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Search for Simplicity: Atoms with several electrons

We can use the methods applied to the hydrogen atom in
the previous essay for the study of atoms with several elec-
trons. Let us first look at helium. Here we have two elec-
trons with opposite spin in the ground state, considered as a
cloud with some kind of average radius R. The energy E is
then

2 2
E~- % ¢ hzz. (1)
R iz 2mR

The first term is the potential energy of the two electrons in
the field of the doubly charged nucleus. The second term is
the repulsion between the electrons; the third term repre-
sents the kinetic energies of both electrons. Since R and r,,
appear always in the denominator, we define R ~' as the
average of the reciprocal distance of the electrons from the
center and r; ' as the average of the reciprocal distance
between them. We put r,, = R /S and expect 8 to be less
than unity since 7,, will be larger than the average distance
R from the center. We write the energy (1) in the form

F__A, B
R 2R?

A=(4—B), B=22%/m.(2

Let us remember once for all—we will need it in later essays
also—that the minimum of E and the corresponding R are
given by

E= —A4%/2B, R=B/A. (3)
We find for helium
4 2
- 4R Em _ 2 i ' 4
=5 AP 4—B) me* “

How do we find the values of 8 =R /r,;? BothR and 7|,
depend on the shape of the electron distribution p(#), the
density of electrons at the distance 7 from the center. The
radius R is defined by R ~' = f( p/r)dx>, where § dx* is an
integration over all space. r,, can be found by calculating
the electrostatic energy € of two identical electron clouds
plr): € = €*/r,,. This calculation is simple but lengthy. The
best way to do it is to calculate the electrostatic potential
U (r) produced by the charge distribution ep(r). Then,

e=ede3U(r)p(r) £

8Y7)

which determines r,,. A rectangular charge distribution
gives B8 = 0.8; an exponential dependence ( p ~e ~ ) leads
to B = 5/8. The more p increases towards the center, the
lower is 8. Here is something to think about: why is 8
smaller for distributions packed towards the center? (The
answer will appear in the next issue.)

Let us return to helium. The simplest assumption would
be a rectangular distribution with £ = 0.8, which gives
E = 5.1 Ry according to (4). We may use our knowledge
that the distribution drops off exponentially with 5 = 5/8.
Then we get ‘

E= —57 Ry, R=0.59,, Ry=me*/2#, (5)
where a, (a; = #7/me?) is the Bohr radius. The actual en-
ergy to remove the two electrons is 5.81 Ry. Again, it is
remarkable how close these crude considerations come to

the correct results.
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We can apply similar methods to the determination of
ionization energies and electron affinities of atoms of 3 to
10 electrons. This was done in a paper by M. Kregar and
the author which was published in this journal,' so that we
do not need to repeat it here.

We now turn to atoms with many electrons. We genera-
lize expression (1) to Z electrons around a fixed point
charge Ze and assume Z> 1. This will get us what I like to
call “the poor man’s Thomas—Fermi method.” We get, in-
stead of (1),

Z%
E R * 2 R

2 2/3
Z(Z-1)epB ny # (g)/
2mR?*\2
(6)
The first term is the potential energy of Z electrons attract-
ed by the nucleus, and R is an average distance from the
center. The second term comes from the repulsion between
the electrons. There are Z (Z — 1)/2 pairs, each giving rise
to a potential energy e*/r,,, where r, = R /3 is an average
of the distance between electrons, as we had it in helium.
The difference with helium shows up in the kinetic energy.
The Pauli principle must be considered when there are
more than two electrons. Each electron shares a “private
room” of a linear dimension 7 with a partner of opposite
spin. There must be Z /2 such rooms within the electron
cloud of dimension R, so that (Z /2)7* = R *. The minimum
kinetic energy per electron is ~#"/(2m#) which explains
the third term in (6).
We may replace Z (Z — 1) by Z 2 and get

E=—i‘;+i2, A=22e2(1—~5-),
R 2R 2
#
— 7 5/3
B=2" 2y

According to (3), this is a minimum when
R= %5
(1—B/2122°Z°

N 2
£__ 22/324/3(1 - £)ry. 7
z 2

We will show below that 8 = 0.36, which is much smaller
than in helium. This is because the charge distribution is
strongly pointed toward the center. With that value we find

R=0.71Z ~'3q,,

_ g — 1.06Z** Ry = 144Z ¥ V. (8)

This is the average binding energy of an electron. The actu-
al value is 16 Z*'® ¢V. The usual Thomas-Fermi method
gives 20Z */3 eV. Poor man is better than affluent man!
We need the electron distribution p(r) in order to deter-
mine 5. We choose a simple and plausible distribution:

p=Ae="/r", 9

Electron densities are expected to exhibit an exponential
decrease, albeit not as simply as in (9). The factor » ~" is
included in order to assure that p has the correct behavior
near the center: There should be about two electrons within
the radius ry, = ap/Z of the K-shell, a number which is
independent of Z. (The S-states of outer shells contribute a
negligible amount.) The three constants 4, b, n in (9) are
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determined by the following conditions imposed on p:

w W Z
4| prrdr=2, 47Tfa prrdr=*“2",
0 0

® Z
4 dr= —. 10
Lprr Z (10)

The first condition assures that there are Z electrons; the
second determines the number of electrons with the K-
shell. The symbol *“2” is used because we only need this
number to be independent of Z and near 2. The third condi-
tion assures the average of ' for each electron is R ~' as
used in (6).

We do not show the details of the simple integrations
(10). One determines 4 from the first integral; the condition

that the second should be independent of Z determines n;

the third integral is used to express b in terms of R. The
results of (10) turn out to be

47A =2Z /(7'* %%, n=3/2, b=2R. (11)

We obtain 8 for the distribution (9) with the constants
{11) by using the methods mentioned before. The calcula-
tions are even lengthier than those for the simpler distribu-
tions which we considered for helium, but there is no fun-
damental difficulty. The result turnsouttobe =1 — 2/7

= 0.36, the value which we used in (7) to determine the
energy of the atom and the length R.

We can use the electron distribution (9) to get an idea of
the atomic size. The magnitude R is not the radius R, of the
atom; it is the average distance of the electrons from the
center and, therefore, much smaller than R, since most of
the electrons are in the inner parts. In order to get an esti-
mate of the size of the atom, we must find out the extension
of the distribution (9). Literally, it goes to infinity, but we
may get a rough value of the atomic radius R, by finding
the radius at which, say, one half of the last electron is left
outside. This distance indicates where the last electron may
be found. In other words, R, is given by the integral

41rpr;l ar= L. (12)
R 2

a

Table I. Estimates of atomic radhii.

z y R, /ay
30 10.04 2.49
50 11.16 2.33
90 12.42 2.13

The evaluation of this integral leads to the following equa-
tion fory = R,/R:

2r/(4Z ) =ype "

We then obtain, for three values of Z, the radii found in
Table I. The atomic radius turns out to be almost indepen-
dent of Z. The decrease of R as Z ~'/* is compensated for by
the fact that the exponentially decaying p must reach
farther out to get to the last electron. One should conclude
from this result only that atomic radii do not depend much
on Z and are of the order of a few Bohr radii. The slight
decrease of R, in Table I is not a real effect; it comes from
the simple exponential form (9) of the electron distribution.
Actually, the exponential decrease is much sharper near
the center than farther away, because the effective charge
of the core is higher for the inner electrons. This effect is
more pronounced for higher Z and has a strong influence
on the determination of R, by the integral (12). It would
increase the radii.

The homework to this essay, of course, is to perform the
indicated calculations of the constants (11), of the £ values
for the different distributions, and of R,,.

Victor F. Weisskopf

M. Kregar and V. F. Weisskopf, Am. J. Phys. 50, 213 (1982).

Addendum: The ideas presented in the January essay
have been published as early as 1858 by J. J. Waterton
[Philos. Mag. 15, 1 (1858)] as pointed out by A. P. French
[Am. J. Phys. 35, 162 (1967)].

PROBLEM

A cylindrical solid of any convex shape is rolling under
gravity on horizontal plane. The potential energy ¥ (s) can
be represented’ by ¥ (s) = mg[r(0)n(0) — r(s)n(s)], where r(s)
is the radius vector connecting the center of mass G of the
rolling solid of mass  to the contact point M, n(s) is the
inner normal, s is the curvilinear coordinate (s = 0 corre-
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sponds to the equilibrium at a point M), and g is the gravity
constant.

Find all curves r(s) such that ¥ (s) is identically zero [such
that —r(s)n(s) = —r(On(0) = + h = ||GM,||]. (Solution
is on page 349.)

'A. Ronveaux, Am. J. Phys. 52, 618 (1984).
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