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graph of this article arose because we took seriously the
predictions of a simple theory in a limiting case for which it
was inadequate.

Finally, a simple example is given illustrating the princi-
ple involved when a wave of relatively high intensity under-
goes complete cancellation by a wave of low intensity, after
the latter has undergone two amplitude divisions. In Fig. 1,
M,, M,, and M, represent partially transmitting mirrors
and A is the amplitude of the wave incident upon M. 4,, 4,
are the amplitudes of the waves into which 4 is divided by
M ; similarly, 4, is divided by M, into 4,, and 4,,, and 4,,
is divided by M, into 4,,, and 4,,,. The three waves of
amplitude 4,, 4,,, and 4,,, interfere at P, which may be
regarded as a distant point such that the angle M, PM, is
negligibly small so that the propagation vectors may be
regarded as parallel. Conservation of energy requires

|47 =14, + |4,%  |4,]* = |45,* + |4,2]%,
|Azz|2 = |1‘1221|2 + |A222‘2~

Fig. 1. Wave division at three partially
transmitting mirrors M,, M,, and M,.
The complex amplitude 4 of the incident
wave is split by M, into two parts 4, and
A,; subsequently A, is split into 4,, and
Ay, by M, and A,, is split into A,,, and
A,,, by M. Waves of amplitude 4, 4,,,
and A,,, interfere at P.

In order to produce zero disturbance at P the amplitudes
must satisfy — 4, = 4,, + 4,,,; simultaneous solutions of
these equations may easily be found which also satisfy
|4,|* < |4,|% i.e., which correspond to a wave of relatively
high intensity undergoing complete cancellation by a wave
of low intensity, after the latter has undergone two ampli-
tude divisions. A numerical example of such a solution is

Mi=1 |d]=% al=3%
|421| =275, || = V5/5;
|A221| =% ‘Azzz_l =4

when the resultant disturbance at P may, with appropriate
choice of phase, be made zero.

M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1970), p.
323.
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The electric polarizability of a “classical” hydrogen atom is calculated and found to have the
value a = (21/4)a} for an energy equal to the known quantum-mechanical ground state energy,
as compared with the quantum-mechanical value of (18/4)a;.

I. INTRODUCTION

The topic given in the title came to my attention recently
by way of a well-known example often given in introduc-
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tory or intermediate electromagnetism classes: Find the
polarizability of an atom, using the simple model of a posi-
tive point charge nucleus surrounded by an equal negative
charge cloud uniformly distributed throughout a sphere of
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radius R. An elementary argument,’ which begins by using
Gauss’ law to show that the field of such a uniform charge
is proportional to the distance from the center, continues
by showing that in the presence of an external field £ the
nucleus will be in equilibrium at a distance from the center
which yields a dipole moment M = R *E (in cgs units), so
that the polarizability is @ = R >. Often one argues that a
plausible choice of R for the hydrogen atom would be
R = a,, the Bohr radius; then we have a = a3, which is
indeed of the right order of magnitude.

If, in a misguided attempt to “do better,” one argues
that, after all, the charge distribution is known from quan-
tum mechanics to be exponential in 7 rather than uniform,?
one easily obtians by the same method the slightly different
result @ = 3/4 a}, owing to the fact that for the exponential
distribution the electronic charge density at the origin is
higher by a factor ¢ than it is for the uniform distribution.
Unfortunately, as a conscientious but puzzled student
knocking on my door had realized, this is farther away
from, rather than closer to, the experimental value!® The
quantum mechanical value is well known* to be 4.5 a},
which is six times larger than the “static” value quoted
above. It was the effort to explain this discrepancy to my
students (and, of course, to myself!) which led me to the
considerations described below.

II. EFFECT OF FIELD ON PARTICULAR ORBITS

The “classical”’ value found as described above need not,
of course, have any relation (except as to order of magni-
tude) to the correct quantum-mechanical value, since it is a
“static” calculation which totally ignores the real dynam-
ics of the electron. Nothing is said, for example, of the
forces which would be needed to keep the uniform sphere of
charge in place, or of the distortion which the external field
would produce in that uniform distribution. But, after all,
one should be able to do a proper classical calculation in the
following sense: Given an electron in a Kepler orbit of fixed
energy, investigate how that orbit is affected by an external
field, and in particular, what average dipole moment is in-
duced. The fact that classically orbits of any energy are
allowed, whereas quantum mechanics instructs us that
only particular ones are realized, can be “tacked on” after-
ward by looking at the classical result for the particular
allowed energies (most importantly, the ground state ener-
gy) stipulated by quantum mechanics.

Thinking along these lines, it is natural to look first at
some simple possible orbits. The simplest of all is the case of
a circular orbit whose plane is perpendicular to the applied
field. Clearly a circular orbit, with the nucleus displaced by
a distance d normal to the plane of the orbit from the cen-
ter, is possible; the component of the Coulomb force ¢°/R ?
perpendicular to the plane must just balance the force due
to the external field E: so (¢?/R?) (d /R) = eE, and this
givesed = R *E,sothata = R *.Ifwechoose R = a,, corre-
sponding to the known ground state energy, which is
( — €*/2a,), of the hydrogen atom, we again have the re-
sult @ = a2, just as for the static “sphere” distribution.

For other possible orbits the effect of the external field
becomes harder to calculate. One reasonably simple case,
which is in a certain sense at the opposite extreme from the
circular one (which is characterized by zero eccentricity),
is the degenerate ellipse of maximum eccentricity, i.e., a
“straight line” orbit. Suppose the electron moves along the
X axis, with the nucleus at the origin, and the electric field is
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also along the x axis. The potenial energy of the electron is
given by
V(x) = —é€*/x + eEx,

and the motion takes place between x =0 and x = x,,
where x, is the classical “turning point” defined by
V(x,) =€ = — |e|. Here € is the energy of the electron,
which is negative for a bound state. For weak fields (E<e/
x3), solving for x, gives

xo = (é%/]€]) (1 — B-),
where
B=¢E/|e[*=E /(e/x})<].

The expectation value of x may be calculated as the time
average:

(x) = (%)Jor/zx(t)dt

and the period T'is given by T = 2 §7/2 dt, so that we may
write

T/2 T/2 X0
() = J C(dt / di = f o) / f‘"d_x.
0 0 Q vV 0 v

Here v, the velocity of the electron, is given by energy con-
servation:

jmv’ =€ — V(x) =e*/x — eEx — |€].

Thus we may write, after slight rearrangement,

) %o

<x> ___J x3/2[Q(x)]—1/2 dx/f x1/2[Q(x)]—l/2 dx,
0 0

with Q(x) =1 — (|€|/€*)x — (|€|/e*)*Bx*. The integrals

can be done to first order in 8 (hence E) easily (see Appen-

dix I), and the result is

@ =35 -G

It is the second term, which represents the shift of {x) in-
duced by the external field E, which we want; the first term,
(x), will average to zero if we remember that our “linear”
atom could have been oriented either to the left or to the
right of the origin with equal probability. Hence the in-
duced dipole moment is, on average,

—e({x) — (x)o) = (25/32) (¢/|€|*)E,
which yields a polarizability
a = (25/32)(e%/|€?).
Now for the ground state of hydrogen, |€| = €*/2a,, so
a = (25/32)e%/(e¥/2a,)° = (25/4)d3.

This result is very interesting, inasmuch as it is over six
times as great as the value (a3 ) obtained for the circular
orbit; furthermore, it is actually greater than the quantum-
mechanical value of (g)af). But we should not be too sur-
prised at this, for on reflection we realize that the “straight
line” orbit corresponds to zero angular momentum, where-
as the circular orbit corresponds to the maximum angular
momentum consistent with a given energy (which is, of
course, i in the case of an orbit of energy — €?/24,). Since
we know that the quantum-mechanical ground state has
angular momentum zero, a satisfactory correspondence
has emerged; indeed we may suspect that a classical treat-
ment which averaged over all possible angular momenta
(i.e., orbits of all possible eccentricities and orientations
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relative to the external field), might yield a value of the
polarizability, surely intermediate between the extremes of
a3 and (25/4)a3, which might be fairly close to the quan-
tum-mechanical value.

III. GENERAL TREATMENT

In order to carry out this program, we may use the fun-
damental principle of statistical mechanics: A system is
equally likely to be found (a priori) in equal volumes of its
phase space, consistent with whatever restrictions or con-
straints are present. Here our only restriction is on the en-
ergy, so we are dealing with a “microcanonical” ensemble.’
Then the prescription for finding the average of any func-
tion F(q, p) of the coordinates and momenta of the system
is given by '

(F)= fF(q,p)a(H — e)dr/fa(ﬂ —¢€)dr.

Here H is the Hamiltonian of the system, € is the energy
value, and dT is the appropriate element of phase space.
The delta function enforces the restriction to a constant-
energy hypersurface in the phase space. In our case we have

H=p/2m —e*/r+eE-r

as the Hamiltonian of the electron in the field of the nucleus
(assumed at the origin) and the external field E; we will
take € = — |€| to be a negative energy corresponding to a
bound state. We want to find the expectation value of the
electron’s dipole moment M = — er. Clearly the only non-
vanishing component of M will be the one in the direction
of E; so if we choose the z axis of a polar coordinate system
in the direction of the external field E, we may rewrite the
Hamiltonian as

H =p*/2m — e*/r + eErcos 8
and the desired dipole moment as
{(M)=(—ercos8).
The phase space element is
dT' =dxdydzdp, dp, dp,,

wherex, y,zandp,, p,, p, are the electron’s Cartesian posi-
tion and momentum components; but, since H depends
only on the squared magnitude p* of the momentum and on
r and 8, clearly a “polar” volume element in both the space
and momentum parts of the phase space is suggested:

dr = (277* sin 8 d6 dr) (4wp? dp),

where the integration over the solid angle in p space and
over the azimuth angle in r space has been carried out. The
required average therefore reduces to

(rcos @)

=U f J’Wrcoseﬁ(H—e)pzdprldrsiné?de)
(] 0 0
(fw fw f&(H—e)pz dpr? sin 9d0)“.

0 0 0

The delta-function factor in the integrand can be used to
carry out the p integration; with the help of some standard
delta-function algebra it may be rewritten as
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S(H —€) = 8(p*/2m — &*/r + eEr cos 6 — €)
=2mé[p* — 2m(e*/r — eErcos 0 +¢€)]
=2mé[p* — P*(r, 0)]
= (m/P){6[p — P(r,0)] + 8[p + P(r, 6) ]},

with P(r, 8) defined by

P%(r,0) = 2m(e*/r — eErcos 6 — |¢|).

Since the range of the p integration is from O to «o, only the
term 8(p — P) in the integrand gives a nonvanishing con-
tribution, and then only if the condition P2(r, #) > Ois sati-
sifed. Hence we have

F p*5(H — €)dp = ﬂf p*6(p — P)dp
0 P 0

mP(r, 8), if P%(r, )30,
- [0, otherwise.
Then the required averge reduces to
§rrcos BP(r, )7 sin 8 dr dO
SSpP(r, 0)r* sin 6dr do
where the region of integration R for both numerator and
denominator is defined by the condition
e*/r — eEr cos 6 — €| >0.
Here again the required integrals can be done to first order
in the field E without great difficulty (see Appendix II)
with the result
(rcos @) = — [21/32(’E /|e|’].
Hence the induced dipole moment is
(My={(—ercos@)= + (21/32)(°E /|€|*)
and for |€| = ¢*/2a,, the hydrogen ground state energy, we
obtain
(M) = (21/4)a} E,
so that the polarizability is
a=(21/4)a}.

This lies, as we suspected, between the extremes for the
“circular” and the “straight line” orbits, although consid-
erably closer to the latter. Furthermore, it is fairly close to
the quantum-mechanical result, exceeding it by a factor 7/
6.

(rcos @) =

IV. SUMMARY

We have shown that the polarizability of hydrogen may
be found in a “semiclassical” fashion and that the result is
considerably closer to the quantum-mechanical value than
is the static *“‘charge-cloud” value with which the whole
discussion started. The calculation is, we believe, under-
standable at the junior/senior level, and is instructive in
that ideas from electromagnetism, classical mechanics, and
statistical mechanics are all drawn upon. The result is one
that we have not found in a casual search of the literature
(nor in responses to random queries addressed to knowled-
geable colleagues!) and it may therefore be of some interest
in its own right as well as qua pedagogical example.
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APPENDIX A

The integrals to be done are of the form
o - 1 3
J, =J "[Q(x)]~V%dx, for n=—, =,
5 x"[Q(x)] n=s
where Q(x) = [1—x/d — B(x*/d?)], with d =e*/|e|
and 3 = Ed */e<1, and with x, = the root of Q(x) which is
near x = d:
xXo=d(1—=5..).
Rewriting Q(x) = (1 — x/x,)[1 + Bx,/d *)x], we may
expand the integrand for small 3 as
[Qx)] 72 = (1 — x/x5) ~V2[1 —
so that

Xo —12
Jn= x" l_i) (1_& ...)d )
J; ( X, 2d*? *+ ~

Then changing variables by the substitution x = x,, sin %y,
we have

/2
J,,=2x3+1J; sin2"+1¢(1 ﬁd" sin? ¢ + ) dy.

For the required values of » the integrals are elementary,
and give

Jin = (wd¥?/2)[1 — (15/8)8...]

(Bxo/2d Hx...],

and
Js, = 3md>'%/8)[1 — (35/12)B...].
Hence
(x) = T3z —3d _26d _ie__}iﬂfn__
Jisa 4 32 4 |e| 32 |e?
APPENDIX B

The integrals to be calculated are I, and I,, where
I, = L fP(r, 6)7r* sin 6 dr do
and
L= JI; fr cos 8 P(r, 8)r sin @ dr dé.
Here P%(r, 0) = ¢*/r — eEr cos 6 — |€| and the region R is

defined by the condition P2 (r, 8) >0. Itis convenient to use
= cos 0 as the integration variable; then we have

1 ro
Il=f duf P(r,u)r? dr
—1 0
and
1 ro
12=J- uduj P(r,u)Pdr,
—1 0 '

where 7, is the root of P2(r, u) =0, which is close to
d =¢%/|e|, and is given to first order in the field E by
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ro=d(1 — Bu...) with B defined as in Appendix A. Apart
from a constant which cancels on taking the ratio 1,/1,, we
may then write

1 ro
11=f duf PRI, u) V2 dr
—1 0

and
1 ro
Izzf uduf r2Q(r, u)1V? dr,
—1 ¢]
where
Burr
Q(r,u)—l—————Bu—=( -——r;)(l d20 )

then to first order in 3, the 1ntegra1s become

I, = J duJ- P ! B’O” dr
‘\/ 0
Iz-.f uduf r2 ’ ( Brou .)dr,

and the same change of variable as used in Appendix Ais
appropriate: r = r, sin’ ¥. Then

1 7/2
I, =277 J duJ. sin* ¢ cos® ¢

(it o
and
L =2y 2[_ 1 u afuJW/2 sin® ¢ cos® ¥
X( '822 sin® ¢.. ) dy.

Since it is clear that the first nonvanishing term in 7, is the
term linear in S, only the zero-order term in [, is required,
and the results are

I, =7d%?%/8
and
— (21/256)8d 72,
so that
I 21 21 €°E
reosfy="2= ——fd= ——-——,
¢ ) I, 32 32 le]?

'This argument is given in many texts; for example, D. J. Griffiths, Intro-
duction to Electrodynamics (Prentice-Hall, Englewood Cliffs, NJ,
1981), pp. 139 and 140. (note that, in SI units, a factor 47r¢,, is present in
expressions for the polarizability, which is absent in cgs units.)

2As suggested, e.g., in Ref. 1 Problem 2, p. 141.

3A. M. Portis [Electromagnetic Fields (Wiley, New York, 1978), p. 80]
lists an experimental value which corresponds to @ = 4.4a3.

“E. Merzbacher, Quantum Mechanics (Wiley, New York, 1970), p. 424.

>That is, we contemplate a collection of hydrogen atoms, all having the
same energy, but with “random” values of eccentricities of their orbits
and orientations of the planes of their orbits. The correct specification of
this “randomness” lies in attributing equal probabilities to equal volumes
of the phase space of the electron in the atom.
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