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LCAQO Molecular Orbitals in One Dimension

I. RICHARD LAPIDUS
Department of Physics

Stevens Institute of Technology
Hoboken, New Jersey 07030
(Received 30 March 1973)

A one-dimensional model with 8-funciion polentials is
used o tnvestigate the accuracy of approximations com-
monly used in the linear combination of atomic orbitals
(LCAO) method for constructing molecular waovefunc-
tions and determining molecular energies. Numerical
evaluations of the errors are obtained for the one-dimen-
stonal analogue of butadiene.

I. INTRODUCTION

A common method of approximation for cal-
culating molecular wave funections and energy
levels makes use of a linear combination of atomic
orbitals (LCAQO) to construct the molecular wave
functions. The correct linear combinations are
determined by variational calculations which also
yield the energies. In carrying out such calcula-
tions a number of “small”’ terms are often dropped
to simplify the manipulations.

For students who are being introduced to the
LCAO method the justification for dropping vari-
ous terms is often obscure. Unfortunately, it is
difficult to justify these approximations without
carrying out extensive numerical caleulations.
Nonetheless, it would be useful to demonstrate
the accuracy of the approximations in detail.

The purpose of this paper is to carry out a
complete LCAQO calculation using a one-dimen-
sional model of a molecule containing four atoms—
the analogue of butadiene. In this model all ma-
trix elements of the Hamiltonian may be computed
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as well as all overlap integrals. These may be ex-
pressed in terms of the distances between atoms
and the magnitude of each of the terms may be
determined explicitely. Thus, it is possible to ob-
tain a quantitative evaluation of the accuracy of
the approximations used in neglecting any terms.

The one-dimensional model has been found to be
extremely convenient for discussing a number of
simple systems.! Electrons are attracted to nuclei
by a potential of the form V(z) =—e¥(z—1.),
where z, is the coordinate of the nucleus. The
electron—electron repulsion has the form V(z)=
e (2;—x2). Energies are expressed in terms of
Ey= —e*/2ay, where a,=me*/h*.

II. LCAO CALCULATION FOR “BUTADIENE”

The one-dimensional analogue of butadiene con-
sists of four atoms located at = —(a+b), —a,
a, and (a-+b). The Hamiltonian for an electron
interacting with these atoms is given by

R @
H=— — — —&(z+a+b) —e*(z+a)
2m dux?
—e%(x—a)—e¥(z—a—0b). (1)
Approximate solutions of the Schrodinger equa-
tion,

Hy;=Ey;, (2)

are obtained by assuming that the ¥; have the
form

4
Yi= X Cijbj (3)
1

where the c¢;; are a set of constants which are to
be determined and the ¢; are atomie orbitals. The
energies are given by

E.= [y:Hpdz/ [yapda
= E ci,-c,-kflp,-Hglzkdz/E cijcikflpj\pkdx (4)
Ik gk

= E cijcikH jk/ 2 Cijcz'lcsjk
ik ik

where Hji= [;Hyrdz and Sp= [Ydz.



Since the Hamiltonian (1) is symmetric for
r——z, a number of the integrals are equal:

Hy=Hu=0, (5a)
Hy=Hy=0, (5b)
Hp=Hp=Hy=Hg=n, (6a)
Hy=Hyn=n,, (6b)
Hy=Hy=Hy=Hy=ny,, (6c)
Hy=Hy=n,, (6d)
Sii= 8= Ss=Su=1, (7a)
Sie=8n=8u=8a=38, (7b)
Sos = Sse=Ss, (7¢)
Stz = 8as = Soe = Sia= S5, (7d)
S1=Su=8.. (7e)

In addition, the ¥, are also symmetric or anti-
symmetric for z——z:

1= Cu=a, (8a)

Ci2=C13=0y, (8b)
for the symmetric case, and

Co1= —Cnu=(y, (93>
Coa = — (3= Cy, (9b)
for the anti-symmetric case. The two other sets

of coefficients satisfy the same conditions.
The energies are then given by

E;=(H)

_ o Qana) +26160 (m=na) + ¢ (Sakom) (10)
c2(18,) +2¢109 (S124S3) +e?(1£8,) )

Tmposing the variational conditions

6E’,~/8c1=0 and aE,,/ac2=0 (11)
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yields

Lot (1£8,) +c2(S1Ss) JEs
=c(F1=bma) e (mtns),  (12a)
[ (812 80) +eo (1£8,) 1E:
=e1(m=tms) fea(fone), {12b)
where

2612< 1:&84) +2022(1:i:S2) +40102<S1:ES;1) =1,

Equations (12) may be solved directly to obtain
Ei, C1, and Ca.
In the usunal applications of the LCAO method
a number of simplifications are made:
Hij=¢6i+n6ij11, (13)
8= 8:5+ 8841, (14)
(In the simplest Hiickel approximation S equals 0.)
In order to determine the accuracy of these ap-
proximations it is necessary to evaluate all the

integrals in BEqs. (5), (6), and (7).
Noting that!

¢r=a; 2 exp(— | z+a+b| /ag), (15a)
Gr=ugexp(— | z+a| /ap), (15b)

ps=ay2exp(— |z—a| /o), (15¢)

$s=a " exp(— | z—a—b| /a), (15d)
the integrals are

$1=FHo(142e 27272 4-2¢~4—%)  (16a)
to=Ho(1-4+260-27+202%4-2¢-%) | (16b)
m=Ey(S1+2e7+2e" 4 2e7%)  (17a)

ne=Ey(Sy+4e~2vF42¢8), (17b)
n3=Ey(S;+4e~rE42¢378) (17c)
N1 =Hp(Se46e7F), (17d)
Si=(1+7)e™, (18a)
Sy=(1+8)e b, {18b)
Ss= (14-B+7v) e @47, (18¢)
Si= (148+42y) e+, (18d)

where 8 equals 2a/a,, and v equals b/a,.
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Fia. 1. Plots of (f2—¢1)/Es vs 8 (—) and (p2—m)/Es
vs B (---).

In order to examine the magnitude of the terms
in Egs. (16), (17), and (18) it is convenient to
simplify the problem by assuming that the four
atoms are equally spaced, ie., y=8. Then the
quantities in Eqs. (16), (17), and (18) may be
expressed as functions of a single variable:

§1=Eo(14-26%4-2¢7%4-2¢%),  (16a’)
Cr= By (1+4¢%4-2¢7%), (16b")
m=EweP[(3+8) +2¢%+2¢%], (17a/)
n2=EoeP[(3+8) +-4e7%], (17b%)
n3=Eoe*#[(5+28) +2¢%], (17¢")
na=Eoe (7+38). (17d")
Si=(1+B8)e ™, (18a/)
Sy = (1+B)e?, (18b7%)
Sy= (1+28)e ™, (18¢”)
Si= (1+38) . (184

In the usual approximations which are made
using the LCAO method, {;=¢. It is clear from
Eqgs. (16”) that the error in this approximation is
proportional to e7%. A plot of ({a—¢1) /Eyis shown
in Fig. 1. Similarly, to illustrate the error in the
approximation n, =11, a plot of (9.—m)/Ey is also
shown in Fig. 1. In this case the error is propor-
tional to ¢%. The errors in the approximations
73=0 and 7,=0 are proportional to ¢ % and ¢%,
respectively.
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It is also of interest to compare the exact LCAO
energies with the approximate ones obtained by
replacing Eqgs. (12) by

(c1teS) Ei= crf +eam,
CetS+ee(1£8) 1B =cin+ea(§ ),

(19a)
(19Db)

where ¢, 3, and S are evaluated neglecting terms
proportional to e, ¢, and ¢,

Plots of the energies vs 8 are shown in Fig. 2.

For small values of 8 the approximate solutions
for the energies are very inaccurate. However,
for 8> 1 the agreement improves rapidly. At large
distances the four energy levels correspond to the
familiar solutions with zero, one, two, and three
nodes in order of increasing Ep.

It is especially interesting to note the peculiar
behavior of the energy for the solution with three
nodes for small values of 8. For 0.6 <8 <1.3, the
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F1a. 2. Plots of exact LCAO energies vs 8 (—) and ap-
proximate LCAO energies vs 8 (- - -).



slope of the energy vs 8 curve is positive for the
exact LCAO solution while for the approximate
solution the energy is actually negative for 8 <1.3
(where there is a discontinuity).

This result is a peculiarity of the LCAO solution
since for B—0 there cannot be any solutions of
the exact Schrodinger equation which are anti-
symumetric.

III. CONCLUSIONS

In this paper the approximations used to sim-~
plify LCAO calculations have been examined
quantitatively using a one-dimensional analogue
of butadiene in which the atomic potentials are
represented as § functions. If the separation of the
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atoms is large compared to their size, the ap-
proximations are excellent, but this is not gen-
erally the case so that the magnitude of the errors
may not be negligible.

These considerations neglect electron—electron
interactions which are significant as well as modi-
fications of the simple LCAO wave funetions
which can improve the results.

Because of the simplicity of the model and the
ease of carrying out detailed numerical evalu-
ations, these calculations are useful pedagogical
tools to illustrate the general methods used in
more complicated computations.
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