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A simple model of a compressed hydrogen atom and an approximate formula for the energy shift
due to compression are presented. The model is used in a theoretical lab, where the numerical
energy shifts obtained from the approximate formula are compared with the results of an
independent numerical calculation starting from the radial Schrédinger equation with boundary

conditjons.

1. INTRODUCTION

The radial Schrédinger equation for the relative motion
of the electron and the proton in a free, uncompressed hy-
drogen atom with boundary conditions #(0) = #( ) =0
is exactly soluble, the solution being a textbook example. If,
however, the hydrogen atom is enclosed in an impenetrable
sphere of radius a (“compressed hydrogen atom™), the
boundary conditions are u(0) = u(a) = 0. This change of
boundary condition causes an upward shift of every energy
level, which cannot be studied without using some approxi-
mation.

The wavefunctions for the states of the compressed hy-
drogen atom cannot be simply expressed in terms of the
eigenfunctions of the free hydrogen atom since the two
problems correspond to different boundary conditions.
Hence, the Rayleigh-Schrodinger perturbation theory
does not apply.

An other approximation method is the WKB method.
One standard illustration of the WKB method is the sym-
metric double-well potential, originally treated by Denni-
son and Uhlenbeck.! As pointed out by Froman,” the usual
WKB treatment of the double-well potential is not satisfac-
tory, since the one-directional nature of the connection for-
mulas®* has been disregarded. In Ref. 2 the quantization
condition for the double oscillator is derived by the method
developed by Froman and Froman* for the rigorous solu-
tion of the connection problems. For energies below the top
of the barrier, the particle should classically only be able to
move in either of the two wells, but due to quantum me-
chanical tunneling, we obtain a correction to the single-
well quantization condition taking only the classical mo-
tion into account.

The Dennison-Uhlenbeck quantization condition' for
the symmetric double oscillator [see Eq. (3) in Sec. II]
contains an exponential correction, due to quantum me-
chanical tunneling, and this correction is often smaller
than the error in the quantization condition itself. The re-
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sults have however proved to account fairly well for the
energy splitting of the energy levels.”

We now observe that the odd-parity wavefunction of the
symmetric double oscillator has the same properties as the
wavefunction of a compressed simple oscillator with an
impenetrable wall at a point corresponding to the point of
symmetry for the double-well potential. In Sec. III we use
this analogy to guess what the quantization condition of a
compressed atom should look like. The result is in agree-
ment with the result of a rigorous treatment’ of the prob-
lem of obtaining the energy shift due to compression based
on the method for handling the connection problem devel-
oped by Froman and Froman.* The rigorous solution gives
an analytical expression for the energy shift.

In a theoretical lab at our institute, the analytical for-
mula for the energy shift of the hydrogen atom due to com-
pression is compared with the result of a brute-force nu-
merical calculation using a second-order difference
approximation in the radial Schrédinger equation. The ex-
ercise can be performed in any course of quantum mechan-
ics, where the students are familiar with the Bohr-Som-
merfeld quantization and the quantum theory of the
hydrogen atom. Although we have used a VAX computer
the program can be implemented on a personal computer.

II. THE SEMICLASSICAL QUANTIZATION
CONDITION FOR A SINGLE-WELL AND A
SYMMETRIC DOUBLE-WELL POTENTIAL

For a particle with mass m, which moves with energy E,
in a real potential ¥(x), the semiclassical momentum p, is
defined by

pi/(2m) =E, — V(x). (1)

Let us first consider a single-well potential. According to
the Bohr-Sommerfeld quantization rule® if p, is integrated
over a cycle of motion from one classical turning point (for
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Fig. 1. Qualitative behavior of ¥(x) — E for a double oscillator.

which p, = 0) to another and back, the result should be
(n + })h, where A is Planck’s constant. Hence

:zf 2{2m[E,, —V(x) 1} dx=(n+Hh, n=01.2,..,
) (2)

where x; and x, denote the classical turning points. It is
easy to show (cf, Ref. 3) that the quantization rule (2)
gives the energy levels of the linear harmonic oscillator
correctly.

Consider now a symmetric double oscillator (Fig. 1)
with four classical turning points — x,, — x;, x,, x,. This
problem was originally considered by Dennison and Uh-
lenbeck! for energy levels lying well below the top of the
barrier. For a rigorous treatment of the double oscillator
see Ref, 2. Dennison and Uhlenbeck' used the (first-order)
WKB approximation for obtaining the energy levels, al-
though the derivation of the formulas is not satisfactory,
since the one-directional nature of the connection formu-
las®* has been disregarded. The Dennison and Uhlenbeck
quantization condition for the symmetric double oscillator
reads

ZJ 2 {2m[E, — V(x)]}"?dx + L3 arctan(—lz—e—"‘)
X, T

=(n+Ph, n=012,.., (3)

where
K=—2hif'{2m[V(x) _E,1}dx, (4)
o

and where the upper sign in (3) corresponds to even-parity
states and the Jower sign in (3) to odd-parity states. The
symmetric double oscillator as compared to the “corre-
sponding single oscillator with classical turning points x,
and x,” is an important example of quantum mechanical
tunneling, the effect of which cannot be neglected if effects
ofthe order e ~ >X are of interest. The effect due to tunneling
is often smaller than the error in the quantization condi-
tion. However, formula (3) with (4) is sufficiently accu-
rate to calculate, for example, the energy splitting between
the odd parity state and the even parity state with the same
n.

II1. THE SEMICLASSICAL QUANTIZATION
CONDITION FOR A FREE ATOM AND A
COMPRESSED ATOM

Let us consider an electron with mass m, which moves in
a real central potential V(r) with the energy E, and the
angular momentum value L, the energy and the angular
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momentum being constants of the motion. We saw for the
single-well case that if the semiclassical momentum is inte-
grated over a cycle of motion, the result equals the Planck’s
constant multiplied by a positive half-integral number. Let
us now assume that the same relation holds for the (semi-
classical) angular momentum integrated over one period
of the corresponding variable, the angle @, from 0 to 27.
Since L is constant, we obtain

L={(+D#A [1=01.2,.. (5)
In quantum mechanics
L=+ D=+ D[1-YU+ ]V
=+ D%
for large /, and in the semiclassical calculations we shall use
the value (/ + 1)#iof L.
In classical mechanics use is made of the identity
L?= (rXp) - (rXp) =rp* — (r+p)’ = Fp* — r'p},
(6)
where r is the position vector and p is the momentum vec-
tor; p, is the radial momentum. Using (5), (6) and the
relation E, = p?/(2m) + V(r), we have
pi=2m[E, — V(] — (U+)#7r (7)

for the semiclassical radial momentum. The classical turn-
ing points are those values of 7 ( > 0) for which p, = 0, and
we shall now assume that there are two classical turning
points 7, and r,, where r, < 7,.

If p, is integrated over a cycle of motion from 7, to r, and
back, the result should be (k + §)27#, where & is a non-

negative integer. Hence, according to (7) we have the
quantization condition originally obtained by Kramers®:

7, 1 2 172
ZJ {2m[E,, —V(n]— (1+7) ﬁz/rz} dr

= (k+14)27%, k=0,1.2,.., (8)
where

n=k+/+1 (9

Note, that the energy eigenvalues obtained from (8) in
general also depend on /.
For the hydrogen atom with

V(r) = — #/mayr, (10)
(a, = the Bohr radius), the integral on the left of (8) gives

" ] 4 12212
f [2m(E,,+ 7 )— ¢+ dr

mayr r
o ( 1)
= |l 4+—)fm 11
ao( —2mE,)"? +2 (b

With (9), (8), and (11) give

(—2mE,)'* =#/ayn, (12)
or
n=k+1+41,
E, = — ﬁzz —, k=0,12,., (13)
Imayn” j_o12,...

Equation (13) is the well-known formula for the energy
levels of the hydrogen atom. The same energy levels are
obtained by solving the radial Schrodinger equation to-
gether with the boundary conditions that the radial wave-
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function shall vanish for » = 0 and in the limit as » tends to
infinity.

We now introduce a simple model of an atom exposed to
a high pressure (e.g., inside a star). We assume that the
electron is enclosed in a large sphere of radius a > r, with
impenetrable walls. The usual boundary condition for the
free atom at infinity is then replaced by the boundary con-
dition that the radial wavefunction should vanish for r = a.
To obtain an approximate solution of this problem let us
consider an effective double oscillator potential (cf. Fig. 2)

Veﬂ'(r)

. {V(") + (l+§)2ﬁ2/2mr2, O<r<a
T W@a—r) + U+ D#/2m(2a —1)?, a<r<2a,

(14)
symmetric around » = a The odd-parity solution of this
problem [in the interval O < » < a corresponding to the ra-
dial Schrédinger equation (25) in Sec. IV] fulfills the same
boundary condition at r = a as our original model prob-
lem. Hence, the Dennison—Uhlenbeck quantization condi-
tion (3) with the lower sign chosen and with ¥(x) changed
into ¥ *(r), etc. should give the energy levels E¢ for the
compressed atom:

172

7y 252
2f (2m[E: oy —"—ﬂ‘zﬁ—) dr
r r
— 2fiarctan (e~ 2X®)
=(k+12x%, k=0,12,.,
where in accordance with (4) and (14)

a 2
K(a) = f (2?’” [V(r) —E,] + Ltil-)m dr, (16)

r

(15)

and where

lim E =E,,

a-— o

Substracting (15) from (8), we obtain the following for-
mula for the pressure shift E2 — E,, :

r (2—'"- [E2—V(n] ———2—(l+21)2)1/2 dr
r ﬁZ r

= (2m (+ D%\
[ G- o -2

= arctan (e —*¥@),

n=k+1I1+1 (17)

(18)
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where r, and r, are the zeros of the respective integrands on
the left of (18).

The approximate formula (18) for the pressure shift
E¢ — E, of a compressed atom is in complete agreement
with first-order results obtained by Froman, Froman, and
Yngve’ by means of the method developed by the two for-
mer* for the rigorous solution of the connection problem. It
is however beyond the scope of the present paper to reca-
pitulate the rigorous derivation of formula (18) made in
Ref. 5.

Consider now the “compressed hydrogen atom,” i.e., let
V(r) be given according to (10). Introducing the dimen-
sionless parameter »n, through the relation
E¢ = — #/(2majn?), where according to (13) n, »n as
a— «. Using (10), (18), (16), and (11), we obtain, after
some calculations,

— 2K(a) )’

n, —n = (1/m)arctan(le (19)

where
o~ 2K(@) _ (a/a0 —n*+nQ, )n
a/a,—n*—nQ,
(a/ao —(+D*—-U+ 5)Qa)’+ v e,
a/a,— I+ >+ (I + 10, ’

(20)

and where

Q, = [d*/(ain?) — 2a/ay + (I +1)*]Y2 (21)
Since

1 1 n,+n 2(n, —n) ,

——2+F=(n,,—n) Rl A (22)
and

arctan(fe = 2X(®) Lo = K@, (23)

we obtain the final formula for the energy shift of the com-
pressed hydrogen atom:

E: —En
1 # (a/ao—n2+nQa )"
27 main® \ a/a, —n* — nQ,
><(a/ao - U+ %)z -+ %)Qa)l+ Vze—zQ,,, (24)
a/ag— I+ + (+DQ,

where Q, is given by (21).

IV. THE THEORETICAL LAB “COMPRESSED
HYDROGEN ATOM”

We still consider an electron in a central potential V(7).
In the quantum mechanical treatment of the problem con-
sidered in the previous section, we solve the radial Schré-
dinger equation ‘

2
d u(r) +(_2ﬁ [E___ V(r)] _M_)u(r) =0,
7 r

dr?

(25)
where u(r) is the radial wavefunction. The natural bound-
ary condition

u(0)=0 (26)

selects the regular wavefunction, and this solution of (25)
is uniquely determined as for an arbitrary constant factor
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Fig. 3. The relative error of n, —n, ie, [(n, — 1)
- (na - n)exm ]/(na - n)exlc( = [(nn )approx - (na )exm ]/
(1, — 1) aees I8 plotted, against @/n® = a/(an®) for the states ls
(n=11=0),2s (n=2,/=0), and 2p (n =2,/ =1). Full drawn lines
correspond to a positive error and broken lines to a negative error. It
should be mentioned that the cusps in the figure actually correspond to a
relative error equal to zero, although for practical reasons this is not seen
in the figure.

different from zero. For a bound electron in a free atom we
impose the further boundary condition that the wavefunc-
tion shall go to zero as r— o . The boundary condition for
the free atom that # (7) vanishes at infinity is for the model
of the compressed atom presented in the previous section
replaced by the boundary condition

u(a) =0. (27)

‘When the boundary condition (27) is imposed on the regu-
lar solution of (25), we obtain the energy eigenvalues

E=E°, n=k+I+1. (28)

Let us now particularize to the case of a compressed
hydrogen atom. Introducing into (25) with (10) the sub-

stitution (28) with ES = — #°/(2ma}n?) and a dimen-
sionless variable and a parameter
R=r/a,, a=a/a, (29)
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we obtain
d%u 1 2 U+
42 M+ DY, 30
dR2+( n§+R e )u (30)
with boundary conditions
u(R=0)=u(R=a)=0. 3D

For a numerical calculation of the eigenvalues we approxi-
mate the second derivative in the left-hand member of (30)
by the second-order difference approximation

(uv+1 _2uv +uv——l)/H2’

v=1L.,N—1, uy=uy=0,
where
H=a/N.

The eigenvalue problem (30) with (31) is then reduced to
the eigenvalue problem of a symmetric, positively definite
tridiagonal matrix of rank N — 1. The numerical result for
n, — n is compared with a calculation using formula (19)
with (20) and (21). The programming of Eq. (19) on a
pocket calculator is left to the students, whereas a numeri-
cal program for solving the Schrodinger equatipon (30)
with boundary conditions (31) with the difference approx-
imation method indicated above is available on a VAX
computer at our university.

The students are also asked to related the parameter
d = a/a, to the pressure P by assuming that the force F for
compressing an atom in the state (n,/) into a sphere of
radius a is — dE 2/da, and the pressure is F /(4ma?).

The accuracy of formula (19) is illustrated in Fig. 3.
Considering the crudeness of the model of compression,
the accuracy is quite good.
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