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In 1965, Davidson has shown that the textbook explanation for the Hund’s multiplicity rule in
atoms, based on the Pauli principle, is wrong. The reason for the failure of the textbook proof, as has
been given later by others and as appears today in modern textbooks, it is based on the need to
introduce angular electronic correlation into the calculations. Here, we investigate an applicability
of this argumentation for helium and for the case of two-electron spherically symmetric rectangular
quantum dots (QDs). We show that, for helium and also for the QD, the differences between the
singlet and triplet excited states can be explored by calculations within the framework of the
mean-field approximation, and, surprisingly, without the need of introducing the angular electronic
correlation. Moreover, our calculations have shown that the triplet state of the QD is lower in energy
than the corresponding singlet state due to lower electronic repulsion contribution, exactly as being
assumed in the oldest explanation of the Hund’s rule based on the Pauli principle. © 2008 American

Institute of Physics. [DOI: 10.1063/1.2837456]

Low dimensional artificial structures have been the sub-
ject of many recent theoretical and experimental
investigations.lf3 Of particular interest have been the elec-
tronic, structural, and optical properties of few electron quan-
tum dots.'™ Quantum dots (QDs) are also known as artificial
atoms, because like real atoms they confine the motion of the
electrons in space, and this results in a discrete energy spec-
trum. The possibility of fabrication of artificial atoms with
tunable properties has opened a wide range of applications
and areas of research. The main difference between real at-
oms and artificial atoms consists in the different nature of the
one-electron confining potential. In real atoms the electron-
nucleus interaction is a Coulombic long range potential,
while in quantum dots the attractive potential of interaction
is a soft short ranged potential that is often described as a
rectangular potential well. In spite of these differences, many
conventional computational approaches of the atomic and
molecular quantum physics/chemistry have been success-
fully applied to calculate the electronic, structural, and spec-
tral properties of the quantum dots."

The original purpose of this letter was to study the
Hund’s multiplicity rule* for quantum dots. More specifi-
cally, we wished to explore whether the well established in-
terpretation of the Hund’s rule for atoms” " is also applicable
for the case of singly excited states of the two-electron quan-
tum dots. To our great surprise, it turned out that even the
so-called established interpretation of the Hund’s rule for he-
lium atom should be revised as well.

The most restrictive formulation of the Hund’s multiplic-
ity rule for atoms states that, for equivalent electronic con-
figurations, the lowest lying state corresponds to the highest
possible value of the total spin. Slater’s explanation for this
behavior was based on the Pauli principle, assuming
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(wrongly) that the orbitals are identical for both singlet and
triplet states.’ According to the Pauli principle, the electrons
with parallel spins are kept apart from each other, and there-
fore the total electron-electron-electron repulsion energy,
Vee=(1/r1,) (which is a sum of the Coulomb-direct and ex-
change electron-electron repulsion energy terms), between
them can be expected to be smaller than for the case of
electrons with antiparallel spins. Such an argument would
then give an intuitively plausible reason why the triplet states
of a two-electron system are lower in energy than their sin-
glet state counterparts. This Slater’s explanation for the
Hund’s multiplicity rule for the atomic states’ has been given
in textbooks for many years. However, it has serious
deficiencies™®®'%!" as was first noticed by Davidson for the
excited states of He.'"” Numerous calculations on the first
members of an isoelectronic sequence of helium (as well as
on other isoelectronic sequences) have shown that the states
with larger total spin quantum number have higher values of
the electron-electron repulsion energy, V,.=(1/r,), in direct
contradiction to the above-mentioned Slater’s
explanation.5’6’8’10’11 On the basis of these calculations, cor-
rect interpretation of the Hund’s rule for atoms has been
given by Katriel and Pauncz.>® Namely, in the higher spin
state the electron-nucleus interaction energy, V,,=(=Z/r), is
more negative than in the associated lower spin state, 'V,
<'v  and *v +°V,,<'V +'V_ in spite of the fact that
'v,,<3V,,. However, the Katriel-Pauncz’s interpretation™®
raises the following question. What is the role of the angular
electronic correlation in Katriel-Pauncz’s interpretation of
Hund’s rule?

Boyd’s claim is that the electrons can avoid each other
more efficiently and move closer to the nucleus, which re-
duces the screening of the nucleus thus making the electron-
nucleus interaction energy more negative in the high spin
state.® The logic of this statement is as follows: In helium the

© 2008 American Institute of Physics
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FIG. 1. (Color online) The one-electron confining potential in the helium
atom and in the spherically symmetric rectangular quantum dot.

electronic repulsion in S state is larger than in 'S state due
to the radial-angular correlation (which pushes the electrons
to be on the two opposite sides of the nucleus and thereby
increases the effective nuclear charge the two electrons feel).
This explanation of the Hund’s rule appears in modern text-
books. See, for example, one of the best textbooks on quan-
tum chemistry which is used for undergraduate studies in
many of the leading universities in the world.'?> However, we
will show in the present work that such an explanation needs
a substantial revision.

Let us now focus on our numerical investigations of the
Hund’s multiplicity rule in helium and in the two-electron
quantum dots. We have employed a full configuration inter-
action (FCI) approach which properly covers all the elec-
tronic correlation effects and which provides numerically ex-
act benchmark data as long as an appropriate basis set is
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used. In Fig. 1, a spherical square well potential well which
is a typical potential for the quantum dots is shown, together
with the Coulomb attractive potential of He. Both for the
helium atom and for the just introduced spherical square well
two-electron quantum dot, we have carried out numerical
calculations of the singlet and triplet states associated with
the excited S(1s2s) electronic configuration. These FCI cal-
culations are performed with the GAMESS(US) quantum
chemical package.13 In the case of helium atom, we have
used a standard optimized d-aug-CC-pVQZ basis set."* For
the spherical square well quantum dot, we have employed an
even-tempered Gaussian basis set whose exponents are cal-
culated from the formula

5 s S,Psd.f s,p.d,
@i P = oA fAINTPED gppdif, (1)
where
ay=2, &=5x10"° N=30,
ab=3, g=5x107, N=5,
2
al=3 &=5x1073, N=2,
al=1, =1, N=1.

Numerical tests have shown that these basis set parameters
provide stable numerical results for all the QD characteristics
under our study. The results of our calculations are displayed
in Table I. In addition to these benchmark FCI results, we
also present in Table I an outcome of the spin adapted
Hartree—Fock calculations for the excited states. Within the
spin adapted Hartree—Fock approach, we describe the triplet

TABLE I. The total electronic energy, one-electron potential energy and the two-electron repulsion energy for
the lowest lying singly excited states of helium, and for the corresponding states of a two-electron spherical
symmetric rectangular quantum dot. Symbol FCI stands for the full CI calculations, whereas symbol HF stands

for a spin adapted Hartree—Fock calculation.

Total

Two-electron
potential

One-electron

Kinetic potential

System Method energy (a.u.) energy (a.u.) energy (a.u.) energy (a.u.)
He—3(1s2s) FCI(spdf) -2.174935 2.174 935 -4.618 186 0.268 316
He—'(1s2s) FCI(spdf) —2.145584 2.145 584 —4.540 743 0.249 575
He—3(1s25) HF(spdf) ~2.173 960 2.173 960 —4.617357 0.269 437
He— '(1s2s) HF(spdf) -2.143 145 2.143 145 —4.535592 0.249 302
He—3(1s2s) FCI(s) -2.173 841 2.173 841 -4.617 285 0.269 602
He—'(152s) FCI(s) —2.143 266 2.143 266 —4.537 168 0.250 636
He—3(152s) HF(s) -2.173 826 2.173 826 —4.617 600 0.269 949
He— !(1525) HF(s) 22142545 2.142 545 ~4.535326 0.250 235
QD—3(1s25) FCI(spdf) -3.314214 0.551 099 —4.087 051 0.221 741
QD—'(1s25) FCI(spdf) —3.254 452 0.566 812 —4.080 550 0.259 285
QD—3(1s25) HF(spdf) —-3.308 536 0.549 765 -4.091752 0.233 451
QD— !(1s2s) HF(spdf) -3.235523 0.558 053 —4.084 891 0.291 315
QD—3(1s25) FCI(s) —-3.309 729 0.549 720 -4.091610 0.232 160
QD—'(1s25) FCI(s) —3.236 400 0.559 167 —4.086 608 0.291 041
QD—3(1s25) HF(s) —-3.309 290 0.550 653 -4.093 215 0.233 273
QD— !(1525) HF(s) -3.236263 0.559 017 —4.086 482 0.291 202
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and the singlet excited state wavefunctions as in the old text-
book formula,

118) = 1V2001,(0 1) xas(02) + Xa (1) x1,(12) 3)

and

128) = 1201, (01 xa(02) = xas (1) x1,(12), 4)

with one important difference from the old textbook ap-
proach: Rather than using the same 1s and 2s orbitals for the
two spin states, we variationally optimize them by carrying
out self-consistent-field calculations similarly as in the con-
ventional Hartree—-Fock method. This spin adapted Hartree—
Fock method, where the best single configuration is com-
puted, has been taken for the first time for helium by
Davidson in 1964."> Note that in the Hartree—Fock calcula-
tions for the singlet excited states, we follow the iterative
method described in Refs. 15 and 16 to avoid the collapse of
the excited singlet spin state into the ground state. After car-
rying out the spin adapted Hartree—Fock calculations using
the same (s,p,d,f)-type basis set as taken previously for
FCI, we repeat on the FCI and spin adapted Hartree—Fock
calculations using the s-type orbitals only. This step is moti-
vated by the fact that, for the s-type basis set, the only in-
cluded electronic correlation is a radial one, since the FCI(s)
and spin adapted Hartree—Fock(s) wavefunctions do not de-
pend on the angle between the two-electronic position vec-
tors.

Comparison between different results presented in Table
I clearly shows an excellent agreement between the
FCI(spdf) and the spin adapted Hartree—Fock(s) calcula-
tions for all physical characteristics of the singlet and the
triplet electronic states, both in the helium and QD cases. In
other words, we have found that (i) the spin adapted Hartree—
Fock approximation performs remarkably well, and (ii) the
obtained results are almost unaffected by removing all the
nonvanishing angular momentum basis functions from the
calculation. Unlike the s-type basis functions, the angular
(pdf) functions are responsible for correlating the angular
motions of the two electrons. We therefore conclude that the
angular correlation effects play a negligible role. This is a
very surprising finding, as it stands in complete contradiction
with the explanation given in the literature® and in modern
textbooks.'?

In Fig. 2 we display the radial probability density,

|P(r)|2=477r2|\[rls,25(r) 2v (5)

corresponding to the 1s and the 2s orbitals as obtained from
our spin adapted Hartree—Fock(s) calculations for the 'S and
3§ states of He. Analogical graphs are shown for a QD with
the square well potential plotted on Fig. 1. Note that, in the
scale of the plots presented in Fig. 2, the same pictures for
the 1s and the 2s orbitals are obtained from spin adapted
Hartree—Fock calculations where s,p,d,f-type basis func-
tions are used and for spin adapted Hartree—Fock calcula-
tions where only s-type basis functions are used. Let us first
focus on the results obtained for helium. Figure 2 shows that
the singlet-1s orbital is almost identical with its triplet-1s
counterpart. On the other hand, the singlet-2s and the triplet-
2s orbitals are considerably different, with the triplet-2s or-
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FIG. 2. (Color online) The radial probability densities associated with the 1s
and 2s orbitals of helium and QD systems in the singlet and triplet states. On
the scale of the plots shown here, the same results are obtained when spin
adapted Hartree—Fock(s) calculations are carried out.

bital being more contracted. The maximum probability to
locate the electron in the triplet-2s orbital is on a sphere
whose radius is 3.5 a.u., which is about 1 a.u. smaller than
the radius of the corresponding singlet-2s orbital. Due to this
strong relative contraction of the 2s triplet orbital, the con-
tribution of the one-electron energy term (sum of the kinetic
energy and the one-electron potential energy presented in
Table I) to the total energy of helium is larger than for the
singlet. Note also, that electron-electron repulsion energy
contribution is considerably smaller that the one-electron
contribution energy for both the multiplets.

The results for the QD are very different. As one can see
from the plots presented in Fig. 2, not only 2s but also the 1s
orbitals show substantial dissimilarity when a comparison
between the singlet and triplet states is made. The maximum
probability to find the electron in the triplet-1s orbital is on a
sphere whose radius is smaller than the radius of a sphere
obtained for the singlet-type 1s orbitals. The triplet-1s elec-
tron is located closer to the symmetry center (origin) of the
rectangular QD potential than the singlet-1s electron. At the
same time, the average distance of the electron in the triplet-
2s orbital from the origin is larger than for the singlet state
2s electron. It is a point of interest that, although the two
electrons in the QD avoid being close to one another, the
average distance of the electrons in the 1s and the 2s orbitals
from the center is alike. This situation occurs due to the
nodal structure of the 2s orbital. Namely, the inner and the
outer peaks shown in Fig. 2 are located symmetrically on the
two different sides of the node. Another point of interest is
that the difference between the average distance of the elec-
tron in the triplet-2s orbital from the center of the QD, and
the average distance of the singlet-2s electron from the cen-
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ter results from the differences in the heights of the inner and
the outer peaks in the probability distributions shown in Fig.
2. Last but not least, it is interesting to compare the results
for the QD presented in Fig. 2 and the shape of the QD
potential presented in Fig. 1. It shows that the electron in the
1s orbital of QD is mostly located on a sphere whose radius
is about equal to the extension of the potential well, whereas
the electron in the 2s orbital is localized almost in equal
probabilities on two spherical shells which are separated by
the spherical shell where the 1s electron is located.

We can summarize the results obtained in this paper by
saying that in two-electron systems, either for a Coulombic
potential (helium) or spherically symmetric open square well
quantum dot potential (QD), both the singlet and the triplet
excited 1s2s states (and also the 1s2p states which have not
been discussed in this text) are very well described by a spin
adapted Hartree—Fock ansatz where the best single configu-
ration is calculated. Our calculations show that accurate en-
ergies (as well as their single-electron and two-electron com-
ponents) are obtained within the framework of mean-field
theory by optimizing separately the 1s and 2s orbitals (no
angular basis function are included) in the best single-
configuration wavefunction. Thus, the angular correlational
effects do not play any role for the interpretation of the
Hund’s rule. This is the main result of the present work
which, in fact, demonstrates the failure of “modern” expla-
nations of the Hund’s rule.”*'? The main difference between
the helium atom and the two-electron QD is that for helium
the dominant contribution to the energy (both for the singlet
and the triplet states) is coming from the one-electron energy
terms (due to presence of the nucleus), whereas in the QD
the electronic repulsion is the dominant term. One can argue
that, in general, the Hund’s rule is satisfied via lowering the
energy term which has the dominant contribution to the total
electronic energy of the system. In the case of He, the gain in
the negative electron-nucleus energy contribution for the
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triplet spin state compensates the accompanying increase of
the electronic repulsion. In the QD, on the other hand, one
can understand that the Hund’s rule is satisfied via reducing
the electronic repulsion for the triplet state in comparison to
the electronic repulsion in the corresponding singlet state.

The best single-configuration variational calculations
(spin adapted Hartree—Fock) are not restricted to two-
electron problems only, but can be easily extended to single-
electron excited states of many electron problem, where the
ground state is a closed shell, such as, for example, for the
excited states of beryllium,

W =Ad(1)a(1)$1,(2)B2)(3(hry(3) bsy(4)
+ 3,(3) boy(4)) (a(3) B(4)
* B(3)a(4))).
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