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A discussion of Fermi’s calculation using the pseudopotential approach is given. This is followed
by a brief review of some of the principal extensions and applications of atomic pseudopotentials
to condensed matter physics in the following 50 years.

L INTRODUCTION

Fifty years ago Fermi'? introduced the atomic pseudo-
potential and scattering length concepts to explain the ob-
servations of Amaldi and Segré® on the shifts of alkalai
atomic spectral lines when the vapor samples were mixed
with foreign gases. The theory explained both the sign and
magnitude of the measured shifts in addition to providing
the important theoretical tools mentioned above. Al-
though the pseudopotential has had a significant impact on
atomic and condensed matter physics, there has been less
awareness of Fermi’s contribution to the atomic potential
than his application* of the pseudopotential approach to
nuclei.

The discussion in this paper will focus on the atomic
pseudopotential and explore extensions and applications of
this concept. We begin by discussing the essential features
of Fermi’s original work, and then describe a few of the
principal developments of pseudopotential theory. Finally,
the focus will be on current accomplishments resulting
from the use of pseudopotentials in condensed matter
physics.

I1. FERMI'S CALCULATION

The experiments of Amaldi and Segré® indicated that the
higher terms of the alkalai atomic spectra were more sensi-
tive to the presence of a foreign gas than the lower terms.
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The size of the shift and its sign depended on the nature of
the foreign gas. Fermi' attributed the observations to two
physical effects, polarization and scattering. The first effect
arises because an electron in a large orbit can experience
the dielectric screening of the foreign gas. Fermi calculated
this shift A, which expressed in wavenumbers is given by

4, = +20[(e — 1)/187%#ic)e*n' 3, (1)

where € is the dielectric constant of the foreign gas and » is
the number of foreign gas atoms per unit volume. The

+ sign signifies a red shift, and the magnitude is approxi-
mately one wavenumber for foreign gases at pressures of
the order of one atmosphere.

Ifthe foreign gases do not have permanent electric dipole
moments, as was the case in the experiments of Amaldi and
Segre, then the effect was of the same magnitude as calcu-
lated using Eq. (1). However, some gases could give a blue
shift, and it is the scattering effect which explains this as-
pect. The scattering effect is calculated to be of the same
order as 4., and it can have ejther sign. It was the calcula-
tion of this effect which motivated Fermi to introduce the
pseudopotential, and it is this part of Fermi’s calculation
on which we will focus,

The outer electron of the host alkalai atom experiences a
slowly varying potential U from the rest of the atom and
stronger potentials ¥; arising from the foreign gas atoms.
The ¥, are deep and narrow (radius p) compared with the
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wavelength of the outer electron. Hence the wave function
¥ for the outer electron will be slowly varying except for
localized irregularities near the perturbing atoms. Fermi
therefore introduces another function ¢ which is an aver-
age wave function in a region small compared to the elec-
tron’s wavelength but large enough to contain a substantial
number of foreign gas atoms. This function ¢ reproduces
the general trend of ¥ without the irregularities.
The Schrodinger equation for ¢ is

(;—’fvz + U+ Z V,.):/x = Ey. (2)

By a_vcréging as described above, the Schrodinger equation
for ¢ is

B -
-2-;V2'//+(E— Ui —3Vig=0. (3)
Working with the radial part of the wave function
u(r) = ry(r) Férmi obtains an estimate of the last term in
Eq. (3). This is done by employing the approximation
shown in Fig. 1, i.e,,

ulr) = (a + ). @)
Since the second term in Eq. (3) is much smaller than the

third, within the radius p of one foreign atom potential
well, to lowest order,

(—#/2m)u"(r) + V{ru(r) = 0. (5)
Integrating Eq. (5) and using Eq. (4) we find
2m/B\Vip = — dmay. (6)

Hence the last term in Eq. (3) for n potential wells per
unit volunie is

SVib=(— 2#man/my (7)

and this shifts the energy E by
A, = 2#man/m. (8)

This ;errﬁ gives ared shift for a > 0 and a blue shift fora < 0.
Conveérting to wavenumbers and adding the contribu-
tions from Eq. (1) and (8) we have
4 =[20(e — 1)e*/167%#icln"’® + #an/mc. (9)
The total shift 4 given by Eq. (9) corresponds to Eq. {22) of
Fermi’s paper. Hence in this classic work Fermi has ex-

plained the observed shift in the spectral lines via two ef-
fects, he has introduced the scattering length a, and he has

ry

Y-8 --»

Fig. 1. Fermi’s pseudopotential approximation.
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invented the pseudopotential. We will focus on the latter
approximation which comes in through the use of , Fig. 1,
and the averaging processes given by Eqs. (4)—(6).

IT1. THE NEXT 30 YEARS

Another early pseudopotential reference is the work of
Hellmann® who used this approximation to reproduce
atomic and molecular energy levels. Schemes similar to
Hellmann’s were later developed further and used even in
the 1960’s.° However the next main thrust in pseudopoten-
tial research came from studies of solids. One important
question which pseudopotential theory helped to answer
was: Why does the nearly free electron theory work so well
for solids? In other words, why is it possible to use weak
potentials and smooth plane wave like wave functions to
represent the interactions of conduction electrons in met-
als?

It was the work of Phillips and Kleinman’ using the
orthogonalized plane-wave method (OPW) of Herring®
which demonstrated why the nearly free electron model
works. The OPW scheme was developed to provide a meth-
od to calculate the electronic band structure of a solid, i.e.,
the energies of the electrons in the solid as a function of
their wave vector, E (k). The dilemma of band structure
calculations is that near a positive core {nucleus plus core
electrons) the valence electrons experience a strong poten-
tial and are atomic-like. Between the cores, the potential is
fairly constant, and hence the valence electron wave func-
tions should be fairly smooth in this region. Therefore an
atomic-like basis set is appropriate near the cores while
plane waves are more suitable between the cores.

Herring proposed that a plane wave which was made
orthogonal to the core states would have several desirable
properties. Near the core it would resemble the next higher
state above the core states since it is orthogonal to all the
states in the core. Between the cores where the potential is
small and slowly varying, the plane-wave nature of the
state would be appropriate. These OPW’s formed a good
basis set for electronic structure calculations particularly
for metals. Just a few OPW’s in an expansion set for a wave
function representing valence electrons in a solid were suf-
ficient to compute many electronic properties accurately.

Phillips and Kleinman used the OPW approach to for-
mulate a pseudopotential in the following way. Let # be the
true wave function representing the valence electrons, and
partition ¢ into a smooth part ¢ which is the pseudowave
function and a component made out of core states ¢ ;
hence,

=9 +>b.g.. (10)

For a specific application, the smooth part of the wave
function ¢ can be expanded in plane waves, and the crystal
symmetry can be taken into account.

Following the OPW approach the state ¥ is made or-
thogonal to the core states

(¢:¥) =0, (11)
hence
b.= —(4.|), (12)
and
v=0—Y($:14)¢.. (13)
Marvin L. Cohen 696



If we now operate on ¥ with the total Hamiltonian H, then
the eigenvalues E obtained should be the true eigenvalues
for the valence electrons moving in the crystal potential,
ie.,

Hy = Ey. (14)

Using Eq. (13),
Hp — > (¢.|0)E. 4. =Ed — EY ($.|¢ )., (15)

where the E_ are the eigenvalues for the core electron
states. Rearranging terms, we have

Hp + Y(E—E ). |¢) = E. (16)
Equation (16) can be written in the following form:

(H + V)¢ = Ed, (17)
where

Ve =Y (E—E.)p.(d.|8) (18)

is a repulsive potential which keeps the valence electrons
out of the core. This potential originates from the ortho-
gonality terms in the OPW-like wave function. Hence it
arises from the Pauli principle and represents the “Pauli
force” which pushes the valence electrons away from the
core.

When the repulsive potential is added to the attractive
Coulomb potential from the positive core, the sum is a net
weak potential or pseudopotential, i.e., starting with Eq.
(17) we now have

P*/2m+V, + Vi)p = Ed (19)
or

(p°/2m + V) = Eg, (20)
where V, is the attractive core potential and V is the net
weak pseudopotential. An important property of Eq. {20) is
that even though it represents a Schrodinger equation with
a pseudopotential and a pseudowave function, the eigen-
value obtained is the real energy E which was the eigenval-
ue solution of Eq. (14).

Hence a scheme is obtained in which a weak potential
and a smooth wave function which can be expanded in
plane waves yields the real eigenvalues for the valence elec-
trons in a crystalline solid. Therefore the use of the nearly
free electron model is justified. Some caution in using ¥V
should be exercised since ¥ is non-Hermitian, ¢ is not
normalized, and V is nonunique, but studies®'® in the
1960’s gave prescriptions and guidance on how to deal with
these problems.

Although considerable research was done to study the
Phillips-Kleinman and other variations of the pseudopo-
tential discussed above, direct applications of this ap-
proach to real systems were scarce. A complete calculation
of V asitis given here involves many of the same calcula-
tions as the OPW approach. Therefore the main impact of
the Phillips—Kleinman result was conceptional. For appli-
cations, model or empirical pseudopotentials were intro-
duced, and these were very successful in dealing with appli-
cations to real materials.

IV. EMPIRICAL AND MODEL POTENTIALS

The introduction and use of empirical'' and model'® po-
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tentials as pseudopotentials has had a profound effect on
solid-state physics during the past 20 years. Electronic
structure calculations for metals, semiconductors, semime-
tals, and insulators were done successfully. The empirical
approach led to an unraveling of reflectivity spectra, pho-
toemission properties, chemical bonding, energy band
structures, etc. (see Refs. 10-15).

Basically two approaches were followed in fitting the
potentials. One was to model the real space (Fig. 2) poten-
tial as a function of position; the other involved using ap-
proximations to the Fourier transformed potential as a
function of wave vector or momentum (Fig. 3). The sim-
plest real space models are straightforward once the Phil-
lips—Kleinman calculation is known. Since the attractive
and repulsive potentials essentially cancel in the core re-
gion then the real space potential should be a constant near
the core and Coulombic outside. Hence a simple model
potential would be (see Fig. 2)

Viry= —Ze/r, r>r,, (21)
= —Ze/r,, r<r., (22)

where Z is the valence and r. is the core radius. A more
popular choice is the empty core pseudopotential

V= —Ze/r, r>r, (23)
=0, rgr,. “(24)

These simple potentials give surprisingly good results for
electronic structure especially when one considers that
only a one parameter fit is used.

Heine and coworkers'? extended and refined the above
model potentials by allowing the constant potential in the
core to vary instead of fixing it at zero or — Ze/r,. The
constant was taken to be a function of the angular momen-
tum and energy of the electronic state under investigation.
These potentials became known as “model potentials,” and
the parameters were fit to atomic spectra. When used for
calculations in a solid the model potentials were screened
by the valence electrons by using a dielectric function. Ta-
bles of potentials'® became available, and model potentials
were used for many elements, particularly metallic sys-
tems.

The second approach was to fit'"'*!” the Fourier coeffi-
cients or form factors of the potentials. For a periodic solid
the Fourier transform of the pseudopotential becomes a
Fourier sum over reciprocal lattice vectors'® G,

Vir) = YS(G)V, (G (25)

where the V,(G) represents the Fourier transform of the
atomic pseudopotential at wave vector q = G. These form
factors can be obtained from a Fourier analysis of the mod-
el potential or fit to experiment. When the experimental
input is used, the method is called the Empirical Pseudopo-
tential Method (EPM). The structure factor'® S (G) locates
the atoms in a unit cell; it is obtained from an x-ray analysis
of the solid,

S(G)= Ze —iG-T (26)
where 7 is a basis vector to each of the atoms in the unit cell.
Hence the structure is regarded as input, and only the

form factors ¥V, (G) are needed to obtain the potential and in
turn the energy eigenvalues and wave functions. If the ex-
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Fig. 2. Schematic pseudopotential in real space.

pansion of Eq. (25) did not converge, it would take too
many parameters to fit ¥ (r), and this scheme would not be
tenable. However, because of the cancellation of the core
potential in the core region the form factors of Eq. (25)
become small for large G (which corresponds to small dis-
tances). In fact, for most elements, three parameters or
form factors are sufficient to fit the potential (Fig. 3).

A good example is Si which exists in the diamond struc-
ture where each of the cores are tetrahedrally coordinated
and the valence electrons form the covalent bonds. If the Si
pseudopotential is expanded in the reciprocal lattice fol-
lowing Eq. (25), then only three form factors corresponding
toG? = 3,G? = 8,and G? = 11 are needed to fix the poten-
tial. With these three numbers, the electronic band struc-
ture can be obtained to 1% to 2% accuracy over a range of
1 Ry. Similarly for other semiconductors with diamond
and zincblende structure like Ge, GaAs, ZnSe, etc. three
parameters per element are sufficient to give an adequate
description of their electronic properties.

The fitting of the parameters relied heavily on optical
data. Unlike the atomic spectra used by Fermi, reflectivity
spectra of solids are normally broad. For this reason inter-
pretation of these spectra in terms of electron transitions
was more difficult, and there was a considerable time lag
between the interpretation of solid-state spectra compared

V(a)
A

} Vir) ~f V(a) €% dq

~ (Y% BOND LENGTH)™"
et Vet G

»q

V(g=G) FOR TYPICAL G's

—%4E;
¥SCREENED ION LIMIT
FOR METALS

Crystal potential V(F) = g V(G’)S(G)eié.F

Fig. 3. Schematic pséudopotential in reciprocal space where Gis a recipro-
callattice vector, .S (G )isthestructure factor, and ¥ (G }is the pseudopoten-
tial form factor.
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Fig. 4. Calculated modulated reflectivity for Ge compared to experiment.
The experimental results are due to R. R. L. Zucca and Y. R. Shen, Phys.
Rev. B 1, 2668 (1970).

to atomic spectra. Modulation or derivative spectroscopy*®
provided sharper spectra, and this was very helpful. A typi-
cal example for Ge is given in Fig. 4.

The EPM procedure (Fig. 5) was to compare a calculated
spectrum with its measured counterpart and to fit the pseu-
dopotential form factors to produce agreement. Photoe-
mission data were also used prominently; however angular
resolved photoemission spectra (ARPES) were not avail-
able when most of the studies were done. ARPES can be
used to measure E (k} which is a severe test of the theory.
Fortunately the EPM predictions agree with later ARPES
data, and this stands as an excellent test of the method (Fig.
6).

Another area where the EPM provided important phys-
ical insight is in chemical bonding.'” By using the wave
functions obtained in an EPM calculation, it was possible
to compute the electronic charge density®° as a function of
position in space for each band » or for the sum of all the
valence bands, i.e.,

pn (l') = ;|¢n,k (r)|2’ (27)

EPM

v(G)
L

Vir) = %v(G) S(G) exp(iG 1) |«

!

H=P2+V
Hy = Ey
Get E(k), and ¢

!

Calculate R or R’/R and N{E)

{

Compare with experiment

!

Alter v{G)

Fig. 5. The empirical pseudopotential method.
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Fig. 6. Comparison of the pseudopotential band structure for GaAs [J. C.
Phillips and K. C. Pandey, Phys. Rev. Lett. 30, 787 (1973)] with measured
angular resolved photoemission spectra [T. C. Chiang, J. A. Knapp, M.
Aono, and D. E. Eastman, Phys. Rev. B 21, 3513 (1980)].

where ¢, , (r) is the wave function for the state k in a band
which is occupied. The total charge density is given by

Prot ()= ;ﬂn (r), (28)

where the sum is over all the occupied valence bands. Once
again the EPM calculations served as predictions of the
charge distributions. Experimental analysis came later,
and the agreement between experiment and theory is excel-
lent (Fig. 7).

Dozens of crystals were analyzed using the EPM. Band

EXPERIMENT (SILICON})

6
12
8~
4

=
™ N

ND

N7

g——"

AN ——

Fig. 7. Total calculated valence charge density for Si representing the sum
of the individual band contributions. The comparison with x-ray mea-
surements was made by L. W. Yang and P. Coppens, Solid State Comm.
15, 1555 (1974).
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structures, optical and photoemission spectra, charge dis-
tributions, bond charges, dielectric functions, Debye-
Waller factors, etc. were calculated, and large amounts of
experimental data were analyzed and interpreted.

V. SELF-CONSISTENT PSEUDOPOTENTIALS

In the 1970’s experiments in surface science became
more reliable and reproducible, and this motivated theo-
rists to attempt calculations for surfaces and interfaces.
The EPM was not directly extendable to surfaces for two
reasons. First, the EPM relied on periodicity, and a surface
breaks translational invariance. The arrangement of the
atoms at the surface, the adjacent vacuum, and the re-
arrangement of the valence electrons make the surface dif-
ferent from the bulk. This latter aspect brings in the second
major problem. Since the pseudopotential is fit in the EPM,
it contains the electron—-core and the electron—electron in-
teraction. Therefore when only part of the potential
changes at a surface and it is not clear how to change the
potential in the EPM to lower order, it is the electron—
electron interaction which has the major change at a sur-
face or interface because of the redistribution of valence
electrons at the interface, and the electron—core interaction
can be assumed unchanged from the bulk.

One way to solve the periodicity problem is through the
use of supercells. A large cell is constructed using the struc-
ture factor given in Eq. (26). A slab of material is modeled
with vacuum above and below, and this supercell is repeat-
ed. Each supercell has two surfaces, and the properties of
these surfaces mimic a solid surface. We can now use all the
tools of Fourier sums and deal with an infinite number of
surfaces.

The electronic charge redistribution and its effects on
the potential can be evaluated by separating the total po-
tential into a core part and a valence electron part. The core
part or ionic potential is used as input, but the electronic
part of the potential is calculated using the charge density
plr). This potential has two parts: a screening or Hartree
contribution and an exchange-correlation contribution.
The Hartree potential can be obtained from the electron
charge density using Poisson’s equation. In principle, the
exchange-correlation potential is more complex; however,
there are approximations to this potential which use only
the electron density as input®' (see Fig. 8).

Using the supercell, electron-core pseudopotential, and
the electron—electron potential calculated using the meth-
ods described above, it is possible to compute properties of
localized configurations like surfaces and interfaces.?! If
the proper unit cell is chosen the model structure in the
supercell can be used to simulate an atom, molecule, defect,
impurity, etc. The calculation is done in the following man-
ner (see Fig. 8). First an EPM potential is used as input to
generate the charge density which in turn gives the Hartree
and exchange-correlation potential. The structure and
electron-core pseudopotential is added, and the new poten-
tial is used as input. After about six cycles the input and
output potentials or charge densities are the same, and the
calculation is said to be “self-consistent.”

For the surface calculation, on the first cycle the charge
tends to flow out of the surface. However this redistribu-
tion of charge produces a potential which pulls charge back
in on the next cycle. After a few more cycles the changes are
negligible. The charge and potentials become stationary,

Marvin L. Cohen 699



Choose
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Solve
Hy =Ey
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Calculate . Solve
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HARTREE POTENTIAL —/

Calculate

EXCHANGE + CORRELATION —
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eg. SLATER p%s

Vscr = Vi + Vy

Model parometers
Structure, Vg

Vi = Vser + Vion

‘Fig. 8. Block diagram for calculating self-consistent potentials for sur-
faces and interfaces.

and the results of this model calculation represent real sur-
faces.

One of the first applications of this self-consistent pseu-
dopotential approach was to Si(111).>2 If Si is oriented
along the [111] direction and the bonds are cut, thena (111)
surface is exposed. This surface has been studied more than
any other with modern experimental and theoretical tech-
niques. In Fig. 9 a ball and stick model illustrating the
geometry of the Si(111) surface is given. In Fig. 10 a self-
consistent charge density plot illustrates the electron distri-
bution at and near the surface. A few layers into the surface
the bonds strongly resemble the bulk bonds calculated us-
ing the EPM (Fig. 7). At the surface “cut bond” is not seen.
The charge in the surface “half-bond” redistributes and
produces a smooth charge density at the surface. In effect
the cut is healed. Channels through the surface into the
bulk of the crystal exist (Fig. 10), and these represent the
paths for impurity atoms which enter and form interstitial

Silicon (1) I
DANGLING BOND
| SURFACE

Si CRYSTAL l VACUUM

Fig. 9. Ball and stick model for the Si(111) surface.
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Si (1) SURFACE
TOTAL VALENCE CHARGE

o SURFACE "HEALS"
NEAR DANGLING BOND REGION

W

Fig. 10. Total valence charge density for an ideal unrelaxed Si(111) sur-
face. Charge contours are plotted in the (110) plane and normalized to e
per primitive cell. Shaded circles represent atomic cores.

impurities in Si.

There are also surface states; i.e., electron states which
exist only near the surface. These surface states decay into
the bulk solid and into the vacuum above. They are local-
ized by the almost discontinuous surface potential, and
they dominate the electronic properties of the surface. The
charge density of Fig. 10 does not illustrate these states
since bulk states dominate here. However it is straightfor-
ward to use the results of the self-consistent pseudopoten-
tial calculation to illustrate®” the properties of the surface
states.

A number of surfaces, interfaces, and other localized
configurations were studied in the 1970’s using the method
described above.?! The calculations required the structure
(i.e., position of the cores) of the configuration of interest as
input. The structural part was not calculated using pseudo-
potentials. Often the structure was difficult to obtain. For
example for Si(111), the case considered, the ideal or (1X 1)
structure is known not to be correct when the surface is
treated in the standard manner. Two prominent structures
are the (2X 1) and the (7 X 7) varieties, and these must be
used as input before the above calculation can be done.

VL. FIFTY YEARS LATER

The limitations of the EPM and self-consistent ap-
proaches discussed above have been removed in the
1980’s.2* Current pseudopotential schemes require only
the atomic number as input, and no information about the
solid is used to generate the potential. In addition, it is
possible to calculate crystal structure both for bulk and
surface geometries. Because of these refinements, a number
of new applications are now possible.

Ab initio pseudopotentials are obtained from atomic
wave functions. Standard computer programs are general-
ly available to produce atomic wave functions for core and
valence electron states using the atomic number as input.
To generate a pseudopotential the pseudowave function for
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Fig. 11. Comparison of the 3s pseudowave function and all-electron wave
function for Si.

the valence electron state of interest is constrained to repro-
duce precisely the all electron wave function at large dis-
tances away from the core, but the wave function is taken
smoothly to zero near the core region. As shown in Fig. 11
for the Si 3s wave function, the pseudowave function differs
from the all-electron wave function at distances less than
that corresponding to the outermost maximum. The
pseudowave function is nodeless—it lacks oscillations in
the core region. It is interesting to compare Fig. 11 with
Fig. 1. Several schemes for constructing pseudopotentials
to produce these wave functions are available.”*2°

Hence the electron—core pseudopotential can be deter-
mined using the atomic wave function. The Hartree and
exchange-correlation potentials can be obtained using the
density as discussed previously. There are several function-
als which can be used to generate the exchange—correlation
potentials and the density functional approach®® has been
very successful especially for determining ground state
properties of solids.

The total energy for a solid in a given configuration can
now be evaluated using the techniques described. Elec-
tron~core, electron—electron, and exchange-correlation
energies are obtained from the pseudopotential and charge
density. The core—core and electron kinetic energies can be
evaluated using Madelung sums and the electron wave
function. It is convenient and conceptually straightfor-
ward to compute these quantities in momentum space,>’
and hence the only input are the atomic number and the
crystal structure of interest.

Returning to Si as a prototype solid the total energy was
computed*? for a variety of crystal structures. In the subset
of diamond, hexagonal diamond, simple cubic (sc), white
tin, body centered cubic (bcc), hexagonal close pack (hep),
and face centered cubic (fcc), the diamond structure has the
lowest energy (Fig. 12). By varying the volume, v, and cal-
culating the energy for each structure, the E (v) curves give
the lattice constant for the minimum energy in each struc-
ture. For the diamond structure the value of the lattice
constant is in remarkable agreement with experiment (Ta-
ble I). The curvature near the minimum energy yields infor-
mation about the compressibility or bulk modulus of the
solid. If the lattice constant is made large enough to simu-
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Fig. 12. Total energy curves for seven structures of Si as a function of

volume normalized to the experimental volume. The dashed line is the
common tangent between the diamond and white tin phases.

late a collection of isolated atoms, the total energy differ-
ence between this configuration and the solid with its nor-
mal lattice constant gives the cohesive energy of the solid.

Table I lists the results for Si, Ge, and C. The lattice
constants, bulk moduli, and cohesive energies are in excel-
lent agreement with experiment. Similar calculations have
been done for other semiconductors, metals, and insulators
with comparable results.

Solid—solid structural phase transitions can also be ex-
amined using the E (v) curves calculated from the ab initio
pseudopotentials. For example, for Si at smaller volumes
the white tin (8-tin) structure has lower energy than the
diamond structure, and a structural transition should
therefore occur as a function of pressure. In contrast hex-
agonal diamond is above cubic diamond over the entire
range of volume, hence a structural transition will not oc-
cur, and the hexagonal modification can be made only in a
metastable phase.

Referring to Fig. 12 the dashed line represents the com-
mon tangent between diamond and S-tin. At point 1 Siisin

Table I. Static structural properties for Si, Ge, and C.

Lattice Cohesive Bulk
constant energy modulus
(&) (eV) (Mbar)
Si
Calc. 545 4.67 0.98
Expt. 5.43 4.63 0.99
% Diff. 0.4% 1% —1%
Ge
Calc. 5.66 4.02 0.73
Expt. 5.65 3.85 0.77
% Diff. 0.1% 4% — 5%
C
Cale. 3.60 7.57 4.41
Expt. 3.57 7.37 4.43
% Diff. 0.8% 3%

—1%
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the diamond structure, but if compressed to 0.928 of its
volume, at point 2 it begins the transition to S-tin. At point
3 which corresponds to a fractional volume of 0.718 the
transition is complete, and at point 4 the system is in the 8-
tin structure. The calculated transition volumes are within
around 1% of experiment,*? and the slope of the common
tangent gives a good calculational estimate of the transition
pressure.

Lattice vibrational frequencies or phonons can also be
obtained* using the pseudopotential total energy scheme.
Empirical models for phonons often assume force con-
stants or springs of various strengths connecting the atoms.
Calculations of this kind require interactions up to 15
neighbors to achieve suitable accuracy for Si. The total en-
ergy approach uses only the atomic number and mass as
input. One method for obtaining the vibration spectrum is
to assume a phonon or a specific vibrational state is “frozen
in” and the crystal is distorted. The total energy of this
distorted state is then compared with the ideal arrange-
ment where the atoms are in their equilibrium positions.
This energy difference is related to the phonon energy (Ta-
ble II). Another method involves the calculation of the
forces on planes of atoms when one plane is moved. These
energy or force methods lead to calculations of the phonon
spectrum which are in excellent agreement with experi-
ment. Even the pressure dependencies of the various
phonon modes (Gruneisen constants) are given accurately
by this ab initio approach (Table II).

The above calculations of the properties of a solid-solid
phase transition and the phonon spectra have been ex-
tended to other semiconductors, to insulators, and to met-
als. Hence the pseudopotential total energy technique is
generally applicable to solids, and the results are highly
accurate for calculating lattice constants, bulk moduli, co-
hesive energies, phonons, and parameters related to struc-
tural phase transitions. Most static structural properties
can be calculated with this method. However, because a
local density functional approach is used for determining
the exchange-correlation potentials, excited state proper-
ties like semiconductor band gaps are not given accurately
in this scheme. Modifications are needed or EPM-like cal-
culations can be done.

Currently there is considerable activity in attempting to
use the pseudopotential total energy approach to predict
crystal structures. The hope is that it may be possible to
predict the existence of materials with desirable properties
and then fabricate these systems. An example would be the
prediction of a crystal structure for an element or com-
pound which may be metastable. Then the use of pressure
or temperature may be used to bring this substance to stan-
dard temperatures and pressures. Diamond is such a sub-

Table II. Total energy calculations of phonon energies and Griineisen
parameters for a few phonon frequencies of Si.

Si LTO(I') TA(X) TO(X} LOA(X)
Phonon freqs. (TH, )}

Foate. 15.16 445 1348 1216

Fop. 15.53 4.49 13.90 12.32

Deviation —24% —09% —3.0% —13%
Griineisen parameter

Yeale. 092 — 150 1.34 0.92

Yexpt. 098 —1.40 1.50 ~0.90
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stance. The graphitic form of carbon has a lower energy
than the diamond form, yet diamonds are found in nature.

Since there are many choices of structures to check for a
given number of constituent elements, calculations of this
kind are difficult. Some progress®* is being made in predict-
ing the surface structure or surface reconstructions by cal-
culating total energies and forces at a surface. Since the
calculations deal with two-dimensional models, the num-
ber of likely choices to consider is reduced. These surface
calculations have motivated a considerable number of ex-
perimental investigations. Hopefully they will also evolve
into schemes for predicting three-dimensional structures.

Hence it is fair to say that the Fermi atomic pseudopo-
tential has come a long way in the past 50 years: from the
early work on atoms in gases to the development of
schemes to predict structural and electronic properties of
atoms, solids, and molecules. There appear to be many
more possible applications in the future. Not only will re-
finements of the techniques discussed here certainly be
made, but if we extrapolate modestly, new important appli-
cations to fundamental and applied problems in condensed
matter physics are very likely.
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PROBLEM

Sometimes the most familiar problems in physics con-
tain interesting aspects that are seldom pointed out in stan-
dard treatments. Consider the Kepler problem—a particle
attracted to a fixed center by an inverse-square-law force.

—

B

Fig. 1. Ellipse in polar coordinates with turning points P, and P, and
points of maximum radial speed Pand P’.
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We all know that the bounded orbits of the particle are in
general ellipses, with one focus at the attracting center,
denoted by Cin Fig. 1. Standard discussions emphasize the
turning points of the motion P, and P,, where r, the dis-
tance of the particle from the force center, takes on its ex-
tremal values. By energy conservation, we know that the
particle speed is a maximum at P, and a minimum at P,.

But what about the radialspeed |#| of the particle relative
to the force center? Clearly |#| is zero at the turning points
and hence maximal somewhere in between. By symmetry,
if the radial speed has a maximum at a point P on the orbit,
it will reach that same maximum at a point P’ obtained by
reflection through the ellipse major axis. What is interest-
ing—and constitutes the problem posed to the reader—is
to show that the line connecting P and P’ actually passes
through the force center, as illustrated in Fig. 1. (Solution is
on page 761.)
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