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A clear physical connection is made between the optical response of atoms and molecules and
elementary textbook discussions of the electrostatics of dielectric {nedla Electrons within atoms
and molecules are shown to respond to the Coulomb fields of nelghbormg electrons in just the
same way as the dipole moment of an atom responds to the fields established by dipoles on
neighboring atoms. In the presence of a uniform static electric field, a nonuniform internal
effective field within the electronic system can be displayed explicitly. Both screening and
antiscreening of the external field are found. At finite frequency, the dielectric properties of atoms
and molecules are reflected in the photoelectric cross section. The effective field at finite
frequency is presented in a pictorial fashion, which helps elucidate the physics of the photoelectric
emission process. Calculations of the cross section using the dielectric approach yield extremely

accurate values when compared to experiment.

L. INTRODUCTION

One of the subtler topics of elementary electromagne-
tism is the behavior of fields in ponderable matter. Of parti-
cular import is the connection between the macroscopic di-
electric constant and the microscopic polarizability. The
connection usually is established in the following way.!
Consider a dielectric crystal where virtually all the elec-
tronic charges are well localized near the constituent nu-
clei. In the presence of an external electric field, the charge
density within each unit cell is distorted from its equilibri-
um configuration. The ratio of the dipole moment of the
charge distortion within a given target cell to the magni-
tude of the external field strength from all sources is de-
fined as the dipole polarizability c.

The macroscopic electric field which enters Maxwell’s
equations (E) is defined as

1
(E) =— | dxE(x), 1

@ Jeen ) M
where E(x) is the (generally rapidly varying) microscopic
field and Q) = 1/N )is the unit cell volume; N is the number
of cells. In the target cell, E(x) is divided conveniently into

three parts:
E(X) = Ecxtemal (X) =+ Eother (X) + Esclf(x)‘ (2)

E.xeernai (X) is the field produced by charge distributions
completely outside the crystal, say, from a parallel plate
capacitor; E ;... (x) is the field produced at the target cell by
all other cells in the crystal; and, finally, E_(x) is the field
produced by the target cell’s own charge distribution. Giv-
en this division, it is easy to see that the “external field”

appropriate to the polarizability discussion above is de-

fined by the relation

p=a(E.), (3)
where

(Eigea? = (E) — (Epy¢). 4)

The task of elementary textbook discussions is the calcu-
lation of (E, ). From (1),
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(Bu) == f dx Bl

1
= —— | dxV®,x 5
a 1r (%) (5)
=L dsadm,
Q boundary

where ®,,(x) is the microscopic electrostatic potential
created by the charge distribution in the target cell. This is
found from Poisson’s equation as

—e f dx X)) (6)
system |X - xll

where 8n(x) is the aforementioned microscopic charge dis-
tortion. The advantage of the surface integral representa-
tion (E,;; ) is that (for sufficiently compact charge distribu-
tions) ®,c(x) will be dipolar at the cell boundary. In that
case, the integral is readily evaluated and one obtains the
familiar Lorentz result,

(Eself ) =

‘Dself (X) =

~—P, (7)
where p is the dipole moment with Cartesian components

pi= —e| dx x,6n(x) (8)

cell

and P is the bulk polarization vector. Combining Egs. (3),
{4), and (7) we obtain

(i) = (E) + {47/ 3Nt (Brge ), B
which self:consistently determines (E, ., ):
(Broear) = (E)/[1 — (477/3)Nax]. (10)

The denominator includes the well-known “local field fac-
tor,” which describes the influence of the environment on
the target cell. Finally, from (10) and the definition of the
bulk dielectric constant we obtain the Clausius-Mossotti
relation

(€ — 1)/(e + 2) = (4n/3)Na. (11)
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Hence a macroscopic measurement of € yields a value for a
fundamental microscopic quantity a. This completes our
review of the standard treatment of dielectrics.

Now, suppose we wish to obtain a from first principles.?
From (3) and (8) we see that one needs an expression for
on(x) in terms of the external perturbation (E,,,, ). Since
the sources of (E, ;) are far from the target cell, this field
is slowly varying in space. Hence (E., ) =E,,, i.e., we
replace a macroscopic quantity by a microscopic quantity.
One can then work with the scalar potential associated
with this constant microscopic field polarized in the j direc-
tion:

Dy (x) = — E]ocalxj‘ (12)

At this point one might suppose that the connection we
seek between the spatially varying charge distortion 6n(x)
and the external potential ®,__,, (x) would be one of simple
proportionality. Indeed, as long as the magnitude of the
potential is everywhere small compared to e/ay (true for
the situations treated here), a presumed linear relationship
between the two is certainly warranted. However, our gen-
eral experience with charges and potentials [see, e.g., Eq.
(6)] suggests that a nonlocal functional form may be more
appropriate. Hence we are lead to the very general expres-
sion

on(x)= —e J dx’ R (x,x"}®, ., (x'). (13)

In quantum theory, R (x,x’) is called the exact, microscopic
density response function.> Although the details are not
crucial to us here, this function contains all of the many-
body quantum mechanics of the atomic or molecular sys-
tem. It is generally incalculable. Nonetheless, combining
Egs. (3), (8), (12), and (13) we obtain an exact formula:

a; = — ezf dx dx' xR (x,x')x’,. (14)
(The number of independent components of the polariza-
bility tensor is determined by the symmetry of the unit cell
constituents. The scalar notation used heretofore is appro-
priate for a sphencally symmetric atom.) The double spa-
tial mtegratlons in (14) perform precisely the same type of
averaging as was introduced in (1). Hence a macroscopic
quantity « is obtained from a microscopic one R (x,x’).

II. MICROSCOPIC LORENTZ THEORY

In the linear response theory sketched in Sec. I, R (x,x’) is
some extremely complicated functional of the exact
ground state charge density of a single atom or molecule.
To make progress, we must make some approximations.
Suppose we are willing to neglect any effects of the Cou-
lomb interaction beyond those accounted for by the aver-
age electrostatic Hartree potential. In that case, the effect
of the external electric field can be treated by first-order
perturbation theory on the occupied electron orbitals. The
resulting response function R(x,x’) regards electrons as es-
sentially independent entities moving in an external poten-
tial. The charge distortion then obtained from Eq. (13),
8ngy(x), leads immediately, using Egs. (3} and (8), to the esti-
mate a,. The quality of this independent particle approxi-
mation can be assessed by comparing a, with experimental
values for a variety of systems. Table I shows that the order
of magnitude obtained in this way is certainly correct, al-
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Table L. Static polarizability of selected atoms and molecules for nondie-
lectric theory and experiment.* For molecules, external field is polarized
along the molecular axis.

20 aexpt (AB)
Ne 0.50 0.40
Ar 2.6 1.64
Xe 6.9 4.04
N, 5.1 227
C,H, 27.3 4.86

though large systematic errors remain. How might this ap-
proximation be improved?

The key point is that the charge distortion induced by
D, (x) is not rigid. The microscopic Coulomb potential
®..¢(x) induces further charge rearrangements within the
target cell. These new distortions induce new fields, and so
on. Hence & ;(x) is self-consistently determined from the
two conditions

on(x)= —e f dx’ Ro(%,X) X [ Pro0n (X') + Parr(x)], (152)

_onfx’)

(15b)
x—x'|

self(x) - - eJd '
The essence of this “mean-field”” approximation is that the
density response of independent electrons to an effective
field

(Dcﬂ‘ (X) = q)local (X) + q’self(") (16)

is taken as identical to the exact density response to the
local field alone [Eq. (13)]. This prescription can be rewrit-
ten as

(Dself(x) = q)gelf(x) + e2 fdx' dX”

X [Ro(x',x")/[X — X[} Pyeie(x"), (17)

where @2 (x) is the Coulomb potential associated with
On,y(x). The reader should note that the integral equation
(17) for the microscopic field @, (x) has the same structure
as the algebraic equation (9) for the macroscopic field
(Eiocal ) - In particular, the kernel of the integral equation
plays the role of a microscopic local field factor. Solution of
Eq. (15) or (17) for ®,,;(x) and dn(x) yields an improved
estimate for a.

Individual atoms or molecules which comprise the bulk
unit cell thus can be regarded as dielectric media in their
own right. At the microscopic level, each electron responds
to the fields established by the other electrons in its cell.
The resulting charge distribution is characterized by a di-
pole moment. At the macroscopic level, each dipole re-
sponds to the fields established by dipoles from other cells.
In order to obtain a deeper understanding of this fact let us
look closely at some illustrative examples. We begin with a
single atom.

Imagine this system subject to a long wavelength static
external field polarized in the z direction such as that pro-
duced by parallel capacitor plates; this field will play the
role of (E,..,, } in the previous discussion. The lower panel
of Fig. 1 illustrates E_;(z), obtained as the gradient of the
self-consistent potential of Eq. (16) for a typical case, xe-
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Fig. 1. Xenon 5p wavefunction (top); external and effective static fields as
indicated (bottom).

non. This picture is strikingly reminiscent of the field pro-
duced in and near a macroscopic dielectric sphere, i.¢., at
radii greater than the sphere boundary, the total field is
greater in magnitude than the external field (antiscreening)
whereas at smaller radii, the field is reduced in magnitude
relative to the external field (screening). At very large radii
(off the scale of Fig. 1) the two become identical. As the top
panel of the figure indicates, the maximum in the outer-
most atomic orbital charge density can be identified as the
crossover point between screening and antiscreening of the
external field. An important difference between this atom
and the macroscopic dielectric sphere is that here, the field
within the “sphere radius” is not uniform. Indeed, the
structure observed at short distances from the nucleus cor-
relates well with the spatial extent of interior atomic orbi-
tals, most prominentaly the xenon 44 wavefunction.

A similar situation is found for molecules. In such aniso-
tropic systems, the effective potential generally may be ex-
panded in terms of radial functions multiplied by spherical
harmonics,

P (x) = IZ Bim (%)Y s (), (18)

with respect to the molecular center. For our example,
acetylene, one finds that the induced ground state charge
density is surprisingly spherical. Hence, for an external
field polarized along the z axis, very little information is
lost in this closed shell system by plotting (lower panel of
Fig. 2) the lowest nonzero term in the sum of (18):

Eqle)= — 5; [10) Y 10(%)]. (19)

Once again we see that the crossover from external field
enhancement to field diminution occurs at the charge den-
sity peak of the outermost wavefunction, here the acetylene
3o, molecular orbital. The internal structure of the effec-
tive field again correlates with a more compact polarizable
orbital, the 177, . Of particular note is the sign reversal of the
effective field (relative to the external field) deep within the
molecule. This perhaps unexpected result does not occur in
textbook discussions of the macroscopic dielectric sphere
and is related to our implicit use of a spatially varying mi-
croscopic dielectric function for the molecule.
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Fig. 2. Spherically averaged ground state charge densities from the 17,

and 3o, levels in acetylene (top); external and effective static fields as

indicated (bottom).

A comparison of Figs. 1 and 2 shows a remarkable simi-
larity, suggesting that this form of the static screening may
be characteristic of finite electronic systems in general. In-
deed, Feynman has shown® that the local electric field at
the nucleus of an atom in an external electric field must
vanish, lest the (electrically neutral) object have a net force
on it.

Let us return finally to the improved estimate for 8n(x),
and hence p and a, obtained by solution of Eq. (15) or (17).
Table II clearly shows that most of the discrepancy
between experiment and the independent particle result is
removed by properly accounting for the dielectric response
of the individual atoms and molecules in just the fashion
described above. Combining this type of calculation with
the Clausius—Mossotti formula, i.e., performing macro-
scopic and microscopic local field theory permits accurate
first-principles computation of the bulk dielectric constant
€.

Table II. Static polarizability of selected atoms and molecules for dielec-
tric theory and experiment.* For molecules, external field is polarized
along the molecular axis.

a acxpt (A3)
Ne 0.43 0.40
Ar 1.74 1.64
Xe 4.12 4.04
N, 2.19 2.27
CH, 5.46 4.86

A. Zangwill and Z. H. Levine 1179



When will the microscopic dielectric theory provide sig-
nificant improvement over a calculation neglecting these
effects? Consider the rare gas atoms. They break into two
categories: He and Ne, for which the polarizability is small
and both the dielectric and nondielectric theories predict
the polarizability reasonably well; and Ar, Kr, and Xe, for
which the polarizability is larger and the dielectric theory
does a much better job than its simple rival. In the latter
cases, there is a relatively low lying unoccupied d orbital to
which the outermost valence ( p) orbital can readily couple
via virtual transitions. The p — d transition accounts for
the majority of the polarizability. The lighter rare gases do
not have a low lying d orbital; hence they are not very
polarizable. (To see why low lying d orbitals only exist for
the heavier rare gases, recall that in a central potential 3d,
4d, and 5d orbitals exist, whereas the 14 and 24 orbitals do
not.)

Molecular nitrogen and acetylene provide another illus-
tration of this point. Consider the polarizability along the
molecular axis: It is larger in acetylene than in nitrogen. In
both cases, the principal cause of screening is the virtual
transitions from the occupied 17, orbital to the unoccu-
pied 17, orbital. These matrix elements enter in the numer-
ator of a first-order perturbation theory calculation. In the
denominator, the energy difference between these two orbi-
tals enters. However, it is only about half as great in acety-
lene as in nitrogen, accounting for this difference in polar-
izability.

The fact that the dielectric correction is most important
for highly polarizable systems may be understood in terms
of a simple model. Think of building up the induced charge
through the summation of an infinite series. Let the first
term be the charge induced by the external field, let the
second term be the charge induced by the field produced by
the charge of the first term, and so on. If the polarizability
is small, this is a rapidly converging series, so the first term
(the nondielectric theory) gives an adequate representation
of the whole series. If the polarizability is large, the first
term no longer approximates the whole series, so exact
summation (the dielectric theory) is required. On the other
hand, the nondielectric theory seems to be sufficient to pre-
dict the relative order of polarizabilities in a series of similar
systems.

ITI. THE DIELECTRIC PHOTOELECTRIC EFFECT

In this section we investigate the extension of the ideas
outlined above to the case of time-varying fields impinging
on an atom or molecule. With no loss of generality, the time
dependence of the external field may be taken to be har-
monic. Thus using our previous notation,

q)locnl (x|t ) = ¢local (X)COS t, (20)

with @, (x) given by Eq. (12). At finite frequency, elec-
tronic systems can absorb light, and if the excitation energy
hw exceeds the first ionization threshold, photoelectric
emission ensues. Indeed, as elementary quantum mechan-
ics textbooks show,® a quantitative measure of this phe-
nomena is obtained as the photoelectric cross section in the
familiar Fermi Golden Rule form:

0'0("))~zf [ f | Procar (x)11) |*8(Fic> — B + E,). (21)

In the present context, we wish to know if dielectric ef-
fects play a significant role in first-principles calculations
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Fig. 3. Photoemission cross section versus photon energy for xenon; the-
ory and experiment’ as indicated.

of photo-cross sections. The subscript on the left-hand side
of (21) is meant to indicate that the standard formula is
precisely analogous to what was called the independent
particle approximation in Sec. II. We test its efficacy here,
as before, by direct comparison to experiment. The dashed
curve in Fig. 3 illustrates the result of evaluating the Gold-
en Rule expression using initial and final state atomic
wavefunctions for xenon at excitations energies around 100

.eV. The dotted curve shows the absolute experimental data

obtained using a synchrotron radiation source.’ The lack of
agreement is quite striking.

Our dielectric theory approach to correcting the discre-
pancies is a straightforward generalization of the method-
ology of Sec. II. For a time-dependent external perturba-
tion, we focus on the Fourier frequency components of the
charge distortion induced by the external field. The inde-
pendent particle approximation reads

Sn(xjw)j= —e f ax'R(x,X’)| @) Proca (X, (22)

where the frequency-dependent response function R,
(x,x’|w) now is obtained by first-order time-dependent per-
turbation theory. At the frequencies of interest, 5n(x|w)is a
complex number. This simply means that the charge dis-
tortion may oscillate out of phase with respect to the exter-
nal field. Precisely as before, we can think in terms of the
induced Coulomb fields, again complex numbers, which
drive further distortions of the charge density. In fact, we
can write down immediately the time-dependent analog to
Eq. (17) which solves the problem self-consistently:

D¢ (x|@) = Poca (X) + € de' dx”
X [Ro(x' X" @)/ |x — X'|]Pg(x"|@).  (23)

A. Zangwill and Z. H. Levine 1180
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Fig. 4. Xenon 4d wavefunction (top); real part of effective field (—) and
external field (— — ) for three photon energies (bottom three panels).

[Actually, this is an equation for the total effective field
rather than ®,; the connection is seen in Eq. (16).] Note
that the effective potential acquires an additional frequen-
cy dependence in addition to the harmonic dependence,
viz.,

D (x|t) = Re[ Py (x|w) ] cos wt
+ Im[ ® 4 (x|w)] sin wt. (24)

The complex notation implies only that the effective field
is, in general, out of phase with the driving field ®,__, (x).
The appropriate prescription for calculation of the obser-
vables is simply to replace ®,,,, (x) by P+ (x|? ) in the Gold-
en Rule:

olw) =2;,l(fl¢es(xlw)li>lz5(ﬁw —E;+E) (25)

The solid curve in Fig. 3 illustrates the result obtained for
the cross section of xenon according to this dielectric the-
ory. In this case, and in many others, remarkably good
agreement with experiment is found simply by extending
the ideas of classical dielectric theory to the atomic regime.

A clear physical picture of the photoabsorption/photoe-
mission process in the frequency interval of Fig. 3 is ob-
tained by appeal to the pictorial representation. Figure 4
illustrates E ;(z|w) at three frequencies which span the
range of Fig. 3. [To facilitate comparison with the constant
external field only the real part of E 4 (z|w) is shown.] The
5.5 Rydberg panel is quite similar to the zero-frequency
result of Sec. II. Both screening and antiscreening occur
with significant variations in both the magnitude and direc-
tion of the effective field as one traverses the atom. Note
that the dielectric sphere “radius” now coincides with the
charge density maximum of the xenon 4d shell. The phys-
ics of this is simply that the excitation frequency is quite
near the 4d ionization energy and this shell is thereby most
strongly coupled to the external perturbation.

In fact, an analogy which regards the entire 4d shell as a
damped, driven harmonic oscillator is quite apt. Let us take
the orbital induced charge density as the natural oscillator
coordinate. In this simple model, the cross-section curve
labeled “nondielectric theory” in Fig. 3 would be obtained

1181 Am. J. Phys., Vol. 53, No. 12, December 1985
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Fig. 5. Photoemission cross section versus photon energy for acetylene.
Theory as indicated; experiment from Ref. 8.

from the solution to
Sit + Y6 + w3bn = E,,, cos wt. (26)

Here, wy~5.5 Ry and y = 1Ry. The dielectric theory curve
results when one notices that the right-hand side of Eq. (26)
should include the additional term E.(w)cos @t. But
E_ (o) itself depends linearly on the induced density [cf.
Eq. (6)]. Therefore, since E,, () is complex, both the oscil-
lator frequency and the damping constant are renormal-
ized.

We return to the molecular example C,H, in Fig. 5.
Again, the dashed curve shows the Golden Rule result
when dielectric effects are neglected and the dots denote
experimental points.® The very sharp resonance structure
observed in the data is due to interference between two
degenerate competing excitation channels. On one hand,
direct photoelectric emission from the outermost 17, mo-
lecular orbital can readily occur for energies above 11.4
eV.? On the other hand, very near 14 ¢V, discrete line ab-
sorption can occur between the occupied 20, level and the
unoccupied, yet bound, 17, orbital. If one imagines these
processes as each creating elementary dipolar charge dis-
tortions, it is clear that there will be a dipole—dipole interac-
tion between them.

The dielectric theory propounded here includes this ef-
fect. The solid curve in Fig. 5 shows that quite good agree-
ment with experiment is obtained. In the language we have
used previously, a resonantly large amount of charge builds
up when external fields near the transition frequency are
applied. This charge distribution gives rise to a large in-
duced field with a strong frequency dependence. Figure 6
shows the variation of the real part of the total field (to be
compared with E,,, = 1 everywhere) and its imaginary
part (to be compared with a 90° out-of-phase component of
zero in the usual description). The external field is polarized

A, Zangwill and Z. H. Levine 1181
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Fig. 6. Effective field for acetylene perpendicular to the molecular axis for
an external field polarized in this direction for a range of photon energies.
Real part (top); imaginary part (bottom).

along the axis of the linear C,H, system and the figure
shows the spatial dependence along an axis (labeled X) per-
pendicular to the molecular axis and passing through the
center of the molecule. The resonant behavior near 14 eV is
quite marked. By careful examination of the fields one can
understand the variations of the cross section in some de-
tail. Even if this is not done, Fig. 6 is meant to indicate, in a
qualitative way, the magnitude and complexity of dielec-
tric effects in seemingly simple electronic systems.

IV. CONCLUSION

The purpose of this work was to provide a simple means
to visualize rather complex many-electron effects in the
interaction of radiation with matter using ideas familiar

from classical electromagnetic dielectric theory. Details of
the explicit calculations have been omitted intentionally in
order to emphasize the simplicity of the dielectric interpre-
tation.'® In short, electrons within an atom or molecule
behave quite similarly to dipoles in ponderable matter. A
relatively simple formalism not only brings theory and ex-
periment into good agreement (for dipole polarizabilities
and photoelectric cross sections) but allows for a pictorial
description of microscopic screening. It may amuse the
reader to imagine the extension of these notions to other
optical phenomena.
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SOLUTION TO THE PROBLEM ON PAGE 1141

If the hole is drilled at a height /4 above the ground then
the velocity of the water is given by

v =2g'(H—h), (1)
where g’ = g/(1 — ¥*/R*).

The trajectory of the water is a parabola. When the water
hits the ground, y =0 and x = R, where R is the range.
Hence,

[1 + tan*(@)]R * = (2v*/g’)[tan(6 )R + A ] (2)
where 6 is the angle of elevation of the nozzle.

For afixed value of 4 the maximum range is obtained by
setting dR /d6 = 0.
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One obtains

tan(@) = v*/g'R, 3)
Then
R2—4H(H —h). ()

R has its largest value, R ,, = 2H, forh =0.
The solution is independent of the size of the tank and
the size of the hole.
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