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NINETEEN DUBIOUS WAYS TO COMPUTE
THE EXPONENTIAL OF A MATRIX*

CLEVE MOLER" AND CHARLES VAN LOANS

Abstract. In principle, the exponential of a matrix could be computed in many ways. Methods involving
approximation theory, differential equations, the matrix eigenvalues, and the matrix characteristic poly-
nomial have been proposed. In practice, consideration of computational stability and efficiency indicates
that some of the methods are preferable to others, but that none are completely satisfactory.

1. Introduction. Mathematical models of many physical, biological, and
economic processes involve systems of linear, constant coefficient ordinary differential
equations

(t)=Ax(t).

Here A is a given, fixed, real or complex n-by-n matrix. A solution vector x(t) is
sought which satisfies an initial condition

x(0)=x0.

In control theory, A is known as the state companion matrix and x(t) is the system
response.

In principle, the solution is given by x(t)=etAxo where e ta can be formally
defined by the convergent power series

t2A2
tAe =I+tA+ +....

2!

The effective computation of this matrix function is the main topic of this survey.
We will primarily be concerned with matrices whose order n is less than a few

hundred, so that all the elements can be stored in the main memory of a contemporary
computer. Our discussion will be less germane to the type of large, sparse matrices
which occur in the method of lines for partial differential equations.

Dozens of methods for computing e ta can be obtained from more or less classical
results in analysis, approximation theory, and matrix theory. Some of the methods
have been proposed as specific algorithms, while others are based on less constructive
characterizations. Our bibliography concentrates on recent papers with strong
algorithmic content, although we have included a fair number of references which
possess historical or theoretical interest.

In this survey we try to describe all the methods that appear to be practical,
classify them into five broad categories, and assess their relative effectiveness. Actu-
ally, each of the "methods" when completely implemented might lead to many
different computer programs which differ in various details. Moreover, these details
might have more influence on the actual performance than our gross assessment
indicates. Thus, our comments may not directly apply to particular subroutines.

In assessing the effectiveness of various algorithms we will be concerned with the
following attributes, listed in decreasing order of importance" generality, reliability,
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802 CLEVE MOLER AND CHARLES VAN LOAN

stability, accuracy, efficiency, storage requirements, ease of use, and simplicity. We
would consider an algorithm completely satisfactory if it could be used as the basis for
a general purpose subroutine which meets the standards of quality software now
available for linear algebraic equations, matrix eigenvalues, and initial value problems
for nonlinear ordinary differential equations. By these standards, none of the
algorithms we know of are completely satisfactory, although some are much better
than others.

Generality means that the method is applicable to wide classes of matrices. For
example, a method which works only on matrices with distinct eigenvalues will not be
highly regarded.

When defining terms like reliability, stability and accuracy, it is important to
distinguish between the inherent sensitivity of the underlying problem and the error
properties of a particular algorithm for solving that problem. Trying to find the inverse
of a nearly singular matrix, for example, is an inherently sensitive problem. Such
problems-are said to be poorly posed or badly conditioned. No algorithm working with
finite precision arithmetic can be expected to obtain a computed inverse that is not
contaminated by large errors.

An algorithm is said to be.reliable if it gives some warning whenever it introduces
excessive errors. For example, Gaussian elimination without some form of pivoting is
an unreliable algorithm for inverting a matrix. Roundoff errors can be magnified by
large multipliers to the point where they can make the computed result completely
erroneous, but there is no indication of the difficulty.

An algorithm is stable if it does not introduce any more sensitivity to perturbation
than is inherent in the underlying problem. A stable algorithm produces an answer
which is exact for a problem close to the given one. A method can be stable and still
not produce accurate results if small changes in the data cause large changes in the
answer. A method can be unstable and still be reliable if the instability can be
detected. For example, Gaussian elimination with either partial or complete pivoting
must be regarded as a mildly unstable algorithm because there is a possibility that the
matrix elements will grow during the elimination and the resulting roundott errors will
not be small when compared with the original data. In practice, however, such growth
is rare and can be detected.

The accuracy of an algorithm refers primarily to the error introduced by truncat-
ing infinite series or terminating iterations. It is one component, but not the only
component, of the accuracy of the computed answer. Often, using more computer
time will increase accuracy provided the method is stable. For example, the accuracy
of an iterative method for solving a system of equations can be controlled by changing
the number of iterations.

Efficiency is measured by the amount of computer time required to solve a
particular problem. There are several problems to distinguish. For example, comput-
ing only eA is different from computing e tA for several values of t. Methods which use
some decomposition of A (independent of t) might be more efficient for the second
problem. Other methods may be more efficient for computing etaxo for one or several
values of t. We are primarily concerned with the order of magnitude of the work
involved. In matrix eigenvalue computation, for example, a method which required
O(n4) time would be considered grossly inefficient because the usual methods require
only O(rt 3).

In estimating the time required by matrix computations it is traditional to esti-
mate the number of multiplications and then employ some factor to account for the
other operations. We suggest making this slightly more precise by defining a basic
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THE EXPONENTIAL OF A MATRIX 803

floating point operation, or "flop", to be the time required for a particular computer
system to execute the FORTRAN statement

A(I, J)= A(I, J)+ T*A(I, K).

This involves one floating point multiplication, one floating point addition, a few
subscript and index calculations, and a few storage references. We can then say, for
example, that Gaussian elimination requires n3/3 flops to solve an n-by-n linear
system Ax b.

The eigenvalues of A play a fundamental role in the study of e tA even though
they may not be involved in a specific algorithm. For example, if all the eigenvalues lie
in the open left half plane, then etAo as to. This property is often called
"stability" but we will reserve the use of this term for describing numerical properties
of algorithms.

Several particular classes of matrices lead to special algorithms. If A is symmetric,
then methods based on eigenvalue decompositions are particularly effective. If the
original problem involves a single, nth order differential equation which has been
rewritten as a system of first order equations in the standard way, then A is a

companion matrix and other special algorithms are appropriate.
The inherent difficulty of finding effective algorithms for the matrix exponential is

based in part on the following dilemma. Attempts to exploit the special properties of
the differential equation lead naturally to the eigenvalues A and eigenvectors v of A
and to the representation

x(t)= E ai
i=1

However, it is not always possible to express x(t) in this way. If there are confluent
eigenvalues, then the coefficients ai in the linear combination may have to be poly-
nomials in t. In practical computation with inexact data and inexact arithmetic, the
gray area where the eigenvalues are nearly confluent leads to loss of accuracy. On the
other hand, algorithms which avoid use of the eigenvalues tend to require consider-
ably more computer time for any particular problem. They may also be adversely
effected by roundoff error in problems where the matrix tA has large elements.

These difficulties can be illustrated by a simple 2-by-2 example,

The exponential of this matrix is

tA

A=
0 tz

e At et1At

et

Of course, when A =/x, this representation must be replaced by

tA [ ext atet]
kO e

There is no serious difficulty when A and tx are exactly equal, or even when their
difference can be considered negligible. The degeneracy can be detected and the
resulting special form of the solution invoked. The difficulty comes when A -/x is small
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804 CLEVE MOLER AND CHARLES VAN LOAN

but not negligible. Then, if the divided difference

e at e

A-
is computed in the most obvious way, a result with a large relative error is produced.
When multiplied by a, the final computed answer may be very inaccurate. Of course,
for this example, the formula for the off-diagonal element can be written in other ways
which are more stable. However, when the same type of difficulty occurs in nontrian-
gular problems, or in problems that are larger than 2-by-2, its detection and cure is by
no means easy.

The example also illustrates another property of e ta which must be faced by any
successful algorithm. As increases, the elements of e ta may grow before they decay.
If A and are both negative and a is fairly large, the graph in Fig. 1 is typical.

FIG. 1. The "hump".

Several algorithms make direct or indirect use of the identity

ea (eSa/")".
The difficulty occurs when s/m is under the hump but s is beyond it, for then

Unfortunately, the roundoff errors in the mth power of a matrix, say B’, are usually
small relative to IIBII" rather than IIB’II. Consequently, any algorithm which tries to
pass over the hump by repeated multiplications is in difficulty.

Finally, the example illustrates the special nature of symmetric matrices. A is
symmetric if and only if a 0, and then the difficulties with multiple eigenvalues and
the hump both disappear. We will find later that multiple eigenvalue and hump
problems do not exist when A is a normal matrix.

It is convenient to review some conventions and definitions at this time. Unless
otherwise stated, all matrices are n-by-n. If A (aij) we have the notions of transpose,
A’= (aji), and conjugate transpose, A*= (ai--.). The following types of matrices have
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THE EXPONENTIAL OF A MATRIX 805

an important role to play:

A symmetricoAT A,
A HermitianoA* A,
A normal A*A AA*,
O orthogonal 0TO I,
O unitary Q*O I,
T triangular- tii O, > j,
D diagonal- dii O,

Because of the convenience of unitary invariance, we shall work exclusively with
the 2-norm:

ix 121 Ilnll max Ilnxll.
i= Ilxll

However, all our results apply with minor modification when other norms are used.
The condition of an invertible matrix A is denoted by cond (A) where

Should A be singular, we adopt the convention that it has infinite condition. The
commutator of two matrices B and C is [B, C] BC-CB.

Two matrix decompositions are of importance. The Schur decomposition states
that for any matrix A, there exists a unitary 0 and a triangular T, such that

O*AO T.

If T (ti), then the eigenvalues of A are h,""",
The Jordan canonical form decomposition states that there exists an invertible P

such that

P-AP=Z
where is a direct sum, J ]1", , of Jordan blocks

/i

0

Ji

0

(mi-by-mi).

The Ai are eigenvalues of A. If any of the mi are greater than 1, A is said to be
defective. This means that A does not have a full set of n linearly independent
eigenvectors. A is derogatory if there is more than one Jordan block associated with a
given eigenvalue.

2. The sensitivity of the problem. It is important to know how sensitive a quantity
is before its computation is attempted. For the problem under consideration we are
interested in the relative perturbation

Ile’(a+)_e’AII
b(t) ile,ll

In the following three theorems we summarize some upper bounds for &(t) which are
derived in Van Loan [32].
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806 CLEVE MOLER AND CHARLES VAN LOAN

THEOREM 1. If Ce (A) max {Re (h)[A an eigenvalue of A} and (A) max {tz ]/x
an eigenvalue of (A* + A)/2}, then

$(t)<=t[[E[[exp[u(a)-a(a)+l]E[]]t (t<=O).

The scalar/x(A) is the "log norm" of A (associated with the 2-norm) and has many
interesting properties [35]-[42t. In particular, t (A ) >- a (A ).

THEOREM 2. IfA PIP- is the Jordan decomposition of A and m is the dimen-
sion of the largest Jordan block in J, then

4(t) <- tlIE[IM(I)2 e t,<,)llEII, (t _>- 0),

where

Mj(t)= m cond (P) max
Oj<--m--1

THEOREM 3. IrA Q(D +N)Q* is the Schur decomposition ofA with D diagonal
and N strictly upper triangular (nij 0, _-> ), then

(t)<= tl[EllMs(tf e Ms(’)llEIIt (t -->_0),

where

n-1

Ms(t)= E ([[Nllt)k/k !.
k=0

As a corollary to any of these theorems one can show that if A is normal, then

(t) tllEII e I111’.

This shows that the perturbation bounds on b(t) for normal matrices are as small as
can be expected. Furthermore, when A is normal, I[eSAIl= IleSA/"[l" for all positive
integers m implying that the "hump" phenomenon does not exist. These observations
lead us to conclude that the eA problem is "well conditioned" when A is normal.

It is rather more difficult to characterize those A for which e tA is very sensitive to
changes in A. The bound in Theorem 2 suggests that this might be the case when A
has a poorly conditioned eigensystem as measured by cond (P). This is related to a
large Ms(t) in Theorem 3 or a positive/z (A)-a(A) in Theorem 1. It is unclear what
the precise connection is between these situations and the hump phenomena we
described in the Introduction.

Some progress can be made in understanding the sensitivity of e tA by defining the
"matrix exponential condition number" u(A, t):

u(A, t)= IIll=max, e e ds
tie’all"

A discussion of u(A, t) can be found in [32]. One can show that there exists a
perturbation E such that

[IEI[
u(A t).O(t)[

This indicates that if u(A, t) is large, small changes in A can induce relatively large
changes in etA. It is easy to verify that

u(A, t) >= tllm[I,
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THE EXPONENTIAL OF A MATRIX 807

with equality if and only if A is normal. When A is not normal, u(A, t)can grow like a
high degree polynomial in t.

3. Series methods. The common theme of what we call series methods is the
direct application to matrices of standard approximation techniques for the scalar
function e t. In these methods, neither the order of the matrix nor its eigenvalues play a
direct role in the actual computations.

METI-IOI 1. TAYLOR SERIES. The definition
Ae =I+A+A2/2!+

is, of course, the basis for an algorithm. If we momentarily ignore efficiency, we can
simply sum the series until adding another term does not alter the numbers stored in
the computer. That is, if

k

Tt,(A)= Y Ai/j!
i=0

and fl [Tk (A)] is the matrix of floating point numbers obtained by computing Tk (A) in
floating point arithmetic, then we find K so that fl TK (A)] fl TK+I(A)]. We then
take T(A) as our approximation to e a.

Such an algorithm is known to be unsatisfactory even in the scalar case [4] and
our main reason for mentioning it is to set a clear lower bound on possible per-
formance. To illustrate the most serious shortcoming, we implemented this algorithm
on the IBM 370 using "short" arithmetic, which corresponds to a relative accuracy of
16-5 0.95 10-6. We input

-49 24]A
-64 31

and obtained the output

a [-22.25880-1.432766]e
-61.49931 -3.4742803"

A total of K 59 terms were required to obtain convergence. There are several ways
of obtaining the correct e a for this example. The simplest is to be told how the
example was constructed in the first place. We have

1 3 -1 0 1 -1

and so

-1 11 e
J[ 4]017][2 3]=[2 34][0 e

-1

which, to 6 decimal places is,

a [-0.735759e
l-1.471518

0.551819]
1.103638_1"

The computed approximation even has the wrong sign in two components.
Of course, this example was constructed to make the method look bad. But it is

important to understand the source of the error. By looking at intermediate results in
the calculation we find that the two matrices A16/16! and A17/17! have elements

D
ow

nl
oa

de
d 

05
/0

4/
13

 to
 1

28
.2

06
.9

.1
38

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



808 CLEVE MOLER AND CHARLES VAN LOAN

between 106 and 107 in magnitude but of opposite signs. Because we are using a
relative accuracy of only 10-5 the elements of these intermediate results have
absolute errors larger than the final result. So, we have an extreme example of
"catastrophic cancellation" in floating point arithmetic. It should beemphasized that
the difficulty is not the truncation of the series, but the truncation of the arithmetic. If
we had used "long" arithmetic which does not require significantly more time but
which involves 16 digits of accuracy, then we would have obtained a result accurate to
about nine decimal places.

Concern over where to truncate the series is important if efficiency is being
considered. The example above required 59 terms giving Method 1 low marks in this
connection. Among several papers concerning the truncation error of Taylor series,
the paper by Liou [52] is frequently cited. If 6 is some prescribed error tolerance, Liou
suggests choosing K large enough so that

( [IA[lg+l )( 1 )IIZ(A)--emll<---- (gt 1-11AII/(K + 2)
<-a.

Moreover, when e ta is desired for several different values of t, say 1,..., m, he
suggests an error checking procedure which involves choosing L from the same
inequality with A replaced by mA and then comparing [TK(A)]"Xo with TL(mA)xo.
In related papers Everling [50] has sharpened the truncation error bound imple-
mented by Liou, and Bickhart [46] has considered relative instead of absolute error.
Unfortunately, all these approaches ignore the effects of roundoff error and so must
fail in actual computation with certain matrices.

METHOD 2. PADI APPROXIMATION. The (p, q) Pad6 approximation to eA is
defined by

R,q(A [D,(A)]-1N,q (A),
where

and

N,q(A)=
(P+q-J)!P!

i=o(p+q)!j!(p-j)!
A

D,q(A)=
(P+q-J)!q!

i=o(p+q)!j!(q-])!

Nonsingularity of D,q(A) is assured if p and q are large enough or if the eigenvalues of
A are negative. Zakian [76] and Wragg and Davies [75] consider the advantages of
various representations of these rational approximations (e.g. partial fraction,
continued fraction) as well as the choice of p and q to obtain prescribed accuracy.

Again, roundoff error makes Pad6 approximations unreliable. For large q,
Dqq(A) approaches the series for e -A/2 whereas Nq,(A) tends to the series for e A/2.
Hence, cancellation error can prevent the accurate determination of these matrices.
Similar comments apply to general (p, q) approximants. In addition to the cancellation
problem, the denominator matrix D,q (A) may be very poorly conditioned with respect
to inversion. This is particularly true when A has widely spread eigenvalues. To see
this again consider the (q, q) Pad6 approximants. It is not hard to show that for large
enough q, we have

cond [Dqq(A )] cond (e -A/2) >= e (Ota--Otn)/2

where Cl 2" Of are the real parts of the eigenvalues of A.
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THE EXPONENTIAL OF A MATRIX 809

When the diagonal Pad6 approximants Rqq(A) were computed for the same
example used with the Taylor series and with the same single precision arithmetic, it
was found that the most accurate was good to only three decimal places. This occurred
with q 10 and cond [Dqq(A)] was greater than 104. All other values of q gave less
accurate results.

Pad6 approximants can be used if IIAII is not too large. In this case, there are
several reasons why the diagonal approximants (p q) are preferred over the off
diagonal approximants (p q). Suppose p < q. About qn 3 flops are required to evalu-
ate epq(A), an approximation which has order p + q. However, the same amount of
work is needed to compute Rqq(A) and this approximation has order 2q >p +q. A
similar argument can be applied to the superdiagonal approximants (p > q).

There are other reasons for favoring the diagonal Pad6 approximants. If all the
eigenvalues of A are in the left half plane, then the computed approximants with p > q
tend to have larger rounding errors due to cancellation while the computed approxi-
mants with p <q tend to have larger rounding errors due to badly conditioned
denominator matrices Dtq(A).

There are certain applications where the determination of p and q is based on the
behavior of

lim Rq(tA ).

If all the eigenvalues of A are in the open left half plane, then eta* 0 as t* oe and the
same is true for Rpq(tA)when q > p. On the other hand, the Pad6 approximants with
q <p, including q 0, which is the Taylor series, are unbounded for large t. The
diagonal approximants are bounded as t*

METHOD 3. SCALING AND SQUARING. The roundoff error difficulties and the
computing costs of the Taylor and Pad6 approximants increases as tlA[ increases, or
as the spread of the eigenvalues of A increases. Both of these difficulties can be
controlled by exploiting a fundamental property unique to the exponential function:

The idea is to choose m to be a power of two for which ea/ can be reliably and
efficiently computed, and then to form the matrix (ca/m) by repeated squaring. One
commonly used criterion for choosing m is to make it the smallest power of two for
which Ilnll/m N 1. With this restriction, ea/ can be satisfactorily computed by either
Taylor or Pad6 approximants. When properly implemented, the resulting algorithm is
one of the most effective we know.

This approach has been suggested by many authors and we will not try to
attribute it to any one of them. Among those who have provided some error analysis
or suggested some refinements are Ward [72], Kammler [97], Kallstrom [116],
Scraton [67], and Shah [56], [57].

If the exponential of the scaled matrix e a/2’ is to be approximated by Rqq(A/2i),
then we have two parameters, q and ], to choose. In Appendix 1 we show that if
Ilnll N 2i-a then

[Rqq(a/zi)]z e
where

(q!)((2q)!(2q + 1)!)"
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810 CLEVE MOLER AND CHARLES VAN LOAN

This "inverse error analysis" can be used to determine q and f in a number of ways.
For example, if e is any error tolerance, we can choose among the many (q,/’) pairs for
which the above inequality implies

Since [R,q(A/2i)]2’ requires about (q+/’+1/2)n 3 flops to evaluate, it is sensible to
choose the pair for which q +] is minimum. The table below specifies these "opti-
mum" pairs for various values of e and [JAIl. By way of comparison, we have included
the corresponding optimum (k,/’) pairs associated with the approximant [Tk(A/2i)]2.
These pairs were determined from Corollary 1 in Appendix .1, and from the fact that
about (k +/’- 1)n 3 flops are required to evaluate [Tk(A/2i)] 2’.

TABLE
Optimum scaling and squaring parameters with diagonal Pad and Taylor series

approximation.

10-2

10

101

10

10

-3

(1,0)
(1,0)

(1,0)
(3,0)

(2,1)
(5,1)

(2,5)
(4,5)

(2,8)
(4,8)

(2,11)
(5,11)

10-6

(1,0)
(2, 1)

(2,0)
(4, O)

(3,1)
(7, 1)

(3,8)
(5,9)

(3,11)
(7, 11)

-9

(2,0)
(3,1)

(3,0)
(4,2)

(4, 1)
(6,3)

(4,5)
(8,5)

(4,8)
(7,9)

(4,11)
(6, 13)

10-12

(3,0)
(4, 1)

(4, 0)
(4,4)

(5,1)
(8,3)

(5,11)
(8,13)

10-15

(3,0)
(5,1)

(4, 0)
(5,4)

(6, 1)
(7,5)

(6,5)
(9, 7)

(6,8)
(10, 10)

(6,11)
(8, 14)

To read the table, for a given e and ]IA]] the top ordered pair gives the optimum (q, j)
associated with [R,q(A/2J)]’ while the bottom ordered pair specifies the most efficient
choice of (k,/’) associated with [Tk(A/2i)]2.

On the basis of the table we find that Pad6 approximants are generally more
efficient than Taylor approximants. When []All is small, the Pad6 approximant requires
about one half as much work for the same accuracy. As ]JAIl grows, this advantage
decreases because of the larger amount of scaling needed.

Relative error bounds can be derived from the above results. Noting from
Appendix 1 that AE EA, we have

[][R,q(A/2i)]Z’- eA[I [lea(er-I)ll

--< IIEII e"ml--< ellAll e "’".
A similar bound can be derived for the Taylor approximants.
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THE EXPONENTIAL OF A MATRIX 811

The analysis and our table does not take roundoff error into account, although
this is the method’s weakest point. In general, the computed square of a matrix R can
be severely affected by arithmetic cancellation since the rounding errors are small
when compared to [IRII2 but not necessarily small when compared to IIR211. Such
cancellation can only happen when cond (R) is large because R-1R2= R implies

cond (R) => IIR :1---"
The matrices which are repeatedly squared in this method can be badly conditioned.
However, this does not necessarily imply that severe cancellation actually takes place.
Moreover, it is possible that cancellation occurs only in problems which involve a large
hump. We regard it as an open question to analyze the roundoff error of the repeated
squaring of eA/" and to relate the analysis to a realistic assessment of the sensitivity
of eA.

In his implementation of scaling and squaring Ward [72] is aware of the possi-
bility of cancellation. He computes an a posteriori bound for the error, including the
effects of both truncation and roundoff. This is certainly preferable to no error
estimate at all, but it is not completely satisfactory. A large error estimate could be the
result of any of three distinct difficulties:

(i) The error estimate is a severe overestimate of the true error, which is
actually small. The algorithm is stable but the estimate is too pessimistic.

(ii) The true error is large because of cancellation in going over the hump, but
the problem is not sensitive. The algorithm is unstable and another algorithm
might produce a more accurate answer.

(iii) The underlying problem is inherently sensitive. No algorithm can be
expected to produce a more accurate result.

Unfortunately, it is currently very difficult to distinguish among these three situations.
METHOD 4. CHEBYSHEV RATIONAL APPROXIMATION. Let Cqq(X) be the ratio of

two polynomials each of degree q and consider maxo__<x<oo ICqq(X)-e-X]. For various
values of q, Cody, Meinardus, and Varga [62] have determined the coefficients of the
particular cqq which minimizes this maximum. Their results can be directly translated
into bounds for IlCqq (A)- call when A is Hermitian with eigenvalues on the negative
real axis. The authors are interested in such matrices because of an application to
partial differential equations. Their approach is particularly effective for the sparse
matrices which occur in such applications.

For non-Hermitian (non-normal) A, it is hard to determine how well cqq(A)
approximates e A. If A has an eigenvalue A off the negative real axis, it is possible for
cqq(A) to be a poor approximation to e. This would imply that cqq(A) is a poor
approximation to ea since

lieA (A)II le x (A)l.
These remarks prompt us to emphasize an important facet about approximation

of the matrix exponential, namely, there is more to approximating ea than just
approximating e at the eigenvalues of A. It is easy to illustrate this with Pad6
approximation. Suppose

0 6 0 0

!o60 0
0 0
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812 CLEVE MOLER AND CHARLES VAN LOAN

Since all of the eigenvalues of A are zero, Rl1(2") is a perfect approximation to e
the eigenvalues. However,

Rll(A)

1 6 18 54-
1 6 18
0 1 6’
0 0 1

whereas

and thus,

A

1 6 18 36
0 1 6 18
0 0 1 6

10 0 0

lie a R ll(A)II 18.

These discrepancies arise from the fact that A is not normal. The example illustrates
that non-normality exerts a subtle influence upon the methods of this section even
though the eigensystem, per se, is not explicitly involved in any of the algorithms.

4. Ordinary differential equation methods. Since e tA and etAxo are solutions to
ordinary differential equations, it is natural to consider methods based on numerical
integration. Very sophisticated and powerful methods for the numerical solution of
general nonlinear differential equations have been developed in recent years. All
worthwhile codes have automatic step size control and some of them automatically
vary the order of approximation as well. Methods based on single step formulas,
multistep formulas, and implicit multistep formulas each have certain advantages.
When used to compute e tA all these methods are easy to use and they require very
little additional programming or other thought. The primary disadvantage is a rela-
tively high cost in computer time.

The o.d.e, programs are designed to solve a single system

f(x, t), x(0) x0,

tAand to obtain the solution at many values of t. With f(x, t)= Ax the kth column of e
can be obtained by setting x0 to the kth column of the identity matrix. All the methods
involve a sequence of values 0 to, tl," , ti with either fixed or variable step size
hi--ti+l--ti. They all produce vectors xi which approximate x(ti).

METHOD 5. GENERAL PURPOSE O.D.E. SOLVER. Most computer center libraries
contain programs for solving initial value problems in ordinary differential equations.
Very few libraries contain programs that compute e tA Until the latter programs are
more readily available, undoubtedly the easiest and, from the programmer’s point of
view, the quickest way to compute a matrix exponential is to call upon a general
purpose o.d.e, solver. This is obviously an expensive luxury since the o.d.e, routine
does not take advantage of the linear, constant coefficient nature of our special
problem.

We have run a very small experiment in which we have used three recently
developed o.d.e, solvers to compute the exponentials of about a dozen matrices and
have measured the amount of work required. The programs are:

(1) RKF45. Written by Shampine and Watts [108], this program uses the
Fehlberg formulas of the Runge-Kutta type. Six function evaluations are required per
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THE EXPONENTIAL OF A MATRIX 813

step. The resulting formula is fifth order with automatic step size control. (See also
[4].)

(2) DE/STEP. Written by Shampine and Gordon [107], this program uses vari-
able order, variable step Adams predictor-corrector formulas. Two function evalua-
tions are required per step.

(3) IMPSUB. Written by Starner [109], this program is a modification of Gear’s
DIFSUB [106] and is based on implicit backward differentiation formulas intended
for stiff differential equations. Starner’s modifications add the ability to solve
"infinitely stiff" problems in which the derivatives of some of the variables may be
missing. Two function evaluations are usually required per step but three or four may
occasionally be used.

For RKF45 the output points are primarily determined by the step size selection
in the program. For the other two routines, the output is produced at user specified
points by interpolation. For an n-by-n matrix A, the cost of one function evaluation is
a matrix-vector multiplication or n 2 flops. The number of evaluations is determined by
the length of the integration interval and the accuracy requested.

The relative performance of the three programs depends fairly strongly on the
particular matrix. RKF45 often requires the most function evaluations, especially
when high accuracy is sought, because its order is fixed. But it may well require the
least actual computer time at modest accuracies because of its low overhead.
DE/STEP indicates when it thinks a problem is stiff. If it doesn’t give this indication, it
usually requires the fewest function evaluations. If it does, IMPSUB may require
fewer.

The following table gives the results for one particular matrix which we arbitrarily
declare to be a "typical" nonstiff problem. The matrix is of order 3, with eigenvalues
A 3, 3, 6; the matrix is defective. We used three different local error tolerances and
integrated over [0, 1]. The average number of function evaluations for the three

2starting vectors is given in the table. These can be regarded as typical coefficients of n
for the single vector problem or of n 3 for the full matrix exponential; IBM 370 long
arithmetic was used.

TABLE 2
Work as a function of subroutine and local error tolerance.

10
-6 10

-9 lO
-12

RKF45 217 832 3268

DE/STEP 118 160 211

IMPSUB 173 202 1510

Although people concerned with the competition between various o.d.e, solvers
might be interested in the details of this table, we caution that it is the result of only
one experiment. Our main reason for presenting it is to support our contention that
the use of any such routine must be regarded as very inefficient. The scaling and
squaring method of 3 and some of the matrix decomposition methods of 6 require
on the order of 10 to 20 n 3 flops and they obtain higher accuracies than those obtained
with 200 n 3 or more flops for the o.d.e, solvers.
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814 CLEVE MOLER AND CHARLES VAN LOAN

This excessive cost is due to the fact that the programs are not taking advantage
of the linear, constant coefficient nature of the differential equation. They must
repeatedly call for the multiplication of various vectors by the matrix A because, as far
as they know, the matrix may have changed since the last multiplication.

We now consider the various methods which result from specializing general
o.d.e, methods to handle our specific problem.

METHOD 6. SINGLE STEP O.D.E. METHODS. Two of the classical techniques for the
solution of differential equations are the fourth order Taylor and Runge-Kutta
methods with fixed step size. For our particular equation they become

(4:he)Xi+l I + hA +. +-,A4 x T4(hA )x

and

Xj+I Xj q- kl +k2 +k3 +k4,
where kl=hAxi, k2=hA(xi+1/2kl), k3=hA(xi+1/2k2), and kn=hA(xi+k3). A little
manipulation reveals that in this case, the two methods would produce identical
results were it not for roundoff error. As long as the step size is fixed, the matrix
T4(hA) need be computed just once and then xi+l can be obtained from xi with just
one matrix-vector multiplication. The standard Runge-Kutta method would require 4
such multiplications per step.

Let us consider x(t) for one particular value of t, say 1. If h 1/m, then

x (1) x (mh) x,,, T4(hA )]x0.
Consequently, there is a close connection between this method and Method 3 which
involved scaling and squaring [54], [60]. The scaled matrix is hA and its exponential is
approximated by T4(hA). However, even if m is a power of 2, [T4(hA)]m is usually not
obtained by repeated squaring. The methods have roughly the same roundoff error
properties and so there seem to be no important advantages for Runge-Kutta with
fixed step size.

Let us now consider the possibility of varying the step size. A simple algorithm
might be based on a variable step Taylor method. In such a method, two ap-
proximations to Xi+l would be computed and their difference used to choose the step
size. Specifically, let e be some prescribed local relative error tolerance and define Xi+l
and x/*+x by

X]+ Ts(hiA )xi,

* T4(hiA)xi.Xi+l

One way of determining hi is to require

II/;/1- x/*/ 111- II/ll.

Notice that we are using a 5th order formula to compute the approximation, and a 4th
order formula to control step size.

At first glance, this method appears to be considerably less efficient than one with
fixed step size because the matrices T4(hiA) and Ts(hiA) cannot be precomputed.
Each step requires 5 n 2 flops. However, in those problems which involve large
"humps" as described in 1, a smaller step is needed at the beginning of the
computation than at the end. If the step size changes by a factor of more than 5, the
variable step method will require less work.
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THE EXPONENTIAL OF A MATRIX 815

The method does provide some insight into the costs of more sophisticated
integrators. Since

Xi.l--X.l =hiA55!

we see that the required step size is given approximately by

hi--lllAllj
The work required to integrate over some fixed interval is proportional to the inverse
of the average step size. So, if we decrease the tolerance e from, say 10- to 10-, then
the work is increased by a factor of (10s)/s which is about 4. This is typical of any fith
order error estimateasking for 3 more figures roughly quadruples the work.

METHOD 7. MULTISTEP O.D.E. SOLVER. As af as we know, the possibility of
specializing multistep methods, such as those based on the Adams formulas, to linear,
constant coecient problems has not been explored in detail. Such a method would
not be equivalent to scaling and squaring because the approximate solution at a given
time is defined in terms of approximate solutions at several previous times. The actual
algorithm would depend upon how the starting vectors are obtained, and how the step
size and order are determined. It is conceivable that such an algorithm might be
effective, particularly for problems which involve a single vector, output at many
values of t, large n, and a hump.

The problems associated with roundoff error have not been of as much concern to
designers of differential equation solvers as they have been to designers of matrix
algebra algorithms since the accuracy requested of o.d.e, solvers is typically less than
full machine precision. We do not know what eect rounding errors would have in a
problem with a large hump.. olomi! melhos. Let the characteristic polynomial of A be

c(z)=det(zI-A)=z- cz.
From the Cayley-Hamilton theorem c(A) 0 and hence

A col +cA +. + c,_A-.

It follows that any power of A can be expressed in terms of I, A, , A"-"

A E &A.
=0

This implies that e is a polynomial in A with analytic coecients in t:

tA tkAk k n-1

=o k -. kiAi
k=0

i=0 k =0

n-1-- E ai(t)A i.
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816 CLEVE MOLER AND CHARLES VAN LOAN

The methods of this section involve this kind of exploitation of the characteristic
polynomial.

METHOD 8. CAYLFY--HAMILTON. Once the characteristic polynomial is known,
the coefficients /3k. which define the analytic functions aj(t)=Y.gkjtk/k! can be
generated as follows: , (k < n)

cj (k n)
Cok-l,n-1 (k > n, j O)
Cjk-l,n-1 -1- jk-l,j-1 (k > n, j > 0).

One difficulty is that these recursive formulas for the/3ki are very prone to roundoff
error. This can be seen in the 1-by-1 case. If A=(a) then /3k0=a k and ao(t)=
Y (at)k/k! is simply the Taylor series for e "t. Thus, our criticisms of Method 1 apply.
In fact, if at =-6, no partial sum of the series for e at will have any significant digits
when IBM 370 short arithmetic is used.

Another difficulty is the requirement that the characteristic polynomial must be
known. If A1,..., An are the eigenvalues of A, then c(z)could be computed from
c(z)=l-I1 (z-Ai). Although the eigenvalues could be stably computed, it is unclear
whether the resulting ci would be acceptable. Other methods for computing c(z) are
discussed in Wilkinson [14]. It turns out that methods based upon repeated powers of
A and methods based upon formulas for the ci in terms of various symmetric functions
are unstable in the presence of roundoff error and expensive to implement. Tech-
niques based upon similarity transformations break down when A is nearly deroga-
tory. We shall have more to say about these difficulties in connection with Methods 12
and 13.

In Method 8 we attempted to expand e tA in terms of the matrices/, A, , A
If {A0,’’’, An-a} is some other set of matrices which span the same subspace, then
there exist analytic functions/3i(t) such that

tA
n-1_, ti(t)Ai.
/=0

The convenience of this formula depends upon how easily the Ai and/3i(t) can be
generated. If the eigenvalues A 1, , An of A are known, we have the following three
methods.

METHOD 9. LAGRANGE INTERPOLATION.

tA 1 (A --hkI)
’=o

eX"
k=l
II (/] --/k)

METHOD 10. NEWTON INTERPOLATION.

j-1

e tA eltI + [A 1, /]] H (A
]=2 k=l

The divided differences [A 1,’", Aj] depend on and are defined recursively by

[ 1, /2] (e’- eX’)/(A-A2),D
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THE EXPONENTIAL OF A MATRIX 817

We refer to MacDuffee [9] for a discussion of these formulae in the confluent
eigenvalue case.

METHOD 11. VANDERMONDE. There are other methods for computing the
matrices

r (A AkI)
Aj = (_)

which were required in Method 9. One of these involves the Vandermonde matrix

If uik is the (j, k)entry of V-a, then

Ai ’ikA
k=l

and

tA

1=1

When A has repeated eigenvalues, the appropriate confluent Vandermonde matrix is
involved. Closed expressions for the uik are available and Vidysager [92] has proposed
their use.

Methods 9, 10, and 11 suffer on several accounts. They are O(n4) algorithms
making them prohibitively expensive except for small n. If the spanning matrices
A0,’’ ", An-a are saved, then storage is n 3 which is an order of magnitude greater
than the amount of storage required by any "nonpolynomial" method. Furthermore,
even though the formulas which define Methods 9, 10, and 11 have special form in the
confluent case, we do not have a satisfactory situation. The "gray" area of near
confluence poses difficult problems which are best discussed in the next section on
decomposition techniques.

The next two methods of this section do not require the eigenvalues of A and thus
appear to be free of the problems associated with confluence. However, equally
formidable difficulties attend these algorithms.

METHOD 12. INVERSE LAPLACE TRANSFORMS. If .[e tA] is the Laplace transform
of the matrix exponential, then

.P[etal (sI A -1.

The entries of this matrix are rational functions of s. In fact,

n-k-1

(sI A)-1= s-------Ak,
,,=o c(s)

where c(s)= det (sI-A)= s"-Y"-a k
k=0CkS and fork=l,...,n"

C.-k -trace (Ak-IA)/ k, Ak =Ak-lA--Cn-kI (Ao I).
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818 CLEVE MOLER AND CHARLES VAN LOAN

These recursions were derived by Leverrier and Faddeeva [3] and can be used to
evaluate e tA.

n--1
tA n-ke -l[s -/c(s)]A.

k=0

The inverse transforms -I[sn-k-1/C(S)] can be expressed as a power series in t. Liou
[102] suggests evaluating these series using various recursions involving the ck. We
suppress the details of this procedure because of its similarity to Method 8. There are
other ways Laplace transforms can be used to evaluate e ’A [78], [80], [88], [89], [93].
By and large, these techniques have the same drawbacks as Methods 8-11. They are
O(n4) for general matrices and may be seriously effected by roundoff error.

MF:rHOD 13. COMPANION MATRIX. We now discuss techniques which involve the
computation of e c where C is a companion matrix:

0 1 0 0
0 0 1\ 0

0 Cn-

Companion matrices have some interesting properties which various authors have
tried to exploit"

(i) C is sparse.
n--1 k(ii) The characteristic polynomial of C is c(z)= z -F.k=O CkZ

(iii) If V is the Vandermonde matrix of eigenvalues of C (see Method 11), then
V-CV is in Jordan form. (Confluent Vandermonde matrices are involved in
the multiple eigenvalue case.)

(iv) If A is not derogatory, then it is similar to a companion matrix; otherwise it is
similar to a direct sum of companion matrices.

Because C is sparse, small powers of C cost considerably less than the usual n 3

flops. Consequently, one could implement Method 3 (scaling and squaring) with a
reduced amount of work.

Since the characteristic polynomial of C is known, one can apply Method 8 or
various other techniques which involve recursions with the Ck. However, this is not
generally advisable in view of the catastrophic cancellation that can occur.

As we mentioned during our discussion of Method 11, the closed expression for
V-1 is extremely sensitive. Because V- is so poorly conditioned, exploitation of
property (iii) will generally yield a poor estimate of e A.

If A YCY-1, then from the series definition of the matrix exponential it is easy
to verify that

A Ce =Ye Y-.

Hence, property (iv) leads us to an algorithm for computing the exponential of a
general matrix. Although the reduction of A to companion form is a rational process,
the algorithm for accomplishing this are extremely unstable and should be avoided
[141.

We mention that if the original differential equation is actually a single nth order
equation written as a system of first order equations, then the matrix is already in
companion form. Consequently, the unstable reduction is not necessary. This is the
only situation in which companion matrix methods should be considered.
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THE EXPONENTIAL OF A MATRIX 819

We conclude this section with an interesting aside on computing en where
H (hij) is lower Hessenberg (hij 0, > + 1). Notice that companion matrices are
lower Hessenberg. Our interest in computing en stems from the fact that any real
matrix A is orthogonally similar to a lower Hessenberg matrix. Hence, if

A OHO.T, (TO L
then

A Te =QenQ

Unlike the reduction to companion form, this factorization can be stably computed
using the EISPACK routine ORTHES [113].

Now, let fk denote the kth column of en. It is easy to verify that

Hf 2 hikfi (k >- 2),
i=k-1

by equating the kth columns in the matrix identity Hen= enH. If none of the
superdiagonal entries hk-l,k are zero, then once f. is known, the other fk follow
immediately from

1 [Hfk-- hikfi].fk-l=hk-a.k i=k

cSimilar recursive procedures have been suggested in connection with computing e
[104]. Since f, equals x(1) where x(t) solves Hx 2, x(0)= (0,. , 0, 1), it could be
found using one of the o.d.e, methods in the previous section.

There are ways to recover in the above algorithm should any of the hk-l,k be
zero. However, numerically the problem is when we have a small, but non-negligible
hk-l,k. In this case rounding errors involving a factor of 1/hk_l,k will occur precluding
the possibility of an accurate computation of e H.

In summary, methods for computing ea which involve the reduction of A to
companion or Hessenberg form are not attractive. However, there are other matrix

Afactorizations which can be more satisfactorily exploited in the course of evaluating e
and these will be discussed in the next section.

6. Matrix decomposition methods. The methods which are likely to be most
efficient for problems involving large matrices and repeated evaluation of e ta are
those which are based on factorizations or decompositions of the matrix A. If A
happens to be symmetric, then all these methods reduce to a simple very effective
algorithm.

All the matrix decompositions are based on similarity transformations of the form

A SBS-.
As we have mentioned, the power series definition of e tA implies

e ’A S etBs-1.
The idea is to find an S for which e tB is easy to compute. The difficulty is that S may be
close to singular which means that cond (S) is large.

METHOD 14. EIGENVECTORS. The naive approach is to take S to be the matrix
whose columns are eigenvectors of A, that is, $ V where

V---[/)11"""
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820 CLFVF MOLER AND CHARLES VAN LOAN

and

Avi ,ivi, j 1, , n.

These n equations can be written

AV= VD.

where D diag (A 1, , ,n). The exponential of D is trivial to compute assuming we
have a satisfactory method for computing the exponential of a scalar"

tD Alt Ante =diage ,...,e ).

Since V is nonsingular we have e tA= VetDV-1.
In terms of the differential equation 2 Ax, the same eigenvector approach takes

the following form. The initial condition is a combination of the eigenvectors,

x(0)= E v,

and the solution x(t) is given by

x(t) E oq eX’tvi.

Of course, the coefficients a. are obtained by solving a set of linear equations
Va x(O).

The difficulty with this approach is not confluent eigenvalues per se. For example,
the method works very well when A is the identity matrix, which has an eigenvalue of
the highest possible multiplicity. It also works well for any other symmetric matrix
because the eigenvectors can be chosen orthogonal. If reliable subroutines such as
TRED2 and TQL2 in EISPACK [113] are used, then the computed vi will be
orthogonal to the full accuracy of the computer and the resulting algorithm for e ’A has
all the attributes we desire--except that it is limited to symmetric matrices.

The theoretical difficulty occurs when A does not have a complete set of linearly
independent eigenvectors and is thus defective. In this case there is no invertible
matrix of eigenvectors V and the algorithm breaks down. An example of a defective
matrix is

A defective matrix has confluent eigenvalues but a matrix which has confluent eigen-
values need not be defective.

In practice, difficulties occur when A is "nearly" defective. One way to make this
precise is to use the condition number, cond (V)= Ilvllllv- ll, of the matrix of eigen-
vectors. If A is nearly (exactly) defective, then cond (V) is large (infinite). Any errors
in A, including roundoff errors in its computation and roundoff errors from the
eigenvalue computation, may be magnified in the final result by cond(V).
Consequently, when cond (V) is large, the computed e tA will most likely be inac-
curate. For example, if

0 1-s
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THE EXPONENTIAL OF A MATRIX 821

then

1 -1]V=
0 2e

D diag (1 +e, l-e),

and

If e 10-5 and IBM 370 short floating point arithmetic is used to compute the
exponential from the formula eA= veDv-1, we obtain

2.718307 2.750000]
0 2.718254J"

Since the exact exponential to six decimals is

2.718309 2.718282]
0 2.718255_1’

we see that the computed exponential has errors of order 105 times the machine
precision as conjectured.

One might feel that for this example ea might be particularly sensitive to
perturbations in A. However, when we apply Theorem 3 in 2 to this example, we
find

+)_ eAl[ 41IEI[ e 211rll
ileal]

independent of e. Certainly, ea is not overly sensitive to changes in A and so Method
14 must be regarded as unstable.

Before we proceed to the next method it is interesting to note the connection
between the use of eigenvectors and Method 9, Lagrange interpolation. When the
eigenvalues are distinct the eigenvector approach can be expressed

tA V diag (e")V-= e,’viyL
i=1

where y/r is the flh row of V-1. The Lagrange formula is

tA E e’btAi,

where

Ai fi (A
k=l (li lk

Because these two expressions hold for all t, the individual terms in the sum must be
the same and so

A vy.
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822 CLEVE MOLER AND CHARLES VAN LOAN

This indicates that the Aj are, in fact, rank one matrices obtained from the eigen-
vectors. Thus, the O(n4) work involved in the computation of the Aj is totally
unnecessary.

METHOD 15. TRIANGULAR SYSTEMS OF EIGENVECTORS. An improvement in
both the efficiency and the reliability of the conventional eigenvector approach can be
obtained when the eigenvectors are computed by the OR algorithm [14]. Assume
temporarily that although A is not symmetric, all its eigenvalues happen to be real.
The idea is to use EISPACK subroutines ORTHES and HQR2 to compute the
eigenvalues and eigenvectors [113]. These subroutines produce an orthogonal matrix
O and a triangular matrix T so that

QTAQ= T.

Since Q-l= Q, this is a similarity transformation and the desired eigenvalues occur
on the diagonal of T. HQR2 next attempts to find the eigenvectors of T. This results in
a matrix R and a diagonal matrix D, which is simply the diagonal part of T, so that

TR RD.

Finally, the eigenvectors of A are obtained by a simple matrix multiplication V QR.
The key observation is that R is upper triangular. In other words, the

ORTHES/HQR2 path in EISPACK computes the matrix of eigenvectors by first
computing its "QR" factorization. HQR2 can be easily modified to remove the final
multiplication of Q and R. The availability of these two matrices has two advantages.
First, the time required to find V-1 or to solve systems involving V is reduced.
However, since this is a small fraction of the total time required, the improvement in
efficiency is not very significant. A more important advantage is that cond (V)=
cond (R) (in the 2-norm) and that the estimation of cond (R) can be done reliably and
efficiently.

The effect of admitting complex eigenvalues is that R is not quite triangular, but
has 2-by-2 blocks on its diagonal for each complex conjugate pair. Such a matrix is
called quasi-triangular and we avoid complex arithmetic with minor inconvenience.

In summary, we suspect the following algorithm to be reliable:
(1) Given A, use ORTHES and a modified HQR2 to find orthogonal Q, diagonal

D, and quasi-triangular R so that

AQR QRD.

(2) Given Xo, compute yo by solving

Ryo OXo.
Also estimate cond (R) and hence the accuracy of y0.

(3) If cond (R) is too large, indicate that this algorithm cannot solve the problem
and exit.

(4) Given t, compute x(t) by

x(t)= Ve’yo.
(If we want to compute the full exponential, then in Step 2 we solve RY 07" for Y
and then use e ta= Ve’Y in Step 4.) It is important to note that the first three steps
are independent of t, and that the fourth step, which requires relatively little work, can
be repeated for many values of t.

We know there are examples where the exit is taken in Step 3 even though the
underlying problem is not poorly conditioned implying that the algorithm is unstable.
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THE EXPONENTIAL OF A MATRIX 823

Nevertheless, the algorithm is reliable insofar as cond (R) enables us to assess the
errors in the computed solution when that solution is found. It would be interesting to
code this algorithm and compare it with Ward’s scaling and squaring program for
Method 3. In addition to comparing timings, the crucial question would be how often
the exit in Step 3 is taken and how often Ward’s program returns an unacceptably
large error bound.

METHOD 16. JORDAN CANONICAL FORM. In principle, the problem posed by
defective eigensystems can be solved by resorting to the Jordan canonical form (JCF).
if

is the JCF of A, then

A P[J.. O)Jk]p-1

ta tjk ]p-1e =P[e ’’’03e

The exponentials of the Jordan blocks Ji can be given in closed form. For example, if

then

hi 1 0 0

’i 1
0 hi
0 0 hiA

1 t2/2! t3/3!

ea’ e, 0 1 t2/2
0 0 1
0 0 0 1

The difficulty is that the JCF cannot be computed using floating point arithmetic.
A single rounding error may cause some multiple eigenvalue to become distinct or
vice versa altering the entire structure of J and P. A related fact is that there is no a
priori bound on cond (P). For further discussion of the difficulties of computing the
JCF, see the papers by Golub and Wilkinson [110] and Kgstrom and Ruhe [111].

METHOD 17. SCHUR. The Schur decomposition

A QTQT

with orthogonal Q and triangular T exists if A has real eigenvalues. If A has complex
eigenvalues, then it is necessary to allow 2-by-2 blocks on the diagonal of T or to
make Q and T complex (and replace Qr with Q*). The Schur decomposition can be
computed reliably and quite efficiently by ORTHES and a short-ended version of
HQR2. The required modifications are discussed in the EISPACK guide [113].

Once the Schur decomposition is available,

e,A Q e,TO T.
The only delicate part is the computation of etr where T is a triangular or quasi-
triangular matrix. Note that the eigenvectors of A are not required.

Computing functions or triangular matrices is the subject of a recent paper by
Parlett [112]. If T is upper triangular with diagonal elements A1,..., An, then it is

Aclear that e a" is upper triangular with diagonal elements el, e -. Parlett shows
how to compute the off-diagonal elements of e ’T recursively from divided differences
of the e x’. The example in 1 illustrates the 2-by-2 case.
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824 CLEVE MOLER AND CHARLES VAN LOAN

Again, the difficulty is magnification of roundoff error caused by nearly confluent
eigenvalues hi. As a step towards handling this problem, Parlett describes a general-
ization of his algorithm applicable to block upper triangular matrices. The diagonal
blocks are determined by clusters of nearby eigenvalues. The confluence problems do
not disappear, but they are confined to the diagonal blocks where special techniques
can be applied.

METHOD 18. BLOCK DIAGONAL. All methods which involve decompositions of
the form

A SBS-1

involve two conflicting objectives:
(1) Make B close to diagonal so that e t is easy to compute.
(2) Make S well conditioned so that errors are not magnified.

The Jordan canonical form places all the emphasis on the first objective, while the
Schur decomposition places most of the emphasis on the second. (We would regard
the decomposition with S I and B A as placing even more emphasis on the second
objective.)

The block diagonal method is a compromise between these two extremes. The
idea is to use a nonorthogonal, but well conditioned, S to produce a B which is
triangular and block diagonal as illistrated in Fig. 2.

B

FIG. 2. Triangular block diagonal form.

Each block in B involves a cluster of nearly confluent eigenvalues. The number in
each cluster (the size of each block) is to be made as small as possible while maintain-
ing some prescribed upper bound for cond (S), such as cond (S)< 100. The choice of
the bound 100 implies roughly that at most 2 significant decimal figures will be lost
because of rounding errors when e tA is obtained from e tB via e tA S etBS-1. A larger
bound would mean the loss of more figures while a smaller bound would mean more
computer time--both for the factorization itself and for the evaluation of e tB.

In practice, we would expect almost all the blocks to be 1-by-1 or 2-by-2 and the
resulting computation of e tn to be very fast. The bound on cond (S) will mean that it is
occasionally necessary to have larger blocks in B, but it will insure against excessive
loss of accuracy from confluent eigenvalues.
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THE EXPONENTIAL OF A MATRIX 825

G. W. Stewart has pointed out that the grouping of the eigenvalues into clusters
and the resulting block structure of B is not merely for increased speed. There can be
an important improvement in accuracy. Stewart suggests expressing each block Bi in
the form

Bj TJ + Ej

where ,j is the average value of the eigenvalues in the flh cluster. If the grouping has
been done properly, the matrices E should then be nearly nilpotent in the sense that

Ek will rapidly approach zero as k increases. Since E is triangular, this will certainly
be true if the diagonal part of Ei is small, that is, if all the eigenvalues in the cluster are
close together. But it will also be true in another important case. If

E=
0

where e is the computer rounding unit, then

can be regarded as negligible. The +x/-e perturbations are typical when a double,
defective eigenvalue is computed with, say, HQR2.

The fact that E. is nearly nilpotent means that e tBj can be found rapidly and
accurately from

etBj e/ etE

computing etEJ by a few terms of the Taylor series.
Several researchers, including Parlett, Ruhe, and Stewart, are currently develo-

ping computer programs based on some of these ideas. The most difficult detail is the
proper choice of the eigenvalue clustering. It is also important for program efficiency
to avoid complex arithmetic as much as possible. When fully developed, these pro-
grams will be fairly long and complicated but they may come close to meeting our
other criteria for satisfactory methods.

Most of the computational cost lies in obtaining the basic Schur decomposition.
Although this cost varies somewhat from matrix to matrix because of the iterative
nature of the OR algorithm, a good average figure is 15 n 3 flops, including the further
reduction to block diagonal form. Again we emphasize that the reduction is in-
dependent of t. Once the decomposition is obtained, the calculation of e tA requires
about 2 n 3 flops for each t. If we require only x(t)= etAxo for various t, the equation
Sy =x0 should be solved once at a cost of n3/3 flops, and then each x(t) can be
obtained with n 2 flops.

These are rough estimates. There will be differences between programs based on
the Schur decomposition and those which work with the block diagonal form, but the
timings should be similar because Parlett’s algorithm for the exponential is very fast.

7. Splitting methods. A most aggravating, yet interesting, property of the matrix
exponential is that the familiar additive law fails unless we have commutivity"

tB tC t(B +C)<e e e BC CB.

Nevertheless, the exponentials of B and C are related to that of B + C, for example,
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826 CLEVE MOLER AND CHARLES VAN LOAN

by the Trotter product formula [30]"

B+ ee lim (e B/m C/m)m.

METHOD 19. SPLITTING. Our colleagues M. Gunzburger and D. Gottleib sug-
gested that the Trotter result be used to approximate eA by splitting A into B + C and
then using the approximation

A B/m C/m)m.e (e e

This approach to computing eA is of potential interest when the exponentials of B and
C can be accurately and efficiently computed. For example, if B (A +A7")/2 and
C (A-AT) then en and ec can be effectively computed by the methods of 5.
For this choice we show in Appendix 2 that

I[[AT, A]II g(A)(7.1) lie a (e B/" ec/) e
4m

where/z (A) is the log norm of A as defined in 2. In the following algorithm, this
inequality is used to determine the parameter m.

(a) Set B (A +A T)/2 and C (A A v)/2. Compute the factorization B
Q diag(/zi)O T (oTo=I) using TRED2 and TQL2 [113]. Variations of
these programs can be used to compute the factorization C UDUT where
uTu I and D is the direct sum of zero matrices and real 2-by-2 blocks of
the form

a

corresponding to eigenvalues +/-ia.

(b) Determine rn =2 such that the upper bound in (7.1) is less than some

prescribed tolerance. Recall that tz(A) is the most positive eigenvalue of B
and that this quantity is known as a result of step (a).

(c) Compute X=Q diag(e’’/")O T and Y= UeO/mUT. In the latter compu-
tation, one uses the fact that

[ 0 a/ore] [ cos(a/m) sin(a/m))1exp
-a/rn -sin (a/m) cos (a/rn

(d) Compute the approximation, (XY)z, to eA by repeated squaring.
If we assume 5 n 3 flops for each of the eigenvalue decompositions in (a), then the

overall process outlined above requires about (13 +j)n 3 flops. It is difficult to assess
the relative efficiency of this splitting method because it depends strongly on the
scalars IlIA , a]ll and tz (a) and these quantities have not arisen in connection with any
of our previous eighteen methods. On the basis of truncation error bounds, however,
it would seem that this technique would be much less efficient than Method 3 (scaling
and squaring) unless (a) were negative and Ilia , a][I much less than Ila[I.

Accuracy depends on the rounding errors which arise in (d) as a result of the
repeated squaring. The remarks about repeated squaring in Method 3 apply also here"

A
there may be severe cancellation but whether or not this only occurs in sensitive e
problems is unknown.
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THE EXPONENTIAL OF A MATRIX 827

For a general splitting A B + C, we can determine rn from the inequality

(7.2) lie a (e B/" e c/’)’ll <= [lIB,c]ll e iiBil+ltcll
2m

which we establish in Appendix 2.
To illustrate, suppose A has companion form

I-0 1\ 0... 0

iA--
1
Cn-1

If

and C e,,c 7- where c

and

0

(Co,’", c,-1) and e[= (0, 0, , 0, 1), then

nl [B]kleB/m
k=0 k!

e c"-l/m- 1 Te C/m I+ enC
Cn-1

Notice that the computation of these scaled exponentials require only O(n 2) flops.
Since IIBII 1, IIfII Ilcl], and II[B, fill--< 211c11, (7.2) becomes

e 1+11"11c11Ilea_(e/’,eC/,,),ll"
m

The parameter m can be determined from this inequality.

8. Conclusions. A section called "conclusions" must deal with the obvious ques-
tion: Which method is best? Answering that question is very risky. We don’t know
enough about the sensitivity of the original problem, or about the detailed per-
formance of careful implementations of various methods to make any firm
conclusions. Furthermore, by the time this paper appears in the open literature, any
given conclusion might well have to be modified.

We have considered five general classes of methods. What we have called poly-
nomial methods are not really in the competition for "best". Some of them require the
characteristic polynomial and so are appropriate only for certain special problems and
others have the same stability difficulties as matrix decomposition methods but are
much less efficient. The approaches we have outlined under splitting methods are
largely speculative and untried and probably only of interest in special settings. This
leaves three classes in the running.

The only generally competitive series method is Method 3, scaling and squaring.
Ward’s program implementing this method is certainly among the best currently
available. The program may fail, but at least it tells you when it does. We don’t know
yet whether or not such failures usually result from the inherent sensitivity of the
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828 CLEVE MOLER AND CHARLES VAN LOAN

Aproblem or from the instability of the algorithm. The method basically computes e
for a single matrix A. To compute e ta for p arbitrary values of requires about p times
as much work. The amount of work is O(n3), even for the vector problem etaxo. The
coefficient of n 3 increases as []a[[ increases.

Specializations of o.d.e, methods for the ea problem have not yet been im-
plemented. The best method would appear to involve a variable order, variable step
difference scheme. We suspect it would be stable and reliable but expensive. Its best
showing on efficiency would be for the vector problem etAxo with many values of
since the amount of work is only O(n2). It would also work quite well for vector
problems involving a large sparse A since no "nonsparse" approximation to the
exponential would be explicitly required.

The best programs using matrix decomposition methods are just now being
written. They start with the Schur decomposition and include some sort of eigenvalue
clustering. There are variants which involve further reduction to a block form. In all
cases the initial decomposition costs O(n 3) steps and is independent of and
After that, the work involved in using the decomposition to compute etAxo for
different and x0 is only a small multiple of n 2.

Thus, we see perhaps three or four candidates for "best" method. The choice will
depend upon the details of implementation and upon the particular problem being
solved.

Appendix 1. Inverse error analysis of Pad6 matrix approximation.
LEPTA 1. If Ilnll < X, then log (I +H) exists and

[llog (I + n)[I <=
1-Iln[----"

Proof. If IIn[I < a then log (I +H)= Ek=l (--1)k+l(Hk/k) and so

IIlog (I +n)ll -< E Ilnllk <- Ilnl[ E Iln[I [lUll
k=a k k=O 1-

LEMMA 2. If IIAII 1/2 and p >0, then IIDo.(A)-lll<-(q +p)/p.
Proof. From the definition of D,q (A) in 3, D(A) I +F where

Using the fact that

F=
(P+q-J)!q! (-A)i

/=1 (p -t- q)!(q --j)!

(P + q -J)!q <[ql(p+q)!(q-f)!--

we find

IIFII <-- [pq ]i_ q

il + q lln <-
p+q

IlAIl(e 1) <-
p+q

and so I[Opq(A)-lll II(I + F)-all-<- 1/(1 -IIFII) <- (q + p)/p.
LMMA 3. / Ilel[<_--1/2, q <-p, and p >- 1, then Rpq(A)= ea+v where

[IFII 81JAIl "+’+ (p +q)!(p +q + 1)!"
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THE EXPONENTIAL OF A MATRIX 829

Proofi From the remainder theorem for Pad6 approximants [71],

Rp. (A) eA
(-1) f01 )q(p+q)-.n’+q+lD,q(A)-1 e(-’)au’(1-u du,

and so e-aRpq(A)= I +H where

H (-1)"+1(p+ Io )qq)-----.A+"+aD,,(A)-1 e-"au(1 u du.

By taking norms, using Lemma 2, and noting that (p + q)/p es N 4 we obtain

1 p+q f01=(p+q)lA[+q+l e (1- )*
P

4[[A[[++l Pq
(p + q)l (p + q + 1)"

With the assumption ][A][ it is possible to show that for all admissable p and q,
]]H]] and so from Lemma 1,

[log (t +)< <8A"+"+’ Pq
1 -]]H]]= (p + q)(p + q + 1)"

Setting F log (I + H), we see that e-aR,,(A) I +H ev. The lemma now follows
because A and F commute implying R,q(A) ea ef e a+v.

LEMMA 4, If [Ia[I 1/2 then R,q(a) ea+v where

(p + q)!(p + q + 1)!"

Pro@ The case p _-> q, p _-> 1 is covered by Lemma 1. If p + q 0, then F -A and
the above inequality holds. Finally, consider the case q > p, q-> 1. From Lemma 3,
Rq,(-A) e-A+F where F satisfies the above bound. The lemma now follows because

II-FII IIFII and R,q(A)= [Rqp(-A)]-1 [e-A+F]-1 eA-F

THEOREM A.1. If IlAII/2 < 1/2, then [Roq(A/2i)]z a+Ee where

IIEll <8 P <--
P!q!

Ilnll- (p + q)!(p + q + 1)!- (p + q)!(p + q + 1)!"

Proof. From Lemma 4, R,q(A/2i) ea+F where

pq!
(p +q)!(p +q + 1)!"

The theorem follows by noting that if E 2iF, then

2

[Rpq(--)] A+E

COROLLARY 1./f IIAl[/2; N1/2, then [Tk(A/2i)]2’= eA+ where

()k 1 ()’- 1IIEII < 8 _<
IIAII k + 1- k + 1
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830 CLEVE MOLER AND CHARLES VAN LOAN

COROLLARY 2. If IIA[I/2 <- 1/2, then [Rqq(A/2i)]2’= ea+E, where

()2q (q!)2 ()
2q--3 (q I)2IIEII__< 8 -<

[Imll (2q)!(2q + 1)!- (2q)!(2q + 1)!"

Appendix 2. Accuracy of splitting techniques. In this appendix we derive the
inequalities (7.1) and (7.2). We assume throughout that A is an n-by-n matrix and
that

A =B+C.

It is convenient to define the matrices

Sm eA/m,
and

Tm eS/m e C/m

where m is a positive integer. Our goal is to bound ]]Sm -Tmml]. To this end we shall
have to exploit the following properties of the log norm/x (A) defined in 2"

(i) ]]etAll < e tz(a)t (t >--_ O)

(ii) /x (A) =< IIA
(iii) /x (B + C) -</x (B) + IIcII,

These and other results concerning log norms are discussed in references [35]-[42].
LEMMA 1. If 19 _-->max {/x (A),/z(B)+/x (C)} then

Proof. Following Reed and Simon [11] we have

m-1

S:- T= E S(S.- Tm)T-1-k.
k=O

Using log norm property (i)it is easy to show that both IlSmll and IlTmll are bounded
above by e/m and thus

m--1

[Is:- T:II E IlSmllllSm- TmIIIITII m-l-k
k=O

m-1

llSm-Tmll E e e
k=0

from which the lemma immediately follows.
In Lemmas 2 and 3 we shall make use of the notation

t=t

F(t) =F(tl)-f(to),
t=

where F(t) is a matrix whose entries are functions of t.
LEMMA 2.

Tm Sm ffoetB/m[e(1-t)A/m, Xc] e
m

Ok/m O(m-l-k)/m

tC/m dt.
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THE EXPONENTIAL OF A MATRIX 831

Proof. We have Tm- Sm e ‘/m e (1-t)A/m e,C/m it=t=o and thus

Io1{ d (1-t)A/m tC/m}Tm Sm -d7 [e
tt/m e e dt.

The lemma follows since

d tB/m (1-t)A/m tC/m-[e e e ]=e ’n/m[ e {l-OA/m 1CI e
m

tCl

LEMMA 3. IfX and Y are matrices then

II[e x, Y]II e"X)ll[x, Y]II.

Proof. We have [e x, Y]=etXyetl-t)xlt=,= and thus

Io’ d ,Xye -t)x]} dt.[e x, y]= {_7[e (1

Since d/dt[etXye (1-’)x] etX[x, Y] e(1-x we get

II[e x, g]ll--< Io Ile’Xllll[x’ g]l[lle (1-t)xll dt

-< ]I[X, Y][[ Io e "(X)te (x)(1-t) dt

from which the lemma immediately follows.
THEOREM A.2./f 19 >_--max {Ix(A), Ix(B)+ Ix(C)}, then

1IIs T[I el[[B, Ell[.

Proof. If 0 =< =< 1 then an application of Lemma 3 with X- (1 t)A/m and
Y =- C/m yields

]lie (1-t)a/m, C/m ][[ <- et(A)(1-t)/m[[[(1 --t)A/m, C/m ]ll

-<-e (1-‘)/m(1 -t)ll[B, Clll.m

By coupling this inequality with Lemma 2 we can bound ]]T- Stall"

IlTm-Stall<= fro [le’/mllll[e(1-’a/" C/mllllle’c/mll dt

<-- IO eu’(B)t/m e(R)(1-t)/m(lm’t)ll[B’ C]ll e "(c)’/m dt

1 eO/m II[B, C]ll---- :2-2 m

The theorem follows by combining this result with Lemma 1.
COROLLARY 1. IfB =(A +A*)/2 and C=(A-A*)/2 then

1IIs TII 7 e"a)ll[A*, A 111.
z4m

D
ow

nl
oa

de
d 

05
/0

4/
13

 to
 1

28
.2

06
.9

.1
38

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



832 CLEVE MOLER AND CHARLES VAN LOAN

Proof. Since tz (A) tx (B) and tz (C) 0, we can set 19 =/x (A). The corollary is
established by noting that [B, C] 1/2[A*, A].

COROLLARY 2.

IIs. 

Proof. max {x (A), tz (B)+ tx (C)} =<
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