmF\nvwsMVB+0YWHqeESdOl5/0o8eRuhiiYmJdOlyO3v3PsXp02tYtgx8fHx58cWO9O+/lfHju7B8+WJd\nvD3Az88Pk8lEaupZoEbB753OmiQlnXX9Ezqd6lqUe/aoUSX/vD5pVJTrn1MrGZMJPv9cFe3QUFWw\n+/WDoUPVLIdNmqieedG5VYyqjNs45aoHPmfOHLHZ7i3SWssSi8W31HNyXAoj9O88mXHChClis7US\n+FngB7HZasvs2R/IxIkT5fnnx0lCQkLpc2ZmirRvr/qqgYEiTZuK9OmjlkNCRCpVEtm92zUvqDQ5\n3czrch4/LvLNN+q96NRJXVc0/xqjNpvIrFmeTnhRJamdugd+CYKCgjCbjwCCGuN9DB8ffyzl6PRd\no3v22ac3nsswAAAgAElEQVRIS0vngw964uPjy+OPP8yYMS+SmnoLublVmDr1ZpYv/7R04/Jffhm2\nbSsctvbrr6q3unWr+trepMmVNX+3twoPVzdQc6kU3ePOyICEBM/kciVv+BTxZsuWLZNGjW6QOnWa\nyQsvvCzR0S0lIOBOgVfFZqsrr71W8lnQNPd7+umxYrE8WeRb02dy7bXtS/eg3bqde/WcmBjXBNbK\nxk03FeyBF4xKefdddUWkY8fUKBYvU5LaqffAL2LDhg306zeMzMzZQBhTpz7OU0/1oFKlYI4cOUGn\nTjONMRPeFezMmVQcjrpFfhNFatETbEpKBE6eVL3upk0hPr7wVG0/v3J/xp/hzZ+vpi5ITVV74jfd\npE64yp/B8LrrYOVK1Tc3Em/4FPEG5+vfPfTQEwKTi+xo/SC1a1/r/nBFeF2f8Ty8KePq1avFao0U\n2CTwm9hsN8no0c/JF198ISNGjJCdO3f++4OcPq2uWenvr+akfvBBkdatVf87KEgkOlrk77/L7DV4\n0/a8GK/PmZEhsmWLxH34ocj48Wpe8fx/3AEBIo884umExZSkdupRKBcRGBiA2fx3kd/8TUCA9YL3\n17xP165deffdCVSvPpQqVbowdGgrtm5N4L77XuOdd/Zx/fVd+PTTxRd/kKFD1WnZ2dnqqvELF8Ij\nj8CmTfDdd7Brlz7L0gisVmjVSo0Q2rix+Kn3WVlqnhqj8YZPEW+yfPly6datr/TsOUA+//xzCQmp\nKmbzswJTxWoNlyVLlng6olYK//vf/yQoqFXemZsisEOCgiqL82I90PDwc3vew4e7L7Tmek88ob5R\n5b+fvr4id93l6VTFlKR26h54EUuWLGHgwMfJyHgVSGft2of573/fZ8OGH0hPT2TAgI+JjY31dEyt\nFE6ePInT2YTCaYCakJ6ejMPhwMfnAv8coqLUmX35J1VYrWrst2ZcL70E33yj5q8BqFgR3njDs5ku\nhzd8iniDuLg4admyk8CSIjtar8vddw/1dLRivL7PKN6dcffu3WK1hglsEVgjFst/pHnzG+XQoUMS\nFxcnhw8fViMT2rdXe2jVqol88IEa2x0Sonre112nxoK7iTdvz6IMlzMrS+Tbb0XWrhVJT/dopvMp\nSe0s9R746tWrGTFiBA6Hg2HDhvHss8+W/lPFQ9Q2Kzqm2wens/xMA6BB48aNWbDgXYYN60Fq6ili\nYtpz1123c/XVzfDzi8Zu/4VDVUOocuSwmsXu2DF44glYvx5OnFBn9bVvry7KoBmbvz906ODpFKVS\nqrlQHA4HV199NWvXrqV69eq0atWKjz/+uGCqT/D+uVB+eucdznz6KaYqVfizU2eGPz2ZjIypQDo2\n2zOsXv057du393RMrQw4HA5OnjxJnTqNyMr6EaiPPztJp1mxj3ECA+Htt+G++zyUVHOL1FQ1KdmZ\nM9Ctm5qO1oPKfD7wLVu2UK9ePaLy5n3o378/X331VbEC7s02PPgQLWbPIgDIxkytZcuZ/fZbvLtg\nHn5+Pjz33Me6eJdjFouFP//8E3//umRl1QfATlNyMGGhyD8ck0mPMinvUlPVRSGOH1ejjaZMUcX8\nrrs8neyiSjWM8OjRo9SoUThxUGRkJEfzDwoYQKMPPsCG2gg/4iQsx0GNjRvZsGE569Z96ZWXQTPC\n9fyMkBFUzrp16xKc/QeL6MpuGrOA7oz3DUCsVsTHBwkMVBfQveUWj+Y0AkPn/O9/VYssK0sd/srM\nNMQFIEq1B17SWfcGDx5csJdeoUIFYmJiCkZz5G9MTyxbxUl8kZw+CNt//x1HfLxX5Dvf8s6dO70q\nz/mWd+7c6VV5Lra8Z9cu3g+00CnrG/yBY+whJLgyd/sFU+fkMRKy7DS7oR0T8nreensaf/m82zM1\nFez2gnoQC5Ce7tZ88fHxzJs3D6CgXv6bUvXAf/jhB1588UVWr14NwMSJEzGbzcUOZHpzD/yHiBpc\ne+IYVtQ8zhnAsfnzqRcaCr6+6gDHP6cJ1cqXHTsgNhbOFk45m24y01pGs4fJwB6s1o5s2bKOxo0b\neyymVsZ27CCnTRt8c3IAyDaZoGdP/L/80mORynw+8JYtW7Jv3z4SExOx2+18+umn9OzZszQP6VaN\nE7aSEFmDFEwctviyb+RI6j39NNx7L/Tvr+a3KDopvFb++PoWvxADgDjJ4f68hUaYzV3ZunWr26Np\n7hOfmsrdplD+JIIkQvkf9bkzJfff/9DDSlXAfXx8eOutt+jatSsNGzbkrrvuMswBTICg8HBuOJxI\nqDjZv/Ybrt23D/7+W+2NnT0Lhw7BK694OmYx+V+5vJnXZzxzBsaOJf7mm9WUotdeq65iDojVyjaz\nD7+TP+FVJrDdoxem9vrtmcfIOTdt2sSS3KFEcYxKJDNANhC3xftPrS/1YNZbbrmFWzx4gMelDh4s\nPmew3Q779nkuj+Z6Z8+qubuPHVPzmmzeDI89Bp07w44dmFq2JKVhQ2yDb8Vi6YDIbrp2bckXXyzn\nrrvuJyDAxqRJLzBo0EBPvxLNhcLDwwkIiCcjw4nar91GlSrhno71r/Q1MYt65BE1dCh/mlCbTU3e\nf9tt6qh0dLSaOlQzro8+goceUhcezufnp97zIgfl9+3bx7Zt24iIiOB//1vBBx/sIjPzPeAvbLa+\nLF06n06dOrk/v+YyM2e+zeTJb+JwOHjooftYvfpb9u7NRKQuIl+zfPliOnjwRJ+S1E5dwIvKyIDe\nvSEuTg0luvtu1VKJiwOLRV0QdeNGqFbN00m1yzVnjjqzsugFhy0WNfb3AldWioyM5ujRT4H8Ob9f\n49FHT/DWW6+XeVytbHz00cc8+OA4MjI+Avyx2e7jpZcGU7duLZKTk7nxxhupU6eORzPqixpfgvj4\neLXH/fXXcOqUOnjZqpWauD8zE9LS4PBhNbWop3N6Oa/LePIkTJ2qvk3VqlVwGnw8qN53z54XLN4A\nISGhQGLBso/PQSpXDi3LxMV43fa8ACPlXLToKzIyngdaAU3JyJjAp58up1evXgwePNjjxbuk9IQO\n5xOa948zIaH4nlpurrq2nmYcx4+rg5QpKer4hr8/zJypWmUHD8Ltt8PrF9+TfuONl+jdeyBZWUPx\n8TlBxYrxVKs2hkaNbsDhcPDEE0MYPvzBEp8XoXlehQrBmEyHKdzBPURISJAnI10W3UK5mBkzYOzY\nwonfLRZ1sGvRIjh9Wk0zqnvi3u3ZZ1WBzi0yJCwm5pIvaJuQkMDSpcsIDLQRHh7Ogw+OJTPzA9TX\n74eYMeNZhg0b4trsmss4nU5eeWUyCxZ8TlBQII89NoinnnqOjIy7EfHHap1LfPwqWrZs6emoBXQP\nvLRyc6FHDzUTncWi5sO4+26YPl2NH7Za4dtvQZ/g4b2GDVN976KiotTe92W6/fZ7WLq0E5BfsJfT\nqtVMtmz55rIfUytbL7zwMtOmLScj4w3gOFbrwyxc+B67d/9Mbq6DAQP6e90QaN0DvwTn7d/5+KgL\nnW7bpnrhCxaor9/Z2aonfuqUGqHi6ZxexuMZf/sNXn1VTUh0003q2EY+mw3uvBO4/Jw2WwCQVOQ3\nZ7Ba/S877r/x+PYsIW/OOXfux2RkvAdcD1QiM/NxNm78gXHjXuDll8d7XfEuKd0D/zcmkxo+CDBr\n1rnrDx1S44l9fd2bSzu/rVvVFAhZWWA2Q1AQjBun2ijZ2TBgAEycWKqnGDPmCZYt60xGRjoiAdhs\nU+nT53maNbuJpKQkbr/9FqZMeRk/3V7zGgEBxT90LZYzBAQYr+f9T7qFcinWrVMHvYqOIQ4Lg59+\nUl/J69SBqlU9l09Te9zr1xcum82qjfL++y59mp9//pl33vmA3FwHnTq1Y8iQx8jIeAuoj9U6lnvu\nacDs2W+69Dm1kktJSWHYsCfZsGEjERHV6NevOy+//CaZmU9jNh8nOHgBP/30IzVr1vR01AvSPXBX\nE1En+8yfrw5eOp3qLL433lB74Dk5MHs23HOPp5NeuZo0OXek0B13wBdflNlTTp48mf/7v+Pk5uZf\nU/EIQUHNOHv2VJk9p3ZxHTrcxvffX4Xd/izwI0FBo5k1awZr1mwgJCSQESMeLfGMf56ie+CXoET9\nO5MJ3n0XtmxRBWHzZlW8MzPVhPCZmfDAA2qEiidzephbM4qoYxN33gmPPgpdu57b8+7X77x/6qqc\nVqsVH5+i7/lp/P2tefFKv/NihPccvCdnVlYWGzaswW5/H7gaGAR0wOFwMHfuO/TqdavXF++S0gX8\ncjRuDJ06qQOZ/+x9+/pCYqJHYl2RXn0Vhg+H//1PHaOYPx8GD1ZXGQ8LgwkTyvyqKvfccw+hod/j\n6/so8AY2W28GDepHRERdfHx8iY5uxT49p06ZczqdJCUl4ePjg8lkBk7mrRHgGIGBgR5MVzZ0C6U0\nTp1SZ/bljxMHtcf3+efqa3x4uJqWVh/gLDvBweqDNJ/VCtOmqaLuRidPnmT69Dc5dSqJm25qzSOP\njCItbR7QGZPpPapXf5vExL1YLnLGp3b54uPj6dWrP5mZGQQFhXDHHT1YtCiOjIwhBARsoW7dw2zf\nvh5//7IbLeRqugfuDp9+CvffX9gDv/deWLhQ/eznp04aiY/XVzEvKzZb8Q9Qf3+YPNmjl8NauXIl\nd989g9TUrwt+Z7NV49dffyx2CULNNZKSkqhZ82rS0j4CbgaWExIyjHfffZ0ffthOjRoRPPLIcMPt\ngese+CW47P7dXXfBkSOqSB85ovqxGRmqgKenw65daiy5p3O6UZlm3L9ffSj6+0Pduuf2vH191dwm\nJVBWOcPCwnA49qGu8QRwhNzcs5w6dYrFixezZcuWS3o8I7zn4Lmcv/76KxZLFKp4A9wGhNGwYUNm\nzpzG00+PLla8jbI9S0LvFrpCpUrqlp2t5hAvSkTNaKiVXm6uuvzZsWNqBNCBA6qN9eCDsGaN6nlP\nnw61a3s0ZsuWLenRI5bly68nN7ctZvMKbrvtdtq164aPTzscjh0MG3YXM2ZM9mhOI7Pb7Xz88cec\nPHmSevXqkZ19APgLqAocITv7COHh3j+fd2npFoqrtWoFO3cWzr1htaopalevVjPfTZqk2izapdu/\nX01MVXQcfmioGhHkZXNziwgrVqzg4MGDNGrUiFtv7U1W1magIZCMzdaEjRuX0qxZM09HNZycnBza\ntevKnj0m7PZr8fX9hC5d2vPNN99jsdyAw7GRceNG88wzIz0dtVRKUjv1HrirLV8OffvCjz9C5crQ\npg0sWVLYp334YTWfuJcVHK+Vmwsffwx//qnOiM276GyBnBz17cfLmEwmbsubZuHIkSOYTDZU8Qao\ngI9PE44cOaIL+GX48ssv2bs3h/T07wAzOTn3s2ZNLN999zW///470dFjrpjtqnvgeVzWF6taVZ0J\nmJ2tvupv3Vr8IFtGhhrydpmM0L9zWUanE7p1UyNKxo2DQYPUB2JgoDooHBio5qKJifFszn8RHh5O\nUJAf8HHeb7aTk7OFuXM/pmLF6tSs2YilS5de8O+N8J5D2edMS0vjzJkz/P333zidDSgsX1eTmZlK\ns2bNGDBgwL8Wb6Nsz5LQe+BlLSSk+LKPj+qLjx6t9i4HDVLXaNTO9d136ptMfsskI0OdPPXFF7B3\nL9Srp86y9PJ5uH18fPjmm6/o2rU3KSmPYLFA8+atWL06m6ysTSQn7+fuuwewfn11WrRo4em4XkdE\neOSRp/jgg/cxm31p2LARIvuAOCAGX99xtGrV8Yocoql74GXtm29UDzwzUxXv4GC1d56RoQp5/lWA\n2rXzdFLvIKLm6k5NVVdAeuwx9XM+Pz/1zaZyZc9lvExOp5MzZ85QoUIFKlasRlpaAlAdAIvlGcaP\nD+W5557zbEgvNGfOXJ544l0yMtYAQfj5Pcj11x/lt9/2k5T0F9dfH8tnn31IlSpVPB3VpXQP3Bt0\n6QIbNsCXX6qZ8bZsUS2U/DcmIwOee07tbV7pHA41WVh8vJp/3WIpfiEGi0XtdXthz7skzGZzQZEJ\nDAwhLS2R/ALu55dIYmIoN93UE4vFzNixj3LzzTdf+MGuAPnFa/36LWRkDAYqAGC3P05i4n0cP/6H\n58J5Cd0Dz1OmfbHmzeGll+CZZ9RBt39+qqamqjlVXngBNm3yXE4XueyMCxao4p2errZJcrI64Fun\njvqm0qaNGi7oopaJJ7flG2+8itXaB5Ppefz97yYo6Hs++mg169cPIC7uTm6//V6+/fZbj+e8FK7K\nmZOTw+DBwwkICCIwsCKHDu0nIGA96pR4MJu/Iyrq8mcRNMr2LAm9B+5u990Ha9cWXmvTalWtgrFj\nVWtl2jQ1o+GAAZ7N6S7p6apog+prFx0iKFJ4gelypn//u6hZswarVn1NpUrXsXjxGX74YRjQF4DM\nzCxmzJhDx44dPRvUA5577iUWL96P3X4ISOPHH7tTpcoRUlJaYzJVwtd3D7NmrfN0TK+ge+Ce8OGH\nahKm3Fxo0QJWrSo+UiUsTF1Jvbw7eRKuuw7OnFHLvr7qQgz5H24WC1x/vWpBlXPt29/Gxo0Dgf55\nv3mPNm0+JTU1i/T0dAYMuIOXX36+3B6oy87O5sCBA1SsWJGOHXvzyy+vAe3z1s6lV69vGT58EJmZ\nmbRv355KBm2jXYoS1U4pY254CmObNEnEx0dE7W+qm9Uq0revyLXXijz8sEhamqdTlo377xfx9S18\n3T4+Ig0aiPj7iwQGitSuLXLokKdTusXy5cvFZosQ+FDgffH3ryD+/lUElgpsE5utrTz77POejlkm\nfv31V6latbYEB9cXf/8KUqNGYzGZ3i7yv8UIeeyxpzwd0+1KUjt1Ac8TFxfnmSdOSFAFO///Vn9/\ntZxf1AMCRNq3F3E6PZvzElwwo9Mp8sEHIh06iPTuLdK8efEPLhC5/nqRv/4S2bdPJCfHMzk9ZNWq\nVdKtW1+57bb+0rfv3QIv5W2WOIGdUq3aNbJ3715Zt26d/PXXX56Oe47L3Z7R0a2KFOxTYrXWFKu1\nklitg8Vm6yNVq9aW48ePezynu5WkduoeuKfFxMBnn6kr/aSmquXt2wtbKllZ6mSgzZvhxAnVE46N\n9WjkyzZtmjohJyNDHYj08VHTC2RlqfVWq7ok2lVXqdsVplu3bnTr1g2AF154EYvlFA5H/tpTpKen\n0aJFR/z8GpCbu5evvvqETgY8ozc7O5tXXpnM5s07adSoHvv27UZkUN7aKuTm9ubppwOJjIzEz8+P\n3r3fvyJaJpdD98C9TXy8mk3v7NnC31ksavyzr6/qmz/4oJq0yQi2bVNDJ2vUULlPnChcZzLB1VfD\nH3+on7t1U3Op64sBc+TIEZo2bU1qaj8cjmr4+08GAsnO3glUBL4lNHQASUnHyc7Ozrtor/cTEbp2\n7c3GjUJm5kD8/VfidC4lJ+ct4G4gjcDAG1i06BV6lnBWyfJKzwduRNnZatjh/v3q54AANcOh01l4\nn/yTfwAqVIBGjbzzbMRZs2DkSPXN2GJRQyizswvXm81qDPyoUWo5NNQzOb3U4cOHeeut90hNTSc0\nNIC33z5CWtrCvLWC2exPWFgkp04dplKlanz55SLatm3r0cznk52dzezZs0lMPMzVV9fjiSf+Q1bW\nUcAPEGy2BpjNqVgsdbHb/6Rfv558+OE7mLzx/2k30gcxL4FX9cVSUkRGjhTp1k3k6aeL9cjjQB3g\nCw4WCQkRsdlE+vUTcTg8nVpl+PhjiRsyROSLL0T8/Ir3t319VU8/fzkwUOS33zwW16ve84uIi4uT\n7du3i81WTSAxb/PNFZMpUOAzAafAcgkOvkqOHTsme/bs8UiP/HzbMycnR1q37ihW6y0Cr0pAQD3x\n8akskJP3OpwSHNxcVqxYId99953s2bPHIzm9UUlqp+6Be6OQEHj9dfVzbi7Mm3fuhFhQeELQihXq\n/ikpak/8vvvUxQ7cSURd3GLVKpXvk0+Kn0UJ6iIM/fvDb7+pve1XXoEGDdyb06CaN2/Oq6+OZcyY\npvj6VsFiSSM3twbp6X3y7nErIlfRsGELcnODyMk5yZgxz/Dii/9xe9YtW7bw7LOvkJycSosWV7Nn\nTzKZmVsBM1lZQ4D6BAQMJitrEL6+K7nqqlw6duxomDaQN9EtFCNISFBXnjl7VhVop7N4KwJUf9zh\nUOttNnXQ02JR14ts3Fi1Ylxt+XLV105OVm2fhITCD5d8ZnNh+8dmU9cK9fAFF4wsKSmJU6dO4e/v\nz9VXx5CdvReIAE5jMtVFZDowBDiBzXY9Y8cOZdOmn7DZAvjPf54sk8mykpOTWb16NQBRUVF07tyD\n9PSJQC38/IYDdbDbv8m7txNf31DuvXcQu3b9SnR0XaZPn1Du5jFxhTJtoSxevFgaNmwoZrNZtm/f\nXqqvAVoJOBwiJ06I2O0iLVuKmM2FrYiiP+ffqldX7ZXgYPXzwYMi27eLLFt2aWOrs7IKh/MtXy7S\nooVIkyYiY8eqxy86hvuf49ltNpH69UVMJpFKlURWrSqTTXOleumlSWKz1ZDAwEFitdYSMBdpTYj4\n+HQUP7/qAgsEZkhgYBX56quv5NFHR8oDDzwmmzZtuqznPXjwoMydO1c+//xz+eOPP+Sqq6IkKOg2\nCQq6TWy2CmI2jy7yv8F3ea2eeQJ/iK/v49KixY3izBsWq11YSWrnZVfXX375RX777TeJjY0tFwXc\nKH2xuLg4kf37VVEOClLjxq+66twCXrSoWywi4eGqoIaGqv9+/LE6WahePZGePUUOHxaZMEGkbVvV\nU//5Z9WDt1hUYe7Xr3jB9vU9t2AX7dObzSKRkeoDJzfX05vtvAz1nl/ADz/8IHPmzJGNGzdKREQ9\ngSV5b0OymExhAt8UeWseF1/fEDGZnhd4TazWq+Tll1+WyMhrJCioivTs2V+OHDkio0f/R265pZ+8\n+OIrcvr0aRk48EGpVauJtG/fXT766CMJDKwigYH3SFDQjRIaWkMslrEF49VNplgxmYYXec6tUqVK\nDWnatK1UrlxLunfvK6dOnXLfxjsPo7zvZVrA8+kC7l4FObOzRfbsETl6VOTNN8/dGz5PYS12M5kK\nz4L08VEfBvmPYbGoA5D+/sU/BM73GEWXg4JEoqMlzt9f7akfOODRbfVvDPee/4vNmzdLSEhVCQ1t\nK1ZrhFSoECXwbZG3qJ3A+CLLU8VsDhFYI3BM/PzuleDgauLvf4/AR2K13ioVK9YUf/9BAtvFZJoh\nZnPFvAOn6gCkyVS7yIdGnMAHYrEEi9k8TmCu2Gz1ZObMt8t2A10io7zvJamdpe6Bd+jQgWnTptH8\nAhcl0D1wNxCBiRPhzTdVz/nGG2Hp0sJ+tMlU2DsvKZPp3FkT/ykgQD2f3a568O+/r6/36WFnzpxh\n9+7dXHXVVWzYsImRI18jI2MycAaLZTQOxyvAo3n3fgSTKQeR2XnL64ChwAHURKWngEggncJ57yoC\nCUBU3nJXfHzSyc1dCZiw2XrxwAPNSE3NICnpLP379+Cuu/qV+esuj0o9H/jNN9/MiaInXuSZMGEC\nPXr0KHGQwYMHExUVBUCFChWIiYkhNu9swvypHfVyKZf/8x/4z3/UstNJrMMBy5cTDxAQQGxmJmRl\nqWUgNu+/F1zOK+AFyz4+YDIRn3dNylibDRYsIP6HHyAlhdghQ6BNG+/ZHlfo8k8//QRAdHQ00dHR\nHDiwn+XLJxERUZ3u3V9g7NhxZGefBdri57cUp/MqcnPjgA5AIpALfJe3bM1bXgn0RI099wGG43R+\nBRzFz28XjRvXZteuMADatu1Cjx63FJwhGh8fT3x8vNdsH29ejo+PZ968eQAF9fJflXY3P1a3UNyq\nxDmdTpE//hDZuVMdiHz//cJ5Vq66Ss2vkj++3GoViYgo3kIJCVG3oCB1q1dP5PvvRYYMERkwQGTd\nutJn9LArMefnn38ujRrdIPXrt5RJk6ZIdHRLsdl6iNk8RgICwiUsLEp8fZ8SWCf+/vfJVVfVEZut\nhcBb4u9/t1xzTXO58cZbxGz2FT+/QJk69Q0REbHb7bJmzRqX5SxLRnnfS1I7XTIOXHSLxPuYTMXH\ngj/4IAwcqKZujYhQ7ZQ33lDzrjRpAiNGwNtvq6GB1aurlkxAAHz7rRq/fcstahjg9dd77jVppXbn\nnXdy5513Fiw//vgjzJ8/n1OnTtOp0+fUr1+fJ58cyy+/jOe6665l6tQEPv/8C7777kfq1GnIqFGz\nCAoKIicnBx8fn4KzJX19ffHx0aeVuNtl98CXLFnCE088wenTpwkNDaVZs2asWrXq3CfQPXBN07RL\npudC0TRNM6iS1E59Tcw8+QcTvJ0RchohI+icrqZzup8u4JqmaQalWyiapmleSLdQNE3TyjFdwPMY\npS9mhJxGyAg6p6vpnO6nC7imaZpB6R64pmmaF9I9cE3TtHJMF/A8RumLGSGnETKCzulqOqf76QKu\naZpmULoHrmma5oV0D1zTNK0c0wU8j1H6YkbIaYSMoHO6ms7pfrqAa5qmGZTugWuapnkh3QPXNE0r\nx3QBz2OUvpgRchohI+icrqZzup8u4JqmaQale+CapmleSPfANU3TyjFdwPMYpS9mhJxGyAg6p6vp\nnO6nC7imaZpB6R64pmmaF9I9cE3TtHJMF/A8RumLGSGnETKCzulqOqf76QKuaZpmULoHrmma5oV0\nD1zTNK0c0wU8j1H6YkbIaYSMoHO6ms7pfrqAa5qmGZTugWuapnkh3QPXNE0rxy67gD/99NNER0dz\n7bXXcscdd5CSkuLKXG5nlL6YEXIaISPonK6mc7rfZRfwLl26sGfPHnbt2kWDBg2YOHGiK3NpmqZp\n/8IlPfAlS5bwxRdfsHDhwnOfQPfANU3TLpnbeuBz586le/furngoTdM0rYQuWsBvvvlmmjRpcs5t\n2bJlBfd59dVX8fPzY8CAAWUetiwZpS9mhJxGyAg6p6vpnO7nc7GVa9asuegfz5s3j5UrV7Ju3bqL\n3g9JWMoAAAbOSURBVG/w4MFERUUBUKFCBWJiYoiNjQUKN6anl/N5S54LLe/cudOr8pxveefOnV6V\nx+jLenteGdszPj6eefPmARTUy39z2T3w1atXM2rUKL777juqVKly4SfQPXBN07RLVpLaedkFvH79\n+tjtdipVqgTA9ddfzzvvvHNZITRN07TiyvQg5r59+/jzzz9JSEggISHhvMXbSPK/yng7I+Q0QkbQ\nOV1N53Q/fSampmmaQem5UDRN07yQngtF0zStHNMFPI9R+mJGyGmEjKBzuprO6X66gGuaphmU7oFr\nmqZ5Id0D1zRNK8d0Ac9jlL6YEXIaISPonK6mc7qfLuCapmkGpXvgmqZpXkj3wDVN08oxXcDzGKUv\nZoScRsgIOqer6Zzupwu4pmmaQekeuKZpmhfSPXBN07RyTBfwPEbpixkhpxEygs7pajqn++kCrmma\nZlC6B65pmuaFdA9c0zStHNMFPI9R+mJGyGmEjKBzuprO6X66gOfZuXOnpyOUiBFyGiEj6JyupnO6\nny7geZKTkz0doUSMkNMIGUHndDWd0/10Adc0TTMoXcDzJCYmejpCiRghpxEygs7pajqn+5X5MMKY\nmBh27dpVlk+haZpW7lx77bX/2q8v8wKuaZqmlQ3dQtE0TTMoXcA1TdMMyi0F/LPPPqNRo0ZYLBZ2\n7NjhjqcssdWrV3PNNddQv359Jk+e7Ok45zVkyBCqVq1KkyZNPB3log4fPkyHDh1o1KgRjRs3ZubM\nmZ6OdF5ZWVm0bt2amJgYGjZsyNixYz0d6aIcDgfNmjWjR48eno5yQVFRUTRt2pRmzZpx3XXXeTrO\neSUnJ9OnTx+io6Np2LAhP/zwg6cjneO3336jWbNmBbfQ0NCL/zsSN/jll1/kt99+k9jYWNm+fbs7\nnrJEcnNzpW7dunLw4EGx2+1y7bXXyt69ez0d6xzr16+XHTt2SOPGjT0d5aKOHz8uCQkJIiJy9uxZ\nadCggVduTxGR9PR0ERHJycmR1q1by4YNGzyc6MKmTZsmAwYMkB49eng6ygVFRUXJ33//7ekYFzVo\n0CCZM2eOiKj3PTk52cOJLs7hcEh4eLgcOnTogvdxyx74NddcQ4MGDdzxVJdky5Yt1KtXj6ioKHx9\nfenfvz9fffWVp2Odo3379lSsWNHTMf5VeHg4MTExAAQFBREdHc2xY8c8nOr8bDYbAHa7HYfDQaVK\nlTyc6PyOHDnCypUrGTZsmNdPCufN+VJSUtiwYQNDhgwBwMfHh9DQUA+nuri1a9dSt25datSoccH7\nXNE98KNHjxbbOJGRkRw9etSDicqPxMREEhISaN26taejnJfT6SQmJoaqVavSoUMHGjZs6OlI5zVy\n5EimTJmC2ezd/1RNJhOdO3emZcuWzJ4929NxznHw4EHCwsK4//77ad68OQ888AAZGRmejnVRn3zy\nCQMGDLjofVz2f8XNN99MkyZNzrktW7bMVU/hciaTydMRyqW0tDT69OnDjBkzCAoK8nSc8zKbzezc\nuZMjR46wfv16r5zgaPny5Vx11VU0a9bMq/duATZt2kRCQgKrVq3i7bffZsOGDZ6OVExubi47duzg\nkUceYceOHQQGBjJp0iRPx7ogu93OsmXL6Nu370Xv5+OqJ1yzZo2rHsptqlevzuHDhwuWDx8+TGRk\npAcTGV9OTg533nknAwcOpFevXp6O869CQ0O59dZb2bZtG7GxsZ6OU8z333/P0qVLWblyJVlZWaSm\npjJo0CAWLFjg6WjniIiIACAsLIzevXuzZcsW2rdv7+FUhSIjI4mMjKRVq1YA9OnTx6sL+KpVq2jR\nogVhYWEXvZ/bv5d5055Ey5Yt2bdvH4mJidjtdj799FN69uzp6ViGJSIMHTqUhg0bMmLECE/HuaDT\np08XTGiUmZnJmjVraNasmYdTnWvChAkcPnyYgwcP8sknn/D/7dstroNAFAXgW9PgEZSEqiYYUgYS\nVoCqxZUNIVhELa4SEhRJN9AgESyCn9rzxJOvDU8VJjmfnmSOmSNm7sRxvMnyfr1eMo6jiIjM8yx1\nXW9uYupwOMjxeJSu60Tk937Z87yVU31WFIWkabq88Buvqff7HY7jwDAMWJaFy+XyjW3/pSxLuK6L\n0+mELMvWjvPW9XqFbdvY7/dwHAe3223tSG89Hg/sdjsopRAEAYIgQFVVa8f6o21bhGEIpRTO5zPy\nPF870qKmaTY7hdL3PZRSUErB87zNnqPn84koiuD7PpIk2ewUyjRNME0TwzAsruVXeiIiTW37aZuI\niD5igRMRaYoFTkSkKRY4EZGmWOBERJpigRMRaYoFTkSkKRY4EZGmfgCyPwS3F/WhjAAAAABJRU5E\nrkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from numpy import pi,arange,sin,zeros\n", "from pylab import scatter,grid,title,plot,axis,show\n", "\n", "# ver los gráficos en la misma ventana\n", "%matplotlib inline\n", "\n", "a,b,h = 0, 2*pi, 0.1\n", "x = arange(a,b,h)\n", "y = sin(x)\n", "d2y = d2y_diff(y, h)\n", "\n", "scatter(x,y)\n", "scatter(x,d2y, color='r')\n", "axis('equal')\n", "grid()\n", "title('Derivada Segunda')\n", "show()" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEKCAYAAAA1qaOTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XdYU+fbB/BvGMqGMGSKiKiIItJaRevArai4ASfW1m3d\nrXvVbdW21oWj4NZqXXXVqkWtVal1Ig5QQZYogsgOJPf7Bz/zikwhcJJwf64rl4Zzcs43JyfPnedM\nERERGGOMsXLSEDoAY4wx9cAFhTHGmEJwQWGMMaYQXFAYY4wpBBcUxhhjCsEFhTHGmEKodUHZs2cP\nunTpInQMuczMTPTs2RMmJibw9fUVOs5Hef78OQwNDVHeo8w9PT2xfft2BaUqWmRkJDQ0NCCTySp8\nXu8LDg5GzZo1y/x6Q0NDREZGlivD8OHDMW/evHJNo7QcHBxw/vz5Uo0bFBSE1q1bl3leY8eOxZIl\nS8r8+uI0atQIly5dqpBpl8UXX3wBU1NTeHh4fNTrPnb9GThwII4dO1bieHfv3sXnn39e4nilKih7\n9+5F06ZNYWhoCBsbG3h5eeHKlSuleamgBg8ejD/++EPoGHKHDh3Cy5cvkZSUhAMHDggd56PY29sj\nNTUVIpGoXNMRiUTlnoa6KKy4pqamwsHBoVzTLW4Znzx5Eq1atYJYLIa1tTVGjhyJtLS0CpmXom3a\ntAlz584t93QKK7ihoaFo06ZNuaetCJcvX8a5c+cQFxeHa9eufdRrP2b9uXv3Lu7evYtevXqVOG7j\nxo1hYmKCEydOFDteiQVl7dq1mDJlCubOnYuXL18iOjoa48ePx/Hjx0sVWihSqVToCAVERUWhXr16\n0NBQrY5hbm6u0BHUUkU2xEX1JN++fYv58+cjPj4eDx48QGxsLL755psKy6Eold3TFFJUVBQcHByg\no6NTofMJCAjAkCFDSj3+4MGDERAQUPxIVIw3b96QgYEBHTp0qMhxsrKyaNKkSWRjY0M2NjY0efJk\nys7OJiKiv/76i2xtbWnVqlVkYWFB1tbWdOTIETp58iTVrVuXTE1Nafny5fJpLViwgPr160e+vr5k\naGhIn3zyCd25c0c+fPny5VSnTh0yNDQkFxcXOnLkiHxYYGAgtWzZkqZMmUJmZmY0d+5cCgwMpFat\nWhERkUwmo8mTJ1ONGjXIyMiIXF1dKTQ0VP4+hw4dShYWFlSrVi1asmQJyWQy+XQ///xzmj59OonF\nYqpduzadPn26yOURFhZGbdu2JRMTE2rYsCEdP36ciIjmz59P1apVI21tbTIwMKBffvmlwGsXLFhA\nAwYMoGHDhpGhoSE1bNiQbty4IR8uEonoyZMn8uf+/v40d+7cMi1rmUwmX55mZmbk4+NDSUlJRET0\n7NkzEolEtH37drK3t6e2bdtSZGQkiUQikkqlRET0+vVrGj58ONnY2JBYLKbevXsTEVFSUhJ1796d\nLCwsSCwWU48ePSgmJkY+X09PT9q+fXuhy+769evk4eFBJiYmZG1tTRMmTCCJRJLv/W/evJnq1q1L\nJiYmNH78ePkwqVRK06ZNI3Nzc3J0dKT169fny/uhktal4j7zX375hRo0aECGhobk6OhIAQEB8mF/\n/fUX2dnZERHRqlWrqF+/fvnm+/XXX9OkSZNozpw5pKmpSTo6OmRgYEBff/11gc84IyODpk6dSrVq\n1SJjY2Nq1aoVZWVlERFR//79ycrKioyNjalNmzZ0//59+TyGDx8uXy9KcvjwYXJ1dZU/b9u2Lc2b\nN48+//xzMjQ0pM6dO1NiYqJ8+M6dO8ne3p7MzMxo6dKl5ODgQOfPny902omJidSzZ08yMjKiZs2a\n0dy5c+XfRyKiBw8eUMeOHcnU1JTq169Pv/76q3yYv78/jRkzhrp160b6+vp07ty5fOu7s7MznThx\nQj5+Tk4OmZub061bt4pdPgEBAaStrU3VqlUjAwMD8vb2JiKiWrVq0fnz5yk2NpZ0dXXl3wUiops3\nb5K5uTnl5uYSEdH27dupQYMGJBaLqUuXLhQVFSUft6g25kOxsbHUs2dPMjU1JScnJ9q6dSsREW3b\nto10dHRIU1OTDAwMaOHChQVeGx4eTm3atCFjY2MyNzcnX19f+bD31x9/f38aN24cde/enQwNDal5\n8+b52g9HR0e6cuWK/PmYMWPyra/ffvstdejQQf48JiaGdHV1830nP1RsQTl9+jRpaWkV+aUkIpo3\nbx61aNGCXr16Ra9evaKWLVvSvHnziCjvy6WlpUWLFy+m3Nxc2rp1K5mZmdGgQYMoLS2N7t+/T7q6\nuhQZGUlEeQ2qtrY2/fbbb5Sbm0urV6+m2rVryz/IgwcPUnx8PBERHThwgPT19enFixdElNcIaGlp\n0fr160kqlVJmZma+gnLmzBn69NNPKSUlhYiIHj58KJ/W0KFDqXfv3pSWlkaRkZFUr149eaMXGBhI\n2tratG3bNpLJZLRp0yaysbEpdFlIJBKqU6cOLV++nHJycujChQtkaGhIjx49IiKihQsX0tChQ4tc\nlgsWLCAdHR06ffo0yWQymjVrFnl4eMiHf1hQhg8fXuZl/eOPP1KLFi0oNjaWJBIJjR49mgYOHEhE\n/19Q/P39KSMjg7KysuR/e7cueHl5kZ+fH71584ZycnLo0qVLRJRXaA4fPkyZmZmUmppKAwYMkBcb\nouILyn///UfXr18nqVRKkZGR1KBBA/rxxx/zvf+ePXtSSkoKPX/+nCwsLOjMmTNERLRp0yZydnam\nmJgYSkpKIk9PT9LQ0Chy3S1pXSruMz958iQ9ffqUiIguXrxIenp6dPPmTfnn8K6gxMXFkb6+Pr15\n84aI8hq9GjVqyMctbFm8/xmPGzeO2rVrR3FxcSSVSunq1avyH2uBgYGUlpZGEomEJk+eTE2aNMm3\nXpS2oEyaNEn+uRPlFRQnJycKDw+nzMxM8vT0pJkzZxIR0f3798nAwIAuX75M2dnZNHXqVNLS0iqy\noPj6+pKvry9lZGRQaGgo2draUuvWrYmIKC0tjezs7CgoKIikUindunWLzM3NKSwsjIjyGkNjY2P6\n559/iCjvh+v76/t3331HgwcPls/rxIkT5OLiIn9e0vJ5N5133i+M7du3lzfwRETTp0+nsWPHEhHR\n0aNHycnJiR4+fEhSqZSWLFlCLVu2JKLi25gPtW7dmsaPH0/Z2dl0+/ZtsrCwoAsXLhARUVBQUL7C\n+yE/Pz9atmwZERFlZ2fnKwofFhQzMzP6999/KTc3lwYPHkx+fn7y5S8SifL9WMjIyKB69epRUFAQ\nXbp0iczNzSk2NjbfvI2MjOjevXtFZiu2oOzevZusrKyKG4Xq1KmT79fbH3/8QQ4ODkSU9+XS1dWV\n/9p/+/YtiUQiCgkJkY//6aef0rFjx4gor0Ft0aKFfJhMJiNra2u6fPlyofNu0qSJ/LWBgYFkb2+f\nb/j7BeX8+fNUr149unbtWr5GJjc3l6pVq0YPHjyQ/y0gIIA8PT3l03BycpIPS09PJ5FIRAkJCQXy\nXLp0qcDyGjhwoPxXxoIFC2jIkCGFvpd3wzt16iR//q4IvFNYQXm/h/Ixy9rZ2TlfQxAXF0fa2tok\nlUrlxePZs2fy4e8XlLi4ONLQ0JA3lMW5desWicVi+fPiCsqHfvjhB+rTp0++9//+l8fHx4dWrlxJ\nRETt2rXL11M4e/ZssT2UD324LpX2Myci6t27N/30009ElL+gEBF17dpV3jj9/vvv+Ro9T09P2rZt\nW75pvfuMpVIp6erq0t27d0vMnpycTCKRiN6+fUtEpS8oZ8+eJbFYTOHh4fkyLV26VP5848aN1LVr\nVyIiWrRoUb7ik56eTtWqVSu0oOTm5pK2trb8xxQR0ezZs+Xfx/3798uLyzujRo2iRYsWEVFeY+jv\n759v+PvvKzw8nAwNDSkzM5OIiAYNGkSLFy8u9H2WZvm8X1C2bdtG7du3J6K8NqhmzZryNqhr1675\n1l+pVEp6enoUFRVFFy5cKLSN+dDz589JU1OT0tLS5H+bNWsWDR8+nIjyt1uFGTZsGI0aNSpfz/+d\n99uI4cOH08iRI+XDTp06Rc7OzkSU19sQiUTyHyjvXL9+ncRiMdWqVYv2799fYPq2trZFtsdERMVu\nzDczM0NiYmKx2y/j4uJQq1Yt+XN7e3vExcXlm8a7bcW6uroAAEtLS/lwXV3dfDsF7ezs5P8XiUSw\ns7NDfHw8AGDnzp1wd3eHWCyGWCxGaGgoXr9+LR+/uKNr2rdvjwkTJmD8+PGwtLTE6NGjkZqaisTE\nROTk5BR4D7GxsfLnVlZW8v/r6ekBQKE7MuPi4gpkqFWrVr5pleT9ZaOnp4esrKxSbz/+mGUdFRWF\nPn36yJeli4sLtLS0kJCQIB+/qOUZHR0NU1NTGBsbFxiWkZGB0aNHw8HBAcbGxmjbti1SUlJKdXTY\n48eP0aNHD1hbW8PY2Bhz5szJ9/kCBT+Ld+8nPj4+X157e/ti51XSulTcZ3769Gl4eHjAzMwMYrEY\np06dKpDzHX9/f+zevRsAsHv3bgwbNizf8KL2oyQmJiIrKwt16tQpMEwmk2HmzJlwcnKCsbExateu\nLX9NaV27dg2DBw/Gb7/9Bicnp3zD3n/v768zcXFx+b6fenp6MDMzK3T6r169Qm5ubpGfSVRUFK5f\nvy5f/mKxGHv37pWvfyKRqNjvs5OTExo0aIDjx48jIyMDv//+OwYNGgQgb/9peZZP3759cfXqVbx4\n8QKXLl2ChoYGWrVqJc89adIkeeZ37z8uLg7t2rUrtI35UFxcHExNTaGvr59v2ZS2nVi1ahWICM2a\nNUOjRo0QGBhY5LhFff9NTEwAoEC+Zs2awdHREQAwYMCAAtNLTU2Vv7YwxRaUFi1aoHr16jhy5EiR\n49jY2OQ7TO358+ewsbEpbrLFio6Olv9fJpMhJiYGNjY2iIqKwqhRo7BhwwYkJSUhOTkZjRo1ytdQ\nlbST8+uvv8aNGzcQFhaGx48f4/vvv4eFhQW0tbULvIf3vzilZWNjg+jo6HyZoqKiSj2tkvLr6ekh\nIyND/jw+Pr7MO3bt7e1x5swZJCcnyx8ZGRmwtrYuMU/NmjWRlJSElJSUAsPWrFmDx48fIyQkBCkp\nKbh48SIorydcYqaxY8fCxcUFERERSElJwdKlS0tdTK2trfH8+XP58/f//6HSrEtFyc7ORr9+/fDt\nt9/i5cuXSE5OhpeXV5Gv7dWrF+7evYvQ0FCcPHkSgwcPlg8r7rMzNzeHjo4OIiIiCgzbs2cPjh8/\njvPnzyMlJQXPnj0DUPSO+A/dunULvXr1QlBQENq1a1eq1wD/v36/k5GRUWQhtbCwgJaWVpGfib29\nPdq2bZtv/UtNTcWGDRtKnWfgwIHYt28fjh07BhcXF3lDuHfv3mKXT0nfGbFYjM6dO+PAgQPYu3cv\nBg4cmC/3li1b8uVOT0+XH95bWBvzIRsbGyQlJeX7UfoxbY6lpSW2bNmC2NhYBAQEYNy4cXj69Gmp\nXvuOvr4+6tSpg0ePHuX7+4YNGyCRSGBjY4NVq1blGxYbGwuJRIL69esXOd1iC4qxsTG+++47jB8/\nHseOHUNGRgZycnJw+vRpzJgxA0Deh7pkyRIkJiYiMTER3333HYYOHfpRb+59//33H44cOYLc3Fz8\n+OOP0NHRgYeHB9LT0yESiWBubg6ZTIbAwECEhoaWero3btzA9evXkZOTAz09Pejo6EBTUxMaGhrw\n8fHBnDlzkJaWhqioKPzwww8fdfTDOx4eHtDT08OqVauQk5OD4OBgnDhxAn5+fqV6fUkNQpMmTbBn\nzx5IpVKcOXOmXMfNjxkzBrNnz5Z/yV+9elXqI/esra3RrVs3jBs3Dm/evEFOTg4uX74MIO9XvK6u\nLoyNjZGUlIRFixYVeH1R7zMtLQ2GhobQ09PDw4cPsWnTpmJzvF+ofHx8sG7dOsTGxiI5ORkrVqwo\n8nXlWZckEgkkEgnMzc2hoaGB06dP4+zZs0WOr6uri379+mHQoEFo3rx5vkbD0tIST548KfR1Ghoa\nGDFiBKZOnYr4+HhIpVJcvXoVEokEaWlpqF69OkxNTZGeno7Zs2cXWC5FCQ0NRdeuXbF+/Xp4eXkV\nOk5Rr+/Xrx9OnDiBK1euQCKRYP78+UUWfE1NTfTt2xcLFy5EZmYmwsLCsGPHDnlj3r17dzx+/Bi7\nd+9GTk4OcnJy8O+//+Lhw4dFZvjwb35+fvjjjz+wefPmfIW6pOVjaWlZYgM8aNAg7NixA7/99pu8\n5wPkfW+WLVuGsLAwAEBKSgoOHjwIoOg25kM1a9ZEy5YtMWvWLGRnZ+Pu3bv45ZdfSt3mHDx4EDEx\nMQDyehoikajQI0dLak+8vLxw8eJF+fPHjx9j3rx52LNnD3bu3IlVq1bhzp078uEXL15Ehw4doK2t\nXeQ0Szx+derUqVi7di2WLFmCGjVqwN7eHhs3bkSfPn0AAHPnzkXTpk3RuHFjNG7cGE2bNs13rPiH\nvwaK+3UgEonQq1cvHDhwAKamptizZw8OHz4MTU1NuLi4YNq0aWjRogWsrKwQGhoq74a+e21h83r3\nt7dv32LUqFEwNTWFg4MDzM3N5YdL/vzzz9DX14ejoyNat26NwYMH44svvih2uoXR1tbG77//jtOn\nT8PCwgITJkzArl27UK9evSKnVVTewub1008/4ffff5dvHnj3GRSVq7h5TZo0Cd7e3ujcuTOMjIzQ\nokULhISEFPva9/+2a9cuaGtrw9nZGZaWlvjpp58AAJMnT0ZmZibMzc3RsmVLdOvWrdS5Vq9ejb17\n98LIyAijRo2Cn59fvnGL+3xHjhyJLl26wM3NDU2bNkW/fv2KnE9Z1yUg78SxdevWwcfHB6ampti3\nb1+B4/g/fK2/vz9CQ0ML/NCaNGkSDh06BFNTU0yePLnQ5eHq6orPPvsMZmZmmDVrFogIw4YNQ61a\ntWBra4tGjRqhRYsWBZZTUe997dq1eP36NUaMGAFDQ0MYGhrC1dW1yPzvT6thw4bYsGEDBg0aBBsb\nG5iamha7WWr9+vVIS0uDlZUVRowYgREjRsiHGRoa4uzZs9i/fz9sbW1hbW2NWbNmQSKRFPkePvyb\nlZUVWrZsiatXr+Y7Ubik5fPll18iLCwMYrEYffv2LTS7t7c3IiIiYG1tnW/59O7dGzNmzICfnx+M\njY3h6uoqP9etuDbmQ/v27UNkZCRsbGzQt29ffPfdd2jfvn2R7/19N27cgIeHBwwNDdGrVy+sW7dO\nfu5JSevB+89HjRqFPXv2AMg7NWDo0KGYOXMmXF1d4eTkhGXLlmHo0KHIyckBkNczHjNmTJG5AEBE\npe0nF2PEiBE4efIkatSogXv37hU6zsSJE3H69Gno6ekhKCgI7u7uBcZZtGgRIiIisGvXrvJGYkxp\nREdHw9nZGQkJCTAwMBA6DmNygwcPho+PT4knN969exdjx44t8YR2hZxh98UXX+DMmTNFDj916hQi\nIiIQHh6OLVu2YOzYsYWOp4DaxphSkclkWLNmDQYOHMjFhCmdPXv2lPpM+dJcHUVLEaFat25d7PVj\njh8/Dn9/fwBA8+bN8ebNGyQkJOQ7AgHgy3Iw9ZKeng5LS0vUrl272B9cjKkLhRSUksTGxubb1mpn\nZ4eYmJgCBWXBggWVEYexSqGvr1+u62Qxpmoq7aJSH27O4p4IY4ypl0rpodja2uY7fj0mJga2trYF\nxnNyciryMErGGGOFc3Nzw+3bt4WOUTk9FG9vb+zcuRNA3hm6JiYmBTZ3AcCTJ0/k5xaoy2PBggWC\nZ+D3xe+poh4ymQwnH51GvZUewELIH7rfGSEy4XWpppGZk4nU7FQQEV69IuzZQxg8mGBuTnDu8xsa\nr/XE+ScXIJPJ1PZzKu/7ev98ESEppIcycOBAXLx4EYmJiahZsyYWLVokP3Z59OjR8PLywqlTp+Dk\n5AR9ff1iLxXAGFMdp//MQu+/RiBHJx7VRfroUdcbQ9190cWpC3S0Snf59ffHMzcHBg3Ke0ilQKM1\nP+Hu20vosCsYDQ1a44fe80HER4MqK4UUlH379pU4zvr16xUxK8aYErhzB5gxA4iI0MXoGatg7/IC\n45uNg562nsLmoakJXJ14DOuu/YxVl3/A/bTL6Ly7E8yu2mF48nDUFtdW2LyYYqjWnZ5UkKenp9AR\nKoQ6vi9+TyVLTAT8/YEuXYAePYCwMODnkUPwzefTFVpM3jHRMcF8z3mI+zYSS9stg6GmGd6IZZg9\n2QKFXEpOpanD+qeQM+UVRSQScXeWMSUU+zYWUw6txtVFq+DTXxsLFgBGRpWfIzU7FREv47B1eX2c\nPAkEBQEfcX1LtaUsbScXFMZYoUxNTZGcnCx0DPYesViMpKSkAn9XlraTCwpjrFD8fVQ+RX0myvJZ\n8T4UxlgBKVlqtoOCVQouKIyxAi6cLd0hv4y9jwsKYyyfvXuBsaOqCx2DqSAuKIwxuU2b8s4vOX9e\n6CSVLzg4uNgbhpXE0NCw2Kuul8bw4cMxb968ck1DSFxQGGMgApYvB1avBi5eBBo2FDqRcvP09MT2\n7dvz/S01NVV+58SyUvVbeHBBYayKC4n5F/UWeGP3/kz8/Tfg6Ch0IuVXkY2+MhytVVZcUBirwsJf\nh6P99u6I0PwdPqs3wNpa6ESls2LFCjg5OcHIyAgNGzbE0aNHAQBBQUFo1aoVvvnmG5iamsLR0THf\nzc0CAwPh4uICIyMj1KlTB1u2bCl0+t9//z369++f728TJ07E5MmTMXfuXFy+fBkTJkyAoaEhJk6c\nCADQ0NDA06dPAQCZmZmYNm0aHBwcYGJigtatWyM7OxsAMGDAAFhbW8PExARt27ZFWFiYwpePYEiJ\nKFkcxtTai9QXZLGkNmEhqM3WziTJleQbrszfx4MHD1J8fDwRER04cID09fUpPj6eAgMDSVtbm7Zt\n20YymYw2bdpENjY28tedPHmSnj59SkREFy9eJD09Pbp58yYREf31119kZ2dHRERxcXGkr69Pb968\nISKinJwcqlGjhnxcT09P2r59e75MIpGInjx5QkRE48aNo3bt2lFcXBxJpVK6evUqZWdnExFRYGAg\npaWlkUQiocmTJ1OTJk3k0xg+fDjNnTu3yPdd1GeiLJ8V91AYq4JSs1PRarMXXuU+g4v4U5wYegja\nmtofNQ2RSDGPsujfvz+srKwAAD4+Pqhbty5CQkIAALVq1cKXX34JkUiEYcOGIT4+Hi9fvgQAeHl5\noXbtvItKtmnTBp07d8bly5cLTN/a2hqtW7fGwYMHAQBnzpyBubk53N3d5eNQEZumZDIZAgMD8dNP\nP8Ha2hoaGhrw8PBAtWrVAOTteNfX14e2tjYWLFiAO3fuIDU1tWwLQslwQWGsCpry20pEpN+ErW4d\nXBhxEobVDT96GkSKeZTFzp074e7uDrFYDLFYjNDQUCQmJkIkEskLDQDo6eVdsPLdrZhPnz4NDw8P\nmJmZQSwW49SpU3j9+nWh8/D398fu3bsBALt378awYcPyDS9qP0piYiKysrJQp06dAsNkMhlmzpwJ\nJycnGBsby4tbYmLiRy4B5cQFhbEq5ulT4NSM+ehqNg7BX52BpUHBm90ps6ioKIwaNQobNmxAUlIS\nkpOT0ahRoxJ3ZmdnZ6Nfv3749ttv8fLlSyQnJ8PLy6vI1/Xq1Qt3795FaGgoTp48icGDB8uHFbdT\n3tzcHDo6OoiIiCgwbM+ePTh+/DjOnz+PlJQUPHv2DIBq74h/HxcUxqqQpCSga1dg3uxqOD1hA5xM\nnYSO9NHS09MhEolgbm4u37wUGhoKoPiGWSKRQCKRwNzcHBoaGjh9+jTOnj1b5Pi6urro168fBg0a\nhObNm8POzk4+zNLSssjblWtoaGDEiBGYOnUq4uPjIZVKcfXqVUgkEqSlpaF69eowNTVFeno6Zs+e\nne+1ql5YuKAwVkXIZMCQIXn3MRk7Vug0Zefi4oJp06ahRYsWsLKyQmhoKFq1aiU/h+PD3sO754aG\nhli3bh18fHxgamqKffv2oVevXoWO+46/vz9CQ0MxdOjQfH+fNGkSDh06BFNTU0yePLlAxtWrV8PV\n1RWfffYZzMzMMGvWLBARhg0bhlq1asHW1haNGjVCixYt8s1T1c9D4asNM1ZFLFqUdwb8+fOAdin2\nv/P3EYiOjoazszMSEhJgYGAgdBy+2jBjTFiZOZnoGzAVm4OSceBA6YoJy9uBvmbNGgwcOFApiokq\nUMg95RljyomIMPTAWBx5sQPNpobB2vpMyS9iSE9Ph6WlJWrXrp3vxEhWPC4ojKmxDde34LcnO6AN\nXWz1WSV0HJWhr68vP9SYlR5v8mJMTf0b+y8mncm7LMj23lvQ2LKxwImYuuOCwpgaSslKgVfQAMhE\nEnzlNg5D3YYIHYlVAVxQGFND8THVkPZfL7iYNMX6HmuFjsOqCD5smDE1I5MB7dsD3boBk6ZlQUer\nbLfz5e+j8lH2w4Z5pzxjauaHHwCpFJg+HdDU5HvDs8rDm7wYUyOhocCKFcCOHYCmptBpqpbly5dj\n5MiR5ZpGZGQkNDQ0IJPJFJSqcvEmL8bURHY2oXlzESZMAL76qvzT4+9j5YuMjISjoyNyc3OhoVHw\n976yb/LiHgpjauBJ0hPYL3OHQYN/8OWXQqepeqRSqdARlAIXFMZUnFQmRd9d/nipcQcWPX4u802r\nVIWDgwPWrFkDNzc3mJiYwM/PD9nZ2QgKCkLr1q3zjfv+bXmHDx+OcePGwcvLC4aGhmjdujVevHiB\nSZMmQSwWo0GDBrh9+7b8tXFxcejXrx9q1KgBR0dH/Pzzz/JhCxcuRP/+/TF06FAYGxsjKCgICxcu\nzHcRyb///hstW7aEWCyGvb09duzYAQA4efIk3N3dYWxsDHt7eyxatKgiF1el4oLCmIr74Z/1uPvm\nCsRa1tjed0OlzVe0SFTo42PGL9N8RSIcPHgQf/zxB549e4a7d+8iKCioVFfpPXjwIJYuXYrExERU\nq1YNHh4e+Oyzz5CUlIT+/ftj6tSpAPKu49WzZ0+4u7sjLi4O58+fx48//pjvcvfHjx/HgAEDkJKS\ngsGDB+dUUM9vAAAgAElEQVSbf1RUFLy8vDBp0iQkJibi9u3baNKkCQDAwMAAu3fvRkpKCk6ePIlN\nmzbh2LFjZVoWyoYLCmMq7HnKc8w+NwcAsKN/AEx1TQVOVDkmTpwIKysriMVi9OzZM1/PoigikQh9\n+/aFu7s7qlevjj59+kBfXx9DhgyBSCSCj48Pbt26BQD4999/kZiYiLlz50JLSwu1a9fGV199hf37\n98un17JlS3h7ewMAdHR08u3D2Lt3Lzp16gRfX19oamrC1NQUbm5uAIC2bduiYcOGAABXV1f4+fnh\n4sWLCls2QuLDhhlTUUQE/wMTkCNKh1ftfuhZv2flzn/Bx+0E/tjxi/PhbX7j4uJK9boaNWrI/6+j\no5Pvua6urvz6XVFRUYiLi4NYLJYPl0qlaNOmjfz5+zfc+lB0dDQcHR0LHXb9+nXMnDkT9+/fh0Qi\nQXZ2Nnx8fEqVX9lxD4UxFSWTAXFnhsFS0xlb+6wTOo7g9PX1kZGRIX/+4sWLMk+rZs2aqF27NpKT\nk+WPt2/f4sSJEwBKvhGWvb19kXd0HDRoEHr37o2YmBi8efMGY8aMUdnDhD/EBYUxFbVtmwim8f0R\nM+s+bAxthI4jmHebmtzc3HD//n3cuXMHWVlZWLhwYaHjlUazZs1gaGiIVatWITMzE1KpFKGhobhx\n40appjVo0CCcO3cOBw8eRG5uLl6/fo07d+4AANLS0iAWi1GtWjWEhIRg7969Kn2XxvdxQWFMBcXH\nA3PnAlu2AFqaVftr/K63ULduXcyfPx8dO3ZE/fr10bp162Jvr1vc7YI1NTVx4sQJ3L59G46OjrCw\nsMCoUaPw9u3bYl/77m/29vY4deoU1qxZAzMzM7i7u+Pu3bsAgI0bN2L+/PkwMjLC4sWL4evrW2gG\nVcQnNjKmgnx9AUdHYPnyipsHfx+Vj7Kf2Mg75RlTMadOATduAEFBQidhLL+q3VdmTMV8f/knDN60\nHOs35kBXV+g0jOXHPRTGVERcahzmnJ+DnKbp0K3fAoCn0JEYy4d7KIypiAlHZyJHlI4u9r3h6eAp\ndBzGCuCCwpgKuBZzDUee7oIWqmNj7zVCx2GsUFxQGFNyMpJh+IGvAQBTPKbBUVz4GdiMCY33oTCm\n5BLT3iDmiTFMbW0xv92sSpuvWCxW6XMi1NH7l4JRRnweCmNKbsMG4OAhwu6jcbAzthU6DnvPHxF/\noOuerqhGBng27ZFgVyxQlraTCwpjSuz1a6BBA+DcOaBxY6HTsMJ0DeyDP54fRW/HITgydJcgGZSl\n7eR9KIwpsfnzgQEDuJgos02910IT1XHrdi6ksqp950aFFJQzZ87A2dkZdevWxcqVKwsMDw4OhrGx\nMdzd3eHu7o4lS5YoYraMqbV794CDB4HvvhM6CStObXFthI2OQM7+fbj5n6bQcQRV7p3yUqkUEyZM\nwLlz52Bra4vPPvsM3t7eaNCgQb7x2rZti+PHj5d3doxVCfcS7uHrOaaYN88WZmZCp2ElqWdlh+++\nA6ZPB4KDofa3YS5KuXsoISEhcHJygoODA7S1teHn51fo7SyVYfseY6pARjL03eWPS2510aCbetzJ\nryoYPhxISgKq8u/mcheU2NhY1KxZU/7czs4OsbGx+cYRiUT4559/4ObmBi8vL4SFhZV3toyprT13\n9yEi/RZMdczwea1mQsdhpaSpCaxeDXz7LZCTI3QaYZR7k1dpjlP/5JNPEB0dDT09PZw+fRq9e/fG\n48ePCx33/ZvieHp6wtPTs7wRGVMZWblZmHJiNgDge6/F0NXmK0Cqki5dAAcH4LuNDzB9tA2MdYwr\nZD7BwcEIDg6ukGmXR7kLiq2tLaKjo+XPo6OjC9xr2dDQUP7/bt26Ydy4cUhKSoKpqWmB6X14lzXG\nqpIfrqzH69zncNR3xTC3oULHYWXQZPRPWHJnGjIufIs1XssqZB4f/thetGhRhcznY5V7k1fTpk0R\nHh6OyMhISCQSHDhwAN7e3vnGSUhIkO9DCQkJAREVWkwYq8qyc7OxNHgVAGBD71XQ1KjaRwypqr7N\nPAANKdaF/IDnKc+FjlOpyl1QtLS0sH79enTp0gUuLi7w9fVFgwYNEBAQgICAAADAoUOH4OrqiiZN\nmmDy5MnYv39/uYMzpm7S31aH9u7LmNBwIbrU6SJ0HFZGze2aw9vRF7miLEz+fY7QcSoVnynPmJKY\nPh1ISwM2bxY6CSuvZ8nPUPcnZ0hFEtwefRtuVm4VOj9laTv5THnGlMCzZ0BgIMC7ENVDbXFtjHQf\nAwCYfqLqnJnKBYUxJTBvHvD114CVldBJmKIs6jgHLbXHQ+vsOqGjVBre5MWYwO7dAzp2BCIigPcO\niGRqIDMTqFsXOHwYaFaBpxQpS9vJPRTGBHTl+RV03e6D4dMfcjFRQ7q6eRf4nD1b6CSVgwsKYwIh\nIkw8Ngdx4oPQcNsrdBxWQb74AoiKAs6fFzpJxeOCwphAzj09h5tJF6EnEmNmm2lCx2EVRFsbWLw4\nr5eiBFulKhQXFMYE8K53AgBzPGdU2CU6mHLw8QGS9ULQaf2XyJXlCh2nwnBBYUwARx8ew8PUf2Gs\naYlJHhOEjsMqGEGKtC6DcT7pFwTe3CF0nArDBYUxAfxxLRqiXB0s6jgH+tX0hY7DKpimhia+98q7\n3tbMMwuRlZslcKKKwQWFsUomkwEhP3+NgEYRGNN0lNBxWCUZ6OqHOgaNkSSNwaaQLULHqRBcUBir\nZIcPAxoawFc+tqiuVV3oOKySaIg0sKZ73lnzi84vR2ZOpsCJFI8LCmOVSCrNOyt+yZKqe5vYqsy7\nvjfqG36C1Mws/BdzV+g4CscFhbFKtH8/YGaWdyMmVvWIRCIcGbobnnee4f7Z5kLHUTi+9ApjleTF\n20S0/cwcGzcCHToInYYJ6fp1YMAAIDwcqK6ArZ7K0nZyD4WxSiCRStDo50+Q0LUDXJu/EjoOE1jz\n5oCrK7B9u9BJFIsLCmOVYOuNX/A6Nxomdi9grm8mdBymBBYuBJYvB7LU6AhiLiiMVbDs3GzM/zPv\n3uIruy2Ahoi/dgz47DPA3R3YsoWQI80ROo5C8JrNWAXb9l8gkqTRcNBriAEN+wsdhymR3hOvYPrj\nz7Ds4vdCR1EILiiMVaC83slSAMBKL+6dsPwc6mQjx+I/rPp7NVKyUoSOU268djNWgSQ5MohujEcT\nY0/0d+kndBymZNo5tMMnZm2QQclY87fq39mRDxtmrALt3Jl3JM9ffxE0NPhMRlZQcGQw2u1oBz2R\nGPEzImFU3eijp6EsbSf3UBirILm5effBWLgQXExYkTwdPOW9lJ/+2SB0nHLhgsJYBdm7F7CxAdq1\nEzoJU3YrveZBR1IT4TdthY5SLrzJi7EKIJUCLi7Apk1A+/ZCp2HKjohwNSQHvv2rISLi48+eV5a2\nk3sojClYjjQHM375HWbmMu6dsFIRiURo2bwaGjUCdqjw/be4oDCmYDvu7MKaOG9o+PrwFYXZR5k/\nH1i2DMhR0fMcuaAwpkC5slzM+yPvrPjRbXsLnIapmhYtACcnYNcuoZOUDRcUxhRo3739eCF5Aqtq\ndTDQ1U/oOEwFzZ8PLF2eg9AXD4WO8tG4oDCmIFKZFLPP5J0Vv6TLbGhpaAmciKkiB7fniOtXH222\ndUR2brbQcT4KFxTGFOTYo+OIyXoIC+1aGOY2VOg4TEXZGdnB2swAydJYbL8ZKHScj8IFhTEFqR7V\nHdb/bsO6nqugraktdBymojREGljebS4AYOGfK5XicODS4vNQGFMAIqBNG2DsWGDQIKHTMFUnlUlh\nscIOyTkvcG/MfTSydCl2fGVpO7mHwpgCXLwIJCQAvr5CJ2HqQFNDE93q550R++PxcwKnKT0uKIwp\nwOLFwOzZgKam0EmYuuhRrwfcDboh+FgtKEHno1R4kxdj5XTtGjBwIPD4MaDNu06YAslkefeeX7sW\n6NKl6PGUpe3kHgpj5XA1+ipGBQRgyjfZXEyYwmlo5PV8ly4VOknpcEFhrBym/D4f9xzG4K3Lj0JH\nYWrK1xeIiwMuXRI6Scm4oDBWRiGxIbj+6hyqwxDjmo8UOg5TU1pawMyZqtFL4YLCWBnNOp33DR/3\n2TiY6poKnIaps2HDgLAw4N9/hU5SPN4pz1gZ3Eu4h8abG0MLOoiZFglLA0uhIzE19UfEH/j1/q8w\nevIlnl1qiaNHC46jLG0n91AYK4MNf+8GAIxwG8nFhFWoc0/P4Zfbv0DL5Xdcvw7cuyd0oqJxQWGs\nDETnV6C/5ATmtf9W6ChMzXVw7AAAuBh9HpMnA8uXCxyoGLzJi7GPFB8PNGwIPHwI1KghdBqm7tIl\n6RCvFENKUjwb8xp/nTaBv3/+cZSl7eQeCmMfac0aYOhQLiascuhX04eHnQdkJMPNpOACxUSZcEFh\n7CO8fg388gswfbrQSVhV0tGxIwDg/NPzAicpHt8BiLGPsG4d0LcvULOm0ElYVeLXyA8uFi5o59BO\n6CjF4n0ojJXSovMrsGqNBBe//xpNG4qFjsOYnLK0nQrZ5HXmzBk4Ozujbt26WLlyZaHjTJw4EXXr\n1oWbmxtu3bqliNkyVmmSM5Ox/O9lyGi+AFLjx0LHYUwplbugSKVSTJgwAWfOnEFYWBj27duHBw8e\n5Bvn1KlTiIiIQHh4OLZs2YKxY8eWd7aMVaof/9mAbKSiuUUHNLdrLnQcxpRSuQtKSEgInJyc4ODg\nAG1tbfj5+eHYsWP5xjl+/Dj8/3doQvPmzfHmzRskJCSUd9aMVYo0SRrWXMm7+OPybnMETsOY8ip3\nQYmNjUXN9/ZQ2tnZITY2tsRxYmJiyjtrxirF5n+3Ip1eo5GxBzwdPIWOw6q4rNwsZOZkCh2jUOU+\nykskEpVqvA93GBX1ujHTx8DKwAoA4OnpCU9Pz3LlY6y8jl67DQBY7jWn1Os7YxUhPjUeUpIi/L9w\nXLx4Ueg4BZS7oNja2iI6Olr+PDo6GnZ2dsWOExMTA1tb20KnF90oCZuHby5vLMYUQiYDXm/bgU0r\nJqN73SZCx2FVnLWhNQDArp0d2rX7/0OIFy1aJFSkfMq9yatp06YIDw9HZGQkJBIJDhw4AG9v73zj\neHt7Y+fOnQCAa9euwcTEBJaWhV9Q71TkITxKfFTeWIwpxJEjgJERMNrbnXsnjJWg3AVFS0sL69ev\nR5cuXeDi4gJfX180aNAAAQEBCAgIAAB4eXnB0dERTk5OGD16NDZu3Fj0BEWE+X+uKG8sxsqNCFi2\nLO8WrFxLGCuZ0p3YKFqgARE08HRyBGqZ1BI6EqvCzpwBvvkGuHMn797ejCkrtTqxUZH61xsGrQdD\n8DZF6aKxKkRGMixbBsyaxcWEsdJSuh6KTCbDyJEi1KwJLFggdCJWFRERmvzUBpEhjREesBg1DPn2\nvky5cQ+lCCKRCDNmAOvXA6mpQqdhVdHZJ2dxN+VvUIODMNDREToOYypD6QoKANStC3TsCPxvnz5j\nlWrW6aUAgG9bT4Wetp7AaRhTHUq3yetdnLt3ga5dgadPAf6RyCrL5ajLaBPUBroiE7yYEQWj6kZC\nR2KsRLzJqwSNGwNNmwJLt4YiTZImdBxWRbzrnUxs/jUXE8Y+ktIWFAAwHzAfS5JcseE6nznPKl6O\nNAdx4RbQgTG+aT1J6DiMqRylLij9PTwAAMuCVyvtxdCY+oiO0sbbHbvwaGwUzPTMhI7DmMpR6oLS\nzakbnAzc8VaWgG03fxE6DlNzK1cCY8YA9jWMhY7CmEpS2p3y7/wWdhj9D/aDmVZNxM2MQDXNagKl\nY+osNhZwdQUePQIsLIROw9jH4Z3ypdSnQW/Y67rgdW40dtzeJXQcpqZWrwb8/bmYMFYeSl9QNEQa\nWN19ESzDv0W1Zz2EjsPU0P3Il9ixA5g+XegkjKk2pd/k9c7hw8CKFcD163zlV6Y4z1Oew/GHenDI\n6oVHy/ZCU0NT6EiMfTTe5PWRevcG0tOBP/8UOglTJ9+dXwWpKBsuDTS4mDBWTirTQwGAPXvyLsdy\n6VIlhmJqKz41HjXX1IZUlI17Y++hUY1GQkdirEy4h1IGvr5AXBwXFKYYy4JXQyrKRueafbmYMKYA\nKlVQtLSAmTMJ037+C9dirgkdh6mwV+mvEHAz7woMK7rNFTgNY+pBpQoKAGi678aNRu0x8tAUpeji\nMdWUmakBrdtj0dXOB+7W7kLHYUwtqNQ+FABIk6TBekVtpFEizg45i051OlVSOqZO1q4Frl4Ffv2V\nIOLDBpmK430oZWRQzQAz2kwDAHxzcpFSLESmWrKy8k5knDsXXEwYUyCVKygAMKnFeOiJTHEn+QqC\nI4OFjsNUzPbtebdGcHMTOglj6kUlC4phdUN802oqAGDx2XUCp2GqRCLJuwjkXN4Pz5jCqWRBAYAp\nLSegV/W1MPxzt9BRmIpIzU7F7ICLcHEBmjUTOg1j6kdlC4qxjjH2TpyCkCv6uHdP6DRMFay7tgFr\nkjxh4jdF6CiMqSWVLSgAoKcHTJsGLFkidBKm7FKzU7H84moAwFdtuguchjH1pNIFBci7IVJwMBAW\nJnQSpszWXduAdHqNxiafo0PtDkLHYUwtqXxBMTAApkzhXgorWpokDcsv5fVOVvdYwIcKM1ZBVL6g\nAMCYsVKciDyAoXsnCh2FKaEN1wOQLnsNV+OW6OjYUeg4jKktLaEDKIJU+w2yu3yJ3eHpGB8zCB52\nHkJHYkpEL2w06kZKsW5BM+6dMFaB1KKHYqZnhq+b5fVOpp2YL3AapkwkEmDtCgMEfvUtPB08hY7D\nmFpTi4ICALM9p6M6DPFPwp+4HHVZ6DhMSezcCTg5AZ9/LnQSxtSf2hQUU11TTGmRd37BtJMLBE7D\nlIFEAixdCizg1YGxSqE2BQUAZrSZAl2Y4EFMDBIzEoWOwwS2YwdQpw7QqpXQSRirGtSqoJjomOAv\n/4sw2BGG6EfmQsdhAtoUsg2zdh3Cou9kQkdhrMpQufuhlMa6dcD588CxYwoIxVROUmYSbL+vjSx6\ni39G/IMWNVsIHYmxCsX3Q6lAo0YB//0H3LghdBImhBWX1iCL3qK5eUcuJoxVIrXsoQDAxo3AyZN5\nD1Z1vEx/iZqrHSFBOq5+eZXPSWJVAvdQKtiXXwKhoUDw31lKsaBZ5fjuwgpIkI621j24mDBWydS2\noFSvDnSYugtdT9XB0YdHhY7DKkGuLBcHb/4JAPjRe7HAaRiretS2oACAW7MUZFePw+Tf50Aqkwod\nh1Wwt2+0kLvhJoLa/4kmVk2EjsNYlaPWBWVss1Gw0HbA88wH2Hlnl9BxWAX7/nugX29t+LfmC0Ay\nJgS13Sn/zo7buzD82DCYa9sj+ttH0NHSUej0mXJISAAaNABu3wbs7YVOw1jl4p3ylWRI40Fw0G2E\nxJzn2BCyWeg4rIIsXw4MGcLFhDEhqX1B0dTQxE/ey2Dw9lO8vMPb1dXRw4hs7NoFzJ4tdBLGqja1\n3+QFAESEf/4BBg4U4fFjQIe3eqmNK8+voNNWH3TWWI6ji4YJHYcxQfAmr0okEonw+eciuLsDmzYJ\nnYYpChFh3NFvkKkVB+eWT4SOw1iVVyV6KO+EhgIdOgDh4YCRUYXNhlWSow+Pos+BPjAQWSBuxhMY\nVjcUOhJjglCbHkpSUhI6deqEevXqoXPnznjz5k2h4zk4OKBx48Zwd3dHs2bNyjvbMmnUCOjaFViz\nRpDZMwXKleVi4vFZAIAlneZzMWFMCZS7oKxYsQKdOnXC48eP0aFDB6xYsaLQ8UQiEYKDg3Hr1i2E\nhISUd7ZltmgRsG5rEjZe3iNYBlZ+227+gujMh7DUroOxzUYJHYcxBgUUlOPHj8Pf3x8A4O/vj6NH\ni77MiTJ0ySxtMyEZ2RDjLwzBjTi+HLGqirvjDL2UT/CT9zJU06wmdBzGGBRQUBISEmBpaQkAsLS0\nREJCQqHjiUQidOzYEU2bNsXWrVvLO9sy09XWxYimQwAAY45MU4oixz5Odjawe2kb/N7zX/g0HCB0\nHMbY/2iVZqROnTrhxYsXBf6+dOnSfM9FIhFEIlGh07hy5Qqsra3x6tUrdOrUCc7OzmjdunWB8RYu\nXCj/v6enJzw9PUsT8aMs7jQHgbcC8V/iJRx7dAy9nXsrfB6s4gQE5J0V375dlThIkbECgoODERwc\nLHSMAsp9lJezszOCg4NhZWWF+Ph4tGvXDg8fPiz2NYsWLYKBgQGmTZuWP0wlHqnw4z/rMeXPr2Gj\n44Rn0+/zZhMVkZIC1K8P/Pkn4OoqdBrGlIPaHOXl7e2NHTt2AAB27NiB3r0L/trPyMhAamoqACA9\nPR1nz56Fq8Ctwfjmo2FbvT7isiJwNuK8oFlY6S1eDPTsycWEMWVU7oIyc+ZM/Pnnn6hXrx4uXLiA\nmTNnAgDi4uLQvXt3AMCLFy/QunVrNGnSBM2bN0ePHj3QuXPn8s66XLQ1tbFv4DZ8cuNfxF/qJmgW\nVjIiwoITG/DLvmQsWSJ0GsZYYarUiY2F+e+/vF+8jx4Bhnwqg9I6/ug4eu3vBTORExLmPoSmhqbQ\nkRhTGmqzyUvVffop0LEjsHKl0ElYUbJzszHmyFQAwOwOX3MxYUxJVfmCAgBLl+Zd4ys6WugkrDA/\nXF2H+OwnsNNpgK89xgodhzFWBC4oAGrWBCZMAL75BsjIyRA6DntPQloCFl7Iuz/81r4/QFtTW+BE\njLGicEH5n3FTUnFSYxQa/PApsnOzhY7D/ufArZPIRiraWHVH17pdhI7DGCsGF5T/ERtWh3HjS3ie\n+RDf/71W6Djsfx4fGIF+ydewfcCPQkdhjJWgyh/l9b4/n5xD592doA1dREx+CHtjvp+skEJDgfbt\ngQcPADMzodMwpryEbjvf4R7KezrV6Qgvex/kIBNjj04VOk6VJpMBY8cCCxZwMWFMVXBB+UBAvzXQ\nJn2civwNf0T8IXScKisoKO8ikGPGCJ2EMVZaXFA+YGdkh0XtFsHg0WikRzQVOk6VdOPJM8yalXcR\nSE0+5YQxlcH7UIpw7BgwcyZw5w5Qja8bWWmCI4PRPqgD3LMn47/lfGtNxkpDWdpO7qEUwdsbqF0b\n+JEPLqo02bnZGPbrGJBIhm7tTYSOwxj7SFxQiiASAT//DKxaBTx5InSaqmHZpVWIznwE2+r1Ma/d\nt0LHYYx9JC4oxahTB5g1Cxg5ElCC3qRaC38djmWX827Ytst3M6prVRc4EWPsY3FBKcHkyUCC1r+o\nt6IN4lLjhI6jtiYdn4NcZKNvnWFoV9tT6DiMsTLgglICTU3AasBSREguY/ihsUqx40vdyGRA2oGN\naKE1Dpv7rBY6DmOsjLiglMIO3/WoDiP8+fw49oceEDqO2tm8GchONselGRtgoW8hdBzGWBnxYcOl\ntClkK8adHgVDDXM8mRrGDZ+CREQAHh7A338Dzs5Cp2FMNSlL28k9lFIa89lXaGrWHqmyRIw6OlHo\nOGpBKgWGDwfmzuViwpg64IJSSiKRCAcGb4WhzA6xwd2U4teAKktIS8DqtTnQ0gImcn1mTC3wJq+P\n9DYtB80/08bcucDgwUKnUU1SmRSfbmiF0IcSnB99EG0bOwodiTGVpixtJ/dQPpKRgTb27cs7nPjp\nU6HTqKaVf6/GnaRrMLR6gcZ1xULHYYwpCBeUMmjSBJgzBxg4EMjJETqNarmXcA/z/5oPANjrtx1i\nXS4ojKkLLihlNGlS3n06FiwAcqRcVUojTZKGnrt8IIUEg51HoVvdrkJHYowpEBeUMhKJgMBAwoYb\n6+C0xg1vs98KHUnp/fx3IKLSH6KmjgsC+vBtlhlTN1xQykFsnoManYPwPPMBvjw8Tug4Sk0mA4JX\nTUBHyc/4Y8Qh6FfTFzoSY0zB+CivcnqU+AiN1n+CXFEGgnrtgH+TYUJHUkpLlgBnzwIXLgBaWkKn\nYUy9KEvbyT2UcqpvXh8be6wHAIw6Nha3X9wWOJHyuXAB2LgR2L+fiwlj6owLigJ89elw9K8zHBJk\nYMDuEUrxS0FZxMcDQ4YAO3cCNjZCp2GMVSQuKAogEomw228zuloNR1LAQYSHi4SOpBSCbu1C7y+e\nYMwYoGNHodMwxioa70NRsK1bgTVrgGvXAJMqfBfbIw+Oou+BvtCSGuH5N49hbVRD6EiMqS1laTu5\nh6JgI0cCnTrlnfQolQqdRhjXY67D59eBgIgwo/V0LiaMVRHcQ6kAOTlA167AJ58A338vdJrK9STp\nCT7Z2AJvpa/gW/dL7Bu4FSIRbwJkrCIpS9vJPZQKoK0N/PorcPgIYeC6tbiXcE/oSJUiMycT7bd7\n4a30FVpYdMEu301cTBirQrigVBAzM2Dg2o3YnzwNbbZ1wqPER0JHqnAxkbp4c3oanPQ+xZkvf4W2\nprbQkRhjlYg3eVWgrNwstA3oiZDEczCvZouQMZdRW1xb6FgV4tUroGVL4JtvgBFf5UJLg084Yayy\nKEvbyT2UCqSjpYMLI4/CzaQ1EiWxaLmlPWLexggdS+GSkgAvL6B/f2DUKHAxYayK4oJSwfSr6ePS\nmBNwNmyGF1mR8Nk1WuhICvXqFdC+PdC2LbBsmdBpGGNC4oJSCYyqG+GfsWfQxtQXj1dvxc2bQicq\nv6zcLPTZPQjN+vyLnj3zjmbj/e+MVW28D6WSHTkCjB2b92+LFkKnKZt0STq67uiNv+POwQx18WJe\nGG/mYkxAytJ2cg+lkvXpA2zfDnh75x1arGreZr9Fu+3d8HfcORiKLBE89jAXE8YYAO6hCObOHaBn\nT2DUaCk8/ILRsU4HoSOVKPRlKLrv7Ifn6Y9homGL6+MuoJ5ZPaFjMVblKUvbyT0Ugbi55V3v6+dH\n36LT7o6Yc26+UqwQRSECtuyLw/O0cNTSccXNCZe5mDDG8uGCIiAbG2DGKEeANLDsymJ47+6PV+mv\nhI5VQEYGMHw48Ne2ztjQ5gjCpl5T2/NpGGNlx5u8lMDvj06h/z4/SESpMNI0R0Dvn+Hb0FcpLlsS\nHsOhEIUAAAcrSURBVA7065fXo9q8GdDnO/cypnSUpe3kHooS6FnfCw8n3cEn4vZ4K03E9KD9SEwU\nLk9WbhZ+u38E27cDn3+ed1Tazp1cTBhjxeMeihIhImy6vh13f+uOY7utsW4dMGBA5c7/8IPD+Pr3\n6YjPikSjkL+xY/Hn+OSTysvAGPt4ytJ2lquHcvDgQTRs2BCampq4WczZemfOnIGzszPq1q2LlStX\nlmeWak0kEmGcx1fY/L01jhwB5s8HevQA/vknb7hEKqmwed9+cRstt7RH/4P9EZ8VCbtqDRGwSYOL\nCWOs1MpVUFxdXXHkyBG0adOmyHGkUikmTJiAM2fOICwsDPv27cODBw/KM1uVEhwcXKbXeXgAt24B\n3brl3ZPdzesGaqyww3fBi/E647VCM647dxjuAe649iIYumSGtR024NmM22hpX/SZl2V9X8qM35Nq\nUMf3BKjH+ypXQXF2dka9esUfOhoSEgInJyc4ODhAW1sbfn5+OHbsWHlmq1LKs5Lo6ADjxwOPHwO1\nvX5DSu4rLLg4H9bf10THX7pj9T+r8STpSZmmnZwMbNqUV7iWftkBerIaGOEyGTEzHmNKq3Elnqyo\nDiv/h/g9qQZ1fE+AeryvCj/FOTY2FjVr1pQ/t7Ozw/Xr1yt6tmpFSws4Mn4Z/nrWGbNPfo/rSadx\nPvoUzkefwsmDFhjjUQdt2wJWVv//mmMPjyE5KxmZOZm4/zIMN6PD8PB1GMaK7uLhfxY4dw7o0iVv\ns1rnzsaARiyf8c4YK5cSW5BOnTrhxYsXBf6+bNky9OzZs8QZKMOhr+pAJBKhvWM7XPu6HWLexuDC\n02AcvvUXGhu0w969wJgxgESSdySWgQHwosdyZJoVLNxPMsLQq1dbbN0KmJq+P4SLCWOsnEgBPD09\n6b///it02NWrV6lLly7y58uWLaMVK1YUOm6dOnUIAD/4wQ9+8OMjHm5ubopoystNYT9LqYhD1po2\nbYrw8HBERkbCxsYGBw4cwL59+wodNyIiQlFxGGOMVbJy7ZQ/cuQIatasiWvXrqF79+7o1q0bACAu\nLg7du3cHAGhpaWH9+vXo0qULXFxc4OvriwYNGpQ/OWOMMaWiVCc2MsYYU11KcekVdTzxccSIEbC0\ntISrq6vQURQmOjoa7dq1Q8OGDdGoUSOsW7dO6EjllpWVhebNm6NJkyZwcXHBrFmzhI6kMFKpFO7u\n7qU6eEZVODg4oHHjxnB3d0ezZs2EjqMQb968Qf/+/dGgQQO4uLjg2rVrQkcqO4H34VBubi7VqVOH\nnj17RhKJhNzc3CgsLEzoWOV26dIlunnzJjVq1EjoKAoTHx9Pt27dIiKi1NRUqlevnlp8Vunp6URE\nlJOTQ82bN6fLly8LnEgx1qxZQ4MGDaKePXsKHUVhHBwc6PXr10LHUKhhw4bR9u3biShvHXzz5o3A\nicpO8B6Kup742Lp1a4jFYqFjKJSVlRWaNGkCADAwMECDBg0QFxcncKry09PTAwBIJBJIpVKY5j+e\nWiX9Xzv388p+HAdw/GlXaqf5kc8O2m0uJnL2IymlLbus+dGMixP/ggPKSXJyUHKwq0QhxZqDtDm7\nTH0mKYowNXx8D0oO0rd93vVivR633Z6rrdd67/N6FwoFtre3GR8f/xV3PJlUSe/n/v6edDrN2NgY\n8PGfs9frFa4qn/hA+W7x8fLyUrBI/Y+LiwtyuRwdHR3SKa45jkNLSwt1dXV0dnYSDAalk1ybnp5m\nYWEBj0f8K25UVVUVPT09tLW1sbKyIp3jWj6fx+fzkUgkaG1tZWJigmKxKJ1VNvFPmy4+/j2Pj49E\no1EWFxepqamRznHN4/FwdnZGoVDg6Ojoz1+BsbW1RW1tLaFQqKJ+zQNkMhlyuRw7OzssLy+TTqel\nk1x5fX0lm80yOTlJNpulurqa+fl56ayyiQ+UxsZGbNv+fG3bNpZlCRapn7y8vDA4OMjQ0BDhcFg6\nxyiv10t/fz+np6fSKa4cHx+zublJU1MTsViMg4MDRkZGpLOMaGhoAMDn8xGJRDg5OREucseyLCzL\nor29HYBoNPrjze2/nfhA+br4WCqVSKVSDAwMSGepb7y/v5NMJgkGg0xNTUnnGHFzc8Pd3R0Az8/P\n7O3tEQqFhKvcmZ2dxbZt8vk8GxsbdHV1sba2Jp3lWrFY5OHhAYCnpyd2d3f//FOU9fX1+P1+zs/P\nAdjf36e5uVm4qnziFzh9XXx8e3sjmUxWxOJjLBbj8PCQ29tb/H4/MzMzJBIJ6SxXMpkM6+vrn49t\nAszNzdHX1ydcVr6rqytGR0dxHAfHcRgeHqa7u1s6y6hKOVa+vr4mEokAH0dF8Xic3t5e4Sr3lpaW\niMfjlEolAoEAq6ur0kll08VGpZRSRogfeSmllKoMOlCUUkoZoQNFKaWUETpQlFJKGaEDRSmllBE6\nUJRSShmhA0UppZQROlCUUkoZ8Q/UnhuBebKEOAAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from matplotlib.pyplot import axes,legend\n", "\n", "plot(x,-sin(x), label='analytical')\n", "plot(x,d2y,lw=2,linestyle='dashed', label='numerical')\n", "title(\"Comparison of numerical and analytical 2nd derivatives of sin(x) \")\n", "axis([a,b,-1,1])\n", "legend()\n", "show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Programa Simple: Ecuación de 2do grado" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Modelo de la ecuacion a*x^2 + b*x + c = 0\n", "Valor de a: 1\n", "Valor de b: 6\n", "Valor de c: 2\n", "Las soluciones son las siguientes\n", "('X1: ', -0.3542486889354093)\n", "('X2: ', -5.645751311064591)\n" ] } ], "source": [ "#Ecuación de Segundo Grado en Python\n", "import pylab\n", "\n", "print ('Modelo de la ecuacion a*x^2 + b*x + c = 0')\n", "a = float(input('Valor de a: '))\n", "b = float(input('Valor de b: '))\n", "c = float(input('Valor de c: '))\n", "\n", "#calculando el discriminante\n", "delta = float(b**2-4*a*c)\n", " \n", "if delta < 0:\n", " print('Ecuacion no tiene solucion real')\n", "\n", "elif delta ==0:\n", " s == float(-b/2*a)\n", " print ('Solucion unica: ',s)\n", "else:\n", " x1 = float((-b+((b**2 - 4*a*c))**0.5)/(2*a))\n", " x2 = float((-b-((b**2 - 4*a*c))**0.5)/(2*a))\n", " print('Las soluciones son las siguientes')\n", " print('X1: ',x1)\n", " print('X2: ',x2)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Gráfico de la Solución" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "import math\n", "import numpy as np\n", "\n", "# plot in separate window\n", "%matplotlib qt\n", "\n", "x = np.arange(-10,10,0.5)\n", "y = a*x**2 + b*x + c\n", "plt.plot(x,y)\n", "plt.title('a*x^2 + b*x + c = 0')\n", "plt.xlabel('X')\n", "plt.ylabel('Y')\n", "plt.show()\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.6" } }, "nbformat": 4, "nbformat_minor": 0 }