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Search for Simplicity: Quantum mechanics of the hydrogen atom

In the last essay we introduced the minimum kinetic en-
ergy K., ~#/(2mR ?)of an electron of mass m confined to
a volume of linear dimension R. We observed that it will try
toexpand (Schrodinger pressure) if it is not kept from doing
50 by a confining force. With these concepts we can directly
determine the energy and size of the hydrogen atom. The
electron wavicle surrounds the nucleus in a spherical cloud
with an average radius R. The lowest state is the result of
two forces in equilibrium: the electrostatic attraction e?/R 2
of the nucleus and the tendency of the cloud to expand.
This tendency can also be expressed in terms of a force, the
“Schrodinger force.” Whenever an energy depends on a
coordinate x, there is a force to change x; it is the negative
derivative of the energy with respect to x. Thus the Schro-
dinger force is the negative derivative of the minimum ki-
netic energy with respect to R. Setting these two opposing
forces equal gives

e 2 dk, min ﬁz ( 1 )

R? dR  mR*®
That relation determines R, which happens to come out
equal to the “Bohr radius”:

R ~#/(me*)=ap = 0.53x 10~ % cm. (2)
The energy E of the electron in this state is
E~ — [ + # > (3)
R 2mR
Inserting (2) gives
E~ —me*'/21? = —e*/ay = — 13.6 V. (4)

The energy |E | is called Ry(rydberg); it is the amount nec-
essary to liberate the electron. It is remarkable that we get
the exact result for the ionization energy of hydrogen by
using our approximate estimates.

The relation (1) happens to be the condition for the ener-
gy (3) to be a minimum. Therefore the results (2) and (4) can
also be interpreted as resulting from finding the lowest pos-
sible value of the energy as one would expect for the lowest
quantum state.

The excited states of hydrogen can be found by a similar
procedure. Higher quantum states have # nodes in their
wave functions. Then the characteristic wavelengthAis R /
n, giving rise to a higher kinetic energy K, ~n*#*/(2mR ?).
The corresponding stronger expanding force

dK, n’#

dR mR*
is balanced by the Coulomb attraction ¢*/R * and gives rise
to larger radii R, = n*#*/(me?). Inserting this into the en-
ergies E, = — ¢°/R + K, yields the well-known Balmer
formula E, = — (me*/2#7)(1/n%). Note that the energy is
smaller than mc? by a factor (¢?/#c)* which shows that the
use of a nonrelativistic expression for kinetic energy is justi-
fied.

What about atoms with more than one electron? We will
treat helium and atoms with many electrons in greater de-
tail later on. For the moment we use a very crude picture:
such atoms contain a core consisting of the nucleus and
most of the electrons. It carries a charge ne where 7 is the
small number of the remaining outer electrons. Thus, qual-
itatively, the situation is not unlike an atom with a few
electrons. We then expect again dimensions of the order a,
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and an energy of the order of a Ry to liberate one of these
outer electrons.

These results are perhaps the greatest triumph of quan-
tum mechanics. The existence of atoms was known for a
century and conjectured for many more, but their size and
internal energies were only deduced from experiments such
as the ones mentioned in the previous essay. Quantum me-
chanics showed that they are of the order of @, and of Ry,
respectively, both of which are simple combinations of the
three fundamental constants, m, e, and #.

It is instructive to apply the same method to nuclear
systems. The force between the nucleons is more compli-
cated than the Coulomb force; it is repulsive for small dis-
tances and drops exponentially for larger ones. We may
very roughly approximate the potential of the attractive
part by — g*/r. Figure 1 shows that g” ~ 10¢? (taken from
Ref. 1). It is about ten times stronger than the attraction
between two opposite charges e. The repulsion at the center
is important—it keeps the nucleons apart—but does not
influence the energy very much because it acts only at dis-
tances which will turn out to be much smaller than the
separations between nucleons. Replacing the electron mass
by the nucleon mass M ~ 2000 m and e by g7, we obtain for
the nuclear Bohr radius a, and the nuclear rydberg Ry,

ay~az/20000 =2.7X 107" cm,
Ry, ~200 000 Ry = 2.7 MeV.

These are indeed typical distances and energies in nuclear
physics, but they are very rough estimates, not only be-
cause of the complicated form and of the symmetry depen-
dence of the nuclear force but also because of the intricacies
of the many-body problem in ordinary nuclei. For the deu-
teron, however, our method should give reasonably good
results if we replace M by the effective mass M /2. This
would double a,, and halve Ry, not too far from the actual
values 4.3 10 "* cm and 2.2 MeV.
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Fig. 1. Sketch of the potential of the nuclear force as a function of internu-
cleon separation as measured in fermis, 10~ '? cm. (This curve is not quan-
titative, because it ignores the dependence on spin and symmetry.} For
comparison, the dashed curve gives the attraction of two opposite, but
equal, charges 3.2 e. [Reprinted from Ref. 1.]
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We now answer the question of last month as to why the
Pauli principle is equivalent to the assumption that each of
N equal particles in a volume V is confined to a “private”
volume ¥ /N. There are two explanations. Here is the first.
A quantum state of a free particle with a well-defined mo-
mentum is stationary; its momentum stays constant and its
position is spread over the whole volume V. This is not the
only kind of state. We can construct nonstationary states
where the momentum and the position are spread over fin-
ite intervals Ax and Ap which obey Heisenberg’s relation
AxAp = #i. N equal particles must be distributed over N
different quantum states. Let us choose states that are blobs
of a spatial extension Ax and which have all the same mo-
mentum distribution. To prevent any overlap the size Ax
must be smaller or equal to d = (V' /N )'/3, We choose the
maximum Ax~d in order to minimize the momentum
spread dp. This leads us directly to the “private room” of
dimension d, and to an average momentum ~#/d.

For the second approach we remember that the Pauli
principle is equivalent to the antisymmetry of the wave
function ¥. The latter changes sign if the coordinates of
two equal particles are exchanged. From this follows im-
mediately that the wave function vanishes if two equal par-
ticles have the same coordinates; they cannot be at the same
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Fig. 2. Dependence of the wave function
on the relative distance of two equal par-
ticles.
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place. (This is the last remnant of the classical concept of
impenetrable particles.) Let us look at the dependence of
on the distance r of two electrons (Fig. 2). It is zero for » = 0
and_reaches its typical values + || roughly like
Y~ sin kr between r = — 7/2k and + #/2k. This is a
wave function corresponding to a relative momentum p,

= fik. The probability [|*islow as long as |7| <k ~'. Thus
the electrons stay apart at a distance of the order of d ~#/
P.- The average momentum p of the electrons is of the same
order as the relative momentum p, and we get again the
relation p = #i/d between the momentum and the size d of
the “private room.”

Victor F. Weisskopf
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