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According to Hartree’s self-consistent-field (SCF) mode! of the atom, the motion of each
electron in the effective field of the N-1 others is governed by a one-particle Schrodinger equation.
Self-consistency of the electronic charge distribution with its own electrostatic field leads to a
set of coupled integrodifferential equations (Hartree equations) for N one-particle wave-
functions (atomic orbitals). The Hartree equations were subsequently shown to be precisely
the conditions for optimization of an approximate wavefunction consisting of a product of
atomic orbitals, An improved formalism, due to Slater and to Fock, represents the atomic
wavefunction by a determinant built of atomic spin-orbitals and is thereby consistent with the
Pauli principle. Application of the variational principle to a Slater determinant leads to a set of
N coupled equations (Hartree-Fock equations), quite similar to Hartree’s equations but con-
taining, in addition, exchange interactions—an effect having no classical analog. The error
inherent in the Hartree~Fock method, known as electron correlation, arises from smoothing-
out of interelectronic repulsive interactions into effective Coulomb and exchange potentials.
It accounts for roughly a 1% error in the total energy but is magnified in energy differences,
which are more directly related to experimental quantities. A significant improvement in
computational facility is achieved if the orbital functions are expanded in terms of a finite set
of basis functions. The integrodifferential equations are thereby transformed into algebraic
equations {Roothaan’s equations) for the expansion coefficients. The analytic approach makes
it possible to apply the self-consistent-field method to molecular systems. To date, SCF cal-
culations have been carried out, in some form, for all the atoms in the periodic table and for a
growing list of diatomic and polyatomic molecules.

June 1965

HE fundamental idea of the self-consistent
field (SCF) occurs in a well-known law in

the theory of vacuum tubes. The “three-halves-
power law” governing space-charge limited cath-
ode emission in a diode is derived by calculating
the space-charge density and the current density
as functions of the potential field between the
plates. But the field is itself determined, through
Poisson’s equation, by the space-charge distribu-
tion. Requiring self-consistency of cause and

* Based, in part, on a series of lectures given during
April 1964 in the Special Topics in Chemistry program at
the University of Michigan.

effect of the space charge leads to a formula for
maximum current density. The derivation is
given in detail in Appendix A.

Applications of the self-consistent-field (SCF)
approach to the motions of electrons in atoms
were attempted in the early 1920’s, on the basis
of the old quantum theory.! It was found possible
to reproduce quite closely the energy levels of a
valence electron (e.g., 3s in sodium atom) if the

YE. Fues, Z. Physik 11, 364 (1922); 12, 1 (1922); D. R.
Hartree, Proc. Cambridge Phil. Soc. 21, 625 (1923); R. B.
Lindsay, J. Math. and Phys. 3, 191 (1924). See, also, J. C.
Slater, Rev. Mod. Phys. 35, 484 (1963).
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432 S.

Bohr orbits of the inner electrons were smeared
out into a continuous, spherically symmetrical
charge distribution-—a rather unreasonable thing
at the time.

In accordance with wave mechanics (1926),
however, a bound electron does behave as a
charge cloud, with charge density given by p(r)
—e|y(r) |2 Hartree? using quantum mechanics
rather than classical mechanics in the cause—
effect relationships, worked out a self-consistent-
field theory for atoms.

We illustrate the SCF method for the simplest
possible example—the two-electron atom (e.g.,
helium). Electron 1 is presumed to move in the
combined field of the nucleus—taken as a point-
positive charge Ze—and electron 2—taken as a
continuous negative charge distribution of den-
sity pa(r) =e|¢:(r)|?, where ¢.(r) is the wave-
function describing the state of electron 2. From
electrostatics, the form of this potential-energy
field is given by

,|¢2(1") |2

fr—r'|

Ze?
V=)=t [ dr 0
¥

The vector r, with origin at the nucleus, refers
here to the instantaneous position of electron 1.
The notation V(¥.) emphasizes the dependence
of the potential on the charge distribution of
electron 2. The dynamical behavior of electron 1
is governed by the one-particle Schrédinger
equation.

h?
{ Py V%)}m) —ets@®). (2)
Im

By an analogous argument, interchanging the
labels 1 and 2, the wavefunction for electron 2 is
the solution of

32
{ ——V24 V(’%)}&bz(r) =exfa(r). 3)
2m

The coupled differential equations (2) and (3),
known as the Hartree equations, may be
abbreviated,

302t (1) = e (1),
32, (1) = e (1)

2 D, R. Hartree, Proc. Cambridge Phil. Soc. 24, 89, 111,
246 (1928).

(4)
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They are coupled in that the solution to the first
enters into the differential equation for the
second—in the effective Hamiltonian operator
3¢.eff—and vice versa. Practical solution of these
equations is accomplished by a successive-
approximation procedure. The initial ‘“‘guesses”
for the functions are used to calculate V(1) and
V (¥.). The Hartree equations—at this stage un-
coupled—are then solved for the “first-improved”’
functions ¢; and ¥, These are, in turn, used to
obtain improved potentials V' (1) and V() and
the procedure is continued until input and output
functions ¥ and ¢, agree within the desired accu-
racy. The wavefunctions and potential fields are
then said to be self-consistent. The usual quantum-
mechanical restrictions on a bound-state wave-
function—that it be everywhere single-valued,
finite and continuous, and that it approach zero
at infinity—apply at each stage of the calcula-
tion. Each of the Hartree equations is accordingly
an eigenvalue problem and is soluble only for
certain values of e; (in general, different at each
stage).

Extension of Hartree's method toan N -electron
atom is straightforward. Each electron now
moves in the potential field of the nucleus plus
the N —1 other electrons—treated as overlapping
charge clouds. N coupled integrodifferential equa-
tions must now be solved:

5&5”%(1') = Eﬂbi (1‘), 1=1-- -N, (5)
where "
geet = —— V2 V(10 - - ¥y) (6)
2m
and z 95 |
. )2
Vi1 - yw)=——+2 & [ dr'——— (7)
y i |r—1'|

Each distinct set of one-electron functions
Y1, - -+, ¥x which satisfy the Hartree equations
(5) can be identified with an electronic configura-
tion—e.g., for helium atom, 1s?, 1s2s, etc. The
eigenvalues e; represent the total one-electron
energies in the self-consistent field. For an elec-
tron bound in an atom, e; is a negative number.
It is very nearly equal in magnitude to the ioniza-
tion energy for the 7th electron.

Hartree’s self-consistent-field method derived
originally from intuitive considerations. The
more-formal quantum-theoretical foundations of
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the SCF approach were worked out by Slater®
and by Gaunt.* The first step is to write down the
Hamiltonian operator for the N-electron atom.
Neglecting magnetic interactions and other
higher-order effects, we have

N h? zZe? N ¢?
o= T{-—ve-—l+Z £ @

i=tl  2m 7 P> =l pyg

The one-electron parts of the Hamiltonian are
contained in the first summation. These are the
kinetic-energy operators and the nuclear-attrac-
tion operators. The second summation—over
distinct pairs ¢, j—represents the interelectronic
repulsive interactions. To save some writing,
Hartree introduced a system of ‘‘atomic units”
wherein
h=le|=m=1.

The atomic unit of length is equal to the first
Bohr radius, ay=7%%/me?=0.529X10"% cm, and
the unit of energy is &2/a;=27.2 V. In atomic
units the Hamiltonian (8) is written

N YA vy 1
ac=§{—;vzz~«}+z S

7 7> i=1 ¥ij

The Schrodinger equation for the N-electron
problem takes the form

U (ry: - ty)=EV¥(r:--ry), (10)

where E is the total energy of the atom—the
energy which would be required to dissociate
completely the (N 1)-particle system.

Slater? and Gaunt® showed that the Hartree
equations (5) are precisely the conditions for
optimization of an approximate solution to (10)
having the simple separable form

(11)

The rigorous solutions of (10)—which have never
been obtained in closed form—are, of course, not
separable in this way because electron coordi-
nates are inextricably mixed by the 7;;7! terms in
the Hamiltonian. Optimization of any approxi-
mate ground-state eigenfunction is obtained, in
accordance with the wvariational principle, by

V() =g ()Y (rs) - - dw(Tw).

7. C. Slater, Phys. Rev. 32, 339 (1928).
¢ J. A, Gaunt, Proc. Cambridge Phil. Soc. 24, 328 (1928).
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minimizing the ratio of integrals

f' . ‘del' . dTN\I/*GC‘I’
S Sdry- -dTN[\I/!Z

; (12)

consistent with the chosen form for ¥. If each of
the factors of (11) is normalized, i.e.,

[dellllz(rz)P:l, Z:1N, (13)
then (12) may be expressed as the sum
v N
E= Z H7,+ Z Jw’; (14)
=1 >0 de=1
having defined
VA
Hi= dﬂpi*(r)[—%vz———}%(r), (15)
¥
and
i () [2]9;(r) | ®
JHE// drdr’ st . (16)
: [r—1]

The integrals H; are expectation values of the
one-electron operators of the Hamiltonian (9).
The Ji, known as Coulomb integrals, represent
potential energies of interaction between inter-
penetrating charge distributions. If we now apply
the variational principle and minimize (14) con-
sistent with the N conditions (13) we obtain the
Hartree equations (5) for the set of “best pos-
sible” one-electron functions. The details are
given in Appendix B.

The one-electron functions ¥;(r) are known
as ‘‘orbitals”—a term coined by Mulliken.?
“Orbital,” an adjective used as a noun, is the
quantum-mechanical analog of the classical orbit
~—the maximal description of the causal behavior
of a dynamical system. The complete description
of an electron’s state includes also its spin quanti-
zation. The latter may be regarded as an internal
degree of freedom having two possible states, de-
noted by the spin functions « or 8. Unless mag-
netic interactions are included in the Hamil-
tonian, space and spin variables for each electron
are rigorously separable. We define the composite

5R. S. Mulliken, Phys. Rev. 41, 49 (1932).
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spin-orbital functions

() =¥ (0) z or (17)

denoting by x the four-dimensional manifold of
space and spin coordinates. Often, for brevity, we
write ¢(7) instead of ¢(x;). We also abbreviate
combined integration over space coordinates and
summation over spin coordinates by integration
over x, l.e.,

dr= f dx. (18)
spm
A product of spin-orbitals of the form
V(1 N)=¢1(1)$:(2)- - - ¢ (N),  (19)

is known as a Hartree product and corresponds
to an electronic configuration, as mentioned
earlier. Thus far, no restrictions have appeared on
identity of functional forms of two or more spin
orbitals. Nothing—except our good sense—deters
us from contemplating a ground-state configura-
tion such as 1s® for lithium atom. A further
deficiency of the Hartree formalism is the explicit
labeling of electrons in orbitals. Both of the above
defects are rectified by constructing an anti-
symmetrized N-electron wavefunction, such that

(-t )= =B (-G e), (20)
in accord with the fact that electrons are in-
distinguishable particles obeying Fermi-Dirac

statistics. The simplest, totally antisymmetric,
N-particle function is the determinantal form

1 |o1(1) ¢o(1) - -ow(1)
®(1---N)= — $1(2) ¢2(2) ¢N(2) (21)
(VD3 6, (Mo (V) - - - v (N)

This form was suggested originally by Heisen-
berg® and Dirac? and applied to the N-electron
problem by Slater.® In the latter connection, (21)
is known as a Slater determinant. The factor
(NY)~% normalizes ®(1---N) when the spin
orbitals form an orthonormal set:

/ di* () () = 81 (22)

8 W. Heisenberg, Z. Physik 38, 411 (1926); 39, 499
(1926) 41, 239 (1627).
( P. A. M. Dirac, Proc. Roy. Soc. (London) Al12, 661
1926).

8. C. Slater, Phys. Rev. 34, 1293 (1929).
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The exclusion principle is accounted for since
the determinant vanishes identically unless the
N spin orbitals form a linearly independent set.
An open-shell configuration of an atom or
molecule must, in general, be represented by
a sum of Slater determinants in order that
®(1---N) be an eigenfunction of total spin and
orbital angular momenta. As an illustration, con-
sider the 1s? and 1s2s configurations of helium
atom. The 1s? closed-shell ground state may be
approximated by a single determinant

¢lsa(1) ¢1sﬁ(1)'
VZ1$1:2(2)  $1:8(2)

2(1,2) =

which is an eigenfunction of the total spin with
eigenvalues S=0, Mg=0. The states S=1,
Mg= -1 of the open-shell configuration 1s2s can
likewise be written as single determinants:

¢lsa(1) ¢2sa(1)‘
¢13a(2> ¢’23a(2>

2(12)=—

for S=1, Mg=1 and

11¢1e8(1)  aes(1)
VZigiss(2)  beus ()]

for S=1, Mgs=—1. The states of the same
configuration with Mg=0 must, however, be
written as a sum of the two determinants. These
are

®(1, )~~

$(1,2) =i{i $rea(l)  drss(1)
, 1:0(2)  B2:5(2)

vz vz
_1- 961515(1) ¢23a(1) }
VElous(2)  $es@)N)

The (+) sign corresponds to S=1, Ms=0 and is
the third component of the 1s2s 3Z term. The
(—) sign corresponds to S=0, Ms=0 and repre-
sents the 152s 1T state.

Using the wavefunction (21) and the Hamil-
tonian (9) in the expression (10) for the total
energy, we obtain a generalization of (14) for a
determinantal function:

% N
E=Y H+3Y ¥ (J;—Ky).

i=1 >t i=1

(23)
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This formula was first derived by Slater® (see
Appendix C for details). It is interesting to note
that the energy expression (23), which involves
summation over occupied spin orbitals, arises
from the Hamiltonian (9), which contains sums
over particle labels. In (23) the following defini-
tions are employed:

H= [ dicepi* () Jl —%vzmz;} $:(x), (24)
Ji}-Ejf/dxdx/¢i*<x>¢§*(xl)
) X[r—1'[71¢;(x")pi(x), (23)
K= / j dxdx'¢* (x)¢* (x")
Xlr—1'|"1¢:(x");(x). (26)

The one-electron integrals (24) and the Coulomb
integrals (25) are equivalent to the earlier
definitions (15) and (16), respectively, since the
spin parts centribute only factors of unity. The
“exchange integrals” (26) differ from (25) only
by interchange of the last two indices 7 and j.
These terms arise from the permutations inherent
in the determinantal form. Note that K;; vanishes,
due to the spin orthogonality, unless ¢;(x) and
¢;(x) have the same spin component. Exchange
integrals account for energy differences between
singlet and triplet configurations, an effect miss-
ing in the simple Hartree theory.

The conditions for optimization of a deter-
minantal function, in accordance with the varia-
tional principle, were derived by Slater? and
independently by Fock.® The NV “‘best-possible”
spin-orbital functions ¢;(x) are the solutions of a
set of N coupled integrodifferential equations
quite similar to the Hartree equations (5). These
are known as the Hartree—Fock equations and
may also be put in the form of effective one-
particle Schrodinger equations,

el (x) = s (x), (27

The effective Hartree—Fock Hamiltonian may be
written

i=1---N.

A

Rpotlem — Vit 30 [ dx'ep* (%)
¥ JE
Xlt—1' |71 =@ 9, (%),

9 J. C. Slater, Phys. Rev. 35, 210 (1930).
wV. Fock, Z. Physik 61, 126 {1930).

(28)
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where ®; is an operator which exchanges the
subscripts < and § occurring to the right of it,
e.g., ®uyd;(xNpi(x)=0¢:(x")¢;(x). The derivation
is given in Appendix D."' Each Hartree—Fock
equation (27) differs from the corresponding
Hartree equation (5) by addition of the terms

= [ [axo ) !r—r’{-la-,-qu(x')}si(x)
o

M

=z f a7 () [t —1¢i<x’)]¢j (@),

i

(29)

Equations (27) constitute an eigenvalue problem
of a more generalized type than Egs. (5) because
of the terms (29) linear in the ¢;(x) occurring in
the equation for ¢, (x). But successive-approxima-
tion techniques can be applied as well to the
solutions of the Hartree-Fock problem.

The summation (29) can be interpreted physi-
cally in terms of fictitious “exchange forces” be-
tween electrons of parallel spin—over and above
ordinary Coulombic repulsions which comprise
the closely related terms

5 [ f 24 () £r~r'1~l¢j<x/>]¢i<x>‘ (30)

it

Since the exchange integrals K;; are always
positive,'? the total energy E is lowered by the
operation of exchange forces [see Eq. (23)], the
contributions J;—K;; replacing the simple
Coulombic potential energies J;; for electron
pairs with parallel spins.

Further insight into the exchange phenomenon
is gained by considering the behavior of a many-
electron wavefunction ®(---x;x;-+-) near a
configuration point x;=x;=x'. By the anti-
symmetry property, ®(- - &’ x"---)=0; thus the
probability density of finding two electrons of
parallel spin at the same point in space is exactly
zero. The same is not true for two electrons of

1 An excellent treatment of the Hartree~Fock method is
given in J. C. Slater, Quantum Theory of Atomic Structure
(McGraw-Hill Book Company, Inc.,, New York, 1960),
Vols. I and II, particularly Vol. 1I, Chap. 17, See, also,
J. C. Slater, Quantum Theory of Molecules and Solids
(McGraw-Hill Book Company, Inc., New York, 1963),
Vol. 1, Chap. 5 and Appendices 4 and 7.

12 See, for example, |. C. Slater, Quantum Theory of
Atomic Structure (McGraw-Hill Book Company, Inc.,
New York, 1960), Vol. I, p. 486.
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opposite spin, for ®(---r'a,r'8--+) does not
necessarily vanish. Exchange forces—also known
as exclusion forces—tend to keep electrons of the
same spin apart and thereby reduce their re-
pulsive energy, consistent with the results of the
preceding paragraph. The region around each
electron effectively excluded to electrons of the
same spin is known as the Fermi hole, being a
property of Fermi—Dirac particles.

A further aspect of exchange appears if the

N
summation in (28) is rewritten Y, including

=1
the term j=1, which vanishes identically. The
summations (29) and (30) are then both aug-
mented by a term corresponding to j=i. It
might then be construed that an electron’s ex-
change interaction with itself exactly cancels its
Coulombic self-energy—which is finite for classi-
cal charge clouds.

The eigenvalues ¢; of the Hartree-Fock equa-
tions may be related to the integrals (24), (25),
and (26), evaluated using the optimized spin-
orbital functions ¢:(x). Multiplying the ith
equation in (27) by ¢:*(x) and integrating over
dx, we obtain

N
e=H+ 2 (Ji;—Ki), +=1.---N. (31)

j=1

This is a generalization of (B13) (Appendix B)
for the Hartree equations. For closed-shell sys-
tems —e; equals the ionization potential for the
7th electron : minus the total energy of the atom,
plus the total energy of the ion formed by re-
moving electron 4. This result is known as
Koopmans' theorem.!* Summing over the one-
electron energies (31) and comparing with the
total energy (23), we find

N

N N
Y= Hit+ > > (Ji;—Ky)

i=1 =1 §#4 i=1

N N
=2 H+2Y 2 (Ji;—Ky)

=1 j>i =1

=E+3 %r‘ (Jii—Kij). (32)

J>4 =1
The sum of the N ionization energies is greater

1T, A, Koopmans, Physica 1, 104 (1933).

M, BLINDER

than the total energy since interelectronic re-
pulsion terms J;; —K; are counted twice over.
From (31) and (32) we may obtain an alternative
expression for the total energy

E=} ¥ (etH), (33)

The Hartree—Fock method does not, of course,
give an exact solution of the N-electron Schro-
dinger equation—only the best solution of deter-
minantal form. Physically, the approximation
inherent in the self-consistent-field approach is
equivalent to replacing particle-like #; Cou-
lomb interactions by continuous electrostatic
interactions among charge clouds. The error in
the Hartree-Fock approximation is known as
““correlation’!* since it involves more detailed
correlation of electron positions than is possible
on a charge-cloud description. This subject has
received a good deal of theoretical attention in
recent years.!®

The foregoing discussion of the Hartree and
Hartree-Fock methods has been completely
general regarding the functional forms of the
orbitals ¥ (r) and spin orbitals ¢ (x). For atomic
systems these are always taken in practice to be
separable functions in spherical polar coordi-
nates, i.e.,

Gnimms () = Rut(7) Vi (0,9) ; or,  (34)

where the V1. (8,¢) are spherical harmonics. This
specification of the form of orbital functions is
known as the central-field approximation since
the factorization would be rigorously true for an
electron in a central field. The Hartree—Fock
method would be prohibitive computationally
but for the central-field approximation. It has
been conjectured, however, that the true correla-
tion energy might be appreciably reduced if
exact Hartree—Fock solutions were obtainable
Under the central-field approximation, depend-
ence on the angles may be treated analytically
and the N Hartree~Fock equations reduce to
integrodifferential equation in # alone. Conven-
tional numerical techniques thereby become ap-

% This terminology is due to E. P. Wigner, Phys. Rev.
46, 1002 (1934).

15 See, for example, P.-O. Léwdin, Advan. Chem. Phys.
2, 207 (1959).
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plicable. A detailed exposition of the Hartree—
Fock method applied to atomic systems is given
in Hartree's book.1®

A significant improvement in the computa-
tional facility of the SCF method was introduced
by Roothaan.” Almost all current work on
atomic and molecular wavefunctions is based on
this or related procedures. Instead of approach-
ing the Hartree—Fock method as a numerical
problem, the spin orbitals are represented as
linear combinations in a given set of basis func-
tions, i.e.,

N’
$i(x) =20 CiaXal(x).

a=1

(35)

By the analytic SCF method, the integro-
differential equations for the functions ¢;(x) are
transformed into linear algebraic equations for
the coefficients ¢, The latter form is especially
suitable for digital-computer programming. The
choice of the basis set X,(x) in which the spin
orbitals are expanded is critical, but considerable
experience has been gained in choosing optimal
basis sets. Roothaan’s procedure can be con-
veniently applied also to molecular systems,
being, in fact, an extension of the LCAO
(linear combination of atomic orbitals) approx-
imation.

When the SCF method is applied to molecules,
the only formal modification necessitated is the
replacement of each of the nuclear attraction
terms Z/7 in the Hamiltonian (9) and elsewhere
by a sum Y. Z,/7. In the following discussion
of the analytic Hartree—Fock method, we use the
form appropriate for molecular systems.

From a basis set containing N’ linearly
independent functions X;(x)- - - Xy-(x), the same
number of atomic or molecular spin orbitals can
be constructed. If N is the number of occupied
spin orbitals, it is necessary that N'>N. For
N’'=N, we have what is known as a minimal
basis set.

To derive the algebraic equivalents of the
Hartree-Fock equation, we consider first the
forms of the energy integrals I1;, Jy;, and K.
Substituting the linear development (33) for
the ¢;(x) in the relations (24), (25), and (26), we

1. R. Hartree, The Calculation of Atomic Structures

(John Wiley & Sons, Inc., New York, 1957).
17 C, C. J. Roothaan, Rev. Mod. Phys. 23, 69 (1951).
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obtain
H;= Z%g ciacisle| 8], (36)
Ji= g_: 3@«:*6@'/36.7'7*01‘3[&5{75], 37
&, LY,
Kijz ﬂz: 86@*6,‘56;-,*6,'5[015]73], (38)
@, 0,7,
having defined the one-electron integrals
. Zn
[els1= [ @t -3v-5 2o, 9
g
and the two-electron integrals
[a,@lyéjsffdxdx’xa*(x)xﬂ(x)
X{r=1'[72,* (@)X (x').  (40)

The two-electron integrals are further classified
as two-, three-, or four-center integrals according
to the number of distinct indices a, 8, ¥, 8.
Roothaan has remarked that the computational
difficulties encountered in evaluating three- and
four-center integrals have delayed molecular
calculations by about ten years.

As they have been defined, the integrals (39)
and (40) vanish unless basis functions X, and X;
have the same spin. In addition, (40) vanishes
unless X, and X; have the same spin. The reader
should note that in conventional usage the labels
af3vé refer generally to orbitals rather than spin
orbitals.

Substituting (36)-(38) in the energy expression
(23) we have

E('Cimcia*) ':Z Zﬁ: Cza*{[allsj+% Z 25 C.f‘r*cjﬁ
i o J v

X ([eB|yo]—[ad|yB])}cis. (41)

We seek a minimum in E with respect to varia-
tion of the coefficients ¢;, subject, however, to
the orthonormalization conditions (22) which
may be written

Z Cia*cjﬂsaﬁ = 52]': (42)
ab
with

So= [dxiEnw, @
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the basis set not being, in general, orthonormal.
Applying Lagrange’s method for constrained
minimum problems. (see Appendices B and D)
we may consider unconditional minimization of
the quantity

F(CiaCia™) =E(CiarCia™) — 20 Nij 2 Cia"CipSap, (44)

i aff

where the N? quantities A;; are the undetermined
multipliers. If we are dealing with a closed-shell
system we may specify that the set of coefficients
Cie also diagonalize the A-matrix (see Appendix
D). The last sum in (44) accordingly becomes

—2 & 2. Cia¥CipSas
< af

and the minimization function, written in full,

F(Ciayﬂia*) =Z Zﬂcza*{[alﬁ_]_l_% Z ZB ij*Cjﬁ
i o« J v

X([eB|vo]—[ad|vB]) —esSes}cus.

The conditions for unconditional minimization
of (45) are

F/8ci=0, 0F/dcis*=0, i=1---N,
a=1.---N,

(45)

(46)

which leads to the N’ simultaneous equations

2 (Hog—€iSap)cis=0 a=1---N"(47)
8

and their complex conjugates. We have ab-
breviated

HaﬁE[alﬁ]
+2 ZB: civ¥cis([aB|vo]—[ad|v8]). (48)

The linear equations (47) are known as the
Roothaan equations and are seen to be the
algebraic equivalents of the Hartree-Fock equa-
tions (27).

For nontrivial solutions of (47) we require the
vanishing of the N’ X N’ secular determinant

det (Hyp— €:5,3) =0, (49)

which provides N’ eigenvalues ¢; and N’ sets of
spin-orbital coefficients c;.. The preceding differs
from the conventional diagonalization problem
in that the matrix elements H,g depend on the
coefficients ¢;,. After the set ¢;, obtained at one
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stage of the calculation, the H,s must be re-
computed and the secular equation solved again
until self-consistency is attained. Elaborate com-
puter programs have been developed whereby the
entire procedure can be carried out automatically.

The lowest IV self-consistent eigenvalues of the
secular equation (49) pertain to the occupied spin
orbitals in the ground state. The solutions
i=N-41to N’ (for N'>N) are known as virtual
solutions. They correspond to unoccupied spin
orbitals and may be used to construct excited
configurations. Generally ¢; is positive for the
virtual spin orbitals.

In most calculations to date, the basis function
X (%), in both atomic and molecular calculations,
are of a form originally suggested by Slater!®:

Xt () =750 V', (6,6) {; or. (50)

The space part of (50) is known as a Slater-
type orbital (STO). This has the general appear-
ance of an atomic orbital but without radial
nodes. The SCF results depend rather critically
on the values of the exponential parameters {n;.
Variationally determined values appropriate for
atomic calculations were tabulated by Slater.!®
Recently, the possibility of using Gaussian
orbitals [exp(—ar?) radial dependence] as basis
functions in molecular calculations has been
suggested.!® These have the advantage that
multicenter integrals can be evaluated in closed
form. '

We conclude this review with some general
remarks on the accuracy of SCF calculations.
Perhaps the most spectacular illustration is the
comparison of the radial charge density for argon
from the Hartree—Fock calculation with that
determined by electron diffraction.® The two
functions are very nearly superposable and the
electronic shell structure is clearly shown. The
error in the total electronic energy E is generally
of the order of 19 in Hartree—Fock calculations.
The total energy is not, unfortunately, the
quantity of principal chemical interest. More

18 T C. Slater, Phys. Rev. 36, 57 (1930).

¥ E, E, Harris, Rev. Mod. Phys. 35, 558 (1963), and
references cited therein.

2], S, Bartell and L. O. Brockway, Phys. Rev. 90, 833
(1953). The illustration is reproduced in W. J. Moore,

Physical Chemistry, (Prentice-Hall, Inc., Englewood Cliffs,
New Jersey, 1962), 3rd ed., p. 509.
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significant are excitation energies and molecular
binding energies. The latter quantities cannot be
calculated directly by SCF methods but rather
from differences between total energies. Since
the differences are usually quite small fractions
of variationally calculated quantities, errors are
greatly magnified. Still, excitation energies are
generally determined in the correct order and
with qualitative accuracy—which is often helpful
in correlating spectra. For binding energies, on
the other hand, the SCF method alone is in-
adequate. Citing perhaps the worst case, F; ap-
pears less stable than two F atoms.? Calculating
binding energies in this manner has been com-
pared to weighing the captain of an ocean liner
by taking the difference in the ship’s displace-
ment with and without the captain on board.?
Some progress has recently been made, however,
in incorporating empirical correlation corrections
into binding-energy calculations.” A general view
of the current scope of self-consistent-field theory
may be gained from several articles in the April
1960 and July 1963 issues of Reviews of Modern
Physics.

APPENDIX A. DERIVATION OF THE
THREE-HALVES-POWER LAW

Consider a diode having parallel-plate geometry—the
cathode in the plane x=0, the anode in the plane x=d.
Take the potential as zero at the cathode, V volts at the
anode: V(0)=0, V({d)=V. Assume that the current
density J is independent of x and is related to the space-
charge density »(x) by

J=v(x)o(x),

where v(x) is the local electron wvelocity. If it is further
assumed that electrons are emitted at the cathode with
zero kinetic energy, then

smlo(x) P=eV(x).

(A1)

(A2)

[+ Jamamwrmnte e =] et @ |- fara@esen |-t

The energy integral (12) may now be written

g=[ fan

2 B, J. Ransil, Rev. Mod. Phys. 32, 239, 245 (1960).

sedra (X)) -

N VA N 13
2% (rN){~2=:1< —3V;? ‘—“) +2 2 ()
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Eliminating the velocity between (A1) and (A2) we obtain
T2

V(x)=— L

2e [n( ¢) 1t

We now introduce Poisson’s equation

(A3)

av
VZV(QC)—'—‘=—-47rp<x).

Eliminating the space-charge density between (A3) and
(A4)— this is the step involving self-consistency of poten-
tial and space charge—gives a differential equation for
Vix):

av (m PAdnT

i \2) T (a3)

Multiplying by 2(dV/dx) and integrating from x=0 to
x =%, we obtain

av
In ) E92+161rf( )V% (A6)
where Eg=(dV/dx)z-0, the field at the cathode. The

maximum current density Jmax obtains when Ey=0, when
the potential increases monotonically between cathode and
anode. This leads to the first-order differential equation

av H
Y 4 Jmaxé(_"f) Vi, (AT)
. dx 2e
Noting that
av 4 d
Vi = — /304
dx  3dx
and integrating from x=0 to x=d we obtain finally
(Zm/'e)”
Jm X V AS
* Qard? (88)

This form of the three-halves-power law is known as the
Child-Langmuir equation.?* Other arrangements of cathode
and anode—e.g., coaxial cylinders—also lead to a pro-
portionality Jmax~ V3, with different geometrical factors.

APPENDIX B. VARIATIONAL DERIVATION OF
THE HARTREE EQUATIONS

We will first derive the energy expression (14). If each
factor of the separable function (11) is normalized, as
specified by (13), then ¥ (r;- - -xy) is itself normalized, for

(B

g (ra). (B2)

73 >7 i=17¥ij

2, A, Coulson, Valenee (Oxford Umversny Press, London, 1952), p

2 ].. C. Allen, E. Clementi and H. M.

Gladney, Rev Mod. Phys. 35, .465 (1963).

#C, D. Child, Phys. Rev. 32, 492 (1911); I. Langmuir, Phys. Rev. 2, 450 (1913); Phys. Zeit. 15, 348 (1914). The

above derivation follows that given by I. La.ngmuir and K.

pp. 237 fi.

T. Compton, Rev. Mod. Phys. 3, 191 (1931), especially
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The one-electron part is given by

2z f fdn SR/ 2 30 2% ¢ ) RERD 2k ¢ ) BTV (IN){*%V52—§}¢1(T1) s () e ey (tw). (B3)

In the 4th term integration may be immediately carried out over all variables except r;, giving N—1 factors unity. There
remains

Iv z N
Z dei‘//i* (I‘,;){ —1v;? ———}\//1 (r;) = 2 H,. (B4)
i=1 Y5 i=1

The H; are identical to the integrals (15), except for the change in dummy variable. The two-electron part of (B2) may
be written

> z[ /dn dridry o (1) - s E5* (85) - - ™ ) | =5 | W (1) - s EWs () - ¥ (). (BS)

>1i=1

In each term N —2 factors unity result from integration over all variables except r; and r; and (BS) reduces to

N N
2 3 [ [anaeg vt @ ln—xl et @) =2 2 Ty (B6)
>ii=1 i>ii=1
Again a change in dummy variables identifies the integrals (B6) with those defined in (16). Adding (B4) and (B6) we
finally obtain (14) for the energy expectation value. An alternative way of writing this sum is

N
HA+:Z Z Jiy (B7)

1 f#ii=1

E=

T gz

The factor 1 accounts for the fact that J;; occurs now, as well as the equivalent Ji;, in the double sum.

In accordance with the variational principle, a minimum of E is sought by variation of the functional forms of ¥;(x),
4=1.--N. This minimization is not an unconditional one, however, since the N normalization conditions (13) must be
maintained. A conditional minimum problem may be made equivalent to an unconditional one by application of
Lagrange’s method of undetermined multipliers. Accordingly, we may seek the absolute minimum of the functional

N
Flpp®*) =E W :i*) — 2 éi/d'ri%*(l‘i)'h(ff)- (B8)
i1

The Lagrange multipliers are denoted by ¢;, in anticipation of their later emergence as eigenvalues in the Hartree equa-
tions. Both the y; and the ;* are treated as independent functional variables. Alternatively, the real and imaginary parts
of y; could have been used. Substituting (B7) for E into (B8) and writing out explicitly all the integrals we obtain

N
Fay=3 [ame@{ iv-Eoaluw+r 2 2 > [[anme@pr e nene. ©9)
i=1 i =t

The variation of F(i;,;*) with respect to functional dependence on the ¥; and ¢* is given by

y z
g == [ dfamr){—%VZ———e,-}gbi(r)Jn SIS [ [araetone wu @)t @at @) 1r—r |06
i=1 r

j#i 1=1
N
+ El f dﬂh*(r){—‘V2—~—e.}61/a(r)+z ,§,~ ::‘1 f f dedr L (DY) [t —1" |18y (0 (0) +45(1)6es () ], (B10)

The functions ¢;*(r) and §4:(r) in the third summation may be interchanged because of the Hermitian property of the
bracketed operator—or alternatively after integrating by parts twice. The two parts of the second summation are equal
because of the symmetry in (B9) between the indices 7 and j and between the variables r and r’. The same is true of the
last summation. Incorporating these simplifications we obtain

SE (o) = fdrz{amﬂ[{évz———wz d"*“')‘b’(r')};b,(r)]

=t
+5¢L<r)[{ VZ———e¢+2 d"—(w}w(r)]} (B11)

i#d
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If (fi,0:*) is to be a minimum, then 8 F=0. Since the mini-
mum in F is unconditional, each of the variations y:, &:*
may be chosen arbitrarily. The last two statements can be
consistent only if each of the 2N quantities in square
brackets vanish identically, i.e.,

I

v i

dr' ij)( )‘ }%m(r)_fﬂbt(r)

i=1.--N, (B12)

and N additional relations which are the complex conju-
gates of (B12). The set of equations (B12) is identical to
(5) thus completing the derivation of the Hartree equations.
Multiplying one of the equations (B12) by y:(r) and

integrating over dr gives
e=H;+ > J iy

=1

i=1--+N, (B13)
which relates the Hartree equation eigenvalues to the
energy integrals (15) and (16). Summing over the eigen-
values we find

N N N N

=2 H+2 Z Jy=2 H+22Z 2 Ty

1 1=]1 7#1. =1 7=1 i>ii=1

\I‘M’z

(B14)
Applying (14) or (B7) for the total energy E gives the
relation N
E=2 & — = ]ij.
i=1

i

(B15)

The sum of the ionization energies ¢; is seen to be greater
than the total energy E since each Coulomb term Ji;
contributes to the ionization energy of two different
electrons.

¥ Nt
@=(N)"1 3 Z(=1)+p,0=

=1 s=1

W™ 2 (2 (~1)0e= 2 (-1)0,= (Ve
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APPENDIX C. DETERMINANTAL
WAVEFUNCTIONS

A determinantal function may be constructed from a
Hartree product (19) by summing over all possible
permutations of the particle labels (or of the subscripts)
with coefficients <=1 for even or odd permutations, respec-
tively. An even (odd) permutation is one which can be
obtained by an even (odd) number of simple exchanges
starting with 1, 2, - .-, N. There are N! possible permuta-
tions of N labels—half even, half odd. The construction of
a Slater determinant (21) from a Hartree product (19) may
be expressed symbolically

®(1.- - N)y=a¥(l---N), (C1)
where @ is the antisymmetrization operator
Nt
G=(ND~% 2 (~1)®,. (C2)
r=1

The N! permutation operators ®, are so labeled that even
{odd) r corresponds to an even (odd) permutation.

We require three properties of the antisymmetrization
operator:

@r=(N)ig, (C3)
a=al, (C4)

and
a0=0e¢, (C5)

where Q is any operator totally symmetrical in the coordi-
nates x1- - -xx. To prove the first result, we write

Nt N1 Nt

(Co)

r=1¢=1 i=

The second equality in (C6) comes from the fact that the product of two permutation operators is another permutation
operator of the same set. The Hermitian property of @, Eq. (C4), implies the integral relation

[---[dxl---deg*(l---N)an(l---N)=/-~-[dx1---de[ag(l---N)]*n(l--‘N)

for two arbitrary functions £(1---N) and (1 -

(€7

-N). The two integrals in (C7) differ only in the labeling of dummy

variables and are thus equivalent. The commutativity relation (C5) follows simply from the definition of a totally sym-

metrical quantity—i.e., ®,0=0@; for all permutations 7.
Applying Egs. (C3), {(C4), and (CS5) we have

/ [dxl dey®*(L-- - N)OR(1-- 7\7)[ [dxl -den[@¥ (1

x/’...[dxl...de\I/*(i...N)a20\I/(1...N)=f..

S N)JFO@¥(1--- N)

N!
-fdxl---dew*uu-N)z(-1)t(§>,@\1r(1---N). (C8)

i=1

By virtue of this important result, integrals over Slater determinants can be related to integrals over Hartree products.

We can now prove that ®(1--

/"'ftixl"'dxzvi@(l--‘N)iz=f-"fdx1dxzv¢1*(1)”

G (N) E (—1D)Cpi (1) -+
=1

- N) as given by (21) or (C1) is normalized. Setting O=1in (C8):

N
-¢w(N)

= [ o dear @) owt Want) w0 =[ [amlos [ [amlo@ ][ [anslovan ] =1 o
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Because of the orthonormality of the set ¢;{x} [Eqs. (227, only the identity permutation of the right-hand Hartree pro-
duct avoids a factor zero.

y Z
Next, we turn to the energy expression (23). Setting O= 2 {—%Vﬁ——} in (C8),
L 7:

N
f---[dx1~--de<I>*(1---N)E —%viz—g}cm-.-zv)
=1 (£
_z [ Jame ey aen{ w2 2( D@1 (1) -4y (V)

=3 [ [aepe ot |-+ [swro{~19-L}o |- [ famerramonin ]= 2 €10

Again only the identity permutation avoids a factor zero. After the integrations are carried out, each term in (C10)
consists of N—1 factors unity times H; defined by (24). Finally, setting O =% Z; . 21 7:;7L, we have

N
[---fdxl---dei*(l---N) 2 2 (10 N)
>ii=1

!

=13z / /dx1 cdxnpr* (1) - - o (Nr ™t Z (—1)i@ups (1)« - - (V)
i =1
=32 = / fdxl dungr* (1) -+ ¥ (@D i* (7) - - - on* (N)rs; 7291 (1) - - - [pi (1) 5 (F) — s ()i (B) ]+ - - ()

~33 2 [ [axar o) |- [ [ [amanoc@or rionisi - [ [asasor @ot o ias |-
X[ famvontanonan -4 2 Uy—Ks. 1D

In (C11) each term allows of two nonzero permutations—differing by interchange of and j—and gives, after integration,
N —2 factors unity times J;; — Ky, as defined by (25) and (26). Combining the results (C9), (C10), and (C11) we obtain

d q,*gcq) N N N N
g LA _ Hi+3 3 E(LJ-~I(“)—E Hit+ 2 I (J5—Ka), (C12)
Sdrj@e|r =1 i1 d=1

in agreement with (23). The last form follows from the identity of Ji; and Ki;. An alternative derivation of the energy
formula is given by Hartree.?

APPENDIX D. DERIVATION OF THE HARTREE-FOCK EQUATIONS

The treatment given here applies to a closed-shell system, Generalization of the method for open shells is discussed by
Roothaan.?¢ The problem is to determine the set of spin-orbital functions ¢; (%), ¢=1---N, which minimizes the energy
expression (23) subject to the N? conditions (22). Even though the orthogonality conditions /'dxe:* (x);(x) =0 and
Sdxg;* (x)$i (x) =0 for i j are equivalent, more symmetrical equations are obtained if they are regarded as independent.
In accordance with the method of undetermined multipliers, we seek the unconditional minimum of the functional

N
Foust) =3 [assr {19 Zha@13 2 3 [ [ancor ot @) lr—r 1006060 060450

- E = Rji/dxqbi*(x)(ﬁj (x). (D1

i=1j=1
The N? quantities Nji, 7, i=1--- N, are the Lagrange multipliers, Note that for consistency we must have

Nij =N, (D2)

%5 D, R. Hartree, Ref. 14, p. 39 ff.
2 C, C. J. Roothaan, Rev. Mod. Phys. 32, 179 (1960).
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Proceeding along the same lines as in Appendix B, we find:
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s(guet = [a 2 Lase @[ {1724 2 [are 6 ln-r0 00660 fort - S

i {m-21 2 [arnlerlia-ops @ b sren ]} 09

Again, each of the 2N quantities in square brackets must
vanish, the second N being the complex conjugates of the
first N. Introducing the definition (28) for the effective
Hartree-Fock Hamiltonian the N conditions for optimiza-
tion of the spin orbitals may be written

N
Jeotig () = 2 ¢ ()N,

i=1

i=1-.-N. (D4)

These equations differ from the Hartree-Fock equations
(27) by the presence of off-diagonal multipliers Ayj, 47 3.
It is possible, however, to transform (D4) into (27) as
described in the next paragraph.

A determinantal wavefunction ®(1---N) is invariant
under a unitary transformation among its component spin
orbitals, i.e.,

) 1 ¢1{1\ ...¢1(N)
{1 -Ny=-—"
(VD3 gn (1) - -pn (D)
B (1) -3 (N
1 in< ) :m( ) l 05
(NDHgn(1)---dn(N)
where
N
éi(x) =2 61" (x)Cu, (D6)
=1
and C is any unitary matrix:
N
2 Cu*Cu=3dm, (D7)

i=1

or symbolically, C1C=CCt=1. The form of the functional
(D1) is likewise invariant under the transformation (D6).
To prove this is straightforward. Make the following
substitutions in (D1):

N N

6i()=2 G1(x)Ch,  d"(x) =2 5 (%) Cu*,
=1 k=1 (DS)
N N

()= 2 $al®)Cniy #* @)= 2 én'*(x)Cn*.

n=i m=1

The summations over 4 and j result in

N N
E C{ci*céi = 6}01, Z ij*cnj = amn,

i=1 7=1

(DY)

and subsequently, the sums over I and m leave only the
diagonal terms /=% and m=un, respectively. It is seen
finally that

F(6i,6:*) = F($1,64%), (D10)
where F(é1,¢1*) is obtained from F (qS@,qS,, ) by making the
following substitutions: & for 4, n for 7, é for ¢, s for N,
provided that

¥ N
Xnk= > Cn]-)\jiCk,-*,

i=1j=1

(D11)

or, in matrix notation, A=CAC}. The steps leading to
Eqgs. (D4) can now be carried out in terms of the tilded
spin-orbital functions. The result analogous to (D4) is

N
z ‘E’n (x) Xnicy

n=1

Rpeen(x) = (D12)

where the effective Hamiltonian is written with a tilde to
indicate that the potential-energy operators are also
expressed in terms of the ¢5(x). The pointof the preceding
covariance proof becomes apparent if we specify that the
unitary transformation diagonalize the A-matrix,
Kk == €xdnke (D13)
This is always possible since A is Hermitian [Eq. (D2)1
Thus the set (D4) or (D12) can be in principle, trans-
formed into the Hartree-Fock equations (27). In practice,
one assumes a diagonal multiplier matrix initially. The
solutions of the Hartree-Fock equations are then auto-
matically the basis which diagonalizes A.
For systems containing open shells, it is not, in general,
possible to eliminate the off-diagonal Lagrange multipliers.



